| author | wenzelm | 
| Tue, 21 Oct 2008 22:21:28 +0200 | |
| changeset 28658 | a03ae929d9c0 | 
| parent 27487 | c8a6ce181805 | 
| child 29694 | 2f2558d7bc3e | 
| permissions | -rw-r--r-- | 
| 21256 | 1 | (* Title: HOL/Binomial.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson | |
| 4 | Copyright 1997 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 21263 | 7 | header {* Binomial Coefficients *}
 | 
| 21256 | 8 | |
| 9 | theory Binomial | |
| 27487 | 10 | imports Plain "~~/src/HOL/SetInterval" | 
| 21256 | 11 | begin | 
| 12 | ||
| 21263 | 13 | text {* This development is based on the work of Andy Gordon and
 | 
| 14 | Florian Kammueller. *} | |
| 21256 | 15 | |
| 16 | consts | |
| 17 | binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65) | |
| 18 | primrec | |
| 21263 | 19 | binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)" | 
| 21256 | 20 | binomial_Suc: "(Suc n choose k) = | 
| 21 | (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" | |
| 22 | ||
| 23 | lemma binomial_n_0 [simp]: "(n choose 0) = 1" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 24 | by (cases n) simp_all | 
| 21256 | 25 | |
| 26 | lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 27 | by simp | 
| 21256 | 28 | |
| 29 | lemma binomial_Suc_Suc [simp]: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 30 | "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 31 | by simp | 
| 21256 | 32 | |
| 21263 | 33 | lemma binomial_eq_0: "!!k. n < k ==> (n choose k) = 0" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 34 | by (induct n) auto | 
| 21256 | 35 | |
| 36 | declare binomial_0 [simp del] binomial_Suc [simp del] | |
| 37 | ||
| 38 | lemma binomial_n_n [simp]: "(n choose n) = 1" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 39 | by (induct n) (simp_all add: binomial_eq_0) | 
| 21256 | 40 | |
| 41 | lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 42 | by (induct n) simp_all | 
| 21256 | 43 | |
| 44 | lemma binomial_1 [simp]: "(n choose Suc 0) = n" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 45 | by (induct n) simp_all | 
| 21256 | 46 | |
| 25162 | 47 | lemma zero_less_binomial: "k \<le> n ==> (n choose k) > 0" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 48 | by (induct n k rule: diff_induct) simp_all | 
| 21256 | 49 | |
| 50 | lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 51 | apply (safe intro!: binomial_eq_0) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 52 | apply (erule contrapos_pp) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 53 | apply (simp add: zero_less_binomial) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 54 | done | 
| 21256 | 55 | |
| 25162 | 56 | lemma zero_less_binomial_iff: "(n choose k > 0) = (k\<le>n)" | 
| 57 | by(simp add: linorder_not_less binomial_eq_0_iff neq0_conv[symmetric] | |
| 58 | del:neq0_conv) | |
| 21256 | 59 | |
| 60 | (*Might be more useful if re-oriented*) | |
| 21263 | 61 | lemma Suc_times_binomial_eq: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 62 | "!!k. k \<le> n ==> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 63 | apply (induct n) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 64 | apply (simp add: binomial_0) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 65 | apply (case_tac k) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 66 | apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq | 
| 21263 | 67 | binomial_eq_0) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 68 | done | 
| 21256 | 69 | |
| 70 | text{*This is the well-known version, but it's harder to use because of the
 | |
| 71 | need to reason about division.*} | |
| 72 | lemma binomial_Suc_Suc_eq_times: | |
| 21263 | 73 | "k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" | 
| 74 | by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc | |
| 75 | del: mult_Suc mult_Suc_right) | |
| 21256 | 76 | |
| 77 | text{*Another version, with -1 instead of Suc.*}
 | |
| 78 | lemma times_binomial_minus1_eq: | |
| 21263 | 79 | "[|k \<le> n; 0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))" | 
| 80 | apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq) | |
| 81 | apply (simp split add: nat_diff_split, auto) | |
| 82 | done | |
| 83 | ||
| 21256 | 84 | |
| 25378 | 85 | subsection {* Theorems about @{text "choose"} *}
 | 
| 21256 | 86 | |
| 87 | text {*
 | |
| 88 |   \medskip Basic theorem about @{text "choose"}.  By Florian
 | |
| 89 | Kamm\"uller, tidied by LCP. | |
| 90 | *} | |
| 91 | ||
| 92 | lemma card_s_0_eq_empty: | |
| 93 |     "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
 | |
| 94 | apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) | |
| 95 | apply (simp cong add: rev_conj_cong) | |
| 96 | done | |
| 97 | ||
| 98 | lemma choose_deconstruct: "finite M ==> x \<notin> M | |
| 99 |   ==> {s. s <= insert x M & card(s) = Suc k}
 | |
| 100 |        = {s. s <= M & card(s) = Suc k} Un
 | |
| 101 |          {s. EX t. t <= M & card(t) = k & s = insert x t}"
 | |
| 102 | apply safe | |
| 103 | apply (auto intro: finite_subset [THEN card_insert_disjoint]) | |
| 104 |   apply (drule_tac x = "xa - {x}" in spec)
 | |
| 105 | apply (subgoal_tac "x \<notin> xa", auto) | |
| 106 | apply (erule rev_mp, subst card_Diff_singleton) | |
| 107 | apply (auto intro: finite_subset) | |
| 108 | done | |
| 109 | ||
| 110 | text{*There are as many subsets of @{term A} having cardinality @{term k}
 | |
| 111 | as there are sets obtained from the former by inserting a fixed element | |
| 112 |  @{term x} into each.*}
 | |
| 113 | lemma constr_bij: | |
| 114 | "[|finite A; x \<notin> A|] ==> | |
| 115 |     card {B. EX C. C <= A & card(C) = k & B = insert x C} =
 | |
| 116 |     card {B. B <= A & card(B) = k}"
 | |
| 117 |   apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
 | |
| 118 | apply (auto elim!: equalityE simp add: inj_on_def) | |
| 119 | apply (subst Diff_insert0, auto) | |
| 120 |    txt {* finiteness of the two sets *}
 | |
| 121 | apply (rule_tac [2] B = "Pow (A)" in finite_subset) | |
| 122 | apply (rule_tac B = "Pow (insert x A)" in finite_subset) | |
| 123 | apply fast+ | |
| 124 | done | |
| 125 | ||
| 126 | text {*
 | |
| 127 | Main theorem: combinatorial statement about number of subsets of a set. | |
| 128 | *} | |
| 129 | ||
| 130 | lemma n_sub_lemma: | |
| 21263 | 131 |     "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
 | 
| 21256 | 132 | apply (induct k) | 
| 133 | apply (simp add: card_s_0_eq_empty, atomize) | |
| 134 | apply (rotate_tac -1, erule finite_induct) | |
| 135 | apply (simp_all (no_asm_simp) cong add: conj_cong | |
| 136 | add: card_s_0_eq_empty choose_deconstruct) | |
| 137 | apply (subst card_Un_disjoint) | |
| 138 | prefer 4 apply (force simp add: constr_bij) | |
| 139 | prefer 3 apply force | |
| 140 | prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] | |
| 141 | finite_subset [of _ "Pow (insert x F)", standard]) | |
| 142 | apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) | |
| 143 | done | |
| 144 | ||
| 145 | theorem n_subsets: | |
| 146 |     "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
 | |
| 147 | by (simp add: n_sub_lemma) | |
| 148 | ||
| 149 | ||
| 150 | text{* The binomial theorem (courtesy of Tobias Nipkow): *}
 | |
| 151 | ||
| 152 | theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 153 | proof (induct n) | |
| 154 | case 0 thus ?case by simp | |
| 155 | next | |
| 156 | case (Suc n) | |
| 157 |   have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
 | |
| 158 | by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 159 |   have decomp2: "{0..n} = {0} \<union> {1..n}"
 | |
| 160 | by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 161 | have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 162 | using Suc by simp | |
| 163 | also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) + | |
| 164 | b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 21263 | 165 | by (rule nat_distrib) | 
| 21256 | 166 | also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + | 
| 167 | (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))" | |
| 21263 | 168 | by (simp add: setsum_right_distrib mult_ac) | 
| 21256 | 169 | also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) + | 
| 170 | (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" | |
| 171 | by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le | |
| 172 | del:setsum_cl_ivl_Suc) | |
| 173 | also have "\<dots> = a^(n+1) + b^(n+1) + | |
| 174 | (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + | |
| 175 | (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))" | |
| 21263 | 176 | by (simp add: decomp2) | 
| 21256 | 177 | also have | 
| 21263 | 178 | "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" | 
| 179 | by (simp add: nat_distrib setsum_addf binomial.simps) | |
| 21256 | 180 | also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" | 
| 181 | using decomp by simp | |
| 182 | finally show ?case by simp | |
| 183 | qed | |
| 184 | ||
| 185 | end |