author | haftmann |
Mon, 07 Jul 2008 08:47:17 +0200 | |
changeset 27487 | c8a6ce181805 |
parent 27368 | 9f90ac19e32b |
child 29694 | 2f2558d7bc3e |
permissions | -rw-r--r-- |
21256 | 1 |
(* Title: HOL/Binomial.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson |
|
4 |
Copyright 1997 University of Cambridge |
|
5 |
*) |
|
6 |
||
21263 | 7 |
header {* Binomial Coefficients *} |
21256 | 8 |
|
9 |
theory Binomial |
|
27487 | 10 |
imports Plain "~~/src/HOL/SetInterval" |
21256 | 11 |
begin |
12 |
||
21263 | 13 |
text {* This development is based on the work of Andy Gordon and |
14 |
Florian Kammueller. *} |
|
21256 | 15 |
|
16 |
consts |
|
17 |
binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65) |
|
18 |
primrec |
|
21263 | 19 |
binomial_0: "(0 choose k) = (if k = 0 then 1 else 0)" |
21256 | 20 |
binomial_Suc: "(Suc n choose k) = |
21 |
(if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" |
|
22 |
||
23 |
lemma binomial_n_0 [simp]: "(n choose 0) = 1" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
24 |
by (cases n) simp_all |
21256 | 25 |
|
26 |
lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
27 |
by simp |
21256 | 28 |
|
29 |
lemma binomial_Suc_Suc [simp]: |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
30 |
"(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
31 |
by simp |
21256 | 32 |
|
21263 | 33 |
lemma binomial_eq_0: "!!k. n < k ==> (n choose k) = 0" |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
34 |
by (induct n) auto |
21256 | 35 |
|
36 |
declare binomial_0 [simp del] binomial_Suc [simp del] |
|
37 |
||
38 |
lemma binomial_n_n [simp]: "(n choose n) = 1" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
39 |
by (induct n) (simp_all add: binomial_eq_0) |
21256 | 40 |
|
41 |
lemma binomial_Suc_n [simp]: "(Suc n choose n) = Suc n" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
42 |
by (induct n) simp_all |
21256 | 43 |
|
44 |
lemma binomial_1 [simp]: "(n choose Suc 0) = n" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
45 |
by (induct n) simp_all |
21256 | 46 |
|
25162 | 47 |
lemma zero_less_binomial: "k \<le> n ==> (n choose k) > 0" |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
48 |
by (induct n k rule: diff_induct) simp_all |
21256 | 49 |
|
50 |
lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
51 |
apply (safe intro!: binomial_eq_0) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
52 |
apply (erule contrapos_pp) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
53 |
apply (simp add: zero_less_binomial) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
54 |
done |
21256 | 55 |
|
25162 | 56 |
lemma zero_less_binomial_iff: "(n choose k > 0) = (k\<le>n)" |
57 |
by(simp add: linorder_not_less binomial_eq_0_iff neq0_conv[symmetric] |
|
58 |
del:neq0_conv) |
|
21256 | 59 |
|
60 |
(*Might be more useful if re-oriented*) |
|
21263 | 61 |
lemma Suc_times_binomial_eq: |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
62 |
"!!k. k \<le> n ==> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
63 |
apply (induct n) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
64 |
apply (simp add: binomial_0) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
65 |
apply (case_tac k) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
66 |
apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq |
21263 | 67 |
binomial_eq_0) |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
68 |
done |
21256 | 69 |
|
70 |
text{*This is the well-known version, but it's harder to use because of the |
|
71 |
need to reason about division.*} |
|
72 |
lemma binomial_Suc_Suc_eq_times: |
|
21263 | 73 |
"k \<le> n ==> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" |
74 |
by (simp add: Suc_times_binomial_eq div_mult_self_is_m zero_less_Suc |
|
75 |
del: mult_Suc mult_Suc_right) |
|
21256 | 76 |
|
77 |
text{*Another version, with -1 instead of Suc.*} |
|
78 |
lemma times_binomial_minus1_eq: |
|
21263 | 79 |
"[|k \<le> n; 0<k|] ==> (n choose k) * k = n * ((n - 1) choose (k - 1))" |
80 |
apply (cut_tac n = "n - 1" and k = "k - 1" in Suc_times_binomial_eq) |
|
81 |
apply (simp split add: nat_diff_split, auto) |
|
82 |
done |
|
83 |
||
21256 | 84 |
|
25378 | 85 |
subsection {* Theorems about @{text "choose"} *} |
21256 | 86 |
|
87 |
text {* |
|
88 |
\medskip Basic theorem about @{text "choose"}. By Florian |
|
89 |
Kamm\"uller, tidied by LCP. |
|
90 |
*} |
|
91 |
||
92 |
lemma card_s_0_eq_empty: |
|
93 |
"finite A ==> card {B. B \<subseteq> A & card B = 0} = 1" |
|
94 |
apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) |
|
95 |
apply (simp cong add: rev_conj_cong) |
|
96 |
done |
|
97 |
||
98 |
lemma choose_deconstruct: "finite M ==> x \<notin> M |
|
99 |
==> {s. s <= insert x M & card(s) = Suc k} |
|
100 |
= {s. s <= M & card(s) = Suc k} Un |
|
101 |
{s. EX t. t <= M & card(t) = k & s = insert x t}" |
|
102 |
apply safe |
|
103 |
apply (auto intro: finite_subset [THEN card_insert_disjoint]) |
|
104 |
apply (drule_tac x = "xa - {x}" in spec) |
|
105 |
apply (subgoal_tac "x \<notin> xa", auto) |
|
106 |
apply (erule rev_mp, subst card_Diff_singleton) |
|
107 |
apply (auto intro: finite_subset) |
|
108 |
done |
|
109 |
||
110 |
text{*There are as many subsets of @{term A} having cardinality @{term k} |
|
111 |
as there are sets obtained from the former by inserting a fixed element |
|
112 |
@{term x} into each.*} |
|
113 |
lemma constr_bij: |
|
114 |
"[|finite A; x \<notin> A|] ==> |
|
115 |
card {B. EX C. C <= A & card(C) = k & B = insert x C} = |
|
116 |
card {B. B <= A & card(B) = k}" |
|
117 |
apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq) |
|
118 |
apply (auto elim!: equalityE simp add: inj_on_def) |
|
119 |
apply (subst Diff_insert0, auto) |
|
120 |
txt {* finiteness of the two sets *} |
|
121 |
apply (rule_tac [2] B = "Pow (A)" in finite_subset) |
|
122 |
apply (rule_tac B = "Pow (insert x A)" in finite_subset) |
|
123 |
apply fast+ |
|
124 |
done |
|
125 |
||
126 |
text {* |
|
127 |
Main theorem: combinatorial statement about number of subsets of a set. |
|
128 |
*} |
|
129 |
||
130 |
lemma n_sub_lemma: |
|
21263 | 131 |
"!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
21256 | 132 |
apply (induct k) |
133 |
apply (simp add: card_s_0_eq_empty, atomize) |
|
134 |
apply (rotate_tac -1, erule finite_induct) |
|
135 |
apply (simp_all (no_asm_simp) cong add: conj_cong |
|
136 |
add: card_s_0_eq_empty choose_deconstruct) |
|
137 |
apply (subst card_Un_disjoint) |
|
138 |
prefer 4 apply (force simp add: constr_bij) |
|
139 |
prefer 3 apply force |
|
140 |
prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] |
|
141 |
finite_subset [of _ "Pow (insert x F)", standard]) |
|
142 |
apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) |
|
143 |
done |
|
144 |
||
145 |
theorem n_subsets: |
|
146 |
"finite A ==> card {B. B <= A & card B = k} = (card A choose k)" |
|
147 |
by (simp add: n_sub_lemma) |
|
148 |
||
149 |
||
150 |
text{* The binomial theorem (courtesy of Tobias Nipkow): *} |
|
151 |
||
152 |
theorem binomial: "(a+b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" |
|
153 |
proof (induct n) |
|
154 |
case 0 thus ?case by simp |
|
155 |
next |
|
156 |
case (Suc n) |
|
157 |
have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}" |
|
158 |
by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) |
|
159 |
have decomp2: "{0..n} = {0} \<union> {1..n}" |
|
160 |
by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) |
|
161 |
have "(a+b::nat)^(n+1) = (a+b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" |
|
162 |
using Suc by simp |
|
163 |
also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) + |
|
164 |
b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" |
|
21263 | 165 |
by (rule nat_distrib) |
21256 | 166 |
also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + |
167 |
(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))" |
|
21263 | 168 |
by (simp add: setsum_right_distrib mult_ac) |
21256 | 169 |
also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) + |
170 |
(\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" |
|
171 |
by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le |
|
172 |
del:setsum_cl_ivl_Suc) |
|
173 |
also have "\<dots> = a^(n+1) + b^(n+1) + |
|
174 |
(\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + |
|
175 |
(\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))" |
|
21263 | 176 |
by (simp add: decomp2) |
21256 | 177 |
also have |
21263 | 178 |
"\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" |
179 |
by (simp add: nat_distrib setsum_addf binomial.simps) |
|
21256 | 180 |
also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" |
181 |
using decomp by simp |
|
182 |
finally show ?case by simp |
|
183 |
qed |
|
184 |
||
185 |
end |