src/HOL/HOL.thy
author nipkow
Thu, 02 Dec 2004 11:59:34 +0100
changeset 15362 a000b267be57
parent 15360 300e09825d8b
child 15363 885a40edcdba
permissions -rw-r--r--
added ALL print-translation for > and >=.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     1
(*  Title:      HOL/HOL.thy
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
    ID:         $Id$
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
     4
*)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     5
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
     6
header {* The basis of Higher-Order Logic *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     7
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15103
diff changeset
     8
theory HOL
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
     9
imports CPure
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15103
diff changeset
    10
files ("HOL_lemmas.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML")
15197
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
    11
      ("antisym_setup.ML")
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15103
diff changeset
    12
begin
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    13
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    14
subsection {* Primitive logic *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    15
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    16
subsubsection {* Core syntax *}
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    17
14854
61bdf2ae4dc5 removed obsolete sort 'logic';
wenzelm
parents: 14749
diff changeset
    18
classes type
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
    19
defaultsort type
3947
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
    20
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
    21
global
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    22
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    23
typedecl bool
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    24
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    25
arities
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
    26
  bool :: type
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
    27
  fun :: (type, type) type
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    28
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    29
judgment
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    30
  Trueprop      :: "bool => prop"                   ("(_)" 5)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    31
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    32
consts
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    33
  Not           :: "bool => bool"                   ("~ _" [40] 40)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    34
  True          :: bool
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    35
  False         :: bool
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    36
  If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
3947
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
    37
  arbitrary     :: 'a
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    38
11432
8a203ae6efe3 added "The" (definite description operator) (by Larry);
wenzelm
parents: 10489
diff changeset
    39
  The           :: "('a => bool) => 'a"
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    40
  All           :: "('a => bool) => bool"           (binder "ALL " 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    41
  Ex            :: "('a => bool) => bool"           (binder "EX " 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    42
  Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    43
  Let           :: "['a, 'a => 'b] => 'b"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    44
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    45
  "="           :: "['a, 'a] => bool"               (infixl 50)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    46
  &             :: "[bool, bool] => bool"           (infixr 35)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    47
  "|"           :: "[bool, bool] => bool"           (infixr 30)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    48
  -->           :: "[bool, bool] => bool"           (infixr 25)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    49
10432
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
    50
local
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
    51
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    52
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
    53
subsubsection {* Additional concrete syntax *}
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    54
4868
843a9f5b3c3d nonterminals;
wenzelm
parents: 4793
diff changeset
    55
nonterminals
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    56
  letbinds  letbind
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    57
  case_syn  cases_syn
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    58
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    59
syntax
12650
fbc17f1e746b "_not_equal" dummy constant;
wenzelm
parents: 12633
diff changeset
    60
  "_not_equal"  :: "['a, 'a] => bool"                    (infixl "~=" 50)
11432
8a203ae6efe3 added "The" (definite description operator) (by Larry);
wenzelm
parents: 10489
diff changeset
    61
  "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    62
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    63
  "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    64
  ""            :: "letbind => letbinds"                 ("_")
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    65
  "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    66
  "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    67
9060
b0dd884b1848 rename @case to _case_syntax (improves on low-level errors);
wenzelm
parents: 8959
diff changeset
    68
  "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
b0dd884b1848 rename @case to _case_syntax (improves on low-level errors);
wenzelm
parents: 8959
diff changeset
    69
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
    70
  ""            :: "case_syn => cases_syn"               ("_")
9060
b0dd884b1848 rename @case to _case_syntax (improves on low-level errors);
wenzelm
parents: 8959
diff changeset
    71
  "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    72
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    73
translations
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 7220
diff changeset
    74
  "x ~= y"                == "~ (x = y)"
13764
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
    75
  "THE x. P"              == "The (%x. P)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    76
  "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
1114
c8dfb56a7e95 Prod is now a parent of Lfp.
nipkow
parents: 1068
diff changeset
    77
  "let x = a in e"        == "Let a (%x. e)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    78
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    79
print_translation {*
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    80
(* To avoid eta-contraction of body: *)
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    81
[("The", fn [Abs abs] =>
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    82
     let val (x,t) = atomic_abs_tr' abs
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    83
     in Syntax.const "_The" $ x $ t end)]
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    84
*}
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13723
diff changeset
    85
12633
ad9277743664 tuned ``syntax (output)'';
wenzelm
parents: 12436
diff changeset
    86
syntax (output)
11687
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    87
  "="           :: "['a, 'a] => bool"                    (infix 50)
12650
fbc17f1e746b "_not_equal" dummy constant;
wenzelm
parents: 12633
diff changeset
    88
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "~=" 50)
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
    89
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 12023
diff changeset
    90
syntax (xsymbols)
11687
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    91
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    92
  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    93
  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 12023
diff changeset
    94
  "op -->"      :: "[bool, bool] => bool"                (infixr "\<longrightarrow>" 25)
12650
fbc17f1e746b "_not_equal" dummy constant;
wenzelm
parents: 12633
diff changeset
    95
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
11687
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    96
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    97
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    98
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
    99
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
14361
ad2f5da643b4 * Support for raw latex output in control symbols: \<^raw...>
schirmer
parents: 14357
diff changeset
   100
(*"_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ \<orelse> _")*)
2372
a2999e19703b fixed alternative quantifier symbol syntax;
wenzelm
parents: 2368
diff changeset
   101
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 12023
diff changeset
   102
syntax (xsymbols output)
12650
fbc17f1e746b "_not_equal" dummy constant;
wenzelm
parents: 12633
diff changeset
   103
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
3820
46b255e140dc fixed infix syntax;
wenzelm
parents: 3370
diff changeset
   104
6340
7d5cbd5819a0 HTML output;
wenzelm
parents: 6289
diff changeset
   105
syntax (HTML output)
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   106
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
11687
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
   107
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   108
  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   109
  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   110
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   111
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   112
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   113
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
6340
7d5cbd5819a0 HTML output;
wenzelm
parents: 6289
diff changeset
   114
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 7220
diff changeset
   115
syntax (HOL)
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   116
  "ALL "        :: "[idts, bool] => bool"                ("(3! _./ _)" [0, 10] 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   117
  "EX "         :: "[idts, bool] => bool"                ("(3? _./ _)" [0, 10] 10)
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   118
  "EX! "        :: "[idts, bool] => bool"                ("(3?! _./ _)" [0, 10] 10)
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 7220
diff changeset
   119
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 7220
diff changeset
   120
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   121
subsubsection {* Axioms and basic definitions *}
2260
b59781f2b809 added symbols syntax;
wenzelm
parents: 1674
diff changeset
   122
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   123
axioms
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   124
  eq_reflection: "(x=y) ==> (x==y)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   125
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   126
  refl:         "t = (t::'a)"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   127
  subst:        "[| s = t; P(s) |] ==> P(t::'a)"
6289
062aa156a300 added a commment on the "ext" rule
paulson
parents: 6027
diff changeset
   128
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   129
  ext:          "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   130
    -- {* Extensionality is built into the meta-logic, and this rule expresses *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   131
    -- {* a related property.  It is an eta-expanded version of the traditional *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   132
    -- {* rule, and similar to the ABS rule of HOL *}
6289
062aa156a300 added a commment on the "ext" rule
paulson
parents: 6027
diff changeset
   133
11432
8a203ae6efe3 added "The" (definite description operator) (by Larry);
wenzelm
parents: 10489
diff changeset
   134
  the_eq_trivial: "(THE x. x = a) = (a::'a)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   135
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   136
  impI:         "(P ==> Q) ==> P-->Q"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   137
  mp:           "[| P-->Q;  P |] ==> Q"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   138
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   139
defs
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   140
  True_def:     "True      == ((%x::bool. x) = (%x. x))"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   141
  All_def:      "All(P)    == (P = (%x. True))"
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11438
diff changeset
   142
  Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   143
  False_def:    "False     == (!P. P)"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   144
  not_def:      "~ P       == P-->False"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   145
  and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   146
  or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   147
  Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   148
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   149
axioms
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   150
  iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   151
  True_or_False:  "(P=True) | (P=False)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   152
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   153
defs
7357
d0e16da40ea2 proper bootstrap of HOL theory and packages;
wenzelm
parents: 7238
diff changeset
   154
  Let_def:      "Let s f == f(s)"
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11438
diff changeset
   155
  if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4868
diff changeset
   156
14223
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   157
finalconsts
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   158
  "op ="
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   159
  "op -->"
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   160
  The
0ee05eef881b Added support for making constants final, that is, ensuring that no
skalberg
parents: 14208
diff changeset
   161
  arbitrary
3320
3a5e4930fb77 Added `arbitrary'
nipkow
parents: 3248
diff changeset
   162
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   163
subsubsection {* Generic algebraic operations *}
4868
843a9f5b3c3d nonterminals;
wenzelm
parents: 4793
diff changeset
   164
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   165
axclass zero < type
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   166
axclass one < type
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   167
axclass plus < type
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   168
axclass minus < type
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   169
axclass times < type
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   170
axclass inverse < type
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   171
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   172
global
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   173
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   174
consts
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   175
  "0"           :: "'a::zero"                       ("0")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   176
  "1"           :: "'a::one"                        ("1")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   177
  "+"           :: "['a::plus, 'a]  => 'a"          (infixl 65)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   178
  -             :: "['a::minus, 'a] => 'a"          (infixl 65)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   179
  uminus        :: "['a::minus] => 'a"              ("- _" [81] 80)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   180
  *             :: "['a::times, 'a] => 'a"          (infixl 70)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   181
13456
42601eb7553f special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
wenzelm
parents: 13438
diff changeset
   182
syntax
42601eb7553f special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
wenzelm
parents: 13438
diff changeset
   183
  "_index1"  :: index    ("\<^sub>1")
42601eb7553f special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
wenzelm
parents: 13438
diff changeset
   184
translations
14690
f61ea8bfa81e _index1: accomodate improved indexed syntax;
wenzelm
parents: 14590
diff changeset
   185
  (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
13456
42601eb7553f special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
wenzelm
parents: 13438
diff changeset
   186
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   187
local
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   188
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   189
typed_print_translation {*
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   190
  let
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   191
    fun tr' c = (c, fn show_sorts => fn T => fn ts =>
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   192
      if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   193
      else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   194
  in [tr' "0", tr' "1"] end;
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   195
*} -- {* show types that are presumably too general *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   196
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   197
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   198
consts
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   199
  abs           :: "'a::minus => 'a"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   200
  inverse       :: "'a::inverse => 'a"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   201
  divide        :: "['a::inverse, 'a] => 'a"        (infixl "'/" 70)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   202
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   203
syntax (xsymbols)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   204
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   205
syntax (HTML output)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   206
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   207
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   208
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   209
subsection {* Theory and package setup *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   210
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   211
subsubsection {* Basic lemmas *}
4868
843a9f5b3c3d nonterminals;
wenzelm
parents: 4793
diff changeset
   212
9736
332fab43628f Fixed rulify.
nipkow
parents: 9713
diff changeset
   213
use "HOL_lemmas.ML"
11687
b0fe6e522559 non-oriented infix = and ~= (output only);
wenzelm
parents: 11451
diff changeset
   214
theorems case_split = case_split_thm [case_names True False]
9869
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   215
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   216
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   217
subsubsection {* Intuitionistic Reasoning *}
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   218
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   219
lemma impE':
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   220
  assumes 1: "P --> Q"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   221
    and 2: "Q ==> R"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   222
    and 3: "P --> Q ==> P"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   223
  shows R
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   224
proof -
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   225
  from 3 and 1 have P .
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   226
  with 1 have Q by (rule impE)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   227
  with 2 show R .
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   228
qed
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   229
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   230
lemma allE':
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   231
  assumes 1: "ALL x. P x"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   232
    and 2: "P x ==> ALL x. P x ==> Q"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   233
  shows Q
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   234
proof -
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   235
  from 1 have "P x" by (rule spec)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   236
  from this and 1 show Q by (rule 2)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   237
qed
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   238
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   239
lemma notE':
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   240
  assumes 1: "~ P"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   241
    and 2: "~ P ==> P"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   242
  shows R
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   243
proof -
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   244
  from 2 and 1 have P .
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   245
  with 1 show R by (rule notE)
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   246
qed
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   247
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   248
lemmas [CPure.elim!] = disjE iffE FalseE conjE exE
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   249
  and [CPure.intro!] = iffI conjI impI TrueI notI allI refl
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   250
  and [CPure.elim 2] = allE notE' impE'
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   251
  and [CPure.intro] = exI disjI2 disjI1
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   252
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   253
lemmas [trans] = trans
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   254
  and [sym] = sym not_sym
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   255
  and [CPure.elim?] = iffD1 iffD2 impE
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   256
11438
3d9222b80989 declare trans [trans] (*overridden in theory Calculation*);
wenzelm
parents: 11432
diff changeset
   257
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   258
subsubsection {* Atomizing meta-level connectives *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   259
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   260
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   261
proof
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   262
  assume "!!x. P x"
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   263
  show "ALL x. P x" by (rule allI)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   264
next
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   265
  assume "ALL x. P x"
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   266
  thus "!!x. P x" by (rule allE)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   267
qed
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   268
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   269
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   270
proof
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   271
  assume r: "A ==> B"
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   272
  show "A --> B" by (rule impI) (rule r)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   273
next
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   274
  assume "A --> B" and A
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   275
  thus B by (rule mp)
9488
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   276
qed
f11bece4e2db added all_eq, imp_eq (for blast);
wenzelm
parents: 9352
diff changeset
   277
14749
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   278
lemma atomize_not: "(A ==> False) == Trueprop (~A)"
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   279
proof
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   280
  assume r: "A ==> False"
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   281
  show "~A" by (rule notI) (rule r)
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   282
next
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   283
  assume "~A" and A
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   284
  thus False by (rule notE)
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   285
qed
9ccfd0f59e11 new atomize theorem
paulson
parents: 14690
diff changeset
   286
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   287
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   288
proof
10432
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   289
  assume "x == y"
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   290
  show "x = y" by (unfold prems) (rule refl)
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   291
next
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   292
  assume "x = y"
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   293
  thus "x == y" by (rule eq_reflection)
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   294
qed
3dfbc913d184 added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents: 10383
diff changeset
   295
12023
wenzelm
parents: 12003
diff changeset
   296
lemma atomize_conj [atomize]:
wenzelm
parents: 12003
diff changeset
   297
  "(!!C. (A ==> B ==> PROP C) ==> PROP C) == Trueprop (A & B)"
12003
c09427e5f554 removed obsolete (rule equal_intr_rule);
wenzelm
parents: 11989
diff changeset
   298
proof
11953
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   299
  assume "!!C. (A ==> B ==> PROP C) ==> PROP C"
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   300
  show "A & B" by (rule conjI)
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   301
next
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   302
  fix C
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   303
  assume "A & B"
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   304
  assume "A ==> B ==> PROP C"
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   305
  thus "PROP C"
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   306
  proof this
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   307
    show A by (rule conjunct1)
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   308
    show B by (rule conjunct2)
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   309
  qed
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   310
qed
f98623fdf6ef atomize_conj;
wenzelm
parents: 11824
diff changeset
   311
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   312
lemmas [symmetric, rulify] = atomize_all atomize_imp
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   313
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   314
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   315
subsubsection {* Classical Reasoner setup *}
9529
d9434a9277a4 lemmas atomize = all_eq imp_eq;
wenzelm
parents: 9488
diff changeset
   316
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   317
use "cladata.ML"
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   318
setup hypsubst_setup
11977
2e7c54b86763 tuned declaration of rules;
wenzelm
parents: 11953
diff changeset
   319
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   320
ML_setup {*
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   321
  Context.>> (ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac));
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   322
*}
11977
2e7c54b86763 tuned declaration of rules;
wenzelm
parents: 11953
diff changeset
   323
10383
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   324
setup Classical.setup
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   325
setup clasetup
a092ae7bb2a6 "atomize" for classical tactics;
wenzelm
parents: 9970
diff changeset
   326
12386
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   327
lemmas [intro?] = ext
9c38ec9eca1c tuned declarations (rules, sym, etc.);
wenzelm
parents: 12354
diff changeset
   328
  and [elim?] = ex1_implies_ex
11977
2e7c54b86763 tuned declaration of rules;
wenzelm
parents: 11953
diff changeset
   329
9869
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   330
use "blastdata.ML"
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   331
setup Blast.setup
4868
843a9f5b3c3d nonterminals;
wenzelm
parents: 4793
diff changeset
   332
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   333
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   334
subsubsection {* Simplifier setup *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   335
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   336
lemma meta_eq_to_obj_eq: "x == y ==> x = y"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   337
proof -
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   338
  assume r: "x == y"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   339
  show "x = y" by (unfold r) (rule refl)
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   340
qed
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   341
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   342
lemma eta_contract_eq: "(%s. f s) = f" ..
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   343
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   344
lemma simp_thms:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   345
  shows not_not: "(~ ~ P) = P"
15354
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   346
  and Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   347
  and
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   348
    "(P ~= Q) = (P = (~Q))"
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   349
    "(P | ~P) = True"    "(~P | P) = True"
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   350
    "(x = x) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   351
    "(~True) = False"  "(~False) = True"
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   352
    "(~P) ~= P"  "P ~= (~P)"
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   353
    "(True=P) = P"  "(P=True) = P"  "(False=P) = (~P)"  "(P=False) = (~P)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   354
    "(True --> P) = P"  "(False --> P) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   355
    "(P --> True) = True"  "(P --> P) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   356
    "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   357
    "(P & True) = P"  "(True & P) = P"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   358
    "(P & False) = False"  "(False & P) = False"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   359
    "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   360
    "(P & ~P) = False"    "(~P & P) = False"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   361
    "(P | True) = True"  "(True | P) = True"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   362
    "(P | False) = P"  "(False | P) = P"
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   363
    "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   364
    "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   365
    -- {* needed for the one-point-rule quantifier simplification procs *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   366
    -- {* essential for termination!! *} and
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   367
    "!!P. (EX x. x=t & P(x)) = P(t)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   368
    "!!P. (EX x. t=x & P(x)) = P(t)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   369
    "!!P. (ALL x. x=t --> P(x)) = P(t)"
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   370
    "!!P. (ALL x. t=x --> P(x)) = P(t)"
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   371
  by (blast, blast, blast, blast, blast, rules+)
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13412
diff changeset
   372
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   373
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
12354
5f5ee25513c5 setup "rules" method;
wenzelm
parents: 12338
diff changeset
   374
  by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   375
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   376
lemma ex_simps:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   377
  "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   378
  "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   379
  "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   380
  "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   381
  "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   382
  "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   383
  -- {* Miniscoping: pushing in existential quantifiers. *}
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   384
  by (rules | blast)+
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   385
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   386
lemma all_simps:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   387
  "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   388
  "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   389
  "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   390
  "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   391
  "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   392
  "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   393
  -- {* Miniscoping: pushing in universal quantifiers. *}
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   394
  by (rules | blast)+
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   395
14201
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   396
lemma disj_absorb: "(A | A) = A"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   397
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   398
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   399
lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   400
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   401
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   402
lemma conj_absorb: "(A & A) = A"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   403
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   404
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   405
lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   406
  by blast
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   407
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   408
lemma eq_ac:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   409
  shows eq_commute: "(a=b) = (b=a)"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   410
    and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   411
    and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (rules, blast+)
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   412
lemma neq_commute: "(a~=b) = (b~=a)" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   413
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   414
lemma conj_comms:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   415
  shows conj_commute: "(P&Q) = (Q&P)"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   416
    and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by rules+
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   417
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   418
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   419
lemma disj_comms:
12937
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   420
  shows disj_commute: "(P|Q) = (Q|P)"
0c4fd7529467 clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents: 12892
diff changeset
   421
    and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by rules+
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   422
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   423
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   424
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   425
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   426
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   427
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   428
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   429
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   430
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   431
lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   432
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   433
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   434
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   435
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   436
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   437
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   438
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   439
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   440
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   441
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   442
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   443
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   444
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   445
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   446
lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   447
  by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   448
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   449
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   450
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   451
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   452
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   453
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   454
  -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   455
  -- {* cases boil down to the same thing. *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   456
  by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   457
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   458
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   459
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   460
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   461
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   462
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   463
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   464
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   465
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   466
text {*
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   467
  \medskip The @{text "&"} congruence rule: not included by default!
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   468
  May slow rewrite proofs down by as much as 50\% *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   469
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   470
lemma conj_cong:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   471
    "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
12354
5f5ee25513c5 setup "rules" method;
wenzelm
parents: 12338
diff changeset
   472
  by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   473
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   474
lemma rev_conj_cong:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   475
    "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
12354
5f5ee25513c5 setup "rules" method;
wenzelm
parents: 12338
diff changeset
   476
  by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   477
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   478
text {* The @{text "|"} congruence rule: not included by default! *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   479
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   480
lemma disj_cong:
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   481
    "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   482
  by blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   483
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   484
lemma eq_sym_conv: "(x = y) = (y = x)"
12354
5f5ee25513c5 setup "rules" method;
wenzelm
parents: 12338
diff changeset
   485
  by rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   486
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   487
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   488
text {* \medskip if-then-else rules *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   489
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   490
lemma if_True: "(if True then x else y) = x"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   491
  by (unfold if_def) blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   492
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   493
lemma if_False: "(if False then x else y) = y"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   494
  by (unfold if_def) blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   495
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   496
lemma if_P: "P ==> (if P then x else y) = x"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   497
  by (unfold if_def) blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   498
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   499
lemma if_not_P: "~P ==> (if P then x else y) = y"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   500
  by (unfold if_def) blast
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   501
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   502
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   503
  apply (rule case_split [of Q])
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   504
   apply (subst if_P)
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   505
    prefer 3 apply (subst if_not_P, blast+)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   506
  done
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   507
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   508
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   509
by (subst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   510
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   511
lemmas if_splits = split_if split_if_asm
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   512
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   513
lemma if_def2: "(if Q then x else y) = ((Q --> x) & (~ Q --> y))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   514
  by (rule split_if)
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   515
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   516
lemma if_cancel: "(if c then x else x) = x"
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   517
by (subst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   518
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   519
lemma if_eq_cancel: "(if x = y then y else x) = x"
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   520
by (subst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   521
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   522
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   523
  -- {* This form is useful for expanding @{text if}s on the RIGHT of the @{text "==>"} symbol. *}
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   524
  by (rule split_if)
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   525
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   526
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   527
  -- {* And this form is useful for expanding @{text if}s on the LEFT. *}
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   528
  apply (subst split_if, blast)
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   529
  done
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   530
12436
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   531
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) rules
a2df07fefed7 Replaced several occurrences of "blast" by "rules".
berghofe
parents: 12386
diff changeset
   532
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) rules
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   533
14201
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   534
subsubsection {* Actual Installation of the Simplifier *}
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   535
9869
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   536
use "simpdata.ML"
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   537
setup Simplifier.setup
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   538
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   539
setup Splitter.setup setup Clasimp.setup
95dca9f991f2 improved meson setup;
wenzelm
parents: 9852
diff changeset
   540
14201
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   541
declare disj_absorb [simp] conj_absorb [simp] 
7ad7ab89c402 some basic new lemmas
paulson
parents: 13764
diff changeset
   542
13723
c7d104550205 *** empty log message ***
nipkow
parents: 13638
diff changeset
   543
lemma ex1_eq[iff]: "EX! x. x = t" "EX! x. t = x"
c7d104550205 *** empty log message ***
nipkow
parents: 13638
diff changeset
   544
by blast+
c7d104550205 *** empty log message ***
nipkow
parents: 13638
diff changeset
   545
13638
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   546
theorem choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   547
  apply (rule iffI)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   548
  apply (rule_tac a = "%x. THE y. P x y" in ex1I)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   549
  apply (fast dest!: theI')
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   550
  apply (fast intro: ext the1_equality [symmetric])
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   551
  apply (erule ex1E)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   552
  apply (rule allI)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   553
  apply (rule ex1I)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   554
  apply (erule spec)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   555
  apply (erule_tac x = "%z. if z = x then y else f z" in allE)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   556
  apply (erule impE)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   557
  apply (rule allI)
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   558
  apply (rule_tac P = "xa = x" in case_split_thm)
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   559
  apply (drule_tac [3] x = x in fun_cong, simp_all)
13638
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   560
  done
2b234b079245 Added choice_eq.
berghofe
parents: 13598
diff changeset
   561
13438
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   562
text{*Needs only HOL-lemmas:*}
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   563
lemma mk_left_commute:
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   564
  assumes a: "\<And>x y z. f (f x y) z = f x (f y z)" and
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   565
          c: "\<And>x y. f x y = f y x"
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   566
  shows "f x (f y z) = f y (f x z)"
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   567
by(rule trans[OF trans[OF c a] arg_cong[OF c, of "f y"]])
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   568
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   569
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   570
subsubsection {* Generic cases and induction *}
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   571
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   572
constdefs
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   573
  induct_forall :: "('a => bool) => bool"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   574
  "induct_forall P == \<forall>x. P x"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   575
  induct_implies :: "bool => bool => bool"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   576
  "induct_implies A B == A --> B"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   577
  induct_equal :: "'a => 'a => bool"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   578
  "induct_equal x y == x = y"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   579
  induct_conj :: "bool => bool => bool"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   580
  "induct_conj A B == A & B"
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   581
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   582
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   583
  by (simp only: atomize_all induct_forall_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   584
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   585
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   586
  by (simp only: atomize_imp induct_implies_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   587
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   588
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   589
  by (simp only: atomize_eq induct_equal_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   590
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   591
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   592
    induct_conj (induct_forall A) (induct_forall B)"
12354
5f5ee25513c5 setup "rules" method;
wenzelm
parents: 12338
diff changeset
   593
  by (unfold induct_forall_def induct_conj_def) rules
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   594
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   595
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   596
    induct_conj (induct_implies C A) (induct_implies C B)"
12354
5f5ee25513c5 setup "rules" method;
wenzelm
parents: 12338
diff changeset
   597
  by (unfold induct_implies_def induct_conj_def) rules
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   598
13598
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   599
lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   600
proof
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   601
  assume r: "induct_conj A B ==> PROP C" and A B
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   602
  show "PROP C" by (rule r) (simp! add: induct_conj_def)
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   603
next
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   604
  assume r: "A ==> B ==> PROP C" and "induct_conj A B"
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   605
  show "PROP C" by (rule r) (simp! add: induct_conj_def)+
8bc77b17f59f Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents: 13596
diff changeset
   606
qed
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   607
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   608
lemma induct_impliesI: "(A ==> B) ==> induct_implies A B"
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   609
  by (simp add: induct_implies_def)
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   610
12161
ea4fbf26a945 lemmas induct_atomize = atomize_conj ...;
wenzelm
parents: 12114
diff changeset
   611
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq
ea4fbf26a945 lemmas induct_atomize = atomize_conj ...;
wenzelm
parents: 12114
diff changeset
   612
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq
ea4fbf26a945 lemmas induct_atomize = atomize_conj ...;
wenzelm
parents: 12114
diff changeset
   613
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def induct_conj_def
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   614
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   615
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   616
hide const induct_forall induct_implies induct_equal induct_conj
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   617
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   618
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   619
text {* Method setup. *}
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   620
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   621
ML {*
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   622
  structure InductMethod = InductMethodFun
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   623
  (struct
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   624
    val dest_concls = HOLogic.dest_concls;
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   625
    val cases_default = thm "case_split";
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   626
    val local_impI = thm "induct_impliesI";
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   627
    val conjI = thm "conjI";
11989
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   628
    val atomize = thms "induct_atomize";
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   629
    val rulify1 = thms "induct_rulify1";
d4bcba4e080e renamed inductive_XXX to induct_XXX;
wenzelm
parents: 11977
diff changeset
   630
    val rulify2 = thms "induct_rulify2";
12240
0760eda193c4 induct method: localize rews for rule;
wenzelm
parents: 12161
diff changeset
   631
    val localize = [Thm.symmetric (thm "induct_implies_def")];
11824
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   632
  end);
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   633
*}
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   634
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   635
setup InductMethod.setup
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   636
f4c1882dde2c setup generic cases and induction (from Inductive.thy);
wenzelm
parents: 11770
diff changeset
   637
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   638
subsection {* Order signatures and orders *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   639
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   640
axclass
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12281
diff changeset
   641
  ord < type
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   642
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   643
syntax
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   644
  "op <"        :: "['a::ord, 'a] => bool"             ("op <")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   645
  "op <="       :: "['a::ord, 'a] => bool"             ("op <=")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   646
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   647
global
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   648
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   649
consts
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   650
  "op <"        :: "['a::ord, 'a] => bool"             ("(_/ < _)"  [50, 51] 50)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   651
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ <= _)" [50, 51] 50)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   652
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   653
local
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   654
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 12023
diff changeset
   655
syntax (xsymbols)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   656
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   657
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   658
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   659
syntax (HTML output)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   660
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   661
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
   662
15354
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   663
text{* Syntactic sugar: *}
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   664
15354
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   665
consts
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   666
  "_gt" :: "'a::ord => 'a => bool"             (infixl ">" 50)
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   667
  "_ge" :: "'a::ord => 'a => bool"             (infixl ">=" 50)
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   668
translations
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   669
  "x > y"  => "y < x"
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   670
  "x >= y" => "y <= x"
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   671
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   672
syntax (xsymbols)
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   673
  "_ge"       :: "'a::ord => 'a => bool"             (infixl "\<ge>" 50)
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   674
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   675
syntax (HTML output)
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   676
  "_ge"       :: "['a::ord, 'a] => bool"             (infixl "\<ge>" 50)
9234f5765d9c Added > and >= sugar
nipkow
parents: 15288
diff changeset
   677
14295
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14248
diff changeset
   678
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   679
subsubsection {* Monotonicity *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   680
13412
666137b488a4 predicate defs via locales;
wenzelm
parents: 12937
diff changeset
   681
locale mono =
666137b488a4 predicate defs via locales;
wenzelm
parents: 12937
diff changeset
   682
  fixes f
666137b488a4 predicate defs via locales;
wenzelm
parents: 12937
diff changeset
   683
  assumes mono: "A <= B ==> f A <= f B"
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   684
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13412
diff changeset
   685
lemmas monoI [intro?] = mono.intro
13412
666137b488a4 predicate defs via locales;
wenzelm
parents: 12937
diff changeset
   686
  and monoD [dest?] = mono.mono
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   687
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   688
constdefs
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   689
  min :: "['a::ord, 'a] => 'a"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   690
  "min a b == (if a <= b then a else b)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   691
  max :: "['a::ord, 'a] => 'a"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   692
  "max a b == (if a <= b then b else a)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   693
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   694
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   695
  by (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   696
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   697
lemma min_of_mono:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   698
    "ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   699
  by (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   700
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   701
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   702
  by (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   703
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   704
lemma max_of_mono:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   705
    "ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   706
  by (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   707
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   708
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   709
subsubsection "Orders"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   710
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   711
axclass order < ord
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   712
  order_refl [iff]: "x <= x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   713
  order_trans: "x <= y ==> y <= z ==> x <= z"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   714
  order_antisym: "x <= y ==> y <= x ==> x = y"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   715
  order_less_le: "(x < y) = (x <= y & x ~= y)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   716
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   717
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   718
text {* Reflexivity. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   719
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   720
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   721
    -- {* This form is useful with the classical reasoner. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   722
  apply (erule ssubst)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   723
  apply (rule order_refl)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   724
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   725
13553
855f6bae851e order_less_irrefl: [simp] -> [iff]
nipkow
parents: 13550
diff changeset
   726
lemma order_less_irrefl [iff]: "~ x < (x::'a::order)"
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   727
  by (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   728
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   729
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   730
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   731
  apply (simp add: order_less_le, blast)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   732
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   733
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   734
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   735
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   736
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   737
  by (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   738
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   739
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   740
text {* Asymmetry. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   741
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   742
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   743
  by (simp add: order_less_le order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   744
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   745
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   746
  apply (drule order_less_not_sym)
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   747
  apply (erule contrapos_np, simp)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   748
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   749
14295
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14248
diff changeset
   750
lemma order_eq_iff: "!!x::'a::order. (x = y) = (x \<le> y & y \<le> x)"  
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14248
diff changeset
   751
by (blast intro: order_antisym)
7f115e5c5de4 more general lemmas for Ring_and_Field
paulson
parents: 14248
diff changeset
   752
15197
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   753
lemma order_antisym_conv: "(y::'a::order) <= x ==> (x <= y) = (x = y)"
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   754
by(blast intro:order_antisym)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   755
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   756
text {* Transitivity. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   757
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   758
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   759
  apply (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   760
  apply (blast intro: order_trans order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   761
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   762
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   763
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   764
  apply (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   765
  apply (blast intro: order_trans order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   766
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   767
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   768
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   769
  apply (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   770
  apply (blast intro: order_trans order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   771
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   772
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   773
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   774
text {* Useful for simplification, but too risky to include by default. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   775
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   776
lemma order_less_imp_not_less: "(x::'a::order) < y ==>  (~ y < x) = True"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   777
  by (blast elim: order_less_asym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   778
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   779
lemma order_less_imp_triv: "(x::'a::order) < y ==>  (y < x --> P) = True"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   780
  by (blast elim: order_less_asym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   781
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   782
lemma order_less_imp_not_eq: "(x::'a::order) < y ==>  (x = y) = False"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   783
  by auto
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   784
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   785
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==>  (y = x) = False"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   786
  by auto
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   787
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   788
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   789
text {* Other operators. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   790
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   791
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   792
  apply (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   793
  apply (blast intro: order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   794
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   795
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   796
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   797
  apply (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   798
  apply (blast intro: order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   799
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   800
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   801
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   802
subsubsection {* Least value operator *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   803
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   804
constdefs
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   805
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   806
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   807
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   808
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   809
lemma LeastI2:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   810
  "[| P (x::'a::order);
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   811
      !!y. P y ==> x <= y;
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   812
      !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   813
   ==> Q (Least P)"
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   814
  apply (unfold Least_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   815
  apply (rule theI2)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   816
    apply (blast intro: order_antisym)+
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   817
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   818
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   819
lemma Least_equality:
12281
3bd113b8f7a6 converted simp lemmas;
wenzelm
parents: 12256
diff changeset
   820
    "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   821
  apply (simp add: Least_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   822
  apply (rule the_equality)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   823
  apply (auto intro!: order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   824
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   825
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   826
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   827
subsubsection "Linear / total orders"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   828
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   829
axclass linorder < order
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   830
  linorder_linear: "x <= y | y <= x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   831
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   832
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   833
  apply (simp add: order_less_le)
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   834
  apply (insert linorder_linear, blast)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   835
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   836
15079
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 14981
diff changeset
   837
lemma linorder_le_less_linear: "!!x::'a::linorder. x\<le>y | y<x"
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 14981
diff changeset
   838
  by (simp add: order_le_less linorder_less_linear)
2ef899e4526d conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents: 14981
diff changeset
   839
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14361
diff changeset
   840
lemma linorder_le_cases [case_names le ge]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14361
diff changeset
   841
    "((x::'a::linorder) \<le> y ==> P) ==> (y \<le> x ==> P) ==> P"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14361
diff changeset
   842
  by (insert linorder_linear, blast)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14361
diff changeset
   843
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   844
lemma linorder_cases [case_names less equal greater]:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   845
    "((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14361
diff changeset
   846
  by (insert linorder_less_linear, blast)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   847
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   848
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   849
  apply (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   850
  apply (insert linorder_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   851
  apply (blast intro: order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   852
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   853
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   854
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   855
  apply (simp add: order_less_le)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   856
  apply (insert linorder_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   857
  apply (blast intro: order_antisym)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   858
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   859
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   860
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   861
by (cut_tac x = x and y = y in linorder_less_linear, auto)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   862
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   863
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"
14208
144f45277d5a misc tidying
paulson
parents: 14201
diff changeset
   864
by (simp add: linorder_neq_iff, blast)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   865
15197
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   866
lemma linorder_antisym_conv1: "~ (x::'a::linorder) < y ==> (x <= y) = (x = y)"
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   867
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   868
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   869
lemma linorder_antisym_conv2: "(x::'a::linorder) <= y ==> (~ x < y) = (x = y)"
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   870
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   871
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   872
lemma linorder_antisym_conv3: "~ (y::'a::linorder) < x ==> (~ x < y) = (x = y)"
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   873
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   874
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   875
use "antisym_setup.ML";
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15140
diff changeset
   876
setup antisym_setup
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   877
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   878
subsubsection "Min and max on (linear) orders"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   879
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   880
lemma min_same [simp]: "min (x::'a::order) x = x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   881
  by (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   882
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   883
lemma max_same [simp]: "max (x::'a::order) x = x"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   884
  by (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   885
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   886
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   887
  apply (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   888
  apply (insert linorder_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   889
  apply (blast intro: order_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   890
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   891
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   892
lemma le_maxI1: "(x::'a::linorder) <= max x y"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   893
  by (simp add: le_max_iff_disj)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   894
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   895
lemma le_maxI2: "(y::'a::linorder) <= max x y"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   896
    -- {* CANNOT use with @{text "[intro!]"} because blast will give PROOF FAILED. *}
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   897
  by (simp add: le_max_iff_disj)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   898
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   899
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   900
  apply (simp add: max_def order_le_less)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   901
  apply (insert linorder_less_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   902
  apply (blast intro: order_less_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   903
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   904
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   905
lemma max_le_iff_conj [simp]:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   906
    "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   907
  apply (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   908
  apply (insert linorder_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   909
  apply (blast intro: order_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   910
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   911
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   912
lemma max_less_iff_conj [simp]:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   913
    "!!z::'a::linorder. (max x y < z) = (x < z & y < z)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   914
  apply (simp add: order_le_less max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   915
  apply (insert linorder_less_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   916
  apply (blast intro: order_less_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   917
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   918
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   919
lemma le_min_iff_conj [simp]:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   920
    "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)"
12892
wenzelm
parents: 12650
diff changeset
   921
    -- {* @{text "[iff]"} screws up a @{text blast} in MiniML *}
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   922
  apply (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   923
  apply (insert linorder_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   924
  apply (blast intro: order_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   925
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   926
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   927
lemma min_less_iff_conj [simp]:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   928
    "!!z::'a::linorder. (z < min x y) = (z < x & z < y)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   929
  apply (simp add: order_le_less min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   930
  apply (insert linorder_less_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   931
  apply (blast intro: order_less_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   932
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   933
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   934
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   935
  apply (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   936
  apply (insert linorder_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   937
  apply (blast intro: order_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   938
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   939
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   940
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   941
  apply (simp add: min_def order_le_less)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   942
  apply (insert linorder_less_linear)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   943
  apply (blast intro: order_less_trans)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   944
  done
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   945
13438
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   946
lemma max_assoc: "!!x::'a::linorder. max (max x y) z = max x (max y z)"
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   947
apply(simp add:max_def)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   948
apply(rule conjI)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   949
apply(blast intro:order_trans)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   950
apply(simp add:linorder_not_le)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   951
apply(blast dest: order_less_trans order_le_less_trans)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   952
done
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   953
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   954
lemma max_commute: "!!x::'a::linorder. max x y = max y x"
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   955
apply(simp add:max_def)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   956
apply(simp add:linorder_not_le)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   957
apply(blast dest: order_less_trans)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   958
done
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   959
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   960
lemmas max_ac = max_assoc max_commute
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   961
                mk_left_commute[of max,OF max_assoc max_commute]
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   962
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   963
lemma min_assoc: "!!x::'a::linorder. min (min x y) z = min x (min y z)"
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   964
apply(simp add:min_def)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   965
apply(rule conjI)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   966
apply(blast intro:order_trans)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   967
apply(simp add:linorder_not_le)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   968
apply(blast dest: order_less_trans order_le_less_trans)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   969
done
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   970
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   971
lemma min_commute: "!!x::'a::linorder. min x y = min y x"
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   972
apply(simp add:min_def)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   973
apply(simp add:linorder_not_le)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   974
apply(blast dest: order_less_trans)
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   975
done
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   976
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   977
lemmas min_ac = min_assoc min_commute
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   978
                mk_left_commute[of min,OF min_assoc min_commute]
527811f00c56 added mk_left_commute to HOL.thy and used it "everywhere"
nipkow
parents: 13421
diff changeset
   979
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   980
lemma split_min:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   981
    "P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   982
  by (simp add: min_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   983
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   984
lemma split_max:
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   985
    "P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   986
  by (simp add: max_def)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   987
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
   988
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   989
subsubsection {* Transitivity rules for calculational reasoning *}
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   990
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   991
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   992
lemma order_neq_le_trans: "a ~= b ==> (a::'a::order) <= b ==> a < b"
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   993
  by (simp add: order_less_le)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   994
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   995
lemma order_le_neq_trans: "(a::'a::order) <= b ==> a ~= b ==> a < b"
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   996
  by (simp add: order_less_le)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   997
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   998
lemma order_less_asym': "(a::'a::order) < b ==> b < a ==> P"
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
   999
  by (rule order_less_asym)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1000
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1001
14444
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1002
subsubsection {* Setup of transitivity reasoner as Solver *}
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1003
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1004
lemma less_imp_neq: "[| (x::'a::order) < y |] ==> x ~= y"
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1005
  by (erule contrapos_pn, erule subst, rule order_less_irrefl)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1006
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1007
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1008
  by (erule subst, erule ssubst, assumption)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1009
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1010
ML_setup {*
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1011
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1012
(* The setting up of Quasi_Tac serves as a demo.  Since there is no
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1013
   class for quasi orders, the tactics Quasi_Tac.trans_tac and
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1014
   Quasi_Tac.quasi_tac are not of much use. *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1015
15288
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1016
fun decomp_gen sort sign (Trueprop $ t) =
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1017
  let fun of_sort t = Sign.of_sort sign (type_of t, sort)
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1018
  fun dec (Const ("Not", _) $ t) = (
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1019
	  case dec t of
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1020
	    None => None
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1021
	  | Some (t1, rel, t2) => Some (t1, "~" ^ rel, t2))
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1022
	| dec (Const ("op =",  _) $ t1 $ t2) = 
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1023
	    if of_sort t1
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1024
	    then Some (t1, "=", t2)
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1025
	    else None
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1026
	| dec (Const ("op <=",  _) $ t1 $ t2) = 
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1027
	    if of_sort t1
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1028
	    then Some (t1, "<=", t2)
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1029
	    else None
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1030
	| dec (Const ("op <",  _) $ t1 $ t2) = 
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1031
	    if of_sort t1
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1032
	    then Some (t1, "<", t2)
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1033
	    else None
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1034
	| dec _ = None
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1035
  in dec t end;
9d49290ed885 removed a "clone" (duplicate code)
paulson
parents: 15197
diff changeset
  1036
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1037
structure Quasi_Tac = Quasi_Tac_Fun (
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1038
  struct
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1039
    val le_trans = thm "order_trans";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1040
    val le_refl = thm "order_refl";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1041
    val eqD1 = thm "order_eq_refl";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1042
    val eqD2 = thm "sym" RS thm "order_eq_refl";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1043
    val less_reflE = thm "order_less_irrefl" RS thm "notE";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1044
    val less_imp_le = thm "order_less_imp_le";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1045
    val le_neq_trans = thm "order_le_neq_trans";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1046
    val neq_le_trans = thm "order_neq_le_trans";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1047
    val less_imp_neq = thm "less_imp_neq";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1048
    val decomp_trans = decomp_gen ["HOL.order"];
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1049
    val decomp_quasi = decomp_gen ["HOL.order"];
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1050
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1051
  end);  (* struct *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1052
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1053
structure Order_Tac = Order_Tac_Fun (
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1054
  struct
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1055
    val less_reflE = thm "order_less_irrefl" RS thm "notE";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1056
    val le_refl = thm "order_refl";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1057
    val less_imp_le = thm "order_less_imp_le";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1058
    val not_lessI = thm "linorder_not_less" RS thm "iffD2";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1059
    val not_leI = thm "linorder_not_le" RS thm "iffD2";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1060
    val not_lessD = thm "linorder_not_less" RS thm "iffD1";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1061
    val not_leD = thm "linorder_not_le" RS thm "iffD1";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1062
    val eqI = thm "order_antisym";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1063
    val eqD1 = thm "order_eq_refl";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1064
    val eqD2 = thm "sym" RS thm "order_eq_refl";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1065
    val less_trans = thm "order_less_trans";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1066
    val less_le_trans = thm "order_less_le_trans";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1067
    val le_less_trans = thm "order_le_less_trans";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1068
    val le_trans = thm "order_trans";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1069
    val le_neq_trans = thm "order_le_neq_trans";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1070
    val neq_le_trans = thm "order_neq_le_trans";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1071
    val less_imp_neq = thm "less_imp_neq";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1072
    val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1073
    val decomp_part = decomp_gen ["HOL.order"];
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1074
    val decomp_lin = decomp_gen ["HOL.linorder"];
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1075
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1076
  end);  (* struct *)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1077
14590
276ef51cedbf simplified ML code for setsubgoaler;
wenzelm
parents: 14565
diff changeset
  1078
simpset_ref() := simpset ()
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1079
    addSolver (mk_solver "Trans_linear" (fn _ => Order_Tac.linear_tac))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1080
    addSolver (mk_solver "Trans_partial" (fn _ => Order_Tac.partial_tac));
14444
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1081
  (* Adding the transitivity reasoners also as safe solvers showed a slight
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1082
     speed up, but the reasoning strength appears to be not higher (at least
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1083
     no breaking of additional proofs in the entire HOL distribution, as
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1084
     of 5 March 2004, was observed). *)
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1085
*}
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1086
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1087
(* Optional setup of methods *)
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1088
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1089
(*
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1090
method_setup trans_partial =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1091
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.partial_tac)) *}
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1092
  {* transitivity reasoner for partial orders *}	    
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1093
method_setup trans_linear =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1094
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.linear_tac)) *}
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1095
  {* transitivity reasoner for linear orders *}
14398
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1096
*)
c5c47703f763 Efficient, graph-based reasoner for linear and partial orders.
ballarin
parents: 14365
diff changeset
  1097
14444
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1098
(*
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1099
declare order.order_refl [simp del] order_less_irrefl [simp del]
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1100
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents: 15079
diff changeset
  1101
can currently not be removed, abel_cancel relies on it.
14444
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1102
*)
24724afce166 Added documentation for transitivity solver setup.
ballarin
parents: 14430
diff changeset
  1103
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1104
subsubsection "Bounded quantifiers"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1105
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1106
syntax
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1107
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _<_./ _)"  [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1108
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _<_./ _)"  [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1109
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _<=_./ _)" [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1110
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _<=_./ _)" [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1111
15360
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1112
  "_gtAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _>_./ _)"  [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1113
  "_gtEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _>_./ _)"  [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1114
  "_geAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _>=_./ _)" [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1115
  "_geEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _>=_./ _)" [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1116
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 12023
diff changeset
  1117
syntax (xsymbols)
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1118
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1119
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1120
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1121
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1122
15360
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1123
  "_gtAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1124
  "_gtEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1125
  "_geAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1126
  "_geEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1127
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1128
syntax (HOL)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1129
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1130
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1131
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1132
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1133
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
  1134
syntax (HTML output)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
  1135
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
  1136
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
  1137
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
  1138
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14444
diff changeset
  1139
15360
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1140
  "_gtAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1141
  "_gtEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1142
  "_geAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1143
  "_geEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1144
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1145
translations
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1146
 "ALL x<y. P"   =>  "ALL x. x < y --> P"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1147
 "EX x<y. P"    =>  "EX x. x < y  & P"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1148
 "ALL x<=y. P"  =>  "ALL x. x <= y --> P"
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1149
 "EX x<=y. P"   =>  "EX x. x <= y & P"
15360
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1150
 "ALL x>y. P"   =>  "ALL x. x > y --> P"
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1151
 "EX x>y. P"    =>  "EX x. x > y  & P"
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1152
 "ALL x>=y. P"  =>  "ALL x. x >= y --> P"
300e09825d8b Added "ALL x > y" and relatives.
nipkow
parents: 15354
diff changeset
  1153
 "EX x>=y. P"   =>  "EX x. x >= y & P"
11750
3e400964893e judgment Trueprop;
wenzelm
parents: 11724
diff changeset
  1154
14357
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1155
print_translation {*
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1156
let
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1157
  fun all_tr' [Const ("_bound",_) $ Free (v,_), 
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1158
               Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1159
  (if v=v' then Syntax.const "_lessAll" $ Syntax.mark_bound v' $ n $ P else raise Match)
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1160
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1161
  | all_tr' [Const ("_bound",_) $ Free (v,_), 
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1162
               Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
15362
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1163
  (if v=v' then Syntax.const "_leAll" $ Syntax.mark_bound v' $ n $ P else raise Match)
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1164
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1165
  | all_tr' [Const ("_bound",_) $ Free (v,_), 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1166
               Const("op -->",_) $ (Const ("op <",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] = 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1167
  (if v=v' then Syntax.const "_gtAll" $ Syntax.mark_bound v' $ n $ P else raise Match)
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1168
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1169
  | all_tr' [Const ("_bound",_) $ Free (v,_), 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1170
               Const("op -->",_) $ (Const ("op <=",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] = 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1171
  (if v=v' then Syntax.const "_geAll" $ Syntax.mark_bound v' $ n $ P else raise Match);
14357
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1172
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1173
  fun ex_tr' [Const ("_bound",_) $ Free (v,_), 
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1174
               Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1175
  (if v=v' then Syntax.const "_lessEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1176
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1177
  | ex_tr' [Const ("_bound",_) $ Free (v,_), 
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1178
               Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
15362
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1179
  (if v=v' then Syntax.const "_leEx" $ Syntax.mark_bound v' $ n $ P else
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1180
               raise Match)
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1181
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1182
  | ex_tr' [Const ("_bound",_) $ Free (v,_), 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1183
               Const("op &",_) $ (Const ("op <",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] = 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1184
  (if v=v' then Syntax.const "_gtEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1185
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1186
  | ex_tr' [Const ("_bound",_) $ Free (v,_), 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1187
               Const("op &",_) $ (Const ("op <=",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] = 
a000b267be57 added ALL print-translation for > and >=.
nipkow
parents: 15360
diff changeset
  1188
  (if v=v' then Syntax.const "_geEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
14357
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1189
in
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1190
[("ALL ", all_tr'), ("EX ", ex_tr')]
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
  1191
end
14357
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1192
*}
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1193
e49d5d5ae66a print translation for ALL x <= n. P x
kleing
parents: 14295
diff changeset
  1194
end