src/HOL/Analysis/Complex_Transcendental.thy
author paulson <lp15@cam.ac.uk>
Wed, 26 Apr 2017 16:58:31 +0100
changeset 65585 a043de9ad41e
parent 65583 8d53b3bebab4
child 65587 16a8991ab398
permissions -rw-r--r--
Some fixes related to compactE_image
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
     1
section \<open>Complex Transcendental Functions\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
61711
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
     3
text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2015)\<close>
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
     4
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     5
theory Complex_Transcendental
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
     6
imports
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
     7
  Complex_Analysis_Basics
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63589
diff changeset
     8
  Summation_Tests
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
     9
   "~~/src/HOL/Library/Periodic_Fun"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
begin
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    11
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    12
(* TODO: Figure out what to do with Möbius transformations *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    13
definition "moebius a b c d = (\<lambda>z. (a*z+b) / (c*z+d :: 'a :: field))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    14
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    15
lemma moebius_inverse:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    16
  assumes "a * d \<noteq> b * c" "c * z + d \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    17
  shows   "moebius d (-b) (-c) a (moebius a b c d z) = z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    18
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    19
  from assms have "(-c) * moebius a b c d z + a \<noteq> 0" unfolding moebius_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    20
    by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    21
  with assms show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    22
    unfolding moebius_def by (simp add: moebius_def divide_simps) (simp add: algebra_simps)?
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    23
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    24
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    25
lemma moebius_inverse':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    26
  assumes "a * d \<noteq> b * c" "c * z - a \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    27
  shows   "moebius a b c d (moebius d (-b) (-c) a z) = z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    28
  using assms moebius_inverse[of d a "-b" "-c" z]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    29
  by (auto simp: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    30
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    31
lemma cmod_add_real_less:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    32
  assumes "Im z \<noteq> 0" "r\<noteq>0"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    33
    shows "cmod (z + r) < cmod z + \<bar>r\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    34
proof (cases z)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    35
  case (Complex x y)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    36
  have "r * x / \<bar>r\<bar> < sqrt (x*x + y*y)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    37
    apply (rule real_less_rsqrt)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    38
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    39
    apply (simp add: Complex power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    40
    using not_real_square_gt_zero by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    41
  then show ?thesis using assms Complex
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    42
    apply (auto simp: cmod_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    43
    apply (rule power2_less_imp_less, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    44
    apply (simp add: power2_eq_square field_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    45
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    46
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    47
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    48
lemma cmod_diff_real_less: "Im z \<noteq> 0 \<Longrightarrow> x\<noteq>0 \<Longrightarrow> cmod (z - x) < cmod z + \<bar>x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    49
  using cmod_add_real_less [of z "-x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    50
  by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    51
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    52
lemma cmod_square_less_1_plus:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    53
  assumes "Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    54
    shows "(cmod z)\<^sup>2 < 1 + cmod (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    55
  using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    56
  apply (cases "Im z = 0 \<or> Re z = 0")
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    57
  using abs_square_less_1
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    58
    apply (force simp add: Re_power2 Im_power2 cmod_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    59
  using cmod_diff_real_less [of "1 - z\<^sup>2" "1"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    60
  apply (simp add: norm_power Im_power2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    61
  done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    62
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    63
subsection\<open>The Exponential Function is Differentiable and Continuous\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    65
lemma field_differentiable_within_exp: "exp field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    66
  using DERIV_exp field_differentiable_at_within field_differentiable_def by blast
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
lemma continuous_within_exp:
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
  fixes z::"'a::{real_normed_field,banach}"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    70
  shows "continuous (at z within s) exp"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    71
by (simp add: continuous_at_imp_continuous_within)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
    73
lemma holomorphic_on_exp [holomorphic_intros]: "exp holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    74
  by (simp add: field_differentiable_within_exp holomorphic_on_def)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    75
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    76
subsection\<open>Euler and de Moivre formulas.\<close>
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    77
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    78
text\<open>The sine series times @{term i}\<close>
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
    79
lemma sin_i_eq: "(\<lambda>n. (\<i> * sin_coeff n) * z^n) sums (\<i> * sin z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    81
  have "(\<lambda>n. \<i> * sin_coeff n *\<^sub>R z^n) sums (\<i> * sin z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
    using sin_converges sums_mult by blast
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
  then show ?thesis
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
    by (simp add: scaleR_conv_of_real field_simps)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
qed
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    87
theorem exp_Euler: "exp(\<i> * z) = cos(z) + \<i> * sin(z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    88
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    89
  have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n)
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    90
        = (\<lambda>n. (\<i> * z) ^ n /\<^sub>R (fact n))"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
  proof
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
    fix n
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    93
    show "(cos_coeff n + \<i> * sin_coeff n) * z^n = (\<i> * z) ^ n /\<^sub>R (fact n)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
      by (auto simp: cos_coeff_def sin_coeff_def scaleR_conv_of_real field_simps elim!: evenE oddE)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
  qed
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    96
  also have "... sums (exp (\<i> * z))"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    97
    by (rule exp_converges)
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    98
  finally have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) sums (exp (\<i> * z))" .
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    99
  moreover have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) sums (cos z + \<i> * sin z)"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   100
    using sums_add [OF cos_converges [of z] sin_i_eq [of z]]
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
    by (simp add: field_simps scaleR_conv_of_real)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
  ultimately show ?thesis
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
    using sums_unique2 by blast
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
qed
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   106
corollary exp_minus_Euler: "exp(-(\<i> * z)) = cos(z) - \<i> * sin(z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
  using exp_Euler [of "-z"]
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
  by simp
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   110
lemma sin_exp_eq: "sin z = (exp(\<i> * z) - exp(-(\<i> * z))) / (2*\<i>)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
  by (simp add: exp_Euler exp_minus_Euler)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   112
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   113
lemma sin_exp_eq': "sin z = \<i> * (exp(-(\<i> * z)) - exp(\<i> * z)) / 2"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
  by (simp add: exp_Euler exp_minus_Euler)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   116
lemma cos_exp_eq:  "cos z = (exp(\<i> * z) + exp(-(\<i> * z))) / 2"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
  by (simp add: exp_Euler exp_minus_Euler)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   119
subsection\<open>Relationships between real and complex trig functions\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
lemma real_sin_eq [simp]:
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
  fixes x::real
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
  shows "Re(sin(of_real x)) = sin x"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   124
  by (simp add: sin_of_real)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   125
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
lemma real_cos_eq [simp]:
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   127
  fixes x::real
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   128
  shows "Re(cos(of_real x)) = cos x"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
  by (simp add: cos_of_real)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   130
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   131
lemma DeMoivre: "(cos z + \<i> * sin z) ^ n = cos(n * z) + \<i> * sin(n * z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   132
  apply (simp add: exp_Euler [symmetric])
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
  by (metis exp_of_nat_mult mult.left_commute)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   135
lemma exp_cnj:
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
  fixes z::complex
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
  shows "cnj (exp z) = exp (cnj z)"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
proof -
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
  have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) = (\<lambda>n. (cnj z)^n /\<^sub>R (fact n))"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
    by auto
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   141
  also have "... sums (exp (cnj z))"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
    by (rule exp_converges)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
  finally have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) sums (exp (cnj z))" .
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
  moreover have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) sums (cnj (exp z))"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   145
    by (metis exp_converges sums_cnj)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
  ultimately show ?thesis
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
    using sums_unique2
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   148
    by blast
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
qed
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
lemma cnj_sin: "cnj(sin z) = sin(cnj z)"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   152
  by (simp add: sin_exp_eq exp_cnj field_simps)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   153
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
lemma cnj_cos: "cnj(cos z) = cos(cnj z)"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
  by (simp add: cos_exp_eq exp_cnj field_simps)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   157
lemma field_differentiable_at_sin: "sin field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   158
  using DERIV_sin field_differentiable_def by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   159
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   160
lemma field_differentiable_within_sin: "sin field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   161
  by (simp add: field_differentiable_at_sin field_differentiable_at_within)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   162
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   163
lemma field_differentiable_at_cos: "cos field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   164
  using DERIV_cos field_differentiable_def by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   165
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   166
lemma field_differentiable_within_cos: "cos field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   167
  by (simp add: field_differentiable_at_cos field_differentiable_at_within)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
lemma holomorphic_on_sin: "sin holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   170
  by (simp add: field_differentiable_within_sin holomorphic_on_def)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
lemma holomorphic_on_cos: "cos holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   173
  by (simp add: field_differentiable_within_cos holomorphic_on_def)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   175
subsection\<open>Get a nice real/imaginary separation in Euler's formula.\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   177
lemma Euler: "exp(z) = of_real(exp(Re z)) *
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   178
              (of_real(cos(Im z)) + \<i> * of_real(sin(Im z)))"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   179
by (cases z) (simp add: exp_add exp_Euler cos_of_real exp_of_real sin_of_real Complex_eq)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   181
lemma Re_sin: "Re(sin z) = sin(Re z) * (exp(Im z) + exp(-(Im z))) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   182
  by (simp add: sin_exp_eq field_simps Re_divide Im_exp)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   183
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
lemma Im_sin: "Im(sin z) = cos(Re z) * (exp(Im z) - exp(-(Im z))) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   185
  by (simp add: sin_exp_eq field_simps Im_divide Re_exp)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   186
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
lemma Re_cos: "Re(cos z) = cos(Re z) * (exp(Im z) + exp(-(Im z))) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   188
  by (simp add: cos_exp_eq field_simps Re_divide Re_exp)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   189
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   190
lemma Im_cos: "Im(cos z) = sin(Re z) * (exp(-(Im z)) - exp(Im z)) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   191
  by (simp add: cos_exp_eq field_simps Im_divide Im_exp)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   192
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   193
lemma Re_sin_pos: "0 < Re z \<Longrightarrow> Re z < pi \<Longrightarrow> Re (sin z) > 0"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   194
  by (auto simp: Re_sin Im_sin add_pos_pos sin_gt_zero)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   195
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   196
lemma Im_sin_nonneg: "Re z = 0 \<Longrightarrow> 0 \<le> Im z \<Longrightarrow> 0 \<le> Im (sin z)"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   197
  by (simp add: Re_sin Im_sin algebra_simps)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   198
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   199
lemma Im_sin_nonneg2: "Re z = pi \<Longrightarrow> Im z \<le> 0 \<Longrightarrow> 0 \<le> Im (sin z)"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   200
  by (simp add: Re_sin Im_sin algebra_simps)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   201
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   202
subsection\<open>More on the Polar Representation of Complex Numbers\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   203
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   204
lemma exp_Complex: "exp(Complex r t) = of_real(exp r) * Complex (cos t) (sin t)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   205
  by (simp add: Complex_eq exp_add exp_Euler exp_of_real sin_of_real cos_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   206
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   207
lemma exp_eq_1: "exp z = 1 \<longleftrightarrow> Re(z) = 0 \<and> (\<exists>n::int. Im(z) = of_int (2 * n) * pi)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   208
                 (is "?lhs = ?rhs")
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   209
proof 
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   210
  assume "exp z = 1"
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   211
  then have "Re z = 0"
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   212
    by (metis exp_eq_one_iff norm_exp_eq_Re norm_one)
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   213
  with \<open>?lhs\<close> show ?rhs
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   214
    by (metis Re_exp complex_Re_of_int cos_one_2pi_int exp_zero mult.commute mult_numeral_1 numeral_One of_int_mult of_int_numeral)
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   215
next
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   216
  assume ?rhs then show ?lhs
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   217
    using Im_exp Re_exp complex_Re_Im_cancel_iff by force
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   218
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   219
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   220
lemma exp_eq: "exp w = exp z \<longleftrightarrow> (\<exists>n::int. w = z + (of_int (2 * n) * pi) * \<i>)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   221
                (is "?lhs = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   222
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   223
  have "exp w = exp z \<longleftrightarrow> exp (w-z) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   224
    by (simp add: exp_diff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   225
  also have "... \<longleftrightarrow> (Re w = Re z \<and> (\<exists>n::int. Im w - Im z = of_int (2 * n) * pi))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   226
    by (simp add: exp_eq_1)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   227
  also have "... \<longleftrightarrow> ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   228
    by (auto simp: algebra_simps intro!: complex_eqI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   229
  finally show ?thesis .
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   230
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   231
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   232
lemma exp_complex_eqI: "\<bar>Im w - Im z\<bar> < 2*pi \<Longrightarrow> exp w = exp z \<Longrightarrow> w = z"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   233
  by (auto simp: exp_eq abs_mult)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   234
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   235
lemma exp_integer_2pi:
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
   236
  assumes "n \<in> \<int>"
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   237
  shows "exp((2 * n * pi) * \<i>) = 1"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   238
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   239
  have "exp((2 * n * pi) * \<i>) = exp 0"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   240
    using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   241
    by (simp only: Ints_def exp_eq) auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   242
  also have "... = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   243
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   244
  finally show ?thesis .
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   245
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   246
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   247
lemma exp_plus_2pin [simp]: "exp (z + \<i> * (of_int n * (of_real pi * 2))) = exp z"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   248
  by (simp add: exp_eq)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   249
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   250
lemma inj_on_exp_pi:
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   251
  fixes z::complex shows "inj_on exp (ball z pi)"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   252
proof (clarsimp simp: inj_on_def exp_eq)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   253
  fix y n
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   254
  assume "dist z (y + 2 * of_int n * of_real pi * \<i>) < pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   255
         "dist z y < pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   256
  then have "dist y (y + 2 * of_int n * of_real pi * \<i>) < pi+pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   257
    using dist_commute_lessI dist_triangle_less_add by blast
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   258
  then have "norm (2 * of_int n * of_real pi * \<i>) < 2*pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   259
    by (simp add: dist_norm)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   260
  then show "n = 0"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   261
    by (auto simp: norm_mult)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   262
qed
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   263
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   264
lemma sin_cos_eq_iff: "sin y = sin x \<and> cos y = cos x \<longleftrightarrow> (\<exists>n::int. y = x + 2 * n * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   265
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   266
  { assume "sin y = sin x" "cos y = cos x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   267
    then have "cos (y-x) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   268
      using cos_add [of y "-x"] by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   269
    then have "\<exists>n::int. y-x = n * 2 * pi"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   270
      using cos_one_2pi_int by blast }
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   271
  then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   272
  apply (auto simp: sin_add cos_add)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   273
  apply (metis add.commute diff_add_cancel mult.commute)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   274
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   275
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   276
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   277
lemma exp_i_ne_1:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   278
  assumes "0 < x" "x < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   279
  shows "exp(\<i> * of_real x) \<noteq> 1"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   280
proof
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   281
  assume "exp (\<i> * of_real x) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   282
  then have "exp (\<i> * of_real x) = exp 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   283
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   284
  then obtain n where "\<i> * of_real x = (of_int (2 * n) * pi) * \<i>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   285
    by (simp only: Ints_def exp_eq) auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   286
  then have  "of_real x = (of_int (2 * n) * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   287
    by (metis complex_i_not_zero mult.commute mult_cancel_left of_real_eq_iff real_scaleR_def scaleR_conv_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   288
  then have  "x = (of_int (2 * n) * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   289
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   290
  then show False using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   291
    by (cases n) (auto simp: zero_less_mult_iff mult_less_0_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   292
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   293
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   294
lemma sin_eq_0:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   295
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   296
  shows "sin z = 0 \<longleftrightarrow> (\<exists>n::int. z = of_real(n * pi))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   297
  by (simp add: sin_exp_eq exp_eq of_real_numeral)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   298
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   299
lemma cos_eq_0:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   300
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   301
  shows "cos z = 0 \<longleftrightarrow> (\<exists>n::int. z = of_real(n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   302
  using sin_eq_0 [of "z - of_real pi/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   303
  by (simp add: sin_diff algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   304
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   305
lemma cos_eq_1:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   306
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   307
  shows "cos z = 1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   308
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   309
  have "cos z = cos (2*(z/2))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   310
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   311
  also have "... = 1 - 2 * sin (z/2) ^ 2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   312
    by (simp only: cos_double_sin)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   313
  finally have [simp]: "cos z = 1 \<longleftrightarrow> sin (z/2) = 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   314
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   315
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   316
    by (auto simp: sin_eq_0 of_real_numeral)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   317
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   318
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   319
lemma csin_eq_1:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   320
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   321
  shows "sin z = 1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   322
  using cos_eq_1 [of "z - of_real pi/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   323
  by (simp add: cos_diff algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   324
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   325
lemma csin_eq_minus1:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   326
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   327
  shows "sin z = -1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi) + 3/2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   328
        (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   329
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   330
  have "sin z = -1 \<longleftrightarrow> sin (-z) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   331
    by (simp add: equation_minus_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   332
  also have "...  \<longleftrightarrow> (\<exists>n::int. -z = of_real(2 * n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   333
    by (simp only: csin_eq_1)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   334
  also have "...  \<longleftrightarrow> (\<exists>n::int. z = - of_real(2 * n * pi) - of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   335
    apply (rule iff_exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   336
    by (metis (no_types)  is_num_normalize(8) minus_minus of_real_def real_vector.scale_minus_left uminus_add_conv_diff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   337
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   338
    apply (auto simp: of_real_numeral)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   339
    apply (rule_tac [2] x="-(x+1)" in exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   340
    apply (rule_tac x="-(x+1)" in exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   341
    apply (simp_all add: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   342
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   343
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   344
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   345
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   346
lemma ccos_eq_minus1:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   347
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   348
  shows "cos z = -1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi) + pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   349
  using csin_eq_1 [of "z - of_real pi/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   350
  apply (simp add: sin_diff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   351
  apply (simp add: algebra_simps of_real_numeral equation_minus_iff)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   352
  done
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   353
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   354
lemma sin_eq_1: "sin x = 1 \<longleftrightarrow> (\<exists>n::int. x = (2 * n + 1 / 2) * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   355
                (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   356
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   357
  have "sin x = 1 \<longleftrightarrow> sin (complex_of_real x) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   358
    by (metis of_real_1 one_complex.simps(1) real_sin_eq sin_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   359
  also have "...  \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   360
    by (simp only: csin_eq_1)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   361
  also have "...  \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   362
    apply (rule iff_exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   363
    apply (auto simp: algebra_simps of_real_numeral)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   364
    apply (rule injD [OF inj_of_real [where 'a = complex]])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   365
    apply (auto simp: of_real_numeral)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   366
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   367
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   368
    by (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   369
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   370
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   371
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   372
lemma sin_eq_minus1: "sin x = -1 \<longleftrightarrow> (\<exists>n::int. x = (2*n + 3/2) * pi)"  (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   373
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   374
  have "sin x = -1 \<longleftrightarrow> sin (complex_of_real x) = -1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   375
    by (metis Re_complex_of_real of_real_def scaleR_minus1_left sin_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   376
  also have "...  \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + 3/2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   377
    by (simp only: csin_eq_minus1)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   378
  also have "...  \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + 3/2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   379
    apply (rule iff_exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   380
    apply (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   381
    apply (rule injD [OF inj_of_real [where 'a = complex]], auto)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   382
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   383
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   384
    by (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   385
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   386
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   387
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   388
lemma cos_eq_minus1: "cos x = -1 \<longleftrightarrow> (\<exists>n::int. x = (2*n + 1) * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   389
                      (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   390
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   391
  have "cos x = -1 \<longleftrightarrow> cos (complex_of_real x) = -1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   392
    by (metis Re_complex_of_real of_real_def scaleR_minus1_left cos_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   393
  also have "...  \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   394
    by (simp only: ccos_eq_minus1)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   395
  also have "...  \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   396
    apply (rule iff_exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   397
    apply (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   398
    apply (rule injD [OF inj_of_real [where 'a = complex]], auto)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   399
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   400
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   401
    by (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   402
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   403
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   404
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   405
lemma dist_exp_i_1: "norm(exp(\<i> * of_real t) - 1) = 2 * \<bar>sin(t / 2)\<bar>"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   406
  apply (simp add: exp_Euler cmod_def power2_diff sin_of_real cos_of_real algebra_simps)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   407
  using cos_double_sin [of "t/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   408
  apply (simp add: real_sqrt_mult)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   409
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   410
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   411
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   412
lemma complex_sin_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   413
  fixes w :: complex
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   414
  shows "sin w = sin z \<longleftrightarrow> (\<exists>n \<in> \<int>. w = z + of_real(2*n*pi) \<or> w = -z + of_real((2*n + 1)*pi))"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   415
        (is "?lhs = ?rhs")
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   416
proof
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   417
  assume ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   418
  then have "sin w - sin z = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   419
    by (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   420
  then have "sin ((w - z) / 2)*cos ((w + z) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   421
    by (auto simp: sin_diff_sin)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   422
  then consider "sin ((w - z) / 2) = 0" | "cos ((w + z) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   423
    using mult_eq_0_iff by blast
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   424
  then show ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   425
  proof cases
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   426
    case 1
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   427
    then show ?thesis
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   428
      apply (auto simp: sin_eq_0 algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   429
      by (metis Ints_of_int of_real_of_int_eq)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   430
  next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   431
    case 2
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   432
    then show ?thesis
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   433
      apply (auto simp: cos_eq_0 algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   434
      by (metis Ints_of_int of_real_of_int_eq)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   435
  qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   436
next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   437
  assume ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   438
  then obtain n::int where w: "w = z + of_real (2* of_int n*pi) \<or>
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   439
                               w = -z + of_real ((2* of_int n + 1)*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   440
    using Ints_cases by blast
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   441
  then show ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   442
    using Periodic_Fun.sin.plus_of_int [of z n]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   443
    apply (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   444
    by (metis (no_types, hide_lams) add_diff_cancel_left add_diff_cancel_left' add_minus_cancel
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   445
              mult.commute sin.plus_of_int sin_minus sin_plus_pi)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   446
qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   447
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   448
lemma complex_cos_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   449
  fixes w :: complex
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   450
  shows "cos w = cos z \<longleftrightarrow>
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   451
         (\<exists>n \<in> \<int>. w = z + of_real(2*n*pi) \<or> w = -z + of_real(2*n*pi))"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   452
        (is "?lhs = ?rhs")
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   453
proof
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   454
  assume ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   455
  then have "cos w - cos z = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   456
    by (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   457
  then have "sin ((w + z) / 2) * sin ((z - w) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   458
    by (auto simp: cos_diff_cos)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   459
  then consider "sin ((w + z) / 2) = 0" | "sin ((z - w) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   460
    using mult_eq_0_iff by blast
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   461
  then show ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   462
  proof cases
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   463
    case 1
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   464
    then show ?thesis
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   465
      apply (auto simp: sin_eq_0 algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   466
      by (metis Ints_of_int of_real_of_int_eq)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   467
  next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   468
    case 2
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   469
    then show ?thesis
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   470
      apply (auto simp: sin_eq_0 algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   471
      by (metis Ints_of_int add_minus_cancel distrib_right mult_of_int_commute mult_zero_right of_int_0 of_int_add of_real_of_int_eq)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   472
  qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   473
next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   474
  assume ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   475
  then obtain n::int where w: "w = z + of_real (2* of_int n*pi) \<or>
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   476
                               w = -z + of_real(2*n*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   477
    using Ints_cases  by (metis of_int_mult of_int_numeral)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   478
  then show ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   479
    using Periodic_Fun.cos.plus_of_int [of z n]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   480
    apply (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   481
    by (metis cos.plus_of_int cos_minus minus_add_cancel mult.commute)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   482
qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   483
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   484
lemma sin_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   485
   "sin x = sin y \<longleftrightarrow> (\<exists>n \<in> \<int>. x = y + 2*n*pi \<or> x = -y + (2*n + 1)*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   486
  using complex_sin_eq [of x y]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   487
  by (simp only: sin_of_real Re_complex_of_real of_real_add [symmetric] of_real_minus [symmetric] of_real_mult [symmetric] of_real_eq_iff)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   488
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   489
lemma cos_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   490
   "cos x = cos y \<longleftrightarrow> (\<exists>n \<in> \<int>. x = y + 2*n*pi \<or> x = -y + 2*n*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   491
  using complex_cos_eq [of x y]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   492
  by (simp only: cos_of_real Re_complex_of_real of_real_add [symmetric] of_real_minus [symmetric] of_real_mult [symmetric] of_real_eq_iff)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   493
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   494
lemma sinh_complex:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   495
  fixes z :: complex
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   496
  shows "(exp z - inverse (exp z)) / 2 = -\<i> * sin(\<i> * z)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   497
  by (simp add: sin_exp_eq divide_simps exp_minus)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   498
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   499
lemma sin_i_times:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   500
  fixes z :: complex
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   501
  shows "sin(\<i> * z) = \<i> * ((exp z - inverse (exp z)) / 2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   502
  using sinh_complex by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   503
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   504
lemma sinh_real:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   505
  fixes x :: real
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   506
  shows "of_real((exp x - inverse (exp x)) / 2) = -\<i> * sin(\<i> * of_real x)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   507
  by (simp add: exp_of_real sin_i_times)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   508
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   509
lemma cosh_complex:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   510
  fixes z :: complex
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   511
  shows "(exp z + inverse (exp z)) / 2 = cos(\<i> * z)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   512
  by (simp add: cos_exp_eq divide_simps exp_minus exp_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   513
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   514
lemma cosh_real:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   515
  fixes x :: real
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   516
  shows "of_real((exp x + inverse (exp x)) / 2) = cos(\<i> * of_real x)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   517
  by (simp add: cos_exp_eq divide_simps exp_minus exp_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   518
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   519
lemmas cos_i_times = cosh_complex [symmetric]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   520
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   521
lemma norm_cos_squared:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   522
    "norm(cos z) ^ 2 = cos(Re z) ^ 2 + (exp(Im z) - inverse(exp(Im z))) ^ 2 / 4"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   523
  apply (cases z)
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   524
  apply (simp add: cos_add cmod_power2 cos_of_real sin_of_real Complex_eq)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   525
  apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   526
  apply (simp only: left_diff_distrib [symmetric] power_mult_distrib)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   527
  apply (simp add: sin_squared_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   528
  apply (simp add: power2_eq_square algebra_simps divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   529
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   530
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   531
lemma norm_sin_squared:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   532
    "norm(sin z) ^ 2 = (exp(2 * Im z) + inverse(exp(2 * Im z)) - 2 * cos(2 * Re z)) / 4"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   533
  apply (cases z)
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   534
  apply (simp add: sin_add cmod_power2 cos_of_real sin_of_real cos_double_cos exp_double Complex_eq)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   535
  apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   536
  apply (simp only: left_diff_distrib [symmetric] power_mult_distrib)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   537
  apply (simp add: cos_squared_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   538
  apply (simp add: power2_eq_square algebra_simps divide_simps)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   539
  done
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   540
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   541
lemma exp_uminus_Im: "exp (- Im z) \<le> exp (cmod z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   542
  using abs_Im_le_cmod linear order_trans by fastforce
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   543
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   544
lemma norm_cos_le:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   545
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   546
  shows "norm(cos z) \<le> exp(norm z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   547
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   548
  have "Im z \<le> cmod z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   549
    using abs_Im_le_cmod abs_le_D1 by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   550
  with exp_uminus_Im show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   551
    apply (simp add: cos_exp_eq norm_divide)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   552
    apply (rule order_trans [OF norm_triangle_ineq], simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   553
    apply (metis add_mono exp_le_cancel_iff mult_2_right)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   554
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   555
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   556
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   557
lemma norm_cos_plus1_le:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   558
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   559
  shows "norm(1 + cos z) \<le> 2 * exp(norm z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   560
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   561
  have mono: "\<And>u w z::real. (1 \<le> w | 1 \<le> z) \<Longrightarrow> (w \<le> u & z \<le> u) \<Longrightarrow> 2 + w + z \<le> 4 * u"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   562
      by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   563
  have *: "Im z \<le> cmod z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   564
    using abs_Im_le_cmod abs_le_D1 by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   565
  have triangle3: "\<And>x y z. norm(x + y + z) \<le> norm(x) + norm(y) + norm(z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   566
    by (simp add: norm_add_rule_thm)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   567
  have "norm(1 + cos z) = cmod (1 + (exp (\<i> * z) + exp (- (\<i> * z))) / 2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   568
    by (simp add: cos_exp_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   569
  also have "... = cmod ((2 + exp (\<i> * z) + exp (- (\<i> * z))) / 2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   570
    by (simp add: field_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   571
  also have "... = cmod (2 + exp (\<i> * z) + exp (- (\<i> * z))) / 2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   572
    by (simp add: norm_divide)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   573
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   574
    apply (rule ssubst, simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   575
    apply (rule order_trans [OF triangle3], simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   576
    using exp_uminus_Im *
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   577
    apply (auto intro: mono)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   578
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   579
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   580
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   581
subsection\<open>Taylor series for complex exponential, sine and cosine.\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   582
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   583
declare power_Suc [simp del]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   584
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   585
lemma Taylor_exp:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   586
  "norm(exp z - (\<Sum>k\<le>n. z ^ k / (fact k))) \<le> exp\<bar>Re z\<bar> * (norm z) ^ (Suc n) / (fact n)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   587
proof (rule complex_taylor [of _ n "\<lambda>k. exp" "exp\<bar>Re z\<bar>" 0 z, simplified])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   588
  show "convex (closed_segment 0 z)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61426
diff changeset
   589
    by (rule convex_closed_segment [of 0 z])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   590
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   591
  fix k x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   592
  assume "x \<in> closed_segment 0 z" "k \<le> n"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   593
  show "(exp has_field_derivative exp x) (at x within closed_segment 0 z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   594
    using DERIV_exp DERIV_subset by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   595
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   596
  fix x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   597
  assume "x \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   598
  then show "Re x \<le> \<bar>Re z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   599
    apply (auto simp: closed_segment_def scaleR_conv_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   600
    by (meson abs_ge_self abs_ge_zero linear mult_left_le_one_le mult_nonneg_nonpos order_trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   601
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   602
  show "0 \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   603
    by (auto simp: closed_segment_def)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   604
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   605
  show "z \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   606
    apply (simp add: closed_segment_def scaleR_conv_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   607
    using of_real_1 zero_le_one by blast
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   608
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   609
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   610
lemma
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   611
  assumes "0 \<le> u" "u \<le> 1"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   612
  shows cmod_sin_le_exp: "cmod (sin (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   613
    and cmod_cos_le_exp: "cmod (cos (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   614
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   615
  have mono: "\<And>u w z::real. w \<le> u \<Longrightarrow> z \<le> u \<Longrightarrow> w + z \<le> u*2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   616
    by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   617
  show "cmod (sin (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>" using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   618
    apply (auto simp: scaleR_conv_of_real norm_mult norm_power sin_exp_eq norm_divide)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   619
    apply (rule order_trans [OF norm_triangle_ineq4])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   620
    apply (rule mono)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   621
    apply (auto simp: abs_if mult_left_le_one_le)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   622
    apply (meson mult_nonneg_nonneg neg_le_0_iff_le not_le order_trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   623
    apply (meson less_eq_real_def mult_nonneg_nonpos neg_0_le_iff_le order_trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   624
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   625
  show "cmod (cos (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>" using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   626
    apply (auto simp: scaleR_conv_of_real norm_mult norm_power cos_exp_eq norm_divide)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   627
    apply (rule order_trans [OF norm_triangle_ineq])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   628
    apply (rule mono)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   629
    apply (auto simp: abs_if mult_left_le_one_le)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   630
    apply (meson mult_nonneg_nonneg neg_le_0_iff_le not_le order_trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   631
    apply (meson less_eq_real_def mult_nonneg_nonpos neg_0_le_iff_le order_trans)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   632
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   633
qed
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   634
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   635
lemma Taylor_sin:
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   636
  "norm(sin z - (\<Sum>k\<le>n. complex_of_real (sin_coeff k) * z ^ k))
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   637
   \<le> exp\<bar>Im z\<bar> * (norm z) ^ (Suc n) / (fact n)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   638
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   639
  have mono: "\<And>u w z::real. w \<le> u \<Longrightarrow> z \<le> u \<Longrightarrow> w + z \<le> u*2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   640
      by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   641
  have *: "cmod (sin z -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   642
                 (\<Sum>i\<le>n. (-1) ^ (i div 2) * (if even i then sin 0 else cos 0) * z ^ i / (fact i)))
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   643
           \<le> exp \<bar>Im z\<bar> * cmod z ^ Suc n / (fact n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   644
  proof (rule complex_taylor [of "closed_segment 0 z" n
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   645
                                 "\<lambda>k x. (-1)^(k div 2) * (if even k then sin x else cos x)"
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
   646
                                 "exp\<bar>Im z\<bar>" 0 z,  simplified])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   647
    fix k x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   648
    show "((\<lambda>x. (- 1) ^ (k div 2) * (if even k then sin x else cos x)) has_field_derivative
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   649
            (- 1) ^ (Suc k div 2) * (if odd k then sin x else cos x))
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   650
            (at x within closed_segment 0 z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   651
      apply (auto simp: power_Suc)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   652
      apply (intro derivative_eq_intros | simp)+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   653
      done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   654
  next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   655
    fix x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   656
    assume "x \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   657
    then show "cmod ((- 1) ^ (Suc n div 2) * (if odd n then sin x else cos x)) \<le> exp \<bar>Im z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   658
      by (auto simp: closed_segment_def norm_mult norm_power cmod_sin_le_exp cmod_cos_le_exp)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   659
  qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   660
  have **: "\<And>k. complex_of_real (sin_coeff k) * z ^ k
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   661
            = (-1)^(k div 2) * (if even k then sin 0 else cos 0) * z^k / of_nat (fact k)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   662
    by (auto simp: sin_coeff_def elim!: oddE)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   663
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   664
    apply (rule order_trans [OF _ *])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   665
    apply (simp add: **)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   666
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   667
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   668
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   669
lemma Taylor_cos:
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   670
  "norm(cos z - (\<Sum>k\<le>n. complex_of_real (cos_coeff k) * z ^ k))
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   671
   \<le> exp\<bar>Im z\<bar> * (norm z) ^ Suc n / (fact n)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   672
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   673
  have mono: "\<And>u w z::real. w \<le> u \<Longrightarrow> z \<le> u \<Longrightarrow> w + z \<le> u*2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   674
      by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   675
  have *: "cmod (cos z -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   676
                 (\<Sum>i\<le>n. (-1) ^ (Suc i div 2) * (if even i then cos 0 else sin 0) * z ^ i / (fact i)))
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   677
           \<le> exp \<bar>Im z\<bar> * cmod z ^ Suc n / (fact n)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   678
  proof (rule complex_taylor [of "closed_segment 0 z" n "\<lambda>k x. (-1)^(Suc k div 2) * (if even k then cos x else sin x)" "exp\<bar>Im z\<bar>" 0 z,
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   679
simplified])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   680
    fix k x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   681
    assume "x \<in> closed_segment 0 z" "k \<le> n"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   682
    show "((\<lambda>x. (- 1) ^ (Suc k div 2) * (if even k then cos x else sin x)) has_field_derivative
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   683
            (- 1) ^ Suc (k div 2) * (if odd k then cos x else sin x))
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   684
             (at x within closed_segment 0 z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   685
      apply (auto simp: power_Suc)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   686
      apply (intro derivative_eq_intros | simp)+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   687
      done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   688
  next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   689
    fix x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   690
    assume "x \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   691
    then show "cmod ((- 1) ^ Suc (n div 2) * (if odd n then cos x else sin x)) \<le> exp \<bar>Im z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   692
      by (auto simp: closed_segment_def norm_mult norm_power cmod_sin_le_exp cmod_cos_le_exp)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   693
  qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   694
  have **: "\<And>k. complex_of_real (cos_coeff k) * z ^ k
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   695
            = (-1)^(Suc k div 2) * (if even k then cos 0 else sin 0) * z^k / of_nat (fact k)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   696
    by (auto simp: cos_coeff_def elim!: evenE)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   697
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   698
    apply (rule order_trans [OF _ *])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   699
    apply (simp add: **)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   700
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   701
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   702
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
   703
declare power_Suc [simp]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   704
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   705
text\<open>32-bit Approximation to e\<close>
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   706
lemma e_approx_32: "\<bar>exp(1) - 5837465777 / 2147483648\<bar> \<le> (inverse(2 ^ 32)::real)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   707
  using Taylor_exp [of 1 14] exp_le
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64240
diff changeset
   708
  apply (simp add: sum_distrib_right in_Reals_norm Re_exp atMost_nat_numeral fact_numeral)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   709
  apply (simp only: pos_le_divide_eq [symmetric], linarith)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   710
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   711
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65274
diff changeset
   712
text\<open>An odd contrast with the much more easily proved @{thm exp_le}\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   713
lemma e_less_3: "exp 1 < (3::real)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   714
  using e_approx_32
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
   715
  by (simp add: abs_if split: if_split_asm)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   716
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   717
lemma ln3_gt_1: "ln 3 > (1::real)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   718
  by (metis e_less_3 exp_less_cancel_iff exp_ln_iff less_trans ln_exp)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   719
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   720
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   721
subsection\<open>The argument of a complex number\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   722
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   723
definition Arg :: "complex \<Rightarrow> real" where
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   724
 "Arg z \<equiv> if z = 0 then 0
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   725
           else THE t. 0 \<le> t \<and> t < 2*pi \<and>
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   726
                    z = of_real(norm z) * exp(\<i> * of_real t)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   727
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   728
lemma Arg_0 [simp]: "Arg(0) = 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   729
  by (simp add: Arg_def)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   730
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   731
lemma Arg_unique_lemma:
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   732
  assumes z:  "z = of_real(norm z) * exp(\<i> * of_real t)"
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   733
      and z': "z = of_real(norm z) * exp(\<i> * of_real t')"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   734
      and t:  "0 \<le> t"  "t < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   735
      and t': "0 \<le> t'" "t' < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   736
      and nz: "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   737
  shows "t' = t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   738
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   739
  have [dest]: "\<And>x y z::real. x\<ge>0 \<Longrightarrow> x+y < z \<Longrightarrow> y<z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   740
    by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   741
  have "of_real (cmod z) * exp (\<i> * of_real t') = of_real (cmod z) * exp (\<i> * of_real t)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   742
    by (metis z z')
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   743
  then have "exp (\<i> * of_real t') = exp (\<i> * of_real t)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   744
    by (metis nz mult_left_cancel mult_zero_left z)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   745
  then have "sin t' = sin t \<and> cos t' = cos t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   746
    apply (simp add: exp_Euler sin_of_real cos_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   747
    by (metis Complex_eq complex.sel)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   748
  then obtain n::int where n: "t' = t + 2 * n * pi"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   749
    by (auto simp: sin_cos_eq_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   750
  then have "n=0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   751
    apply (rule_tac z=n in int_cases)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   752
    using t t'
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   753
    apply (auto simp: mult_less_0_iff algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   754
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   755
  then show "t' = t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   756
      by (simp add: n)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   757
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   758
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   759
lemma Arg: "0 \<le> Arg z & Arg z < 2*pi & z = of_real(norm z) * exp(\<i> * of_real(Arg z))"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   760
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   761
  case True then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   762
    by (simp add: Arg_def)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   763
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   764
  case False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   765
  obtain t where t: "0 \<le> t" "t < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   766
             and ReIm: "Re z / cmod z = cos t" "Im z / cmod z = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   767
    using sincos_total_2pi [OF complex_unit_circle [OF False]]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   768
    by blast
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   769
  have z: "z = of_real(norm z) * exp(\<i> * of_real t)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   770
    apply (rule complex_eqI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   771
    using t False ReIm
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   772
    apply (auto simp: exp_Euler sin_of_real cos_of_real divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   773
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   774
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   775
    apply (simp add: Arg_def False)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   776
    apply (rule theI [where a=t])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   777
    using t z False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   778
    apply (auto intro: Arg_unique_lemma)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   779
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   780
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   781
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   782
corollary
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   783
  shows Arg_ge_0: "0 \<le> Arg z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   784
    and Arg_lt_2pi: "Arg z < 2*pi"
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   785
    and Arg_eq: "z = of_real(norm z) * exp(\<i> * of_real(Arg z))"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   786
  using Arg by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   787
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
   788
lemma complex_norm_eq_1_exp: "norm z = 1 \<longleftrightarrow> exp(\<i> * of_real (Arg z)) = z"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
   789
  by (metis Arg_eq cis_conv_exp mult.left_neutral norm_cis of_real_1)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   790
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   791
lemma Arg_unique: "\<lbrakk>of_real r * exp(\<i> * of_real a) = z; 0 < r; 0 \<le> a; a < 2*pi\<rbrakk> \<Longrightarrow> Arg z = a"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   792
  apply (rule Arg_unique_lemma [OF _ Arg_eq])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   793
  using Arg [of z]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   794
  apply (auto simp: norm_mult)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   795
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   796
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   797
lemma Arg_minus: "z \<noteq> 0 \<Longrightarrow> Arg (-z) = (if Arg z < pi then Arg z + pi else Arg z - pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   798
  apply (rule Arg_unique [of "norm z"])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   799
  apply (rule complex_eqI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   800
  using Arg_ge_0 [of z] Arg_eq [of z] Arg_lt_2pi [of z] Arg_eq [of z]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   801
  apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   802
  apply (auto simp: Re_exp Im_exp cos_diff sin_diff cis_conv_exp [symmetric])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   803
  apply (metis Re_rcis Im_rcis rcis_def)+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   804
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   805
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   806
lemma Arg_times_of_real [simp]: "0 < r \<Longrightarrow> Arg (of_real r * z) = Arg z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   807
  apply (cases "z=0", simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   808
  apply (rule Arg_unique [of "r * norm z"])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   809
  using Arg
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   810
  apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   811
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   812
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   813
lemma Arg_times_of_real2 [simp]: "0 < r \<Longrightarrow> Arg (z * of_real r) = Arg z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   814
  by (metis Arg_times_of_real mult.commute)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   815
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   816
lemma Arg_divide_of_real [simp]: "0 < r \<Longrightarrow> Arg (z / of_real r) = Arg z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   817
  by (metis Arg_times_of_real2 less_numeral_extra(3) nonzero_eq_divide_eq of_real_eq_0_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   818
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   819
lemma Arg_le_pi: "Arg z \<le> pi \<longleftrightarrow> 0 \<le> Im z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   820
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   821
  case True then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   822
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   823
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   824
  case False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   825
  have "0 \<le> Im z \<longleftrightarrow> 0 \<le> Im (of_real (cmod z) * exp (\<i> * complex_of_real (Arg z)))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   826
    by (metis Arg_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   827
  also have "... = (0 \<le> Im (exp (\<i> * complex_of_real (Arg z))))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   828
    using False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   829
    by (simp add: zero_le_mult_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   830
  also have "... \<longleftrightarrow> Arg z \<le> pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   831
    by (simp add: Im_exp) (metis Arg_ge_0 Arg_lt_2pi sin_lt_zero sin_ge_zero not_le)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   832
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   833
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   834
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   835
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   836
lemma Arg_lt_pi: "0 < Arg z \<and> Arg z < pi \<longleftrightarrow> 0 < Im z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   837
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   838
  case True then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   839
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   840
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   841
  case False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   842
  have "0 < Im z \<longleftrightarrow> 0 < Im (of_real (cmod z) * exp (\<i> * complex_of_real (Arg z)))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   843
    by (metis Arg_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   844
  also have "... = (0 < Im (exp (\<i> * complex_of_real (Arg z))))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   845
    using False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   846
    by (simp add: zero_less_mult_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   847
  also have "... \<longleftrightarrow> 0 < Arg z \<and> Arg z < pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   848
    using Arg_ge_0  Arg_lt_2pi sin_le_zero sin_gt_zero
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   849
    apply (auto simp: Im_exp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   850
    using le_less apply fastforce
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   851
    using not_le by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   852
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   853
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   854
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   855
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
   856
lemma Arg_eq_0: "Arg z = 0 \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re z"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   857
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   858
  case True then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   859
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   860
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   861
  case False
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
   862
  have "z \<in> \<real> \<and> 0 \<le> Re z \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (of_real (cmod z) * exp (\<i> * complex_of_real (Arg z)))"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   863
    by (metis Arg_eq)
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
   864
  also have "... \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (exp (\<i> * complex_of_real (Arg z)))"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   865
    using False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   866
    by (simp add: zero_le_mult_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   867
  also have "... \<longleftrightarrow> Arg z = 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   868
    apply (auto simp: Re_exp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   869
    apply (metis Arg_lt_pi Arg_ge_0 Arg_le_pi cos_pi complex_is_Real_iff leD less_linear less_minus_one_simps(2) minus_minus neg_less_eq_nonneg order_refl)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   870
    using Arg_eq [of z]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   871
    apply (auto simp: Reals_def)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   872
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   873
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   874
    by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   875
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   876
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   877
corollary Arg_gt_0:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
   878
  assumes "z \<in> \<real> \<Longrightarrow> Re z < 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
   879
    shows "Arg z > 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
   880
  using Arg_eq_0 Arg_ge_0 assms dual_order.strict_iff_order by fastforce
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
   881
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   882
lemma Arg_of_real: "Arg(of_real x) = 0 \<longleftrightarrow> 0 \<le> x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   883
  by (simp add: Arg_eq_0)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   884
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   885
lemma Arg_eq_pi: "Arg z = pi \<longleftrightarrow> z \<in> \<real> \<and> Re z < 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   886
  apply  (cases "z=0", simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   887
  using Arg_eq_0 [of "-z"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   888
  apply (auto simp: complex_is_Real_iff Arg_minus)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   889
  apply (simp add: complex_Re_Im_cancel_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   890
  apply (metis Arg_minus pi_gt_zero add.left_neutral minus_minus minus_zero)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   891
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   892
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   893
lemma Arg_eq_0_pi: "Arg z = 0 \<or> Arg z = pi \<longleftrightarrow> z \<in> \<real>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   894
  using Arg_eq_0 Arg_eq_pi not_le by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   895
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   896
lemma Arg_inverse: "Arg(inverse z) = (if z \<in> \<real> \<and> 0 \<le> Re z then Arg z else 2*pi - Arg z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   897
  apply (cases "z=0", simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   898
  apply (rule Arg_unique [of "inverse (norm z)"])
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
   899
  using Arg_ge_0 [of z] Arg_lt_2pi [of z] Arg_eq [of z] Arg_eq_0 [of z] exp_two_pi_i
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   900
  apply (auto simp: of_real_numeral algebra_simps exp_diff divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   901
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   902
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   903
lemma Arg_eq_iff:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   904
  assumes "w \<noteq> 0" "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   905
     shows "Arg w = Arg z \<longleftrightarrow> (\<exists>x. 0 < x & w = of_real x * z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   906
  using assms Arg_eq [of z] Arg_eq [of w]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   907
  apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   908
  apply (rule_tac x="norm w / norm z" in exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   909
  apply (simp add: divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   910
  by (metis mult.commute mult.left_commute)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   911
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   912
lemma Arg_inverse_eq_0: "Arg(inverse z) = 0 \<longleftrightarrow> Arg z = 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   913
  using complex_is_Real_iff
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   914
  apply (simp add: Arg_eq_0)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   915
  apply (auto simp: divide_simps not_sum_power2_lt_zero)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   916
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   917
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   918
lemma Arg_divide:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   919
  assumes "w \<noteq> 0" "z \<noteq> 0" "Arg w \<le> Arg z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   920
    shows "Arg(z / w) = Arg z - Arg w"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   921
  apply (rule Arg_unique [of "norm(z / w)"])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   922
  using assms Arg_eq [of z] Arg_eq [of w] Arg_ge_0 [of w] Arg_lt_2pi [of z]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   923
  apply (auto simp: exp_diff norm_divide algebra_simps divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   924
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   925
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   926
lemma Arg_le_div_sum:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   927
  assumes "w \<noteq> 0" "z \<noteq> 0" "Arg w \<le> Arg z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   928
    shows "Arg z = Arg w + Arg(z / w)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   929
  by (simp add: Arg_divide assms)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   930
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   931
lemma Arg_le_div_sum_eq:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   932
  assumes "w \<noteq> 0" "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   933
    shows "Arg w \<le> Arg z \<longleftrightarrow> Arg z = Arg w + Arg(z / w)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   934
  using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   935
  by (auto simp: Arg_ge_0 intro: Arg_le_div_sum)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   936
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   937
lemma Arg_diff:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   938
  assumes "w \<noteq> 0" "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   939
    shows "Arg w - Arg z = (if Arg z \<le> Arg w then Arg(w / z) else Arg(w/z) - 2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   940
  using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   941
  apply (auto simp: Arg_ge_0 Arg_divide not_le)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   942
  using Arg_divide [of w z] Arg_inverse [of "w/z"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   943
  apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   944
  by (metis Arg_eq_0 less_irrefl minus_diff_eq right_minus_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   945
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   946
lemma Arg_add:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   947
  assumes "w \<noteq> 0" "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   948
    shows "Arg w + Arg z = (if Arg w + Arg z < 2*pi then Arg(w * z) else Arg(w * z) + 2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   949
  using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   950
  using Arg_diff [of "w*z" z] Arg_le_div_sum_eq [of z "w*z"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   951
  apply (auto simp: Arg_ge_0 Arg_divide not_le)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   952
  apply (metis Arg_lt_2pi add.commute)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   953
  apply (metis (no_types) Arg add.commute diff_0 diff_add_cancel diff_less_eq diff_minus_eq_add not_less)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   954
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   955
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   956
lemma Arg_times:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   957
  assumes "w \<noteq> 0" "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   958
    shows "Arg (w * z) = (if Arg w + Arg z < 2*pi then Arg w + Arg z
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   959
                            else (Arg w + Arg z) - 2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   960
  using Arg_add [OF assms]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   961
  by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   962
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   963
lemma Arg_cnj: "Arg(cnj z) = (if z \<in> \<real> \<and> 0 \<le> Re z then Arg z else 2*pi - Arg z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   964
  apply (cases "z=0", simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   965
  apply (rule trans [of _ "Arg(inverse z)"])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   966
  apply (simp add: Arg_eq_iff divide_simps complex_norm_square [symmetric] mult.commute)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   967
  apply (metis norm_eq_zero of_real_power zero_less_power2)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   968
  apply (auto simp: of_real_numeral Arg_inverse)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   969
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   970
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   971
lemma Arg_real: "z \<in> \<real> \<Longrightarrow> Arg z = (if 0 \<le> Re z then 0 else pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   972
  using Arg_eq_0 Arg_eq_0_pi
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   973
  by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   974
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   975
lemma Arg_exp: "0 \<le> Im z \<Longrightarrow> Im z < 2*pi \<Longrightarrow> Arg(exp z) = Im z"
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
   976
  by (rule Arg_unique [of  "exp(Re z)"]) (auto simp: exp_eq_polar)
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
   977
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
   978
lemma complex_split_polar:
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
   979
  obtains r a::real where "z = complex_of_real r * (cos a + \<i> * sin a)" "0 \<le> r" "0 \<le> a" "a < 2*pi"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   980
  using Arg cis.ctr cis_conv_exp unfolding Complex_eq by fastforce
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   981
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   982
lemma Re_Im_le_cmod: "Im w * sin \<phi> + Re w * cos \<phi> \<le> cmod w"
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   983
proof (cases w rule: complex_split_polar)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   984
  case (1 r a) with sin_cos_le1 [of a \<phi>] show ?thesis
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   985
    apply (simp add: norm_mult cmod_unit_one)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   986
    by (metis (no_types, hide_lams) abs_le_D1 distrib_left mult.commute mult.left_commute mult_left_le)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   987
qed
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
   988
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   989
subsection\<open>Analytic properties of tangent function\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   990
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   991
lemma cnj_tan: "cnj(tan z) = tan(cnj z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   992
  by (simp add: cnj_cos cnj_sin tan_def)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   993
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   994
lemma field_differentiable_at_tan: "~(cos z = 0) \<Longrightarrow> tan field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   995
  unfolding field_differentiable_def
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   996
  using DERIV_tan by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   997
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   998
lemma field_differentiable_within_tan: "~(cos z = 0)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   999
         \<Longrightarrow> tan field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1000
  using field_differentiable_at_tan field_differentiable_at_within by blast
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1001
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1002
lemma continuous_within_tan: "~(cos z = 0) \<Longrightarrow> continuous (at z within s) tan"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1003
  using continuous_at_imp_continuous_within isCont_tan by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1004
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1005
lemma continuous_on_tan [continuous_intros]: "(\<And>z. z \<in> s \<Longrightarrow> ~(cos z = 0)) \<Longrightarrow> continuous_on s tan"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1006
  by (simp add: continuous_at_imp_continuous_on)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1007
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1008
lemma holomorphic_on_tan: "(\<And>z. z \<in> s \<Longrightarrow> ~(cos z = 0)) \<Longrightarrow> tan holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1009
  by (simp add: field_differentiable_within_tan holomorphic_on_def)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1010
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1011
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1012
subsection\<open>Complex logarithms (the conventional principal value)\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1013
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1014
instantiation complex :: ln
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1015
begin
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1016
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1017
definition ln_complex :: "complex \<Rightarrow> complex"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1018
  where "ln_complex \<equiv> \<lambda>z. THE w. exp w = z & -pi < Im(w) & Im(w) \<le> pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1019
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1020
text\<open>NOTE: within this scope, the constant Ln is not yet available!\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1021
lemma
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1022
  assumes "z \<noteq> 0"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1023
    shows exp_Ln [simp]:  "exp(ln z) = z"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1024
      and mpi_less_Im_Ln: "-pi < Im(ln z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1025
      and Im_Ln_le_pi:    "Im(ln z) \<le> pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1026
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1027
  obtain \<psi> where z: "z / (cmod z) = Complex (cos \<psi>) (sin \<psi>)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1028
    using complex_unimodular_polar [of "z / (norm z)"] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1029
    by (auto simp: norm_divide divide_simps)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1030
  obtain \<phi> where \<phi>: "- pi < \<phi>" "\<phi> \<le> pi" "sin \<phi> = sin \<psi>" "cos \<phi> = cos \<psi>"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1031
    using sincos_principal_value [of "\<psi>"] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1032
    by (auto simp: norm_divide divide_simps)
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1033
  have "exp(ln z) = z & -pi < Im(ln z) & Im(ln z) \<le> pi" unfolding ln_complex_def
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1034
    apply (rule theI [where a = "Complex (ln(norm z)) \<phi>"])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1035
    using z assms \<phi>
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  1036
    apply (auto simp: field_simps exp_complex_eqI exp_eq_polar cis.code)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1037
    done
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1038
  then show "exp(ln z) = z" "-pi < Im(ln z)" "Im(ln z) \<le> pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1039
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1040
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1041
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1042
lemma Ln_exp [simp]:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1043
  assumes "-pi < Im(z)" "Im(z) \<le> pi"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1044
    shows "ln(exp z) = z"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1045
  apply (rule exp_complex_eqI)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1046
  using assms mpi_less_Im_Ln  [of "exp z"] Im_Ln_le_pi [of "exp z"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1047
  apply auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1048
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1049
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1050
subsection\<open>Relation to Real Logarithm\<close>
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1051
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1052
lemma Ln_of_real:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1053
  assumes "0 < z"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1054
    shows "ln(of_real z::complex) = of_real(ln z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1055
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1056
  have "ln(of_real (exp (ln z))::complex) = ln (exp (of_real (ln z)))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1057
    by (simp add: exp_of_real)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1058
  also have "... = of_real(ln z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1059
    using assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1060
    by (subst Ln_exp) auto
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1061
  finally show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1062
    using assms by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1063
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1064
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1065
corollary Ln_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> Re z > 0 \<Longrightarrow> ln z \<in> \<real>"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1066
  by (auto simp: Ln_of_real elim: Reals_cases)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1067
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1068
corollary Im_Ln_of_real [simp]: "r > 0 \<Longrightarrow> Im (ln (of_real r)) = 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1069
  by (simp add: Ln_of_real)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1070
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
  1071
lemma cmod_Ln_Reals [simp]: "z \<in> \<real> \<Longrightarrow> 0 < Re z \<Longrightarrow> cmod (ln z) = norm (ln (Re z))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1072
  using Ln_of_real by force
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1073
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1074
lemma Ln_1 [simp]: "ln 1 = (0::complex)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1075
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1076
  have "ln (exp 0) = (0::complex)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1077
    by (metis (mono_tags, hide_lams) Ln_of_real exp_zero ln_one of_real_0 of_real_1 zero_less_one)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1078
  then show ?thesis
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1079
    by simp                              
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1080
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1081
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1082
  
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1083
lemma Ln_eq_zero_iff [simp]: "x \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1" for x::complex
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1084
  by auto (metis exp_Ln exp_zero nonpos_Reals_zero_I)
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1085
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1086
instance
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1087
  by intro_classes (rule ln_complex_def Ln_1)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1088
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1089
end
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1090
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1091
abbreviation Ln :: "complex \<Rightarrow> complex"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1092
  where "Ln \<equiv> ln"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1093
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1094
lemma Ln_eq_iff: "w \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (Ln w = Ln z \<longleftrightarrow> w = z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1095
  by (metis exp_Ln)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1096
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1097
lemma Ln_unique: "exp(z) = w \<Longrightarrow> -pi < Im(z) \<Longrightarrow> Im(z) \<le> pi \<Longrightarrow> Ln w = z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1098
  using Ln_exp by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1099
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1100
lemma Re_Ln [simp]: "z \<noteq> 0 \<Longrightarrow> Re(Ln z) = ln(norm z)"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  1101
  by (metis exp_Ln ln_exp norm_exp_eq_Re)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1102
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1103
corollary ln_cmod_le:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1104
  assumes z: "z \<noteq> 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1105
    shows "ln (cmod z) \<le> cmod (Ln z)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1106
  using norm_exp [of "Ln z", simplified exp_Ln [OF z]]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1107
  by (metis Re_Ln complex_Re_le_cmod z)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1108
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1109
proposition exists_complex_root:
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1110
  fixes z :: complex
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1111
  assumes "n \<noteq> 0"  obtains w where "z = w ^ n"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1112
  apply (cases "z=0")
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1113
  using assms apply (simp add: power_0_left)
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1114
  apply (rule_tac w = "exp(Ln z / n)" in that)
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1115
  apply (auto simp: assms exp_of_nat_mult [symmetric])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1116
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1117
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1118
corollary exists_complex_root_nonzero:
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1119
  fixes z::complex
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1120
  assumes "z \<noteq> 0" "n \<noteq> 0"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1121
  obtains w where "w \<noteq> 0" "z = w ^ n"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1122
  by (metis exists_complex_root [of n z] assms power_0_left)
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1123
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1124
subsection\<open>The Unwinding Number and the Ln-product Formula\<close>
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1125
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1126
text\<open>Note that in this special case the unwinding number is -1, 0 or 1.\<close>
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1127
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1128
definition unwinding :: "complex \<Rightarrow> complex" where
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1129
   "unwinding(z) = (z - Ln(exp z)) / (of_real(2*pi) * \<i>)"
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1130
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1131
lemma unwinding_2pi: "(2*pi) * \<i> * unwinding(z) = z - Ln(exp z)"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1132
  by (simp add: unwinding_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1133
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1134
lemma Ln_times_unwinding:
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1135
    "w \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> Ln(w * z) = Ln(w) + Ln(z) - (2*pi) * \<i> * unwinding(Ln w + Ln z)"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1136
  using unwinding_2pi by (simp add: exp_add)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1137
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1138
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1139
subsection\<open>Derivative of Ln away from the branch cut\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1140
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1141
lemma
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1142
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1143
    shows has_field_derivative_Ln: "(Ln has_field_derivative inverse(z)) (at z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1144
      and Im_Ln_less_pi:           "Im (Ln z) < pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1145
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1146
  have znz: "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1147
    using assms by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1148
  then have "Im (Ln z) \<noteq> pi"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1149
    by (metis (no_types) Im_exp Ln_in_Reals assms complex_nonpos_Reals_iff complex_is_Real_iff exp_Ln mult_zero_right not_less pi_neq_zero sin_pi znz)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1150
  then show *: "Im (Ln z) < pi" using assms Im_Ln_le_pi
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1151
    by (simp add: le_neq_trans znz)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1152
  have "(exp has_field_derivative z) (at (Ln z))"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1153
    by (metis znz DERIV_exp exp_Ln)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1154
  then show "(Ln has_field_derivative inverse(z)) (at z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1155
    apply (rule has_complex_derivative_inverse_strong_x
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1156
              [where s = "{w. -pi < Im(w) \<and> Im(w) < pi}"])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1157
    using znz *
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1158
    apply (auto simp: Transcendental.continuous_on_exp [OF continuous_on_id] open_Collect_conj open_halfspace_Im_gt open_halfspace_Im_lt mpi_less_Im_Ln)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1159
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1160
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1161
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1162
declare has_field_derivative_Ln [derivative_intros]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1163
declare has_field_derivative_Ln [THEN DERIV_chain2, derivative_intros]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1164
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1165
lemma field_differentiable_at_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Ln field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1166
  using field_differentiable_def has_field_derivative_Ln by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1167
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1168
lemma field_differentiable_within_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1169
         \<Longrightarrow> Ln field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1170
  using field_differentiable_at_Ln field_differentiable_within_subset by blast
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1171
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1172
lemma continuous_at_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z) Ln"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1173
  by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_Ln)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1174
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1175
lemma isCont_Ln' [simp]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1176
   "\<lbrakk>isCont f z; f z \<notin> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. Ln (f x)) z"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1177
  by (blast intro: isCont_o2 [OF _ continuous_at_Ln])
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1178
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1179
lemma continuous_within_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z within s) Ln"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1180
  using continuous_at_Ln continuous_at_imp_continuous_within by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1181
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1182
lemma continuous_on_Ln [continuous_intros]: "(\<And>z. z \<in> s \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> continuous_on s Ln"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1183
  by (simp add: continuous_at_imp_continuous_on continuous_within_Ln)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1184
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1185
lemma holomorphic_on_Ln: "(\<And>z. z \<in> s \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> Ln holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1186
  by (simp add: field_differentiable_within_Ln holomorphic_on_def)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1187
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1188
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1189
subsection\<open>Quadrant-type results for Ln\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1190
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1191
lemma cos_lt_zero_pi: "pi/2 < x \<Longrightarrow> x < 3*pi/2 \<Longrightarrow> cos x < 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1192
  using cos_minus_pi cos_gt_zero_pi [of "x-pi"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1193
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1194
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1195
lemma Re_Ln_pos_lt:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1196
  assumes "z \<noteq> 0"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1197
    shows "\<bar>Im(Ln z)\<bar> < pi/2 \<longleftrightarrow> 0 < Re(z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1198
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1199
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1200
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1201
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1202
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1203
      by auto
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1204
    then have "\<bar>Im w\<bar> < pi/2 \<longleftrightarrow> 0 < Re(exp w)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1205
      apply (auto simp: Re_exp zero_less_mult_iff cos_gt_zero_pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1206
      using cos_lt_zero_pi [of "-(Im w)"] cos_lt_zero_pi [of "(Im w)"]
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  1207
      apply (simp add: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1208
      apply (metis (no_types) cos_minus cos_pi_half eq_divide_eq_numeral1(1) eq_numeral_simps(4)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1209
               less_numeral_extra(3) linorder_neqE_linordered_idom minus_mult_minus minus_mult_right
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1210
               mult_numeral_1_right)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1211
      done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1212
  }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1213
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1214
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1215
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1216
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1217
lemma Re_Ln_pos_le:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1218
  assumes "z \<noteq> 0"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1219
    shows "\<bar>Im(Ln z)\<bar> \<le> pi/2 \<longleftrightarrow> 0 \<le> Re(z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1220
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1221
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1222
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1223
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1224
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1225
      by auto
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1226
    then have "\<bar>Im w\<bar> \<le> pi/2 \<longleftrightarrow> 0 \<le> Re(exp w)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1227
      apply (auto simp: Re_exp zero_le_mult_iff cos_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1228
      using cos_lt_zero_pi [of "- (Im w)"] cos_lt_zero_pi [of "(Im w)"] not_le
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  1229
      apply (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1230
      done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1231
  }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1232
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1233
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1234
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1235
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1236
lemma Im_Ln_pos_lt:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1237
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1238
    shows "0 < Im(Ln z) \<and> Im(Ln z) < pi \<longleftrightarrow> 0 < Im(z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1239
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1240
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1241
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1242
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1243
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1244
      by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1245
    then have "0 < Im w \<and> Im w < pi \<longleftrightarrow> 0 < Im(exp w)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1246
      using sin_gt_zero [of "- (Im w)"] sin_gt_zero [of "(Im w)"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1247
      apply (auto simp: Im_exp zero_less_mult_iff)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1248
      using less_linear apply fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1249
      using less_linear apply fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1250
      done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1251
  }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1252
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1253
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1254
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1255
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1256
lemma Im_Ln_pos_le:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1257
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1258
    shows "0 \<le> Im(Ln z) \<and> Im(Ln z) \<le> pi \<longleftrightarrow> 0 \<le> Im(z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1259
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1260
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1261
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1262
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1263
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1264
      by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1265
    then have "0 \<le> Im w \<and> Im w \<le> pi \<longleftrightarrow> 0 \<le> Im(exp w)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1266
      using sin_ge_zero [of "- (Im w)"] sin_ge_zero [of "(Im w)"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1267
      apply (auto simp: Im_exp zero_le_mult_iff sin_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1268
      apply (metis not_le not_less_iff_gr_or_eq pi_not_less_zero sin_eq_0_pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1269
      done }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1270
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1271
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1272
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1273
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1274
lemma Re_Ln_pos_lt_imp: "0 < Re(z) \<Longrightarrow> \<bar>Im(Ln z)\<bar> < pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1275
  by (metis Re_Ln_pos_lt less_irrefl zero_complex.simps(1))
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1276
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1277
lemma Im_Ln_pos_lt_imp: "0 < Im(z) \<Longrightarrow> 0 < Im(Ln z) \<and> Im(Ln z) < pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1278
  by (metis Im_Ln_pos_lt not_le order_refl zero_complex.simps(2))
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1279
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1280
text\<open>A reference to the set of positive real numbers\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1281
lemma Im_Ln_eq_0: "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = 0 \<longleftrightarrow> 0 < Re(z) \<and> Im(z) = 0)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1282
by (metis Im_complex_of_real Im_exp Ln_in_Reals Re_Ln_pos_lt Re_Ln_pos_lt_imp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1283
          Re_complex_of_real complex_is_Real_iff exp_Ln exp_of_real pi_gt_zero)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1284
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1285
lemma Im_Ln_eq_pi: "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = pi \<longleftrightarrow> Re(z) < 0 \<and> Im(z) = 0)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1286
by (metis Im_Ln_eq_0 Im_Ln_pos_le Im_Ln_pos_lt add.left_neutral complex_eq less_eq_real_def
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1287
    mult_zero_right not_less_iff_gr_or_eq pi_ge_zero pi_neq_zero rcis_zero_arg rcis_zero_mod)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1288
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1289
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1290
subsection\<open>More Properties of Ln\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1291
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1292
lemma cnj_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> cnj(Ln z) = Ln(cnj z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1293
  apply (cases "z=0", auto)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1294
  apply (rule exp_complex_eqI)
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  1295
  apply (auto simp: abs_if split: if_split_asm)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1296
  using Im_Ln_less_pi Im_Ln_le_pi apply force
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1297
  apply (metis complex_cnj_zero_iff diff_minus_eq_add diff_strict_mono minus_less_iff
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1298
          mpi_less_Im_Ln mult.commute mult_2_right)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1299
  by (metis exp_Ln exp_cnj)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1300
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1301
lemma Ln_inverse: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Ln(inverse z) = -(Ln z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1302
  apply (cases "z=0", auto)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1303
  apply (rule exp_complex_eqI)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1304
  using mpi_less_Im_Ln [of z] mpi_less_Im_Ln [of "inverse z"]
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  1305
  apply (auto simp: abs_if exp_minus split: if_split_asm)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1306
  apply (metis Im_Ln_less_pi Im_Ln_le_pi add.commute add_mono_thms_linordered_field(3) inverse_nonzero_iff_nonzero mult_2)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1307
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1308
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1309
lemma Ln_minus1 [simp]: "Ln(-1) = \<i> * pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1310
  apply (rule exp_complex_eqI)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1311
  using Im_Ln_le_pi [of "-1"] mpi_less_Im_Ln [of "-1"] cis_conv_exp cis_pi
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1312
  apply (auto simp: abs_if)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1313
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1314
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1315
lemma Ln_ii [simp]: "Ln \<i> = \<i> * of_real pi/2"
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1316
  using Ln_exp [of "\<i> * (of_real pi/2)"]
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1317
  unfolding exp_Euler
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1318
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1319
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1320
lemma Ln_minus_ii [simp]: "Ln(-\<i>) = - (\<i> * pi/2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1321
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1322
  have  "Ln(-\<i>) = Ln(inverse \<i>)"    by simp
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1323
  also have "... = - (Ln \<i>)"         using Ln_inverse by blast
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1324
  also have "... = - (\<i> * pi/2)"     by simp
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1325
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1326
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1327
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1328
lemma Ln_times:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1329
  assumes "w \<noteq> 0" "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1330
    shows "Ln(w * z) =
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1331
                (if Im(Ln w + Ln z) \<le> -pi then
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1332
                  (Ln(w) + Ln(z)) + \<i> * of_real(2*pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1333
                else if Im(Ln w + Ln z) > pi then
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1334
                  (Ln(w) + Ln(z)) - \<i> * of_real(2*pi)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1335
                else Ln(w) + Ln(z))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1336
  using pi_ge_zero Im_Ln_le_pi [of w] Im_Ln_le_pi [of z]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1337
  using assms mpi_less_Im_Ln [of w] mpi_less_Im_Ln [of z]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1338
  by (auto simp: exp_add exp_diff sin_double cos_double exp_Euler intro!: Ln_unique)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1339
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1340
corollary Ln_times_simple:
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1341
    "\<lbrakk>w \<noteq> 0; z \<noteq> 0; -pi < Im(Ln w) + Im(Ln z); Im(Ln w) + Im(Ln z) \<le> pi\<rbrakk>
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1342
         \<Longrightarrow> Ln(w * z) = Ln(w) + Ln(z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1343
  by (simp add: Ln_times)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1344
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1345
corollary Ln_times_of_real:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1346
    "\<lbrakk>r > 0; z \<noteq> 0\<rbrakk> \<Longrightarrow> Ln(of_real r * z) = ln r + Ln(z)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1347
  using mpi_less_Im_Ln Im_Ln_le_pi
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1348
  by (force simp: Ln_times)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1349
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1350
corollary Ln_divide_of_real:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1351
    "\<lbrakk>r > 0; z \<noteq> 0\<rbrakk> \<Longrightarrow> Ln(z / of_real r) = Ln(z) - ln r"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1352
using Ln_times_of_real [of "inverse r" z]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1353
by (simp add: ln_inverse Ln_of_real mult.commute divide_inverse of_real_inverse [symmetric]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1354
         del: of_real_inverse)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1355
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1356
lemma Ln_minus:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1357
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1358
    shows "Ln(-z) = (if Im(z) \<le> 0 \<and> ~(Re(z) < 0 \<and> Im(z) = 0)
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1359
                     then Ln(z) + \<i> * pi
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1360
                     else Ln(z) - \<i> * pi)" (is "_ = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1361
  using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1362
        Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1363
    by (fastforce simp: exp_add exp_diff exp_Euler intro!: Ln_unique)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1364
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1365
lemma Ln_inverse_if:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1366
  assumes "z \<noteq> 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1367
    shows "Ln (inverse z) = (if z \<in> \<real>\<^sub>\<le>\<^sub>0 then -(Ln z) + \<i> * 2 * complex_of_real pi else -(Ln z))"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1368
proof (cases "z \<in> \<real>\<^sub>\<le>\<^sub>0")
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1369
  case False then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1370
    by (simp add: Ln_inverse)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1371
next
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1372
  case True
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1373
  then have z: "Im z = 0" "Re z < 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1374
    using assms
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1375
    apply (auto simp: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1376
    by (metis complex_is_Real_iff le_imp_less_or_eq of_real_0 of_real_Re)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1377
  have "Ln(inverse z) = Ln(- (inverse (-z)))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1378
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1379
  also have "... = Ln (inverse (-z)) + \<i> * complex_of_real pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1380
    using assms z
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1381
    apply (simp add: Ln_minus)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1382
    apply (simp add: field_simps)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1383
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1384
  also have "... = - Ln (- z) + \<i> * complex_of_real pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1385
    apply (subst Ln_inverse)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1386
    using z by (auto simp add: complex_nonneg_Reals_iff)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1387
  also have "... = - (Ln z) + \<i> * 2 * complex_of_real pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1388
    apply (subst Ln_minus [OF assms])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1389
    using assms z
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1390
    apply simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1391
    done
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1392
  finally show ?thesis by (simp add: True)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1393
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1394
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1395
lemma Ln_times_ii:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1396
  assumes "z \<noteq> 0"
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1397
    shows  "Ln(\<i> * z) = (if 0 \<le> Re(z) | Im(z) < 0
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1398
                          then Ln(z) + \<i> * of_real pi/2
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1399
                          else Ln(z) - \<i> * of_real(3 * pi/2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1400
  using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1401
        Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z] Re_Ln_pos_le [of z]
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  1402
  by (simp add: Ln_times) auto
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1403
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1404
lemma Ln_of_nat: "0 < n \<Longrightarrow> Ln (of_nat n) = of_real (ln (of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1405
  by (subst of_real_of_nat_eq[symmetric], subst Ln_of_real[symmetric]) simp_all
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1406
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1407
lemma Ln_of_nat_over_of_nat:
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1408
  assumes "m > 0" "n > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1409
  shows   "Ln (of_nat m / of_nat n) = of_real (ln (of_nat m) - ln (of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1410
proof -
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1411
  have "of_nat m / of_nat n = (of_real (of_nat m / of_nat n) :: complex)" by simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1412
  also from assms have "Ln ... = of_real (ln (of_nat m / of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1413
    by (simp add: Ln_of_real[symmetric])
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1414
  also from assms have "... = of_real (ln (of_nat m) - ln (of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1415
    by (simp add: ln_div)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1416
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1417
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1418
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1419
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1420
subsection\<open>Relation between Ln and Arg, and hence continuity of Arg\<close>
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1421
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1422
lemma Arg_Ln:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1423
  assumes "0 < Arg z" shows "Arg z = Im(Ln(-z)) + pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1424
proof (cases "z = 0")
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1425
  case True
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1426
  with assms show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1427
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1428
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1429
  case False
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1430
  then have "z / of_real(norm z) = exp(\<i> * of_real(Arg z))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1431
    using Arg [of z]
64240
eabf80376aab more standardized names
haftmann
parents: 63918
diff changeset
  1432
    by (metis abs_norm_cancel nonzero_mult_div_cancel_left norm_of_real zero_less_norm_iff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1433
  then have "- z / of_real(norm z) = exp (\<i> * (of_real (Arg z) - pi))"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1434
    using cis_conv_exp cis_pi
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1435
    by (auto simp: exp_diff algebra_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1436
  then have "ln (- z / of_real(norm z)) = ln (exp (\<i> * (of_real (Arg z) - pi)))"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1437
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1438
  also have "... = \<i> * (of_real(Arg z) - pi)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1439
    using Arg [of z] assms pi_not_less_zero
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1440
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1441
  finally have "Arg z =  Im (Ln (- z / of_real (cmod z))) + pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1442
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1443
  also have "... = Im (Ln (-z) - ln (cmod z)) + pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1444
    by (metis diff_0_right minus_diff_eq zero_less_norm_iff Ln_divide_of_real False)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1445
  also have "... = Im (Ln (-z)) + pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1446
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1447
  finally show ?thesis .
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1448
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1449
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1450
lemma continuous_at_Arg:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1451
  assumes "z \<notin> \<real>\<^sub>\<ge>\<^sub>0"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1452
    shows "continuous (at z) Arg"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1453
proof -
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1454
  have *: "isCont (\<lambda>z. Im (Ln (- z)) + pi) z"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1455
    by (rule Complex.isCont_Im isCont_Ln' continuous_intros | simp add: assms complex_is_Real_iff)+
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1456
  have [simp]: "\<And>x. \<lbrakk>Im x \<noteq> 0\<rbrakk> \<Longrightarrow> Im (Ln (- x)) + pi = Arg x"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1457
      using Arg_Ln Arg_gt_0 complex_is_Real_iff by auto
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1458
  consider "Re z < 0" | "Im z \<noteq> 0" using assms
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1459
    using complex_nonneg_Reals_iff not_le by blast
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1460
  then have [simp]: "(\<lambda>z. Im (Ln (- z)) + pi) \<midarrow>z\<rightarrow> Arg z"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1461
      using "*"  by (simp add: isCont_def) (metis Arg_Ln Arg_gt_0 complex_is_Real_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1462
  show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1463
      apply (simp add: continuous_at)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1464
      apply (rule Lim_transform_within_open [where s= "-\<real>\<^sub>\<ge>\<^sub>0" and f = "\<lambda>z. Im(Ln(-z)) + pi"])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1465
      apply (auto simp add: not_le Arg_Ln [OF Arg_gt_0] complex_nonneg_Reals_iff closed_def [symmetric])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1466
      using assms apply (force simp add: complex_nonneg_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1467
      done
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1468
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1469
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1470
lemma Ln_series:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1471
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1472
  assumes "norm z < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1473
  shows   "(\<lambda>n. (-1)^Suc n / of_nat n * z^n) sums ln (1 + z)" (is "(\<lambda>n. ?f n * z^n) sums _")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1474
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1475
  let ?F = "\<lambda>z. \<Sum>n. ?f n * z^n" and ?F' = "\<lambda>z. \<Sum>n. diffs ?f n * z^n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1476
  have r: "conv_radius ?f = 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1477
    by (intro conv_radius_ratio_limit_nonzero[of _ 1])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1478
       (simp_all add: norm_divide LIMSEQ_Suc_n_over_n del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1479
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1480
  have "\<exists>c. \<forall>z\<in>ball 0 1. ln (1 + z) - ?F z = c"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1481
  proof (rule has_field_derivative_zero_constant)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1482
    fix z :: complex assume z': "z \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1483
    hence z: "norm z < 1" by (simp add: dist_0_norm)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  1484
    define t :: complex where "t = of_real (1 + norm z) / 2"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1485
    from z have t: "norm z < norm t" "norm t < 1" unfolding t_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1486
      by (simp_all add: field_simps norm_divide del: of_real_add)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1487
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1488
    have "Re (-z) \<le> norm (-z)" by (rule complex_Re_le_cmod)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1489
    also from z have "... < 1" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1490
    finally have "((\<lambda>z. ln (1 + z)) has_field_derivative inverse (1+z)) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1491
      by (auto intro!: derivative_eq_intros simp: complex_nonpos_Reals_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1492
    moreover have "(?F has_field_derivative ?F' z) (at z)" using t r
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1493
      by (intro termdiffs_strong[of _ t] summable_in_conv_radius) simp_all
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1494
    ultimately have "((\<lambda>z. ln (1 + z) - ?F z) has_field_derivative (inverse (1 + z) - ?F' z))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1495
                       (at z within ball 0 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1496
      by (intro derivative_intros) (simp_all add: at_within_open[OF z'])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1497
    also have "(\<lambda>n. of_nat n * ?f n * z ^ (n - Suc 0)) sums ?F' z" using t r
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1498
      by (intro diffs_equiv termdiff_converges[OF t(1)] summable_in_conv_radius) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1499
    from sums_split_initial_segment[OF this, of 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1500
      have "(\<lambda>i. (-z) ^ i) sums ?F' z" by (simp add: power_minus[of z] del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1501
    hence "?F' z = inverse (1 + z)" using z by (simp add: sums_iff suminf_geometric divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1502
    also have "inverse (1 + z) - inverse (1 + z) = 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1503
    finally show "((\<lambda>z. ln (1 + z) - ?F z) has_field_derivative 0) (at z within ball 0 1)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1504
  qed simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1505
  then obtain c where c: "\<And>z. z \<in> ball 0 1 \<Longrightarrow> ln (1 + z) - ?F z = c" by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1506
  from c[of 0] have "c = 0" by (simp only: powser_zero) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1507
  with c[of z] assms have "ln (1 + z) = ?F z" by (simp add: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1508
  moreover have "summable (\<lambda>n. ?f n * z^n)" using assms r
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1509
    by (intro summable_in_conv_radius) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1510
  ultimately show ?thesis by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1511
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1512
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1513
lemma Ln_series': "cmod z < 1 \<Longrightarrow> (\<lambda>n. - ((-z)^n) / of_nat n) sums ln (1 + z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1514
  by (drule Ln_series) (simp add: power_minus')
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1515
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  1516
lemma ln_series':
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1517
  assumes "abs (x::real) < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1518
  shows   "(\<lambda>n. - ((-x)^n) / of_nat n) sums ln (1 + x)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1519
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1520
  from assms have "(\<lambda>n. - ((-of_real x)^n) / of_nat n) sums ln (1 + complex_of_real x)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1521
    by (intro Ln_series') simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1522
  also have "(\<lambda>n. - ((-of_real x)^n) / of_nat n) = (\<lambda>n. complex_of_real (- ((-x)^n) / of_nat n))"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1523
    by (rule ext) simp
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  1524
  also from assms have "ln (1 + complex_of_real x) = of_real (ln (1 + x))"
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1525
    by (subst Ln_of_real [symmetric]) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1526
  finally show ?thesis by (subst (asm) sums_of_real_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1527
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1528
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1529
lemma Ln_approx_linear:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1530
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1531
  assumes "norm z < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1532
  shows   "norm (ln (1 + z) - z) \<le> norm z^2 / (1 - norm z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1533
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1534
  let ?f = "\<lambda>n. (-1)^Suc n / of_nat n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1535
  from assms have "(\<lambda>n. ?f n * z^n) sums ln (1 + z)" using Ln_series by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1536
  moreover have "(\<lambda>n. (if n = 1 then 1 else 0) * z^n) sums z" using powser_sums_if[of 1] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1537
  ultimately have "(\<lambda>n. (?f n - (if n = 1 then 1 else 0)) * z^n) sums (ln (1 + z) - z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1538
    by (subst left_diff_distrib, intro sums_diff) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1539
  from sums_split_initial_segment[OF this, of "Suc 1"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1540
    have "(\<lambda>i. (-(z^2)) * inverse (2 + of_nat i) * (- z)^i) sums (Ln (1 + z) - z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1541
    by (simp add: power2_eq_square mult_ac power_minus[of z] divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1542
  hence "(Ln (1 + z) - z) = (\<Sum>i. (-(z^2)) * inverse (of_nat (i+2)) * (-z)^i)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1543
    by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1544
  also have A: "summable (\<lambda>n. norm z^2 * (inverse (real_of_nat (Suc (Suc n))) * cmod z ^ n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1545
    by (rule summable_mult, rule summable_comparison_test_ev[OF _ summable_geometric[of "norm z"]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1546
       (auto simp: assms field_simps intro!: always_eventually)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1547
  hence "norm (\<Sum>i. (-(z^2)) * inverse (of_nat (i+2)) * (-z)^i) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1548
             (\<Sum>i. norm (-(z^2) * inverse (of_nat (i+2)) * (-z)^i))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1549
    by (intro summable_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1550
       (auto simp: norm_power norm_inverse norm_mult mult_ac simp del: of_nat_add of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1551
  also have "norm ((-z)^2 * (-z)^i) * inverse (of_nat (i+2)) \<le> norm ((-z)^2 * (-z)^i) * 1" for i
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1552
    by (intro mult_left_mono) (simp_all add: divide_simps)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1553
  hence "(\<Sum>i. norm (-(z^2) * inverse (of_nat (i+2)) * (-z)^i)) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1554
           (\<Sum>i. norm (-(z^2) * (-z)^i))" using A assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1555
    apply (simp_all only: norm_power norm_inverse norm_divide norm_mult)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1556
    apply (intro suminf_le summable_mult summable_geometric)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1557
    apply (auto simp: norm_power field_simps simp del: of_nat_add of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1558
    done
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1559
  also have "... = norm z^2 * (\<Sum>i. norm z^i)" using assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1560
    by (subst suminf_mult [symmetric]) (auto intro!: summable_geometric simp: norm_mult norm_power)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1561
  also have "(\<Sum>i. norm z^i) = inverse (1 - norm z)" using assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1562
    by (subst suminf_geometric) (simp_all add: divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1563
  also have "norm z^2 * ... = norm z^2 / (1 - norm z)" by (simp add: divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1564
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1565
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1566
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1567
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1568
text\<open>Relation between Arg and arctangent in upper halfplane\<close>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1569
lemma Arg_arctan_upperhalf:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1570
  assumes "0 < Im z"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1571
    shows "Arg z = pi/2 - arctan(Re z / Im z)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1572
proof (cases "z = 0")
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1573
  case True with assms show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1574
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1575
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1576
  case False
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1577
  show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1578
    apply (rule Arg_unique [of "norm z"])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1579
    using False assms arctan [of "Re z / Im z"] pi_ge_two pi_half_less_two
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1580
    apply (auto simp: exp_Euler cos_diff sin_diff)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1581
    using norm_complex_def [of z, symmetric]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1582
    apply (simp add: sin_of_real cos_of_real sin_arctan cos_arctan field_simps real_sqrt_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1583
    apply (metis complex_eq mult.assoc ring_class.ring_distribs(2))
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1584
    done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1585
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1586
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1587
lemma Arg_eq_Im_Ln:
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1588
  assumes "0 \<le> Im z" "0 < Re z"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1589
    shows "Arg z = Im (Ln z)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1590
proof (cases "z = 0 \<or> Im z = 0")
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1591
  case True then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1592
    using assms Arg_eq_0 complex_is_Real_iff
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1593
    apply auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1594
    by (metis Arg_eq_0_pi Arg_eq_pi Im_Ln_eq_0 Im_Ln_eq_pi less_numeral_extra(3) zero_complex.simps(1))
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1595
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1596
  case False
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1597
  then have "Arg z > 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1598
    using Arg_gt_0 complex_is_Real_iff by blast
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1599
  then show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1600
    using assms False
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1601
    by (subst Arg_Ln) (auto simp: Ln_minus)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1602
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1603
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1604
lemma continuous_within_upperhalf_Arg:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1605
  assumes "z \<noteq> 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1606
    shows "continuous (at z within {z. 0 \<le> Im z}) Arg"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1607
proof (cases "z \<in> \<real>\<^sub>\<ge>\<^sub>0")
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1608
  case False then show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1609
    using continuous_at_Arg continuous_at_imp_continuous_within by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1610
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1611
  case True
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1612
  then have z: "z \<in> \<real>" "0 < Re z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1613
    using assms  by (auto simp: complex_nonneg_Reals_iff complex_is_Real_iff complex_neq_0)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1614
  then have [simp]: "Arg z = 0" "Im (Ln z) = 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1615
    by (auto simp: Arg_eq_0 Im_Ln_eq_0 assms complex_is_Real_iff)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1616
  show ?thesis
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1617
  proof (clarsimp simp add: continuous_within Lim_within dist_norm)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1618
    fix e::real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1619
    assume "0 < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1620
    moreover have "continuous (at z) (\<lambda>x. Im (Ln x))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1621
      using z by (simp add: continuous_at_Ln complex_nonpos_Reals_iff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1622
    ultimately
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1623
    obtain d where d: "d>0" "\<And>x. x \<noteq> z \<Longrightarrow> cmod (x - z) < d \<Longrightarrow> \<bar>Im (Ln x)\<bar> < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1624
      by (auto simp: continuous_within Lim_within dist_norm)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1625
    { fix x
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1626
      assume "cmod (x - z) < Re z / 2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1627
      then have "\<bar>Re x - Re z\<bar> < Re z / 2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1628
        by (metis le_less_trans abs_Re_le_cmod minus_complex.simps(1))
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1629
      then have "0 < Re x"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1630
        using z by linarith
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1631
    }
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1632
    then show "\<exists>d>0. \<forall>x. 0 \<le> Im x \<longrightarrow> x \<noteq> z \<and> cmod (x - z) < d \<longrightarrow> \<bar>Arg x\<bar> < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1633
      apply (rule_tac x="min d (Re z / 2)" in exI)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1634
      using z d
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1635
      apply (auto simp: Arg_eq_Im_Ln)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1636
      done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1637
  qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1638
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1639
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1640
lemma continuous_on_upperhalf_Arg: "continuous_on ({z. 0 \<le> Im z} - {0}) Arg"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1641
  apply (auto simp: continuous_on_eq_continuous_within)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1642
  by (metis Diff_subset continuous_within_subset continuous_within_upperhalf_Arg)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1643
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1644
lemma open_Arg_less_Int:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1645
  assumes "0 \<le> s" "t \<le> 2*pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1646
    shows "open ({y. s < Arg y} \<inter> {y. Arg y < t})"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1647
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1648
  have 1: "continuous_on (UNIV - \<real>\<^sub>\<ge>\<^sub>0) Arg"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1649
    using continuous_at_Arg continuous_at_imp_continuous_within
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1650
    by (auto simp: continuous_on_eq_continuous_within)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1651
  have 2: "open (UNIV - \<real>\<^sub>\<ge>\<^sub>0 :: complex set)"  by (simp add: open_Diff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1652
  have "open ({z. s < z} \<inter> {z. z < t})"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1653
    using open_lessThan [of t] open_greaterThan [of s]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1654
    by (metis greaterThan_def lessThan_def open_Int)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1655
  moreover have "{y. s < Arg y} \<inter> {y. Arg y < t} \<subseteq> - \<real>\<^sub>\<ge>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1656
    using assms by (auto simp: Arg_real complex_nonneg_Reals_iff complex_is_Real_iff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1657
  ultimately show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1658
    using continuous_imp_open_vimage [OF 1 2, of  "{z. Re z > s} \<inter> {z. Re z < t}"]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1659
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1660
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1661
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1662
lemma open_Arg_gt: "open {z. t < Arg z}"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1663
proof (cases "t < 0")
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1664
  case True then have "{z. t < Arg z} = UNIV"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1665
    using Arg_ge_0 less_le_trans by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1666
  then show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1667
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1668
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1669
  case False then show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1670
    using open_Arg_less_Int [of t "2*pi"] Arg_lt_2pi
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1671
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1672
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1673
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1674
lemma closed_Arg_le: "closed {z. Arg z \<le> t}"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1675
  using open_Arg_gt [of t]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1676
  by (simp add: closed_def Set.Collect_neg_eq [symmetric] not_le)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1677
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1678
subsection\<open>Complex Powers\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1679
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1680
lemma powr_to_1 [simp]: "z powr 1 = (z::complex)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1681
  by (simp add: powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1682
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1683
lemma powr_nat:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1684
  fixes n::nat and z::complex shows "z powr n = (if z = 0 then 0 else z^n)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1685
  by (simp add: exp_of_nat_mult powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1686
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1687
lemma norm_powr_real: "w \<in> \<real> \<Longrightarrow> 0 < Re w \<Longrightarrow> norm(w powr z) = exp(Re z * ln(Re w))"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1688
  apply (simp add: powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1689
  using Im_Ln_eq_0 complex_is_Real_iff norm_complex_def
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1690
  by auto
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1691
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1692
lemma powr_complexpow [simp]:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1693
  fixes x::complex shows "x \<noteq> 0 \<Longrightarrow> x powr (of_nat n) = x^n"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1694
  by (induct n) (auto simp: ac_simps powr_add)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1695
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1696
lemma powr_complexnumeral [simp]:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1697
  fixes x::complex shows "x \<noteq> 0 \<Longrightarrow> x powr (numeral n) = x ^ (numeral n)"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1698
  by (metis of_nat_numeral powr_complexpow)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1699
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1700
lemma cnj_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1701
  assumes "Im a = 0 \<Longrightarrow> Re a \<ge> 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1702
  shows   "cnj (a powr b) = cnj a powr cnj b"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1703
proof (cases "a = 0")
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1704
  case False
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1705
  with assms have "a \<notin> \<real>\<^sub>\<le>\<^sub>0" by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1706
  with False show ?thesis by (simp add: powr_def exp_cnj cnj_Ln)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1707
qed simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1708
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1709
lemma powr_real_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1710
    "\<lbrakk>w \<in> \<real>; z \<in> \<real>; 0 < Re w\<rbrakk> \<Longrightarrow> w powr z = exp(Re z * ln(Re w))"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1711
  apply (simp add: powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1712
  by (metis complex_eq complex_is_Real_iff diff_0 diff_0_right diff_minus_eq_add exp_ln exp_not_eq_zero
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1713
       exp_of_real Ln_of_real mult_zero_right of_real_0 of_real_mult)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1714
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1715
lemma powr_of_real:
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1716
  fixes x::real and y::real
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  1717
  shows "0 \<le> x \<Longrightarrow> of_real x powr (of_real y::complex) = of_real (x powr y)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  1718
  by (simp_all add: powr_def exp_eq_polar)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1719
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1720
lemma norm_powr_real_mono:
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1721
    "\<lbrakk>w \<in> \<real>; 1 < Re w\<rbrakk>
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1722
     \<Longrightarrow> cmod(w powr z1) \<le> cmod(w powr z2) \<longleftrightarrow> Re z1 \<le> Re z2"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1723
  by (auto simp: powr_def algebra_simps Reals_def Ln_of_real)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1724
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1725
lemma powr_times_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1726
    "\<lbrakk>x \<in> \<real>; y \<in> \<real>; 0 \<le> Re x; 0 \<le> Re y\<rbrakk>
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1727
           \<Longrightarrow> (x * y) powr z = x powr z * y powr z"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1728
  by (auto simp: Reals_def powr_def Ln_times exp_add algebra_simps less_eq_real_def Ln_of_real)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1729
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1730
lemma powr_neg_real_complex:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1731
  shows   "(- of_real x) powr a = (-1) powr (of_real (sgn x) * a) * of_real x powr (a :: complex)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1732
proof (cases "x = 0")
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1733
  assume x: "x \<noteq> 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1734
  hence "(-x) powr a = exp (a * ln (-of_real x))" by (simp add: powr_def)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1735
  also from x have "ln (-of_real x) = Ln (of_real x) + of_real (sgn x) * pi * \<i>"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1736
    by (simp add: Ln_minus Ln_of_real)
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  1737
  also from x have "exp (a * ...) = cis pi powr (of_real (sgn x) * a) * of_real x powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1738
    by (simp add: powr_def exp_add algebra_simps Ln_of_real cis_conv_exp)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1739
  also note cis_pi
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1740
  finally show ?thesis by simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1741
qed simp_all
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1742
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1743
lemma has_field_derivative_powr:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1744
  fixes z :: complex
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1745
  shows "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ((\<lambda>z. z powr s) has_field_derivative (s * z powr (s - 1))) (at z)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1746
  apply (cases "z=0", auto)
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1747
  apply (simp add: powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1748
  apply (rule DERIV_transform_at [where d = "norm z" and f = "\<lambda>z. exp (s * Ln z)"])
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1749
  apply (auto simp: dist_complex_def)
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  1750
  apply (intro derivative_eq_intros | simp)+
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1751
  apply (simp add: field_simps exp_diff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1752
  done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1753
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1754
declare has_field_derivative_powr[THEN DERIV_chain2, derivative_intros]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1755
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1756
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65274
diff changeset
  1757
lemma has_field_derivative_powr_right [derivative_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1758
    "w \<noteq> 0 \<Longrightarrow> ((\<lambda>z. w powr z) has_field_derivative Ln w * w powr z) (at z)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1759
  apply (simp add: powr_def)
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  1760
  apply (intro derivative_eq_intros | simp)+
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1761
  done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1762
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1763
lemma field_differentiable_powr_right [derivative_intros]:
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62393
diff changeset
  1764
  fixes w::complex
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1765
  shows "w \<noteq> 0 \<Longrightarrow> (\<lambda>z. w powr z) field_differentiable (at z)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1766
using field_differentiable_def has_field_derivative_powr_right by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1767
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1768
lemma holomorphic_on_powr_right [holomorphic_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1769
    "f holomorphic_on s \<Longrightarrow> w \<noteq> 0 \<Longrightarrow> (\<lambda>z. w powr (f z)) holomorphic_on s"
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1770
  unfolding holomorphic_on_def field_differentiable_def
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1771
  by (metis (full_types) DERIV_chain' has_field_derivative_powr_right)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1772
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1773
lemma norm_powr_real_powr:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1774
  "w \<in> \<real> \<Longrightarrow> 0 \<le> Re w \<Longrightarrow> cmod (w powr z) = Re w powr Re z"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63589
diff changeset
  1775
  by (cases "w = 0") (auto simp add: norm_powr_real powr_def Im_Ln_eq_0
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1776
                                     complex_is_Real_iff in_Reals_norm complex_eq_iff)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1777
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1778
lemma tendsto_ln_complex [tendsto_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1779
  assumes "(f \<longlongrightarrow> a) F" "a \<notin> \<real>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1780
  shows   "((\<lambda>z. ln (f z :: complex)) \<longlongrightarrow> ln a) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1781
  using tendsto_compose[OF continuous_at_Ln[of a, unfolded isCont_def] assms(1)] assms(2) by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1782
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1783
lemma tendsto_powr_complex:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1784
  fixes f g :: "_ \<Rightarrow> complex"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1785
  assumes a: "a \<notin> \<real>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1786
  assumes f: "(f \<longlongrightarrow> a) F" and g: "(g \<longlongrightarrow> b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1787
  shows   "((\<lambda>z. f z powr g z) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1788
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1789
  from a have [simp]: "a \<noteq> 0" by auto
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1790
  from f g a have "((\<lambda>z. exp (g z * ln (f z))) \<longlongrightarrow> a powr b) F" (is ?P)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1791
    by (auto intro!: tendsto_intros simp: powr_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1792
  also {
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1793
    have "eventually (\<lambda>z. z \<noteq> 0) (nhds a)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1794
      by (intro t1_space_nhds) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1795
    with f have "eventually (\<lambda>z. f z \<noteq> 0) F" using filterlim_iff by blast
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1796
  }
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1797
  hence "?P \<longleftrightarrow> ((\<lambda>z. f z powr g z) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1798
    by (intro tendsto_cong refl) (simp_all add: powr_def mult_ac)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1799
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1800
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1801
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1802
lemma tendsto_powr_complex_0:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1803
  fixes f g :: "'a \<Rightarrow> complex"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1804
  assumes f: "(f \<longlongrightarrow> 0) F" and g: "(g \<longlongrightarrow> b) F" and b: "Re b > 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1805
  shows   "((\<lambda>z. f z powr g z) \<longlongrightarrow> 0) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1806
proof (rule tendsto_norm_zero_cancel)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1807
  define h where
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1808
    "h = (\<lambda>z. if f z = 0 then 0 else exp (Re (g z) * ln (cmod (f z)) + abs (Im (g z)) * pi))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1809
  {
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1810
    fix z :: 'a assume z: "f z \<noteq> 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1811
    define c where "c = abs (Im (g z)) * pi"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1812
    from mpi_less_Im_Ln[OF z] Im_Ln_le_pi[OF z]
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1813
      have "abs (Im (Ln (f z))) \<le> pi" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1814
    from mult_left_mono[OF this, of "abs (Im (g z))"]
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1815
      have "abs (Im (g z) * Im (ln (f z))) \<le> c" by (simp add: abs_mult c_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1816
    hence "-Im (g z) * Im (ln (f z)) \<le> c" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1817
    hence "norm (f z powr g z) \<le> h z" by (simp add: powr_def field_simps h_def c_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1818
  }
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1819
  hence le: "norm (f z powr g z) \<le> h z" for z by (cases "f x = 0") (simp_all add: h_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1820
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1821
  have g': "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1822
    by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1823
  have "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1824
    by (subst tendsto_norm_zero_iff, rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1825
  moreover {
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1826
    have "filterlim (\<lambda>x. norm (f x)) (principal {0<..}) (principal {z. f z \<noteq> 0})"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1827
      by (auto simp: filterlim_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1828
    hence "filterlim (\<lambda>x. norm (f x)) (principal {0<..})
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1829
             (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1830
      by (rule filterlim_mono) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1831
  }
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1832
  ultimately have norm: "filterlim (\<lambda>x. norm (f x)) (at_right 0) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1833
    by (simp add: filterlim_inf at_within_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1834
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1835
  have A: "LIM x inf F (principal {z. f z \<noteq> 0}). Re (g x) * -ln (cmod (f x)) :> at_top"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1836
    by (rule filterlim_tendsto_pos_mult_at_top tendsto_intros g' b
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1837
          filterlim_compose[OF filterlim_uminus_at_top_at_bot] filterlim_compose[OF ln_at_0] norm)+
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1838
  have B: "LIM x inf F (principal {z. f z \<noteq> 0}).
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1839
          -\<bar>Im (g x)\<bar> * pi + -(Re (g x) * ln (cmod (f x))) :> at_top"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1840
    by (rule filterlim_tendsto_add_at_top tendsto_intros g')+ (insert A, simp_all)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1841
  have C: "(h \<longlongrightarrow> 0) F" unfolding h_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1842
    by (intro filterlim_If tendsto_const filterlim_compose[OF exp_at_bot])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1843
       (insert B, auto simp: filterlim_uminus_at_bot algebra_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1844
  show "((\<lambda>x. norm (f x powr g x)) \<longlongrightarrow> 0) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1845
    by (rule Lim_null_comparison[OF always_eventually C]) (insert le, auto)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1846
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1847
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1848
lemma tendsto_powr_complex' [tendsto_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1849
  fixes f g :: "_ \<Rightarrow> complex"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1850
  assumes fz: "a \<notin> \<real>\<^sub>\<le>\<^sub>0 \<or> (a = 0 \<and> Re b > 0)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1851
  assumes fg: "(f \<longlongrightarrow> a) F" "(g \<longlongrightarrow> b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1852
  shows   "((\<lambda>z. f z powr g z) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1853
proof (cases "a = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1854
  case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1855
  with assms show ?thesis by (auto intro!: tendsto_powr_complex_0)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1856
next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1857
  case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1858
  with assms show ?thesis by (auto intro!: tendsto_powr_complex elim!: nonpos_Reals_cases)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1859
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1860
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1861
lemma continuous_powr_complex:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1862
  assumes "f (netlimit F) \<notin> \<real>\<^sub>\<le>\<^sub>0" "continuous F f" "continuous F g"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1863
  shows   "continuous F (\<lambda>z. f z powr g z :: complex)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1864
  using assms unfolding continuous_def by (intro tendsto_powr_complex) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1865
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1866
lemma isCont_powr_complex [continuous_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1867
  assumes "f z \<notin> \<real>\<^sub>\<le>\<^sub>0" "isCont f z" "isCont g z"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1868
  shows   "isCont (\<lambda>z. f z powr g z :: complex) z"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1869
  using assms unfolding isCont_def by (intro tendsto_powr_complex) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1870
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1871
lemma continuous_on_powr_complex [continuous_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1872
  assumes "A \<subseteq> {z. Re (f z) \<ge> 0 \<or> Im (f z) \<noteq> 0}"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1873
  assumes "\<And>z. z \<in> A \<Longrightarrow> f z = 0 \<Longrightarrow> Re (g z) > 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1874
  assumes "continuous_on A f" "continuous_on A g"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1875
  shows   "continuous_on A (\<lambda>z. f z powr g z)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1876
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1877
proof
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1878
  fix z assume z: "z \<in> A"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1879
  show "((\<lambda>z. f z powr g z) \<longlongrightarrow> f z powr g z) (at z within A)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1880
  proof (cases "f z = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1881
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1882
    from assms(1,2) z have "Re (f z) \<ge> 0 \<or> Im (f z) \<noteq> 0" "f z = 0 \<longrightarrow> Re (g z) > 0" by auto
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1883
    with assms(3,4) z show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1884
      by (intro tendsto_powr_complex')
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1885
         (auto elim!: nonpos_Reals_cases simp: complex_eq_iff continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1886
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1887
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1888
    with assms z show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1889
      by (auto intro!: tendsto_powr_complex_0 simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1890
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  1891
qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1892
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1893
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1894
subsection\<open>Some Limits involving Logarithms\<close>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1895
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1896
lemma lim_Ln_over_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1897
  fixes s::complex
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1898
  assumes "0 < Re s"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1899
    shows "((\<lambda>n. Ln n / (n powr s)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1900
proof (simp add: lim_sequentially dist_norm, clarify)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1901
  fix e::real
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1902
  assume e: "0 < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1903
  have "\<exists>xo>0. \<forall>x\<ge>xo. 0 < e * 2 + (e * Re s * 2 - 2) * x + e * (Re s)\<^sup>2 * x\<^sup>2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1904
  proof (rule_tac x="2/(e * (Re s)\<^sup>2)" in exI, safe)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1905
    show "0 < 2 / (e * (Re s)\<^sup>2)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1906
      using e assms by (simp add: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1907
  next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1908
    fix x::real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1909
    assume x: "2 / (e * (Re s)\<^sup>2) \<le> x"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1910
    then have "x>0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1911
    using e assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1912
      by (metis less_le_trans mult_eq_0_iff mult_pos_pos pos_less_divide_eq power2_eq_square
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1913
                zero_less_numeral)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1914
    then show "0 < e * 2 + (e * Re s * 2 - 2) * x + e * (Re s)\<^sup>2 * x\<^sup>2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1915
      using e assms x
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1916
      apply (auto simp: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1917
      apply (rule_tac y = "e * (x\<^sup>2 * (Re s)\<^sup>2)" in le_less_trans)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1918
      apply (auto simp: power2_eq_square field_simps add_pos_pos)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1919
      done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1920
  qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1921
  then have "\<exists>xo>0. \<forall>x\<ge>xo. x / e < 1 + (Re s * x) + (1/2) * (Re s * x)^2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1922
    using e  by (simp add: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1923
  then have "\<exists>xo>0. \<forall>x\<ge>xo. x / e < exp (Re s * x)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1924
    using assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1925
    by (force intro: less_le_trans [OF _ exp_lower_taylor_quadratic])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1926
  then have "\<exists>xo>0. \<forall>x\<ge>xo. x < e * exp (Re s * x)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1927
    using e   by (auto simp: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1928
  with e show "\<exists>no. \<forall>n\<ge>no. norm (Ln (of_nat n) / of_nat n powr s) < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1929
    apply (auto simp: norm_divide norm_powr_real divide_simps)
61942
f02b26f7d39d prefer symbols for "floor", "ceiling";
wenzelm
parents: 61808
diff changeset
  1930
    apply (rule_tac x="nat \<lceil>exp xo\<rceil>" in exI)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1931
    apply clarify
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1932
    apply (drule_tac x="ln n" in spec)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1933
    apply (auto simp: exp_less_mono nat_ceiling_le_eq not_le)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1934
    apply (metis exp_less_mono exp_ln not_le of_nat_0_less_iff)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1935
    done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1936
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1937
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1938
lemma lim_Ln_over_n: "((\<lambda>n. Ln(of_nat n) / of_nat n) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1939
  using lim_Ln_over_power [of 1]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1940
  by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1941
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
  1942
lemma Ln_Reals_eq: "x \<in> \<real> \<Longrightarrow> Re x > 0 \<Longrightarrow> Ln x = of_real (ln (Re x))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1943
  using Ln_of_real by force
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1944
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
  1945
lemma powr_Reals_eq: "x \<in> \<real> \<Longrightarrow> Re x > 0 \<Longrightarrow> x powr complex_of_real y = of_real (x powr y)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1946
  by (simp add: powr_of_real)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1947
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1948
lemma lim_ln_over_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1949
  fixes s :: real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1950
  assumes "0 < s"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1951
    shows "((\<lambda>n. ln n / (n powr s)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1952
  using lim_Ln_over_power [of "of_real s", THEN filterlim_sequentially_Suc [THEN iffD2]] assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1953
  apply (subst filterlim_sequentially_Suc [symmetric])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1954
  apply (simp add: lim_sequentially dist_norm
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1955
          Ln_Reals_eq norm_powr_real_powr norm_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1956
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1957
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1958
lemma lim_ln_over_n: "((\<lambda>n. ln(real_of_nat n) / of_nat n) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1959
  using lim_ln_over_power [of 1, THEN filterlim_sequentially_Suc [THEN iffD2]]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1960
  apply (subst filterlim_sequentially_Suc [symmetric])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1961
  apply (simp add: lim_sequentially dist_norm)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1962
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1963
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1964
lemma lim_1_over_complex_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1965
  assumes "0 < Re s"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1966
    shows "((\<lambda>n. 1 / (of_nat n powr s)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1967
proof -
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1968
  have "\<forall>n>0. 3 \<le> n \<longrightarrow> 1 \<le> ln (real_of_nat n)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1969
    using ln3_gt_1
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1970
    by (force intro: order_trans [of _ "ln 3"] ln3_gt_1)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
  1971
  moreover have "(\<lambda>n. cmod (Ln (of_nat n) / of_nat n powr s)) \<longlonglongrightarrow> 0"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1972
    using lim_Ln_over_power [OF assms]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1973
    by (metis tendsto_norm_zero_iff)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1974
  ultimately show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1975
    apply (auto intro!: Lim_null_comparison [where g = "\<lambda>n. norm (Ln(of_nat n) / of_nat n powr s)"])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1976
    apply (auto simp: norm_divide divide_simps eventually_sequentially)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1977
    done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1978
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1979
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1980
lemma lim_1_over_real_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1981
  fixes s :: real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1982
  assumes "0 < s"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1983
    shows "((\<lambda>n. 1 / (of_nat n powr s)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1984
  using lim_1_over_complex_power [of "of_real s", THEN filterlim_sequentially_Suc [THEN iffD2]] assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1985
  apply (subst filterlim_sequentially_Suc [symmetric])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1986
  apply (simp add: lim_sequentially dist_norm)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1987
  apply (simp add: Ln_Reals_eq norm_powr_real_powr norm_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1988
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1989
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1990
lemma lim_1_over_Ln: "((\<lambda>n. 1 / Ln(of_nat n)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1991
proof (clarsimp simp add: lim_sequentially dist_norm norm_divide divide_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1992
  fix r::real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1993
  assume "0 < r"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1994
  have ir: "inverse (exp (inverse r)) > 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1995
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1996
  obtain n where n: "1 < of_nat n * inverse (exp (inverse r))"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1997
    using ex_less_of_nat_mult [of _ 1, OF ir]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1998
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1999
  then have "exp (inverse r) < of_nat n"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2000
    by (simp add: divide_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2001
  then have "ln (exp (inverse r)) < ln (of_nat n)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2002
    by (metis exp_gt_zero less_trans ln_exp ln_less_cancel_iff)
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2003
  with \<open>0 < r\<close> have "1 < r * ln (real_of_nat n)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2004
    by (simp add: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2005
  moreover have "n > 0" using n
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2006
    using neq0_conv by fastforce
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2007
  ultimately show "\<exists>no. \<forall>n. Ln (of_nat n) \<noteq> 0 \<longrightarrow> no \<le> n \<longrightarrow> 1 < r * cmod (Ln (of_nat n))"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2008
    using n \<open>0 < r\<close>
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2009
    apply (rule_tac x=n in exI)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2010
    apply (auto simp: divide_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2011
    apply (erule less_le_trans, auto)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2012
    done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2013
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2014
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2015
lemma lim_1_over_ln: "((\<lambda>n. 1 / ln(real_of_nat n)) \<longlongrightarrow> 0) sequentially"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2016
  using lim_1_over_Ln [THEN filterlim_sequentially_Suc [THEN iffD2]]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2017
  apply (subst filterlim_sequentially_Suc [symmetric])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2018
  apply (simp add: lim_sequentially dist_norm)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2019
  apply (simp add: Ln_Reals_eq norm_powr_real_powr norm_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2020
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2021
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2022
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2023
subsection\<open>Relation between Square Root and exp/ln, hence its derivative\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2024
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2025
lemma csqrt_exp_Ln:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2026
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2027
    shows "csqrt z = exp(Ln(z) / 2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2028
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2029
  have "(exp (Ln z / 2))\<^sup>2 = (exp (Ln z))"
64240
eabf80376aab more standardized names
haftmann
parents: 63918
diff changeset
  2030
    by (metis exp_double nonzero_mult_div_cancel_left times_divide_eq_right zero_neq_numeral)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2031
  also have "... = z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2032
    using assms exp_Ln by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2033
  finally have "csqrt z = csqrt ((exp (Ln z / 2))\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2034
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2035
  also have "... = exp (Ln z / 2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2036
    apply (subst csqrt_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2037
    using cos_gt_zero_pi [of "(Im (Ln z) / 2)"] Im_Ln_le_pi mpi_less_Im_Ln assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2038
    apply (auto simp: Re_exp Im_exp zero_less_mult_iff zero_le_mult_iff, fastforce+)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2039
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2040
  finally show ?thesis using assms csqrt_square
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2041
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2042
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2043
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2044
lemma csqrt_inverse:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2045
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2046
    shows "csqrt (inverse z) = inverse (csqrt z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2047
proof (cases "z=0", simp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2048
  assume "z \<noteq> 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2049
  then show ?thesis
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2050
    using assms csqrt_exp_Ln Ln_inverse exp_minus
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2051
    by (simp add: csqrt_exp_Ln Ln_inverse exp_minus)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2052
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2053
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2054
lemma cnj_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2055
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2056
    shows "cnj(csqrt z) = csqrt(cnj z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2057
proof (cases "z=0", simp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2058
  assume "z \<noteq> 0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2059
  then show ?thesis
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2060
     by (simp add: assms cnj_Ln csqrt_exp_Ln exp_cnj)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2061
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2062
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2063
lemma has_field_derivative_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2064
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2065
    shows "(csqrt has_field_derivative inverse(2 * csqrt z)) (at z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2066
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2067
  have z: "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2068
    using assms by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2069
  then have *: "inverse z = inverse (2*z) * 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2070
    by (simp add: divide_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2071
  have [simp]: "exp (Ln z / 2) * inverse z = inverse (csqrt z)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2072
    by (simp add: z field_simps csqrt_exp_Ln [symmetric]) (metis power2_csqrt power2_eq_square)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2073
  have "Im z = 0 \<Longrightarrow> 0 < Re z"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2074
    using assms complex_nonpos_Reals_iff not_less by blast
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2075
  with z have "((\<lambda>z. exp (Ln z / 2)) has_field_derivative inverse (2 * csqrt z)) (at z)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2076
    by (force intro: derivative_eq_intros * simp add: assms)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2077
  then show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2078
    apply (rule DERIV_transform_at[where d = "norm z"])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2079
    apply (intro z derivative_eq_intros | simp add: assms)+
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2080
    using z
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2081
    apply (metis csqrt_exp_Ln dist_0_norm less_irrefl)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2082
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2083
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2084
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2085
lemma field_differentiable_at_csqrt:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2086
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> csqrt field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2087
  using field_differentiable_def has_field_derivative_csqrt by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2088
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2089
lemma field_differentiable_within_csqrt:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2090
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> csqrt field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2091
  using field_differentiable_at_csqrt field_differentiable_within_subset by blast
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2092
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2093
lemma continuous_at_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2094
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z) csqrt"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2095
  by (simp add: field_differentiable_within_csqrt field_differentiable_imp_continuous_at)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2096
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2097
corollary isCont_csqrt' [simp]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2098
   "\<lbrakk>isCont f z; f z \<notin> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. csqrt (f x)) z"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2099
  by (blast intro: isCont_o2 [OF _ continuous_at_csqrt])
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2100
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2101
lemma continuous_within_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2102
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z within s) csqrt"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2103
  by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_csqrt)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2104
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2105
lemma continuous_on_csqrt [continuous_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2106
    "(\<And>z. z \<in> s \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> continuous_on s csqrt"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2107
  by (simp add: continuous_at_imp_continuous_on continuous_within_csqrt)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2108
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2109
lemma holomorphic_on_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2110
    "(\<And>z. z \<in> s \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> csqrt holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2111
  by (simp add: field_differentiable_within_csqrt holomorphic_on_def)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2112
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2113
lemma continuous_within_closed_nontrivial:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2114
    "closed s \<Longrightarrow> a \<notin> s ==> continuous (at a within s) f"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2115
  using open_Compl
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2116
  by (force simp add: continuous_def eventually_at_topological filterlim_iff open_Collect_neg)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2117
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2118
lemma continuous_within_csqrt_posreal:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2119
    "continuous (at z within (\<real> \<inter> {w. 0 \<le> Re(w)})) csqrt"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2120
proof (cases "z \<in> \<real>\<^sub>\<le>\<^sub>0")
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2121
  case True
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2122
  then have "Im z = 0" "Re z < 0 \<or> z = 0"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
  2123
    using cnj.code complex_cnj_zero_iff  by (auto simp: Complex_eq complex_nonpos_Reals_iff) fastforce
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2124
  then show ?thesis
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2125
    apply (auto simp: continuous_within_closed_nontrivial [OF closed_Real_halfspace_Re_ge])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2126
    apply (auto simp: continuous_within_eps_delta norm_conv_dist [symmetric])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2127
    apply (rule_tac x="e^2" in exI)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2128
    apply (auto simp: Reals_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2129
    by (metis linear not_less real_sqrt_less_iff real_sqrt_pow2_iff real_sqrt_power)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2130
next
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2131
  case False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2132
    then show ?thesis   by (blast intro: continuous_within_csqrt)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2133
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2134
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2135
subsection\<open>Complex arctangent\<close>
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2136
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2137
text\<open>The branch cut gives standard bounds in the real case.\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2138
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2139
definition Arctan :: "complex \<Rightarrow> complex" where
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2140
    "Arctan \<equiv> \<lambda>z. (\<i>/2) * Ln((1 - \<i>*z) / (1 + \<i>*z))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2141
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2142
lemma Arctan_def_moebius: "Arctan z = \<i>/2 * Ln (moebius (-\<i>) 1 \<i> 1 z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2143
  by (simp add: Arctan_def moebius_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2144
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2145
lemma Ln_conv_Arctan:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2146
  assumes "z \<noteq> -1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2147
  shows   "Ln z = -2*\<i> * Arctan (moebius 1 (- 1) (- \<i>) (- \<i>) z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2148
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2149
  have "Arctan (moebius 1 (- 1) (- \<i>) (- \<i>) z) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2150
             \<i>/2 * Ln (moebius (- \<i>) 1 \<i> 1 (moebius 1 (- 1) (- \<i>) (- \<i>) z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2151
    by (simp add: Arctan_def_moebius)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2152
  also from assms have "\<i> * z \<noteq> \<i> * (-1)" by (subst mult_left_cancel) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2153
  hence "\<i> * z - -\<i> \<noteq> 0" by (simp add: eq_neg_iff_add_eq_0)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2154
  from moebius_inverse'[OF _ this, of 1 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2155
    have "moebius (- \<i>) 1 \<i> 1 (moebius 1 (- 1) (- \<i>) (- \<i>) z) = z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2156
  finally show ?thesis by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2157
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2158
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2159
lemma Arctan_0 [simp]: "Arctan 0 = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2160
  by (simp add: Arctan_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2161
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2162
lemma Im_complex_div_lemma: "Im((1 - \<i>*z) / (1 + \<i>*z)) = 0 \<longleftrightarrow> Re z = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2163
  by (auto simp: Im_complex_div_eq_0 algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2164
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2165
lemma Re_complex_div_lemma: "0 < Re((1 - \<i>*z) / (1 + \<i>*z)) \<longleftrightarrow> norm z < 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2166
  by (simp add: Re_complex_div_gt_0 algebra_simps cmod_def power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2167
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2168
lemma tan_Arctan:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2169
  assumes "z\<^sup>2 \<noteq> -1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2170
    shows [simp]:"tan(Arctan z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2171
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2172
  have "1 + \<i>*z \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2173
    by (metis assms complex_i_mult_minus i_squared minus_unique power2_eq_square power2_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2174
  moreover
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2175
  have "1 - \<i>*z \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2176
    by (metis assms complex_i_mult_minus i_squared power2_eq_square power2_minus right_minus_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2177
  ultimately
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2178
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2179
    by (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus csqrt_exp_Ln [symmetric]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2180
                  divide_simps power2_eq_square [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2181
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2182
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2183
lemma Arctan_tan [simp]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2184
  assumes "\<bar>Re z\<bar> < pi/2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2185
    shows "Arctan(tan z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2186
proof -
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2187
  have ge_pi2: "\<And>n::int. \<bar>of_int (2*n + 1) * pi/2\<bar> \<ge> pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2188
    by (case_tac n rule: int_cases) (auto simp: abs_mult)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2189
  have "exp (\<i>*z)*exp (\<i>*z) = -1 \<longleftrightarrow> exp (2*\<i>*z) = -1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2190
    by (metis distrib_right exp_add mult_2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2191
  also have "... \<longleftrightarrow> exp (2*\<i>*z) = exp (\<i>*pi)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2192
    using cis_conv_exp cis_pi by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2193
  also have "... \<longleftrightarrow> exp (2*\<i>*z - \<i>*pi) = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2194
    by (metis (no_types) diff_add_cancel diff_minus_eq_add exp_add exp_minus_inverse mult.commute)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2195
  also have "... \<longleftrightarrow> Re(\<i>*2*z - \<i>*pi) = 0 \<and> (\<exists>n::int. Im(\<i>*2*z - \<i>*pi) = of_int (2 * n) * pi)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2196
    by (simp add: exp_eq_1)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2197
  also have "... \<longleftrightarrow> Im z = 0 \<and> (\<exists>n::int. 2 * Re z = of_int (2*n + 1) * pi)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2198
    by (simp add: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2199
  also have "... \<longleftrightarrow> False"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2200
    using assms ge_pi2
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2201
    apply (auto simp: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2202
    by (metis abs_mult_pos not_less of_nat_less_0_iff of_nat_numeral)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2203
  finally have *: "exp (\<i>*z)*exp (\<i>*z) + 1 \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2204
    by (auto simp: add.commute minus_unique)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2205
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2206
    using assms *
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2207
    apply (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus divide_simps
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2208
                     i_times_eq_iff power2_eq_square [symmetric])
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2209
    apply (rule Ln_unique)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2210
    apply (auto simp: divide_simps exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2211
    apply (simp add: algebra_simps exp_double [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2212
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2213
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2214
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2215
lemma
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2216
  assumes "Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1"
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2217
  shows Re_Arctan_bounds: "\<bar>Re(Arctan z)\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2218
    and has_field_derivative_Arctan: "(Arctan has_field_derivative inverse(1 + z\<^sup>2)) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2219
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2220
  have nz0: "1 + \<i>*z \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2221
    using assms
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2222
    by (metis abs_one complex_i_mult_minus diff_0_right diff_minus_eq_add imaginary_unit.simps
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2223
              less_irrefl minus_diff_eq mult.right_neutral right_minus_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2224
  have "z \<noteq> -\<i>" using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2225
    by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2226
  then have zz: "1 + z * z \<noteq> 0"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2227
    by (metis abs_one assms i_squared imaginary_unit.simps less_irrefl minus_unique square_eq_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2228
  have nz1: "1 - \<i>*z \<noteq> 0"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2229
    using assms by (force simp add: i_times_eq_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2230
  have nz2: "inverse (1 + \<i>*z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2231
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2232
    by (metis Im_complex_div_lemma Re_complex_div_lemma cmod_eq_Im divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2233
              less_irrefl mult_zero_right zero_complex.simps(1) zero_complex.simps(2))
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2234
  have nzi: "((1 - \<i>*z) * inverse (1 + \<i>*z)) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2235
    using nz1 nz2 by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2236
  have "Im ((1 - \<i>*z) / (1 + \<i>*z)) = 0 \<Longrightarrow> 0 < Re ((1 - \<i>*z) / (1 + \<i>*z))"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2237
    apply (simp add: divide_complex_def)
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  2238
    apply (simp add: divide_simps split: if_split_asm)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2239
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2240
    apply (auto simp: algebra_simps abs_square_less_1 [unfolded power2_eq_square])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2241
    done
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2242
  then have *: "((1 - \<i>*z) / (1 + \<i>*z)) \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2243
    by (auto simp add: complex_nonpos_Reals_iff)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2244
  show "\<bar>Re(Arctan z)\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2245
    unfolding Arctan_def divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2246
    using mpi_less_Im_Ln [OF nzi]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2247
    apply (auto simp: abs_if intro!: Im_Ln_less_pi * [unfolded divide_complex_def])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2248
    done
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2249
  show "(Arctan has_field_derivative inverse(1 + z\<^sup>2)) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2250
    unfolding Arctan_def scaleR_conv_of_real
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2251
    apply (rule DERIV_cong)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2252
    apply (intro derivative_eq_intros | simp add: nz0 *)+
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2253
    using nz0 nz1 zz
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2254
    apply (simp add: divide_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2255
    apply (auto simp: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2256
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2257
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2258
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2259
lemma field_differentiable_at_Arctan: "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> Arctan field_differentiable at z"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2260
  using has_field_derivative_Arctan
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2261
  by (auto simp: field_differentiable_def)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2262
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2263
lemma field_differentiable_within_Arctan:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2264
    "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> Arctan field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2265
  using field_differentiable_at_Arctan field_differentiable_at_within by blast
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2266
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2267
declare has_field_derivative_Arctan [derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2268
declare has_field_derivative_Arctan [THEN DERIV_chain2, derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2269
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2270
lemma continuous_at_Arctan:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2271
    "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> continuous (at z) Arctan"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2272
  by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_Arctan)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2273
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2274
lemma continuous_within_Arctan:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2275
    "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> continuous (at z within s) Arctan"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2276
  using continuous_at_Arctan continuous_at_imp_continuous_within by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2277
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2278
lemma continuous_on_Arctan [continuous_intros]:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2279
    "(\<And>z. z \<in> s \<Longrightarrow> Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> continuous_on s Arctan"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2280
  by (auto simp: continuous_at_imp_continuous_on continuous_within_Arctan)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2281
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2282
lemma holomorphic_on_Arctan:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2283
    "(\<And>z. z \<in> s \<Longrightarrow> Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> Arctan holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2284
  by (simp add: field_differentiable_within_Arctan holomorphic_on_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2285
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2286
lemma Arctan_series:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2287
  assumes z: "norm (z :: complex) < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2288
  defines "g \<equiv> \<lambda>n. if odd n then -\<i>*\<i>^n / n else 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2289
  defines "h \<equiv> \<lambda>z n. (-1)^n / of_nat (2*n+1) * (z::complex)^(2*n+1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2290
  shows   "(\<lambda>n. g n * z^n) sums Arctan z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2291
  and     "h z sums Arctan z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2292
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  2293
  define G where [abs_def]: "G z = (\<Sum>n. g n * z^n)" for z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2294
  have summable: "summable (\<lambda>n. g n * u^n)" if "norm u < 1" for u
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2295
  proof (cases "u = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2296
    assume u: "u \<noteq> 0"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2297
    have "(\<lambda>n. ereal (norm (h u n) / norm (h u (Suc n)))) = (\<lambda>n. ereal (inverse (norm u)^2) *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2298
              ereal ((2 + inverse (real (Suc n))) / (2 - inverse (real (Suc n)))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2299
    proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2300
      fix n
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2301
      have "ereal (norm (h u n) / norm (h u (Suc n))) =
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2302
             ereal (inverse (norm u)^2) * ereal ((of_nat (2*Suc n+1) / of_nat (Suc n)) /
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2303
                 (of_nat (2*Suc n-1) / of_nat (Suc n)))"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2304
      by (simp add: h_def norm_mult norm_power norm_divide divide_simps
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2305
                    power2_eq_square eval_nat_numeral del: of_nat_add of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2306
      also have "of_nat (2*Suc n+1) / of_nat (Suc n) = (2::real) + inverse (real (Suc n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2307
        by (auto simp: divide_simps simp del: of_nat_Suc) simp_all?
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2308
      also have "of_nat (2*Suc n-1) / of_nat (Suc n) = (2::real) - inverse (real (Suc n))"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2309
        by (auto simp: divide_simps simp del: of_nat_Suc) simp_all?
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2310
      finally show "ereal (norm (h u n) / norm (h u (Suc n))) = ereal (inverse (norm u)^2) *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2311
              ereal ((2 + inverse (real (Suc n))) / (2 - inverse (real (Suc n))))" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2312
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2313
    also have "\<dots> \<longlonglongrightarrow> ereal (inverse (norm u)^2) * ereal ((2 + 0) / (2 - 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2314
      by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2315
    finally have "liminf (\<lambda>n. ereal (cmod (h u n) / cmod (h u (Suc n)))) = inverse (norm u)^2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2316
      by (intro lim_imp_Liminf) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2317
    moreover from power_strict_mono[OF that, of 2] u have "inverse (norm u)^2 > 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2318
      by (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2319
    ultimately have A: "liminf (\<lambda>n. ereal (cmod (h u n) / cmod (h u (Suc n)))) > 1" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2320
    from u have "summable (h u)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2321
      by (intro summable_norm_cancel[OF ratio_test_convergence[OF _ A]])
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2322
         (auto simp: h_def norm_divide norm_mult norm_power simp del: of_nat_Suc
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2323
               intro!: mult_pos_pos divide_pos_pos always_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2324
    thus "summable (\<lambda>n. g n * u^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2325
      by (subst summable_mono_reindex[of "\<lambda>n. 2*n+1", symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2326
         (auto simp: power_mult subseq_def g_def h_def elim!: oddE)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2327
  qed (simp add: h_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2328
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2329
  have "\<exists>c. \<forall>u\<in>ball 0 1. Arctan u - G u = c"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2330
  proof (rule has_field_derivative_zero_constant)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2331
    fix u :: complex assume "u \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2332
    hence u: "norm u < 1" by (simp add: dist_0_norm)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  2333
    define K where "K = (norm u + 1) / 2"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2334
    from u and abs_Im_le_cmod[of u] have Im_u: "\<bar>Im u\<bar> < 1" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2335
    from u have K: "0 \<le> K" "norm u < K" "K < 1" by (simp_all add: K_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2336
    hence "(G has_field_derivative (\<Sum>n. diffs g n * u ^ n)) (at u)" unfolding G_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2337
      by (intro termdiffs_strong[of _ "of_real K"] summable) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2338
    also have "(\<lambda>n. diffs g n * u^n) = (\<lambda>n. if even n then (\<i>*u)^n else 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2339
      by (intro ext) (simp_all del: of_nat_Suc add: g_def diffs_def power_mult_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2340
    also have "suminf \<dots> = (\<Sum>n. (-(u^2))^n)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2341
      by (subst suminf_mono_reindex[of "\<lambda>n. 2*n", symmetric])
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2342
         (auto elim!: evenE simp: subseq_def power_mult power_mult_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2343
    also from u have "norm u^2 < 1^2" by (intro power_strict_mono) simp_all
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2344
    hence "(\<Sum>n. (-(u^2))^n) = inverse (1 + u^2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2345
      by (subst suminf_geometric) (simp_all add: norm_power inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2346
    finally have "(G has_field_derivative inverse (1 + u\<^sup>2)) (at u)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2347
    from DERIV_diff[OF has_field_derivative_Arctan this] Im_u u
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2348
      show "((\<lambda>u. Arctan u - G u) has_field_derivative 0) (at u within ball 0 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2349
      by (simp_all add: dist_0_norm at_within_open[OF _ open_ball])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2350
  qed simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2351
  then obtain c where c: "\<And>u. norm u < 1 \<Longrightarrow> Arctan u - G u = c" by (auto simp: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2352
  from this[of 0] have "c = 0" by (simp add: G_def g_def powser_zero)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2353
  with c z have "Arctan z = G z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2354
  with summable[OF z] show "(\<lambda>n. g n * z^n) sums Arctan z" unfolding G_def by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2355
  thus "h z sums Arctan z" by (subst (asm) sums_mono_reindex[of "\<lambda>n. 2*n+1", symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2356
                              (auto elim!: oddE simp: subseq_def power_mult g_def h_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2357
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2358
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2359
text \<open>A quickly-converging series for the logarithm, based on the arctangent.\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2360
lemma ln_series_quadratic:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2361
  assumes x: "x > (0::real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2362
  shows "(\<lambda>n. (2*((x - 1) / (x + 1)) ^ (2*n+1) / of_nat (2*n+1))) sums ln x"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2363
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  2364
  define y :: complex where "y = of_real ((x-1)/(x+1))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2365
  from x have x': "complex_of_real x \<noteq> of_real (-1)"  by (subst of_real_eq_iff) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2366
  from x have "\<bar>x - 1\<bar> < \<bar>x + 1\<bar>" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2367
  hence "norm (complex_of_real (x - 1) / complex_of_real (x + 1)) < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2368
    by (simp add: norm_divide del: of_real_add of_real_diff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2369
  hence "norm (\<i> * y) < 1" unfolding y_def by (subst norm_mult) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2370
  hence "(\<lambda>n. (-2*\<i>) * ((-1)^n / of_nat (2*n+1) * (\<i>*y)^(2*n+1))) sums ((-2*\<i>) * Arctan (\<i>*y))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2371
    by (intro Arctan_series sums_mult) simp_all
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2372
  also have "(\<lambda>n. (-2*\<i>) * ((-1)^n / of_nat (2*n+1) * (\<i>*y)^(2*n+1))) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2373
                 (\<lambda>n. (-2*\<i>) * ((-1)^n * (\<i>*y*(-y\<^sup>2)^n)/of_nat (2*n+1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2374
    by (intro ext) (simp_all add: power_mult power_mult_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2375
  also have "\<dots> = (\<lambda>n. 2*y* ((-1) * (-y\<^sup>2))^n/of_nat (2*n+1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2376
    by (intro ext, subst power_mult_distrib) (simp add: algebra_simps power_mult)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2377
  also have "\<dots> = (\<lambda>n. 2*y^(2*n+1) / of_nat (2*n+1))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2378
    by (subst power_add, subst power_mult) (simp add: mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2379
  also have "\<dots> = (\<lambda>n. of_real (2*((x-1)/(x+1))^(2*n+1) / of_nat (2*n+1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2380
    by (intro ext) (simp add: y_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2381
  also have "\<i> * y = (of_real x - 1) / (-\<i> * (of_real x + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2382
    by (subst divide_divide_eq_left [symmetric]) (simp add: y_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2383
  also have "\<dots> = moebius 1 (-1) (-\<i>) (-\<i>) (of_real x)" by (simp add: moebius_def algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2384
  also from x' have "-2*\<i>*Arctan \<dots> = Ln (of_real x)" by (intro Ln_conv_Arctan [symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2385
  also from x have "\<dots> = ln x" by (rule Ln_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2386
  finally show ?thesis by (subst (asm) sums_of_real_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2387
qed
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2388
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2389
subsection \<open>Real arctangent\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2390
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2391
lemma norm_exp_i_times [simp]: "norm (exp(\<i> * of_real y)) = 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2392
  by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2393
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2394
lemma norm_exp_imaginary: "norm(exp z) = 1 \<Longrightarrow> Re z = 0"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  2395
  by simp
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2396
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2397
lemma Im_Arctan_of_real [simp]: "Im (Arctan (of_real x)) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2398
  unfolding Arctan_def divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2399
  apply (simp add: complex_eq_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2400
  apply (rule norm_exp_imaginary)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2401
  apply (subst exp_Ln, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2402
  apply (simp_all add: cmod_def complex_eq_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2403
  apply (auto simp: divide_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2404
  apply (metis power_one sum_power2_eq_zero_iff zero_neq_one, algebra)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2405
  done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2406
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2407
lemma arctan_eq_Re_Arctan: "arctan x = Re (Arctan (of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2408
proof (rule arctan_unique)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2409
  show "- (pi / 2) < Re (Arctan (complex_of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2410
    apply (simp add: Arctan_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2411
    apply (rule Im_Ln_less_pi)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2412
    apply (auto simp: Im_complex_div_lemma complex_nonpos_Reals_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2413
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2414
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2415
  have *: " (1 - \<i>*x) / (1 + \<i>*x) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2416
    by (simp add: divide_simps) ( simp add: complex_eq_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2417
  show "Re (Arctan (complex_of_real x)) < pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2418
    using mpi_less_Im_Ln [OF *]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2419
    by (simp add: Arctan_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2420
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2421
  have "tan (Re (Arctan (of_real x))) = Re (tan (Arctan (of_real x)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2422
    apply (auto simp: tan_def Complex.Re_divide Re_sin Re_cos Im_sin Im_cos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2423
    apply (simp add: field_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2424
    by (simp add: power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2425
  also have "... = x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2426
    apply (subst tan_Arctan, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2427
    by (metis diff_0_right minus_diff_eq mult_zero_left not_le of_real_1 of_real_eq_iff of_real_minus of_real_power power2_eq_square real_minus_mult_self_le zero_less_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2428
  finally show "tan (Re (Arctan (complex_of_real x))) = x" .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2429
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2430
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2431
lemma Arctan_of_real: "Arctan (of_real x) = of_real (arctan x)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2432
  unfolding arctan_eq_Re_Arctan divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2433
  by (simp add: complex_eq_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2434
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2435
lemma Arctan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> Arctan z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2436
  by (metis Reals_cases Reals_of_real Arctan_of_real)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2437
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2438
declare arctan_one [simp]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2439
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2440
lemma arctan_less_pi4_pos: "x < 1 \<Longrightarrow> arctan x < pi/4"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2441
  by (metis arctan_less_iff arctan_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2442
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2443
lemma arctan_less_pi4_neg: "-1 < x \<Longrightarrow> -(pi/4) < arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2444
  by (metis arctan_less_iff arctan_minus arctan_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2445
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2446
lemma arctan_less_pi4: "\<bar>x\<bar> < 1 \<Longrightarrow> \<bar>arctan x\<bar> < pi/4"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2447
  by (metis abs_less_iff arctan_less_pi4_pos arctan_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2448
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2449
lemma arctan_le_pi4: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>arctan x\<bar> \<le> pi/4"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2450
  by (metis abs_le_iff arctan_le_iff arctan_minus arctan_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2451
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2452
lemma abs_arctan: "\<bar>arctan x\<bar> = arctan \<bar>x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2453
  by (simp add: abs_if arctan_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2454
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2455
lemma arctan_add_raw:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2456
  assumes "\<bar>arctan x + arctan y\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2457
    shows "arctan x + arctan y = arctan((x + y) / (1 - x * y))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2458
proof (rule arctan_unique [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2459
  show 12: "- (pi / 2) < arctan x + arctan y" "arctan x + arctan y < pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2460
    using assms by linarith+
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2461
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2462
    using cos_gt_zero_pi [OF 12]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2463
    by (simp add: arctan tan_add)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2464
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2465
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2466
lemma arctan_inverse:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2467
  assumes "0 < x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2468
    shows "arctan(inverse x) = pi/2 - arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2469
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2470
  have "arctan(inverse x) = arctan(inverse(tan(arctan x)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2471
    by (simp add: arctan)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2472
  also have "... = arctan (tan (pi / 2 - arctan x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2473
    by (simp add: tan_cot)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2474
  also have "... = pi/2 - arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2475
  proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2476
    have "0 < pi - arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2477
    using arctan_ubound [of x] pi_gt_zero by linarith
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2478
    with assms show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2479
      by (simp add: Transcendental.arctan_tan)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2480
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2481
  finally show ?thesis .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2482
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2483
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2484
lemma arctan_add_small:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2485
  assumes "\<bar>x * y\<bar> < 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2486
    shows "(arctan x + arctan y = arctan((x + y) / (1 - x * y)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2487
proof (cases "x = 0 \<or> y = 0")
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2488
  case True then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2489
    by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2490
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2491
  case False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2492
  then have *: "\<bar>arctan x\<bar> < pi / 2 - \<bar>arctan y\<bar>" using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2493
    apply (auto simp add: abs_arctan arctan_inverse [symmetric] arctan_less_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2494
    apply (simp add: divide_simps abs_mult)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2495
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2496
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2497
    apply (rule arctan_add_raw)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2498
    using * by linarith
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2499
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2500
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2501
lemma abs_arctan_le:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2502
  fixes x::real shows "\<bar>arctan x\<bar> \<le> \<bar>x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2503
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2504
  { fix w::complex and z::complex
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2505
    assume *: "w \<in> \<real>" "z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2506
    have "cmod (Arctan w - Arctan z) \<le> 1 * cmod (w-z)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2507
      apply (rule field_differentiable_bound [OF convex_Reals, of Arctan _ 1])
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2508
      apply (rule has_field_derivative_at_within [OF has_field_derivative_Arctan])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2509
      apply (force simp add: Reals_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2510
      apply (simp add: norm_divide divide_simps in_Reals_norm complex_is_Real_iff power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2511
      using * by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2512
  }
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2513
  then have "cmod (Arctan (of_real x) - Arctan 0) \<le> 1 * cmod (of_real x -0)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2514
    using Reals_0 Reals_of_real by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2515
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2516
    by (simp add: Arctan_of_real)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2517
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2518
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2519
lemma arctan_le_self: "0 \<le> x \<Longrightarrow> arctan x \<le> x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2520
  by (metis abs_arctan_le abs_of_nonneg zero_le_arctan_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2521
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2522
lemma abs_tan_ge: "\<bar>x\<bar> < pi/2 \<Longrightarrow> \<bar>x\<bar> \<le> \<bar>tan x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2523
  by (metis abs_arctan_le abs_less_iff arctan_tan minus_less_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2524
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2525
lemma arctan_bounds:
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2526
  assumes "0 \<le> x" "x < 1"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2527
  shows arctan_lower_bound:
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2528
    "(\<Sum>k<2 * n. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1))) \<le> arctan x"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2529
    (is "(\<Sum>k<_. (- 1)^ k * ?a k) \<le> _")
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2530
    and arctan_upper_bound:
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2531
    "arctan x \<le> (\<Sum>k<2 * n + 1. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2532
proof -
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2533
  have tendsto_zero: "?a \<longlonglongrightarrow> 0"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2534
    using assms
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2535
    apply -
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2536
    apply (rule tendsto_eq_rhs[where x="0 * 0"])
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2537
    subgoal by (intro tendsto_mult real_tendsto_divide_at_top)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2538
        (auto simp: filterlim_real_sequentially filterlim_sequentially_iff_filterlim_real
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2539
          intro!: real_tendsto_divide_at_top tendsto_power_zero filterlim_real_sequentially
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2540
           tendsto_eq_intros filterlim_at_top_mult_tendsto_pos filterlim_tendsto_add_at_top)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2541
    subgoal by simp
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2542
    done
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2543
  have nonneg: "0 \<le> ?a n" for n
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2544
    by (force intro!: divide_nonneg_nonneg mult_nonneg_nonneg zero_le_power assms)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2545
  have le: "?a (Suc n) \<le> ?a n" for n
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2546
    by (rule mult_mono[OF _ power_decreasing]) (auto simp: divide_simps assms less_imp_le)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2547
  from summable_Leibniz'(4)[of ?a, OF tendsto_zero nonneg le, of n]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2548
    summable_Leibniz'(2)[of ?a, OF tendsto_zero nonneg le, of n]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2549
    assms
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2550
  show "(\<Sum>k<2*n. (- 1)^ k * ?a k) \<le> arctan x" "arctan x \<le> (\<Sum>k<2 * n + 1. (- 1)^ k * ?a k)"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2551
    by (auto simp: arctan_series)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2552
qed
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2553
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2554
subsection \<open>Bounds on pi using real arctangent\<close>
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2555
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2556
lemma pi_machin: "pi = 16 * arctan (1 / 5) - 4 * arctan (1 / 239)"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2557
  using machin
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2558
  by simp
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2559
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2560
lemma pi_approx: "3.141592653588 \<le> pi" "pi \<le> 3.1415926535899"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2561
  unfolding pi_machin
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2562
  using arctan_bounds[of "1/5"   4]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2563
        arctan_bounds[of "1/239" 4]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2564
  by (simp_all add: eval_nat_numeral)
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2565
    
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2566
corollary pi_gt3: "pi > 3"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2567
  using pi_approx by simp
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2568
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2569
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2570
subsection\<open>Inverse Sine\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2571
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2572
definition Arcsin :: "complex \<Rightarrow> complex" where
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2573
   "Arcsin \<equiv> \<lambda>z. -\<i> * Ln(\<i> * z + csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2574
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2575
lemma Arcsin_body_lemma: "\<i> * z + csqrt(1 - z\<^sup>2) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2576
  using power2_csqrt [of "1 - z\<^sup>2"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2577
  apply auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2578
  by (metis complex_i_mult_minus diff_add_cancel diff_minus_eq_add diff_self mult.assoc mult.left_commute numeral_One power2_csqrt power2_eq_square zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2579
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2580
lemma Arcsin_range_lemma: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Re(\<i> * z + csqrt(1 - z\<^sup>2))"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2581
  using Complex.cmod_power2 [of z, symmetric]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2582
  by (simp add: real_less_rsqrt algebra_simps Re_power2 cmod_square_less_1_plus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2583
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2584
lemma Re_Arcsin: "Re(Arcsin z) = Im (Ln (\<i> * z + csqrt(1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2585
  by (simp add: Arcsin_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2586
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2587
lemma Im_Arcsin: "Im(Arcsin z) = - ln (cmod (\<i> * z + csqrt (1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2588
  by (simp add: Arcsin_def Arcsin_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2589
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2590
lemma one_minus_z2_notin_nonpos_Reals:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2591
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2592
  shows "1 - z\<^sup>2 \<notin> \<real>\<^sub>\<le>\<^sub>0"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2593
    using assms
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2594
    apply (auto simp: complex_nonpos_Reals_iff Re_power2 Im_power2)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2595
    using power2_less_0 [of "Im z"] apply force
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2596
    using abs_square_less_1 not_le by blast
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2597
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2598
lemma isCont_Arcsin_lemma:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2599
  assumes le0: "Re (\<i> * z + csqrt (1 - z\<^sup>2)) \<le> 0" and "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2600
    shows False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2601
proof (cases "Im z = 0")
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2602
  case True
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2603
  then show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2604
    using assms by (fastforce simp: cmod_def abs_square_less_1 [symmetric])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2605
next
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2606
  case False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2607
  have neq: "(cmod z)\<^sup>2 \<noteq> 1 + cmod (1 - z\<^sup>2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2608
  proof (clarsimp simp add: cmod_def)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2609
    assume "(Re z)\<^sup>2 + (Im z)\<^sup>2 = 1 + sqrt ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2610
    then have "((Re z)\<^sup>2 + (Im z)\<^sup>2 - 1)\<^sup>2 = ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2611
      by simp
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2612
    then show False using False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2613
      by (simp add: power2_eq_square algebra_simps)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2614
  qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2615
  moreover have 2: "(Im z)\<^sup>2 = (1 + ((Im z)\<^sup>2 + cmod (1 - z\<^sup>2)) - (Re z)\<^sup>2) / 2"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2616
    using le0
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2617
    apply simp
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2618
    apply (drule sqrt_le_D)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2619
    using cmod_power2 [of z] norm_triangle_ineq2 [of "z^2" 1]
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2620
    apply (simp add: norm_power Re_power2 norm_minus_commute [of 1])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2621
    done
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2622
  ultimately show False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2623
    by (simp add: Re_power2 Im_power2 cmod_power2)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2624
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2625
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2626
lemma isCont_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2627
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2628
    shows "isCont Arcsin z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2629
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2630
  have *: "\<i> * z + csqrt (1 - z\<^sup>2) \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2631
    by (metis isCont_Arcsin_lemma assms complex_nonpos_Reals_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2632
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2633
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2634
    apply (simp add: Arcsin_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2635
    apply (rule isCont_Ln' isCont_csqrt' continuous_intros)+
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2636
    apply (simp add: one_minus_z2_notin_nonpos_Reals assms)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2637
    apply (rule *)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2638
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2639
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2640
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2641
lemma isCont_Arcsin' [simp]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2642
  shows "isCont f z \<Longrightarrow> (Im (f z) = 0 \<Longrightarrow> \<bar>Re (f z)\<bar> < 1) \<Longrightarrow> isCont (\<lambda>x. Arcsin (f x)) z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2643
  by (blast intro: isCont_o2 [OF _ isCont_Arcsin])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2644
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2645
lemma sin_Arcsin [simp]: "sin(Arcsin z) = z"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60020
diff changeset
  2646
proof -
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2647
  have "\<i>*z*2 + csqrt (1 - z\<^sup>2)*2 = 0 \<longleftrightarrow> (\<i>*z)*2 + csqrt (1 - z\<^sup>2)*2 = 0"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
  2648
    by (simp add: algebra_simps)  \<comment>\<open>Cancelling a factor of 2\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2649
  moreover have "... \<longleftrightarrow> (\<i>*z) + csqrt (1 - z\<^sup>2) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2650
    by (metis Arcsin_body_lemma distrib_right no_zero_divisors zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2651
  ultimately show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2652
    apply (simp add: sin_exp_eq Arcsin_def Arcsin_body_lemma exp_minus divide_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2653
    apply (simp add: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2654
    apply (simp add: power2_eq_square [symmetric] algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2655
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2656
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2657
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2658
lemma Re_eq_pihalf_lemma:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2659
    "\<bar>Re z\<bar> = pi/2 \<Longrightarrow> Im z = 0 \<Longrightarrow>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2660
      Re ((exp (\<i>*z) + inverse (exp (\<i>*z))) / 2) = 0 \<and> 0 \<le> Im ((exp (\<i>*z) + inverse (exp (\<i>*z))) / 2)"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2661
  apply (simp add: cos_i_times [symmetric] Re_cos Im_cos abs_if del: eq_divide_eq_numeral1)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2662
  by (metis cos_minus cos_pi_half)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2663
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2664
lemma Re_less_pihalf_lemma:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2665
  assumes "\<bar>Re z\<bar> < pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2666
    shows "0 < Re ((exp (\<i>*z) + inverse (exp (\<i>*z))) / 2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2667
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2668
  have "0 < cos (Re z)" using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2669
    using cos_gt_zero_pi by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2670
  then show ?thesis
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2671
    by (simp add: cos_i_times [symmetric] Re_cos Im_cos add_pos_pos)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2672
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2673
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2674
lemma Arcsin_sin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2675
    assumes "\<bar>Re z\<bar> < pi/2 \<or> (\<bar>Re z\<bar> = pi/2 \<and> Im z = 0)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2676
      shows "Arcsin(sin z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2677
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2678
  have "Arcsin(sin z) = - (\<i> * Ln (csqrt (1 - (\<i> * (exp (\<i>*z) - inverse (exp (\<i>*z))))\<^sup>2 / 4) - (inverse (exp (\<i>*z)) - exp (\<i>*z)) / 2))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  2679
    by (simp add: sin_exp_eq Arcsin_def exp_minus power_divide)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2680
  also have "... = - (\<i> * Ln (csqrt (((exp (\<i>*z) + inverse (exp (\<i>*z)))/2)\<^sup>2) - (inverse (exp (\<i>*z)) - exp (\<i>*z)) / 2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2681
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2682
  also have "... = - (\<i> * Ln (((exp (\<i>*z) + inverse (exp (\<i>*z)))/2) - (inverse (exp (\<i>*z)) - exp (\<i>*z)) / 2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2683
    apply (subst csqrt_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2684
    using assms Re_eq_pihalf_lemma Re_less_pihalf_lemma
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2685
    apply auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2686
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2687
  also have "... =  - (\<i> * Ln (exp (\<i>*z)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2688
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2689
  also have "... = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2690
    apply (subst Complex_Transcendental.Ln_exp)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2691
    using assms
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  2692
    apply (auto simp: abs_if simp del: eq_divide_eq_numeral1 split: if_split_asm)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2693
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2694
  finally show ?thesis .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2695
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2696
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2697
lemma Arcsin_unique:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2698
    "\<lbrakk>sin z = w; \<bar>Re z\<bar> < pi/2 \<or> (\<bar>Re z\<bar> = pi/2 \<and> Im z = 0)\<rbrakk> \<Longrightarrow> Arcsin w = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2699
  by (metis Arcsin_sin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2700
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2701
lemma Arcsin_0 [simp]: "Arcsin 0 = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2702
  by (metis Arcsin_sin norm_zero pi_half_gt_zero real_norm_def sin_zero zero_complex.simps(1))
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2703
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2704
lemma Arcsin_1 [simp]: "Arcsin 1 = pi/2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2705
  by (metis Arcsin_sin Im_complex_of_real Re_complex_of_real numeral_One of_real_numeral pi_half_ge_zero real_sqrt_abs real_sqrt_pow2 real_sqrt_power sin_of_real sin_pi_half)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2706
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2707
lemma Arcsin_minus_1 [simp]: "Arcsin(-1) = - (pi/2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2708
  by (metis Arcsin_1 Arcsin_sin Im_complex_of_real Re_complex_of_real abs_of_nonneg of_real_minus pi_half_ge_zero power2_minus real_sqrt_abs sin_Arcsin sin_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2709
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2710
lemma has_field_derivative_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2711
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2712
    shows "(Arcsin has_field_derivative inverse(cos(Arcsin z))) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2713
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2714
  have "(sin (Arcsin z))\<^sup>2 \<noteq> 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2715
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2716
    apply atomize
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2717
    apply (auto simp: complex_eq_iff Re_power2 Im_power2 abs_square_eq_1)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2718
    apply (metis abs_minus_cancel abs_one abs_power2 numeral_One numeral_neq_neg_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2719
    by (metis abs_minus_cancel abs_one abs_power2 one_neq_neg_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2720
  then have "cos (Arcsin z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2721
    by (metis diff_0_right power_zero_numeral sin_squared_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2722
  then show ?thesis
63492
a662e8139804 More advanced theorems about retracts, homotopies., etc
paulson <lp15@cam.ac.uk>
parents: 63296
diff changeset
  2723
    apply (rule has_complex_derivative_inverse_basic [OF DERIV_sin _ _ open_ball [of z 1]])
a662e8139804 More advanced theorems about retracts, homotopies., etc
paulson <lp15@cam.ac.uk>
parents: 63296
diff changeset
  2724
    apply (auto intro: isCont_Arcsin assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2725
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2726
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2727
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2728
declare has_field_derivative_Arcsin [derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2729
declare has_field_derivative_Arcsin [THEN DERIV_chain2, derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2730
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2731
lemma field_differentiable_at_Arcsin:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2732
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arcsin field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2733
  using field_differentiable_def has_field_derivative_Arcsin by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2734
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2735
lemma field_differentiable_within_Arcsin:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2736
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arcsin field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2737
  using field_differentiable_at_Arcsin field_differentiable_within_subset by blast
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2738
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2739
lemma continuous_within_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2740
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous (at z within s) Arcsin"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2741
  using continuous_at_imp_continuous_within isCont_Arcsin by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2742
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2743
lemma continuous_on_Arcsin [continuous_intros]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2744
    "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous_on s Arcsin"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2745
  by (simp add: continuous_at_imp_continuous_on)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2746
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2747
lemma holomorphic_on_Arcsin: "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arcsin holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2748
  by (simp add: field_differentiable_within_Arcsin holomorphic_on_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2749
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2750
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2751
subsection\<open>Inverse Cosine\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2752
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2753
definition Arccos :: "complex \<Rightarrow> complex" where
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2754
   "Arccos \<equiv> \<lambda>z. -\<i> * Ln(z + \<i> * csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2755
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2756
lemma Arccos_range_lemma: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Im(z + \<i> * csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2757
  using Arcsin_range_lemma [of "-z"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2758
  by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2759
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2760
lemma Arccos_body_lemma: "z + \<i> * csqrt(1 - z\<^sup>2) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2761
  using Arcsin_body_lemma [of z]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2762
  by (metis complex_i_mult_minus diff_add_cancel minus_diff_eq minus_unique mult.assoc mult.left_commute
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2763
           power2_csqrt power2_eq_square zero_neq_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2764
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2765
lemma Re_Arccos: "Re(Arccos z) = Im (Ln (z + \<i> * csqrt(1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2766
  by (simp add: Arccos_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2767
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2768
lemma Im_Arccos: "Im(Arccos z) = - ln (cmod (z + \<i> * csqrt (1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2769
  by (simp add: Arccos_def Arccos_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2770
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2771
text\<open>A very tricky argument to find!\<close>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2772
lemma isCont_Arccos_lemma:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2773
  assumes eq0: "Im (z + \<i> * csqrt (1 - z\<^sup>2)) = 0" and "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2774
    shows False
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2775
proof (cases "Im z = 0")
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2776
  case True
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2777
  then show ?thesis
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2778
    using assms by (fastforce simp add: cmod_def abs_square_less_1 [symmetric])
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2779
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2780
  case False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2781
  have Imz: "Im z = - sqrt ((1 + ((Im z)\<^sup>2 + cmod (1 - z\<^sup>2)) - (Re z)\<^sup>2) / 2)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2782
    using eq0 abs_Re_le_cmod [of "1-z\<^sup>2"]
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2783
    by (simp add: Re_power2 algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2784
  have "(cmod z)\<^sup>2 - 1 \<noteq> cmod (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2785
  proof (clarsimp simp add: cmod_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2786
    assume "(Re z)\<^sup>2 + (Im z)\<^sup>2 - 1 = sqrt ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2787
    then have "((Re z)\<^sup>2 + (Im z)\<^sup>2 - 1)\<^sup>2 = ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2788
      by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2789
    then show False using False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2790
      by (simp add: power2_eq_square algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2791
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2792
  moreover have "(Im z)\<^sup>2 = ((1 + ((Im z)\<^sup>2 + cmod (1 - z\<^sup>2)) - (Re z)\<^sup>2) / 2)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2793
    apply (subst Imz)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2794
    using abs_Re_le_cmod [of "1-z\<^sup>2"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2795
    apply (simp add: Re_power2)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2796
    done
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2797
  ultimately show False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2798
    by (simp add: cmod_power2)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2799
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2800
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2801
lemma isCont_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2802
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2803
    shows "isCont Arccos z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2804
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2805
  have "z + \<i> * csqrt (1 - z\<^sup>2) \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2806
    by (metis complex_nonpos_Reals_iff isCont_Arccos_lemma assms)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2807
  with assms show ?thesis
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2808
    apply (simp add: Arccos_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2809
    apply (rule isCont_Ln' isCont_csqrt' continuous_intros)+
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2810
    apply (simp_all add: one_minus_z2_notin_nonpos_Reals assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2811
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2812
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2813
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2814
lemma isCont_Arccos' [simp]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2815
  shows "isCont f z \<Longrightarrow> (Im (f z) = 0 \<Longrightarrow> \<bar>Re (f z)\<bar> < 1) \<Longrightarrow> isCont (\<lambda>x. Arccos (f x)) z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2816
  by (blast intro: isCont_o2 [OF _ isCont_Arccos])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2817
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2818
lemma cos_Arccos [simp]: "cos(Arccos z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2819
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2820
  have "z*2 + \<i> * (2 * csqrt (1 - z\<^sup>2)) = 0 \<longleftrightarrow> z*2 + \<i> * csqrt (1 - z\<^sup>2)*2 = 0"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
  2821
    by (simp add: algebra_simps)  \<comment>\<open>Cancelling a factor of 2\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2822
  moreover have "... \<longleftrightarrow> z + \<i> * csqrt (1 - z\<^sup>2) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2823
    by (metis distrib_right mult_eq_0_iff zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2824
  ultimately show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2825
    apply (simp add: cos_exp_eq Arccos_def Arccos_body_lemma exp_minus field_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2826
    apply (simp add: power2_eq_square [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2827
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2828
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2829
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2830
lemma Arccos_cos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2831
    assumes "0 < Re z & Re z < pi \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2832
             Re z = 0 & 0 \<le> Im z \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2833
             Re z = pi & Im z \<le> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2834
      shows "Arccos(cos z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2835
proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2836
  have *: "((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z))) = sin z"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2837
    by (simp add: sin_exp_eq exp_minus field_simps power2_eq_square)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2838
  have "1 - (exp (\<i> * z) + inverse (exp (\<i> * z)))\<^sup>2 / 4 = ((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z)))\<^sup>2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2839
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2840
  then have "Arccos(cos z) = - (\<i> * Ln ((exp (\<i> * z) + inverse (exp (\<i> * z))) / 2 +
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2841
                           \<i> * csqrt (((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z)))\<^sup>2)))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  2842
    by (simp add: cos_exp_eq Arccos_def exp_minus power_divide)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2843
  also have "... = - (\<i> * Ln ((exp (\<i> * z) + inverse (exp (\<i> * z))) / 2 +
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2844
                              \<i> * ((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z)))))"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2845
    apply (subst csqrt_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2846
    using assms Re_sin_pos [of z] Im_sin_nonneg [of z] Im_sin_nonneg2 [of z]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2847
    apply (auto simp: * Re_sin Im_sin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2848
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2849
  also have "... =  - (\<i> * Ln (exp (\<i>*z)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2850
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2851
  also have "... = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2852
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2853
    apply (subst Complex_Transcendental.Ln_exp, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2854
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2855
  finally show ?thesis .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2856
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2857
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2858
lemma Arccos_unique:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2859
    "\<lbrakk>cos z = w;
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2860
      0 < Re z \<and> Re z < pi \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2861
      Re z = 0 \<and> 0 \<le> Im z \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2862
      Re z = pi \<and> Im z \<le> 0\<rbrakk> \<Longrightarrow> Arccos w = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2863
  using Arccos_cos by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2864
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2865
lemma Arccos_0 [simp]: "Arccos 0 = pi/2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2866
  by (rule Arccos_unique) (auto simp: of_real_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2867
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2868
lemma Arccos_1 [simp]: "Arccos 1 = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2869
  by (rule Arccos_unique) auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2871
lemma Arccos_minus1: "Arccos(-1) = pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2872
  by (rule Arccos_unique) auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2873
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2874
lemma has_field_derivative_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2875
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2876
    shows "(Arccos has_field_derivative - inverse(sin(Arccos z))) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2877
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2878
  have "(cos (Arccos z))\<^sup>2 \<noteq> 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2879
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2880
    apply atomize
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2881
    apply (auto simp: complex_eq_iff Re_power2 Im_power2 abs_square_eq_1)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2882
    apply (metis abs_minus_cancel abs_one abs_power2 numeral_One numeral_neq_neg_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2883
    apply (metis left_minus less_irrefl power_one sum_power2_gt_zero_iff zero_neq_neg_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2884
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2885
  then have "- sin (Arccos z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2886
    by (metis cos_squared_eq diff_0_right mult_zero_left neg_0_equal_iff_equal power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2887
  then have "(Arccos has_field_derivative inverse(- sin(Arccos z))) (at z)"
63492
a662e8139804 More advanced theorems about retracts, homotopies., etc
paulson <lp15@cam.ac.uk>
parents: 63296
diff changeset
  2888
    apply (rule has_complex_derivative_inverse_basic [OF DERIV_cos _ _ open_ball [of z 1]])
a662e8139804 More advanced theorems about retracts, homotopies., etc
paulson <lp15@cam.ac.uk>
parents: 63296
diff changeset
  2889
    apply (auto intro: isCont_Arccos assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2890
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2891
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2892
    by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2893
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2894
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2895
declare has_field_derivative_Arcsin [derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2896
declare has_field_derivative_Arcsin [THEN DERIV_chain2, derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2897
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2898
lemma field_differentiable_at_Arccos:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2899
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2900
  using field_differentiable_def has_field_derivative_Arccos by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2901
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2902
lemma field_differentiable_within_Arccos:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2903
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2904
  using field_differentiable_at_Arccos field_differentiable_within_subset by blast
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2905
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2906
lemma continuous_within_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2907
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous (at z within s) Arccos"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2908
  using continuous_at_imp_continuous_within isCont_Arccos by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2909
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2910
lemma continuous_on_Arccos [continuous_intros]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2911
    "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous_on s Arccos"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2912
  by (simp add: continuous_at_imp_continuous_on)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2913
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2914
lemma holomorphic_on_Arccos: "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2915
  by (simp add: field_differentiable_within_Arccos holomorphic_on_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2916
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2917
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2918
subsection\<open>Upper and Lower Bounds for Inverse Sine and Cosine\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2919
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2920
lemma Arcsin_bounds: "\<bar>Re z\<bar> < 1 \<Longrightarrow> \<bar>Re(Arcsin z)\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2921
  unfolding Re_Arcsin
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2922
  by (blast intro: Re_Ln_pos_lt_imp Arcsin_range_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2923
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2924
lemma Arccos_bounds: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Re(Arccos z) \<and> Re(Arccos z) < pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2925
  unfolding Re_Arccos
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2926
  by (blast intro!: Im_Ln_pos_lt_imp Arccos_range_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2927
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2928
lemma Re_Arccos_bounds: "-pi < Re(Arccos z) \<and> Re(Arccos z) \<le> pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2929
  unfolding Re_Arccos
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2930
  by (blast intro!: mpi_less_Im_Ln Im_Ln_le_pi Arccos_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2931
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2932
lemma Re_Arccos_bound: "\<bar>Re(Arccos z)\<bar> \<le> pi"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  2933
  by (meson Re_Arccos_bounds abs_le_iff less_eq_real_def minus_less_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2934
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2935
lemma Im_Arccos_bound: "\<bar>Im (Arccos w)\<bar> \<le> cmod w"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2936
proof -
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2937
  have "(Im (Arccos w))\<^sup>2 \<le> (cmod (cos (Arccos w)))\<^sup>2 - (cos (Re (Arccos w)))\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2938
    using norm_cos_squared [of "Arccos w"] real_le_abs_sinh [of "Im (Arccos w)"]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2939
    apply (simp only: abs_le_square_iff)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2940
    apply (simp add: divide_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2941
    done
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2942
  also have "... \<le> (cmod w)\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2943
    by (auto simp: cmod_power2)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2944
  finally show ?thesis
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2945
    using abs_le_square_iff by force
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2946
qed
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2947
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2948
lemma Re_Arcsin_bounds: "-pi < Re(Arcsin z) & Re(Arcsin z) \<le> pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2949
  unfolding Re_Arcsin
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2950
  by (blast intro!: mpi_less_Im_Ln Im_Ln_le_pi Arcsin_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2951
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2952
lemma Re_Arcsin_bound: "\<bar>Re(Arcsin z)\<bar> \<le> pi"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  2953
  by (meson Re_Arcsin_bounds abs_le_iff less_eq_real_def minus_less_iff)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  2954
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2955
lemma norm_Arccos_bounded:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2956
  fixes w :: complex
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2957
  shows "norm (Arccos w) \<le> pi + norm w"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2958
proof -
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2959
  have Re: "(Re (Arccos w))\<^sup>2 \<le> pi\<^sup>2" "(Im (Arccos w))\<^sup>2 \<le> (cmod w)\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2960
    using Re_Arccos_bound [of w] Im_Arccos_bound [of w] abs_le_square_iff by force+
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2961
  have "Arccos w \<bullet> Arccos w \<le> pi\<^sup>2 + (cmod w)\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2962
    using Re by (simp add: dot_square_norm cmod_power2 [of "Arccos w"])
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2963
  then have "cmod (Arccos w) \<le> pi + cmod (cos (Arccos w))"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2964
    apply (simp add: norm_le_square)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2965
    by (metis dot_square_norm norm_ge_zero norm_le_square pi_ge_zero triangle_lemma)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2966
  then show "cmod (Arccos w) \<le> pi + cmod w"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2967
    by auto
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2968
qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  2969
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2970
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2971
subsection\<open>Interrelations between Arcsin and Arccos\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2972
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2973
lemma cos_Arcsin_nonzero:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2974
  assumes "z\<^sup>2 \<noteq> 1" shows "cos(Arcsin z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2975
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2976
  have eq: "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = z\<^sup>2 * (z\<^sup>2 - 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2977
    by (simp add: power_mult_distrib algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2978
  have "\<i> * z * (csqrt (1 - z\<^sup>2)) \<noteq> z\<^sup>2 - 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2979
  proof
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2980
    assume "\<i> * z * (csqrt (1 - z\<^sup>2)) = z\<^sup>2 - 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2981
    then have "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = (z\<^sup>2 - 1)\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2982
      by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2983
    then have "z\<^sup>2 * (z\<^sup>2 - 1) = (z\<^sup>2 - 1)*(z\<^sup>2 - 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2984
      using eq power2_eq_square by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2985
    then show False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2986
      using assms by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2987
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2988
  then have "1 + \<i> * z * (csqrt (1 - z * z)) \<noteq> z\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2989
    by (metis add_minus_cancel power2_eq_square uminus_add_conv_diff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2990
  then have "2*(1 + \<i> * z * (csqrt (1 - z * z))) \<noteq> 2*z\<^sup>2"  (*FIXME cancel_numeral_factor*)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2991
    by (metis mult_cancel_left zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2992
  then have "(\<i> * z + csqrt (1 - z\<^sup>2))\<^sup>2 \<noteq> -1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2993
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2994
    apply (auto simp: power2_sum)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2995
    apply (simp add: power2_eq_square algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2996
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2997
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2998
    apply (simp add: cos_exp_eq Arcsin_def exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2999
    apply (simp add: divide_simps Arcsin_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3000
    apply (metis add.commute minus_unique power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3001
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3002
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3003
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3004
lemma sin_Arccos_nonzero:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3005
  assumes "z\<^sup>2 \<noteq> 1" shows "sin(Arccos z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3006
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3007
  have eq: "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = -(z\<^sup>2) * (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3008
    by (simp add: power_mult_distrib algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3009
  have "\<i> * z * (csqrt (1 - z\<^sup>2)) \<noteq> 1 - z\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3010
  proof
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3011
    assume "\<i> * z * (csqrt (1 - z\<^sup>2)) = 1 - z\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3012
    then have "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = (1 - z\<^sup>2)\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3013
      by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3014
    then have "-(z\<^sup>2) * (1 - z\<^sup>2) = (1 - z\<^sup>2)*(1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3015
      using eq power2_eq_square by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3016
    then have "-(z\<^sup>2) = (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3017
      using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3018
      by (metis add.commute add.right_neutral diff_add_cancel mult_right_cancel)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3019
    then show False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3020
      using assms by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3021
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3022
  then have "z\<^sup>2 + \<i> * z * (csqrt (1 - z\<^sup>2)) \<noteq> 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3023
    by (simp add: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3024
  then have "2*(z\<^sup>2 + \<i> * z * (csqrt (1 - z\<^sup>2))) \<noteq> 2*1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3025
    by (metis mult_cancel_left2 zero_neq_numeral)  (*FIXME cancel_numeral_factor*)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3026
  then have "(z + \<i> * csqrt (1 - z\<^sup>2))\<^sup>2 \<noteq> 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3027
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3028
    apply (auto simp: Power.comm_semiring_1_class.power2_sum power_mult_distrib)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3029
    apply (simp add: power2_eq_square algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3030
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3031
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3032
    apply (simp add: sin_exp_eq Arccos_def exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3033
    apply (simp add: divide_simps Arccos_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3034
    apply (simp add: power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3035
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3036
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3037
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3038
lemma cos_sin_csqrt:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3039
  assumes "0 < cos(Re z)  \<or>  cos(Re z) = 0 \<and> Im z * sin(Re z) \<le> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3040
    shows "cos z = csqrt(1 - (sin z)\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3041
  apply (rule csqrt_unique [THEN sym])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3042
  apply (simp add: cos_squared_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3043
  using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3044
  apply (auto simp: Re_cos Im_cos add_pos_pos mult_le_0_iff zero_le_mult_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3045
  done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3046
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3047
lemma sin_cos_csqrt:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3048
  assumes "0 < sin(Re z)  \<or>  sin(Re z) = 0 \<and> 0 \<le> Im z * cos(Re z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3049
    shows "sin z = csqrt(1 - (cos z)\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3050
  apply (rule csqrt_unique [THEN sym])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3051
  apply (simp add: sin_squared_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3052
  using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3053
  apply (auto simp: Re_sin Im_sin add_pos_pos mult_le_0_iff zero_le_mult_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3054
  done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3055
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3056
lemma Arcsin_Arccos_csqrt_pos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3057
    "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> Arcsin z = Arccos(csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3058
  by (simp add: Arcsin_def Arccos_def Complex.csqrt_square add.commute)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3059
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3060
lemma Arccos_Arcsin_csqrt_pos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3061
    "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> Arccos z = Arcsin(csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3062
  by (simp add: Arcsin_def Arccos_def Complex.csqrt_square add.commute)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3063
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3064
lemma sin_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3065
    "0 < Re z | Re z = 0 & 0 \<le> Im z \<Longrightarrow> sin(Arccos z) = csqrt(1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3066
  by (simp add: Arccos_Arcsin_csqrt_pos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3067
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3068
lemma cos_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3069
    "0 < Re z | Re z = 0 & 0 \<le> Im z \<Longrightarrow> cos(Arcsin z) = csqrt(1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3070
  by (simp add: Arcsin_Arccos_csqrt_pos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3071
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3072
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3073
subsection\<open>Relationship with Arcsin on the Real Numbers\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3074
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3075
lemma Im_Arcsin_of_real:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3076
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3077
    shows "Im (Arcsin (of_real x)) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3078
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3079
  have "csqrt (1 - (of_real x)\<^sup>2) = (if x^2 \<le> 1 then sqrt (1 - x^2) else \<i> * sqrt (x^2 - 1))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3080
    by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3081
  then have "cmod (\<i> * of_real x + csqrt (1 - (of_real x)\<^sup>2))^2 = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3082
    using assms abs_square_le_1
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3083
    by (force simp add: Complex.cmod_power2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3084
  then have "cmod (\<i> * of_real x + csqrt (1 - (of_real x)\<^sup>2)) = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3085
    by (simp add: norm_complex_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3086
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3087
    by (simp add: Im_Arcsin exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3088
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3089
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3090
corollary Arcsin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> \<bar>Re z\<bar> \<le> 1 \<Longrightarrow> Arcsin z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3091
  by (metis Im_Arcsin_of_real Re_complex_of_real Reals_cases complex_is_Real_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3092
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3093
lemma arcsin_eq_Re_Arcsin:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3094
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3095
    shows "arcsin x = Re (Arcsin (of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3096
unfolding arcsin_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3097
proof (rule the_equality, safe)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3098
  show "- (pi / 2) \<le> Re (Arcsin (complex_of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3099
    using Re_Ln_pos_le [OF Arcsin_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3100
    by (auto simp: Complex.in_Reals_norm Re_Arcsin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3101
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3102
  show "Re (Arcsin (complex_of_real x)) \<le> pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3103
    using Re_Ln_pos_le [OF Arcsin_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3104
    by (auto simp: Complex.in_Reals_norm Re_Arcsin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3105
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3106
  show "sin (Re (Arcsin (complex_of_real x))) = x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3107
    using Re_sin [of "Arcsin (of_real x)"] Arcsin_body_lemma [of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3108
    by (simp add: Im_Arcsin_of_real assms)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3109
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3110
  fix x'
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3111
  assume "- (pi / 2) \<le> x'" "x' \<le> pi / 2" "x = sin x'"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3112
  then show "x' = Re (Arcsin (complex_of_real (sin x')))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3113
    apply (simp add: sin_of_real [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3114
    apply (subst Arcsin_sin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3115
    apply (auto simp: )
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3116
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3117
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3118
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3119
lemma of_real_arcsin: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> of_real(arcsin x) = Arcsin(of_real x)"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3120
  by (metis Im_Arcsin_of_real add.right_neutral arcsin_eq_Re_Arcsin complex_eq mult_zero_right of_real_0)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3121
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3122
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3123
subsection\<open>Relationship with Arccos on the Real Numbers\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3124
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3125
lemma Im_Arccos_of_real:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3126
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3127
    shows "Im (Arccos (of_real x)) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3128
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3129
  have "csqrt (1 - (of_real x)\<^sup>2) = (if x^2 \<le> 1 then sqrt (1 - x^2) else \<i> * sqrt (x^2 - 1))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3130
    by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3131
  then have "cmod (of_real x + \<i> * csqrt (1 - (of_real x)\<^sup>2))^2 = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3132
    using assms abs_square_le_1
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3133
    by (force simp add: Complex.cmod_power2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3134
  then have "cmod (of_real x + \<i> * csqrt (1 - (of_real x)\<^sup>2)) = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3135
    by (simp add: norm_complex_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3136
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3137
    by (simp add: Im_Arccos exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3138
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3139
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3140
corollary Arccos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> \<bar>Re z\<bar> \<le> 1 \<Longrightarrow> Arccos z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3141
  by (metis Im_Arccos_of_real Re_complex_of_real Reals_cases complex_is_Real_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3142
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3143
lemma arccos_eq_Re_Arccos:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3144
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3145
    shows "arccos x = Re (Arccos (of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3146
unfolding arccos_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3147
proof (rule the_equality, safe)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3148
  show "0 \<le> Re (Arccos (complex_of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3149
    using Im_Ln_pos_le [OF Arccos_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3150
    by (auto simp: Complex.in_Reals_norm Re_Arccos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3151
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3152
  show "Re (Arccos (complex_of_real x)) \<le> pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3153
    using Im_Ln_pos_le [OF Arccos_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3154
    by (auto simp: Complex.in_Reals_norm Re_Arccos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3155
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3156
  show "cos (Re (Arccos (complex_of_real x))) = x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3157
    using Re_cos [of "Arccos (of_real x)"] Arccos_body_lemma [of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3158
    by (simp add: Im_Arccos_of_real assms)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3159
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3160
  fix x'
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3161
  assume "0 \<le> x'" "x' \<le> pi" "x = cos x'"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3162
  then show "x' = Re (Arccos (complex_of_real (cos x')))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3163
    apply (simp add: cos_of_real [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3164
    apply (subst Arccos_cos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3165
    apply (auto simp: )
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3166
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3167
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3168
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3169
lemma of_real_arccos: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> of_real(arccos x) = Arccos(of_real x)"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3170
  by (metis Im_Arccos_of_real add.right_neutral arccos_eq_Re_Arccos complex_eq mult_zero_right of_real_0)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3171
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3172
subsection\<open>Some interrelationships among the real inverse trig functions.\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3173
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3174
lemma arccos_arctan:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3175
  assumes "-1 < x" "x < 1"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3176
    shows "arccos x = pi/2 - arctan(x / sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3177
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3178
  have "arctan(x / sqrt(1 - x\<^sup>2)) - (pi/2 - arccos x) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3179
  proof (rule sin_eq_0_pi)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3180
    show "- pi < arctan (x / sqrt (1 - x\<^sup>2)) - (pi / 2 - arccos x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3181
      using arctan_lbound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3182
      by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3183
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3184
    show "arctan (x / sqrt (1 - x\<^sup>2)) - (pi / 2 - arccos x) < pi"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3185
      using arctan_ubound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3186
      by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3187
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3188
    show "sin (arctan (x / sqrt (1 - x\<^sup>2)) - (pi / 2 - arccos x)) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3189
      using assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3190
      by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3191
                    power2_eq_square square_eq_1_iff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3192
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3193
  then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3194
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3195
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3196
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3197
lemma arcsin_plus_arccos:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3198
  assumes "-1 \<le> x" "x \<le> 1"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3199
    shows "arcsin x + arccos x = pi/2"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3200
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3201
  have "arcsin x = pi/2 - arccos x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3202
    apply (rule sin_inj_pi)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3203
    using assms arcsin [OF assms] arccos [OF assms]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3204
    apply (auto simp: algebra_simps sin_diff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3205
    done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3206
  then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3207
    by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3208
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3209
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3210
lemma arcsin_arccos_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = pi/2 - arccos x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3211
  using arcsin_plus_arccos by force
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3212
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3213
lemma arccos_arcsin_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = pi/2 - arcsin x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3214
  using arcsin_plus_arccos by force
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3215
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3216
lemma arcsin_arctan: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> arcsin x = arctan(x / sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3217
  by (simp add: arccos_arctan arcsin_arccos_eq)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3218
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  3219
lemma csqrt_1_diff_eq: "csqrt (1 - (of_real x)\<^sup>2) = (if x^2 \<le> 1 then sqrt (1 - x^2) else \<i> * sqrt (x^2 - 1))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3220
  by ( simp add: of_real_sqrt del: csqrt_of_real_nonneg)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3221
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3222
lemma arcsin_arccos_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = arccos(sqrt(1 - x\<^sup>2))"
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  3223
  apply (simp add: abs_square_le_1 arcsin_eq_Re_Arcsin arccos_eq_Re_Arccos)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3224
  apply (subst Arcsin_Arccos_csqrt_pos)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  3225
  apply (auto simp: power_le_one csqrt_1_diff_eq)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3226
  done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3227
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3228
lemma arcsin_arccos_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arcsin x = -arccos(sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3229
  using arcsin_arccos_sqrt_pos [of "-x"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3230
  by (simp add: arcsin_minus)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3231
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3232
lemma arccos_arcsin_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = arcsin(sqrt(1 - x\<^sup>2))"
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  3233
  apply (simp add: abs_square_le_1 arcsin_eq_Re_Arcsin arccos_eq_Re_Arccos)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3234
  apply (subst Arccos_Arcsin_csqrt_pos)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  3235
  apply (auto simp: power_le_one csqrt_1_diff_eq)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3236
  done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3237
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3238
lemma arccos_arcsin_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arccos x = pi - arcsin(sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3239
  using arccos_arcsin_sqrt_pos [of "-x"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3240
  by (simp add: arccos_minus)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3241
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3242
subsection\<open>continuity results for arcsin and arccos.\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3243
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3244
lemma continuous_on_Arcsin_real [continuous_intros]:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3245
    "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} Arcsin"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3246
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3247
  have "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (arcsin (Re x))) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3248
        continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (Re (Arcsin (of_real (Re x)))))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3249
    by (rule continuous_on_cong [OF refl]) (simp add: arcsin_eq_Re_Arcsin)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3250
  also have "... = ?thesis"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3251
    by (rule continuous_on_cong [OF refl]) simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3252
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3253
    using continuous_on_arcsin [OF continuous_on_Re [OF continuous_on_id], of "{w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3254
          continuous_on_of_real
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3255
    by fastforce
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3256
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3257
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3258
lemma continuous_within_Arcsin_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3259
    "continuous (at z within {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}) Arcsin"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3260
proof (cases "z \<in> {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3261
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3262
    using continuous_on_Arcsin_real continuous_on_eq_continuous_within
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3263
    by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3264
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3265
  case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3266
  with closed_real_abs_le [of 1] show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3267
    by (rule continuous_within_closed_nontrivial)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3268
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3269
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3270
lemma continuous_on_Arccos_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3271
    "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} Arccos"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3272
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3273
  have "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (arccos (Re x))) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3274
        continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (Re (Arccos (of_real (Re x)))))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3275
    by (rule continuous_on_cong [OF refl]) (simp add: arccos_eq_Re_Arccos)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3276
  also have "... = ?thesis"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3277
    by (rule continuous_on_cong [OF refl]) simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3278
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3279
    using continuous_on_arccos [OF continuous_on_Re [OF continuous_on_id], of "{w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3280
          continuous_on_of_real
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3281
    by fastforce
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3282
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3283
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3284
lemma continuous_within_Arccos_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3285
    "continuous (at z within {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}) Arccos"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3286
proof (cases "z \<in> {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3287
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3288
    using continuous_on_Arccos_real continuous_on_eq_continuous_within
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3289
    by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3290
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3291
  case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3292
  with closed_real_abs_le [of 1] show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3293
    by (rule continuous_within_closed_nontrivial)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3294
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3295
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3296
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3297
subsection\<open>Roots of unity\<close>
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3298
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3299
lemma complex_root_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3300
  fixes j::nat
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3301
  assumes "n \<noteq> 0"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3302
    shows "exp(2 * of_real pi * \<i> * of_nat j / of_nat n)^n = 1"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3303
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3304
  have *: "of_nat j * (complex_of_real pi * 2) = complex_of_real (2 * real j * pi)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3305
    by (simp add: of_real_numeral)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3306
  then show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3307
    apply (simp add: exp_of_nat_mult [symmetric] mult_ac exp_Euler)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3308
    apply (simp only: * cos_of_real sin_of_real)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3309
    apply (simp add: )
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3310
    done
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3311
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3312
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3313
lemma complex_root_unity_eq:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3314
  fixes j::nat and k::nat
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3315
  assumes "1 \<le> n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3316
    shows "(exp(2 * of_real pi * \<i> * of_nat j / of_nat n) = exp(2 * of_real pi * \<i> * of_nat k / of_nat n)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3317
           \<longleftrightarrow> j mod n = k mod n)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3318
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3319
    have "(\<exists>z::int. \<i> * (of_nat j * (of_real pi * 2)) =
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3320
               \<i> * (of_nat k * (of_real pi * 2)) + \<i> * (of_int z * (of_nat n * (of_real pi * 2)))) \<longleftrightarrow>
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3321
          (\<exists>z::int. of_nat j * (\<i> * (of_real pi * 2)) =
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3322
              (of_nat k + of_nat n * of_int z) * (\<i> * (of_real pi * 2)))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3323
      by (simp add: algebra_simps)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3324
    also have "... \<longleftrightarrow> (\<exists>z::int. of_nat j = of_nat k + of_nat n * (of_int z :: complex))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3325
      by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3326
    also have "... \<longleftrightarrow> (\<exists>z::int. of_nat j = of_nat k + of_nat n * z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3327
      apply (rule HOL.iff_exI)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3328
      apply (auto simp: )
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3329
      using of_int_eq_iff apply fastforce
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3330
      by (metis of_int_add of_int_mult of_int_of_nat_eq)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3331
    also have "... \<longleftrightarrow> int j mod int n = int k mod int n"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64508
diff changeset
  3332
      by (auto simp: mod_eq_dvd_iff dvd_def algebra_simps)
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3333
    also have "... \<longleftrightarrow> j mod n = k mod n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3334
      by (metis of_nat_eq_iff zmod_int)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3335
    finally have "(\<exists>z. \<i> * (of_nat j * (of_real pi * 2)) =
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3336
             \<i> * (of_nat k * (of_real pi * 2)) + \<i> * (of_int z * (of_nat n * (of_real pi * 2)))) \<longleftrightarrow> j mod n = k mod n" .
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3337
   note * = this
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3338
  show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3339
    using assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3340
    by (simp add: exp_eq divide_simps mult_ac of_real_numeral *)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3341
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3342
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3343
corollary bij_betw_roots_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3344
    "bij_betw (\<lambda>j. exp(2 * of_real pi * \<i> * of_nat j / of_nat n))
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3345
              {..<n}  {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j. j < n}"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3346
  by (auto simp: bij_betw_def inj_on_def complex_root_unity_eq)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3347
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3348
lemma complex_root_unity_eq_1:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3349
  fixes j::nat and k::nat
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3350
  assumes "1 \<le> n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3351
    shows "exp(2 * of_real pi * \<i> * of_nat j / of_nat n) = 1 \<longleftrightarrow> n dvd j"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3352
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3353
  have "1 = exp(2 * of_real pi * \<i> * (of_nat n / of_nat n))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3354
    using assms by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3355
  then have "exp(2 * of_real pi * \<i> * (of_nat j / of_nat n)) = 1 \<longleftrightarrow> j mod n = n mod n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3356
     using complex_root_unity_eq [of n j n] assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3357
     by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3358
  then show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3359
    by auto
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3360
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3361
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3362
lemma finite_complex_roots_unity_explicit:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3363
     "finite {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j::nat. j < n}"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3364
by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3365
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3366
lemma card_complex_roots_unity_explicit:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3367
     "card {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j::nat. j < n} = n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3368
  by (simp add:  Finite_Set.bij_betw_same_card [OF bij_betw_roots_unity, symmetric])
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3369
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3370
lemma complex_roots_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3371
  assumes "1 \<le> n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3372
    shows "{z::complex. z^n = 1} = {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j::nat. j < n}"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3373
  apply (rule Finite_Set.card_seteq [symmetric])
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3374
  using assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3375
  apply (auto simp: card_complex_roots_unity_explicit finite_roots_unity complex_root_unity card_roots_unity)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3376
  done
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3377
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3378
lemma card_complex_roots_unity: "1 \<le> n \<Longrightarrow> card {z::complex. z^n = 1} = n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3379
  by (simp add: card_complex_roots_unity_explicit complex_roots_unity)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3380
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3381
lemma complex_not_root_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3382
    "1 \<le> n \<Longrightarrow> \<exists>u::complex. norm u = 1 \<and> u^n \<noteq> 1"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3383
  apply (rule_tac x="exp (of_real pi * \<i> * of_real (1 / n))" in exI)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3384
  apply (auto simp: Re_complex_div_eq_0 exp_of_nat_mult [symmetric] mult_ac exp_Euler)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3385
  done
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3386
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3387
subsection\<open> Formulation of loop homotopy in terms of maps out of type complex\<close>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3388
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3389
lemma homotopic_circlemaps_imp_homotopic_loops:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3390
  assumes "homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
64508
874555896035 more symbols;
wenzelm
parents: 64394
diff changeset
  3391
   shows "homotopic_loops S (f \<circ> exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>))
874555896035 more symbols;
wenzelm
parents: 64394
diff changeset
  3392
                            (g \<circ> exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3393
proof -
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3394
  have "homotopic_with (\<lambda>f. True) {z. cmod z = 1} S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3395
    using assms by (auto simp: sphere_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3396
  moreover have "continuous_on {0..1} (exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3397
     by (intro continuous_intros)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3398
  moreover have "(exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>)) ` {0..1} \<subseteq> {z. cmod z = 1}"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3399
    by (auto simp: norm_mult)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3400
  ultimately
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3401
  show ?thesis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3402
    apply (simp add: homotopic_loops_def comp_assoc)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3403
    apply (rule homotopic_with_compose_continuous_right)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3404
      apply (auto simp: pathstart_def pathfinish_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3405
    done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3406
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3407
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3408
lemma homotopic_loops_imp_homotopic_circlemaps:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3409
  assumes "homotopic_loops S p q"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3410
    shows "homotopic_with (\<lambda>h. True) (sphere 0 1) S
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3411
                          (p \<circ> (\<lambda>z. (Arg z / (2 * pi))))
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3412
                          (q \<circ> (\<lambda>z. (Arg z / (2 * pi))))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3413
proof -
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3414
  obtain h where conth: "continuous_on ({0..1::real} \<times> {0..1}) h"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3415
             and him: "h ` ({0..1} \<times> {0..1}) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3416
             and h0: "(\<forall>x. h (0, x) = p x)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3417
             and h1: "(\<forall>x. h (1, x) = q x)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3418
             and h01: "(\<forall>t\<in>{0..1}. h (t, 1) = h (t, 0)) "
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3419
    using assms
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3420
    by (auto simp: homotopic_loops_def sphere_def homotopic_with_def pathstart_def pathfinish_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3421
  define j where "j \<equiv> \<lambda>z. if 0 \<le> Im (snd z)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3422
                          then h (fst z, Arg (snd z) / (2 * pi))
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3423
                          else h (fst z, 1 - Arg (cnj (snd z)) / (2 * pi))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3424
  have Arg_eq: "1 - Arg (cnj y) / (2 * pi) = Arg y / (2 * pi) \<or> Arg y = 0 \<and> Arg (cnj y) = 0" if "cmod y = 1" for y
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3425
    using that Arg_eq_0_pi Arg_eq_pi by (force simp: Arg_cnj divide_simps)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3426
  show ?thesis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3427
  proof (simp add: homotopic_with; intro conjI ballI exI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3428
    show "continuous_on ({0..1} \<times> sphere 0 1) (\<lambda>w. h (fst w, Arg (snd w) / (2 * pi)))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3429
    proof (rule continuous_on_eq)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3430
      show j: "j x = h (fst x, Arg (snd x) / (2 * pi))" if "x \<in> {0..1} \<times> sphere 0 1" for x
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3431
        using Arg_eq that h01 by (force simp: j_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3432
      have eq:  "S = S \<inter> (UNIV \<times> {z. 0 \<le> Im z}) \<union> S \<inter> (UNIV \<times> {z. Im z \<le> 0})" for S :: "(real*complex)set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3433
        by auto
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3434
      have c1: "continuous_on ({0..1} \<times> sphere 0 1 \<inter> UNIV \<times> {z. 0 \<le> Im z}) (\<lambda>x. h (fst x, Arg (snd x) / (2 * pi)))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3435
        apply (intro continuous_intros continuous_on_compose2 [OF conth]  continuous_on_compose2 [OF continuous_on_upperhalf_Arg])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3436
            apply (auto simp: Arg)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3437
        apply (meson Arg_lt_2pi linear not_le)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3438
        done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3439
      have c2: "continuous_on ({0..1} \<times> sphere 0 1 \<inter> UNIV \<times> {z. Im z \<le> 0}) (\<lambda>x. h (fst x, 1 - Arg (cnj (snd x)) / (2 * pi)))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3440
        apply (intro continuous_intros continuous_on_compose2 [OF conth]  continuous_on_compose2 [OF continuous_on_upperhalf_Arg])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3441
            apply (auto simp: Arg)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3442
        apply (meson Arg_lt_2pi linear not_le)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3443
        done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3444
      show "continuous_on ({0..1} \<times> sphere 0 1) j"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3445
        apply (simp add: j_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3446
        apply (subst eq)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3447
        apply (rule continuous_on_cases_local)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3448
            apply (simp_all add: eq [symmetric] closedin_closed_Int closed_Times closed_halfspace_Im_le closed_halfspace_Im_ge c1 c2)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3449
        using Arg_eq h01
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3450
        by force
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3451
    qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3452
    have "(\<lambda>w. h (fst w, Arg (snd w) / (2 * pi))) ` ({0..1} \<times> sphere 0 1) \<subseteq> h ` ({0..1} \<times> {0..1})"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3453
      by (auto simp: Arg_ge_0 Arg_lt_2pi less_imp_le)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3454
    also have "... \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3455
      using him by blast
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3456
    finally show "(\<lambda>w. h (fst w, Arg (snd w) / (2 * pi))) ` ({0..1} \<times> sphere 0 1) \<subseteq> S" .
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3457
  qed (auto simp: h0 h1)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3458
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3459
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3460
lemma simply_connected_homotopic_loops:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3461
  "simply_connected S \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3462
       (\<forall>p q. homotopic_loops S p p \<and> homotopic_loops S q q \<longrightarrow> homotopic_loops S p q)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3463
unfolding simply_connected_def using homotopic_loops_refl by metis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3464
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3465
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3466
lemma simply_connected_eq_homotopic_circlemaps1:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3467
  fixes f :: "complex \<Rightarrow> 'a::topological_space" and g :: "complex \<Rightarrow> 'a"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3468
  assumes S: "simply_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3469
      and contf: "continuous_on (sphere 0 1) f" and fim: "f ` (sphere 0 1) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3470
      and contg: "continuous_on (sphere 0 1) g" and gim: "g ` (sphere 0 1) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3471
    shows "homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3472
proof -
64508
874555896035 more symbols;
wenzelm
parents: 64394
diff changeset
  3473
  have "homotopic_loops S (f \<circ> exp \<circ> (\<lambda>t. of_real(2 * pi * t) * \<i>)) (g \<circ> exp \<circ> (\<lambda>t. of_real(2 * pi *  t) * \<i>))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3474
    apply (rule S [unfolded simply_connected_homotopic_loops, rule_format])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3475
    apply (simp add: homotopic_circlemaps_imp_homotopic_loops homotopic_with_refl contf fim contg gim)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3476
    done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3477
  then show ?thesis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3478
    apply (rule homotopic_with_eq [OF homotopic_loops_imp_homotopic_circlemaps])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3479
      apply (auto simp: o_def complex_norm_eq_1_exp mult.commute)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3480
    done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3481
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3482
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3483
lemma simply_connected_eq_homotopic_circlemaps2a:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3484
  fixes h :: "complex \<Rightarrow> 'a::topological_space"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3485
  assumes conth: "continuous_on (sphere 0 1) h" and him: "h ` (sphere 0 1) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3486
      and hom: "\<And>f g::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3487
                \<lbrakk>continuous_on (sphere 0 1) f; f ` (sphere 0 1) \<subseteq> S;
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3488
                continuous_on (sphere 0 1) g; g ` (sphere 0 1) \<subseteq> S\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3489
                \<Longrightarrow> homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3490
            shows "\<exists>a. homotopic_with (\<lambda>h. True) (sphere 0 1) S h (\<lambda>x. a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3491
    apply (rule_tac x="h 1" in exI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3492
    apply (rule hom)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3493
    using assms
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3494
    by (auto simp: continuous_on_const)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3495
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3496
lemma simply_connected_eq_homotopic_circlemaps2b:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3497
  fixes S :: "'a::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3498
  assumes "\<And>f g::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3499
                \<lbrakk>continuous_on (sphere 0 1) f; f ` (sphere 0 1) \<subseteq> S;
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3500
                continuous_on (sphere 0 1) g; g ` (sphere 0 1) \<subseteq> S\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3501
                \<Longrightarrow> homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3502
  shows "path_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3503
proof (clarsimp simp add: path_connected_eq_homotopic_points)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3504
  fix a b
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3505
  assume "a \<in> S" "b \<in> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3506
  then show "homotopic_loops S (linepath a a) (linepath b b)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3507
    using homotopic_circlemaps_imp_homotopic_loops [OF assms [of "\<lambda>x. a" "\<lambda>x. b"]]
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3508
    by (auto simp: o_def continuous_on_const linepath_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3509
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3510
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3511
lemma simply_connected_eq_homotopic_circlemaps3:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3512
  fixes h :: "complex \<Rightarrow> 'a::real_normed_vector"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3513
  assumes "path_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3514
      and hom: "\<And>f::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3515
                  \<lbrakk>continuous_on (sphere 0 1) f; f `(sphere 0 1) \<subseteq> S\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3516
                  \<Longrightarrow> \<exists>a. homotopic_with (\<lambda>h. True) (sphere 0 1) S f (\<lambda>x. a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3517
    shows "simply_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3518
proof (clarsimp simp add: simply_connected_eq_contractible_loop_some assms)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3519
  fix p
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3520
  assume p: "path p" "path_image p \<subseteq> S" "pathfinish p = pathstart p"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3521
  then have "homotopic_loops S p p"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3522
    by (simp add: homotopic_loops_refl)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3523
  then obtain a where homp: "homotopic_with (\<lambda>h. True) (sphere 0 1) S (p \<circ> (\<lambda>z. Arg z / (2 * pi))) (\<lambda>x. a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3524
    by (metis homotopic_with_imp_subset2 homotopic_loops_imp_homotopic_circlemaps homotopic_with_imp_continuous hom)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3525
  show "\<exists>a. a \<in> S \<and> homotopic_loops S p (linepath a a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3526
  proof (intro exI conjI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3527
    show "a \<in> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3528
      using homotopic_with_imp_subset2 [OF homp]
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3529
      by (metis dist_0_norm image_subset_iff mem_sphere norm_one)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3530
    have teq: "\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3531
               \<Longrightarrow> t = Arg (exp (2 * of_real pi * of_real t * \<i>)) / (2 * pi) \<or> t=1 \<and> Arg (exp (2 * of_real pi * of_real t * \<i>)) = 0"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3532
      apply (rule disjCI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3533
      using Arg_of_real [of 1] apply (auto simp: Arg_exp)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3534
      done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3535
    have "homotopic_loops S p (p \<circ> (\<lambda>z. Arg z / (2 * pi)) \<circ> exp \<circ> (\<lambda>t. 2 * complex_of_real pi * complex_of_real t * \<i>))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3536
      apply (rule homotopic_loops_eq [OF p])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3537
      using p teq apply (fastforce simp: pathfinish_def pathstart_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3538
      done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3539
    then
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3540
    show "homotopic_loops S p (linepath a a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3541
      by (simp add: linepath_refl  homotopic_loops_trans [OF _ homotopic_circlemaps_imp_homotopic_loops [OF homp, simplified K_record_comp]])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3542
  qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3543
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3544
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3545
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3546
proposition simply_connected_eq_homotopic_circlemaps:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3547
  fixes S :: "'a::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3548
  shows "simply_connected S \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3549
         (\<forall>f g::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3550
              continuous_on (sphere 0 1) f \<and> f ` (sphere 0 1) \<subseteq> S \<and>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3551
              continuous_on (sphere 0 1) g \<and> g ` (sphere 0 1) \<subseteq> S
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3552
              \<longrightarrow> homotopic_with (\<lambda>h. True) (sphere 0 1) S f g)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3553
  apply (rule iffI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3554
   apply (blast elim: dest: simply_connected_eq_homotopic_circlemaps1)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3555
  by (simp add: simply_connected_eq_homotopic_circlemaps2a simply_connected_eq_homotopic_circlemaps2b simply_connected_eq_homotopic_circlemaps3)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3556
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3557
proposition simply_connected_eq_contractible_circlemap:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3558
  fixes S :: "'a::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3559
  shows "simply_connected S \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3560
         path_connected S \<and>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3561
         (\<forall>f::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3562
              continuous_on (sphere 0 1) f \<and> f `(sphere 0 1) \<subseteq> S
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3563
              \<longrightarrow> (\<exists>a. homotopic_with (\<lambda>h. True) (sphere 0 1) S f (\<lambda>x. a)))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3564
  apply (rule iffI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3565
   apply (simp add: simply_connected_eq_homotopic_circlemaps1 simply_connected_eq_homotopic_circlemaps2a simply_connected_eq_homotopic_circlemaps2b)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3566
  using simply_connected_eq_homotopic_circlemaps3 by blast
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3567
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3568
corollary homotopy_eqv_simple_connectedness:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3569
  fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3570
  shows "S homotopy_eqv T \<Longrightarrow> simply_connected S \<longleftrightarrow> simply_connected T"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3571
  by (simp add: simply_connected_eq_homotopic_circlemaps homotopy_eqv_homotopic_triviality)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3572
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3573
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3574
subsection\<open>Homeomorphism of simple closed curves to circles\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3575
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3576
proposition homeomorphic_simple_path_image_circle:
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3577
  fixes a :: complex and \<gamma> :: "real \<Rightarrow> 'a::t2_space"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3578
  assumes "simple_path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and "0 < r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3579
  shows "(path_image \<gamma>) homeomorphic sphere a r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3580
proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3581
  have "homotopic_loops (path_image \<gamma>) \<gamma> \<gamma>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3582
    by (simp add: assms homotopic_loops_refl simple_path_imp_path)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3583
  then have hom: "homotopic_with (\<lambda>h. True) (sphere 0 1) (path_image \<gamma>)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3584
               (\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi))) (\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi)))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3585
    by (rule homotopic_loops_imp_homotopic_circlemaps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3586
  have "\<exists>g. homeomorphism (sphere 0 1) (path_image \<gamma>) (\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi))) g"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3587
  proof (rule homeomorphism_compact)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3588
    show "continuous_on (sphere 0 1) (\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi)))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3589
      using hom homotopic_with_imp_continuous by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3590
    show "inj_on (\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi))) (sphere 0 1)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3591
    proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3592
      fix x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3593
      assume xy: "x \<in> sphere 0 1" "y \<in> sphere 0 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3594
         and eq: "(\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi))) x = (\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi))) y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3595
      then have "(Arg x / (2*pi)) = (Arg y / (2*pi))"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3596
      proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3597
        have "(Arg x / (2*pi)) \<in> {0..1}" "(Arg y / (2*pi)) \<in> {0..1}"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3598
          using Arg_ge_0 Arg_lt_2pi dual_order.strict_iff_order by fastforce+
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3599
        with eq show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3600
          using \<open>simple_path \<gamma>\<close> Arg_lt_2pi unfolding simple_path_def o_def
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3601
          by (metis eq_divide_eq_1 not_less_iff_gr_or_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3602
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3603
      with xy show "x = y"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3604
        by (metis Arg Arg_0 dist_0_norm divide_cancel_right dual_order.strict_iff_order mem_sphere)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3605
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3606
    have "\<And>z. cmod z = 1 \<Longrightarrow> \<exists>x\<in>{0..1}. \<gamma> (Arg z / (2*pi)) = \<gamma> x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3607
       by (metis Arg_ge_0 Arg_lt_2pi atLeastAtMost_iff divide_less_eq_1 less_eq_real_def zero_less_mult_iff pi_gt_zero zero_le_divide_iff zero_less_numeral)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3608
     moreover have "\<exists>z\<in>sphere 0 1. \<gamma> x = \<gamma> (Arg z / (2*pi))" if "0 \<le> x" "x \<le> 1" for x
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3609
     proof (cases "x=1")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3610
       case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3611
       then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3612
         apply (rule_tac x=1 in bexI)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3613
         apply (metis loop Arg_of_real divide_eq_0_iff of_real_1 pathfinish_def pathstart_def \<open>0 \<le> x\<close>, auto)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3614
         done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3615
     next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3616
       case False
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3617
       then have *: "(Arg (exp (\<i>*(2* of_real pi* of_real x))) / (2*pi)) = x"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3618
         using that by (auto simp: Arg_exp divide_simps)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3619
       show ?thesis
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  3620
         by (rule_tac x="exp(\<i> * of_real(2*pi*x))" in bexI) (auto simp: *)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3621
    qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3622
    ultimately show "(\<gamma> \<circ> (\<lambda>z. Arg z / (2*pi))) ` sphere 0 1 = path_image \<gamma>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3623
      by (auto simp: path_image_def image_iff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3624
    qed auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3625
    then have "path_image \<gamma> homeomorphic sphere (0::complex) 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3626
      using homeomorphic_def homeomorphic_sym by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3627
  also have "... homeomorphic sphere a r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3628
    by (simp add: assms homeomorphic_spheres)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3629
  finally show ?thesis .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3630
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3631
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3632
lemma homeomorphic_simple_path_images:
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3633
  fixes \<gamma>1 :: "real \<Rightarrow> 'a::t2_space" and \<gamma>2 :: "real \<Rightarrow> 'b::t2_space"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3634
  assumes "simple_path \<gamma>1" and loop: "pathfinish \<gamma>1 = pathstart \<gamma>1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3635
  assumes "simple_path \<gamma>2" and loop: "pathfinish \<gamma>2 = pathstart \<gamma>2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3636
  shows "(path_image \<gamma>1) homeomorphic (path_image \<gamma>2)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3637
  by (meson assms homeomorphic_simple_path_image_circle homeomorphic_sym homeomorphic_trans loop pi_gt_zero)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  3638
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  3639
end