14516
|
1 |
theory HOL4Setup = MakeEqual
|
|
2 |
files ("proof_kernel.ML") ("replay.ML") ("hol4rews.ML") ("import_package.ML"):
|
|
3 |
|
|
4 |
section {* General Setup *}
|
|
5 |
|
|
6 |
lemma eq_imp: "P = Q \<Longrightarrow> P \<longrightarrow> Q"
|
|
7 |
by auto
|
|
8 |
|
|
9 |
lemma HOLallI: "(!! bogus. P bogus) \<Longrightarrow> (ALL bogus. P bogus)"
|
|
10 |
proof -
|
|
11 |
assume "!! bogus. P bogus"
|
|
12 |
thus "ALL x. P x"
|
|
13 |
..
|
|
14 |
qed
|
|
15 |
|
|
16 |
consts
|
|
17 |
ONE_ONE :: "('a => 'b) => bool"
|
|
18 |
ONTO :: "('a => 'b) => bool"
|
|
19 |
|
|
20 |
defs
|
|
21 |
ONE_ONE_DEF: "ONE_ONE f == ALL x y. f x = f y --> x = y"
|
|
22 |
ONTO_DEF : "ONTO f == ALL y. EX x. y = f x"
|
|
23 |
|
|
24 |
lemma ONE_ONE_rew: "ONE_ONE f = inj_on f UNIV"
|
|
25 |
by (simp add: ONE_ONE_DEF inj_on_def)
|
|
26 |
|
|
27 |
lemma INFINITY_AX: "EX (f::ind \<Rightarrow> ind). (inj f & ~(ONTO f))"
|
|
28 |
proof (rule exI,safe)
|
|
29 |
show "inj Suc_Rep"
|
|
30 |
by (rule inj_Suc_Rep)
|
|
31 |
next
|
|
32 |
assume "ONTO Suc_Rep"
|
|
33 |
hence "ALL y. EX x. y = Suc_Rep x"
|
|
34 |
by (simp add: ONTO_DEF surj_def)
|
|
35 |
hence "EX x. Zero_Rep = Suc_Rep x"
|
|
36 |
by (rule spec)
|
|
37 |
thus False
|
|
38 |
proof (rule exE)
|
|
39 |
fix x
|
|
40 |
assume "Zero_Rep = Suc_Rep x"
|
|
41 |
hence "Suc_Rep x = Zero_Rep"
|
|
42 |
..
|
|
43 |
with Suc_Rep_not_Zero_Rep
|
|
44 |
show False
|
|
45 |
..
|
|
46 |
qed
|
|
47 |
qed
|
|
48 |
|
|
49 |
lemma EXISTS_DEF: "Ex P = P (Eps P)"
|
|
50 |
proof (rule iffI)
|
|
51 |
assume "Ex P"
|
|
52 |
thus "P (Eps P)"
|
|
53 |
..
|
|
54 |
next
|
|
55 |
assume "P (Eps P)"
|
|
56 |
thus "Ex P"
|
|
57 |
..
|
|
58 |
qed
|
|
59 |
|
|
60 |
consts
|
|
61 |
TYPE_DEFINITION :: "('a => bool) => ('b => 'a) => bool"
|
|
62 |
|
|
63 |
defs
|
|
64 |
TYPE_DEFINITION: "TYPE_DEFINITION p rep == ((ALL x y. (rep x = rep y) --> (x = y)) & (ALL x. (p x = (EX y. x = rep y))))"
|
|
65 |
|
|
66 |
lemma ex_imp_nonempty: "Ex P ==> EX x. x : (Collect P)"
|
|
67 |
by simp
|
|
68 |
|
|
69 |
lemma light_ex_imp_nonempty: "P t ==> EX x. x : (Collect P)"
|
|
70 |
proof -
|
|
71 |
assume "P t"
|
|
72 |
hence "EX x. P x"
|
|
73 |
..
|
|
74 |
thus ?thesis
|
|
75 |
by (rule ex_imp_nonempty)
|
|
76 |
qed
|
|
77 |
|
|
78 |
lemma light_imp_as: "[| Q --> P; P --> Q |] ==> P = Q"
|
|
79 |
by blast
|
|
80 |
|
|
81 |
lemma typedef_hol2hol4:
|
|
82 |
assumes a: "type_definition (Rep::'a=>'b) Abs (Collect P)"
|
|
83 |
shows "EX rep. TYPE_DEFINITION P (rep::'a=>'b)"
|
|
84 |
proof -
|
|
85 |
from a
|
|
86 |
have td: "(ALL x. P (Rep x)) & (ALL x. Abs (Rep x) = x) & (ALL y. P y \<longrightarrow> Rep (Abs y) = y)"
|
|
87 |
by (simp add: type_definition_def)
|
|
88 |
have ed: "TYPE_DEFINITION P Rep"
|
|
89 |
proof (auto simp add: TYPE_DEFINITION)
|
|
90 |
fix x y
|
|
91 |
assume "Rep x = Rep y"
|
|
92 |
from td have "x = Abs (Rep x)"
|
|
93 |
by auto
|
|
94 |
also have "Abs (Rep x) = Abs (Rep y)"
|
|
95 |
by (simp add: prems)
|
|
96 |
also from td have "Abs (Rep y) = y"
|
|
97 |
by auto
|
|
98 |
finally show "x = y" .
|
|
99 |
next
|
|
100 |
fix x
|
|
101 |
assume "P x"
|
|
102 |
with td
|
|
103 |
have "Rep (Abs x) = x"
|
|
104 |
by auto
|
|
105 |
hence "x = Rep (Abs x)"
|
|
106 |
..
|
|
107 |
thus "EX y. x = Rep y"
|
|
108 |
..
|
|
109 |
next
|
|
110 |
fix y
|
|
111 |
from td
|
|
112 |
show "P (Rep y)"
|
|
113 |
by auto
|
|
114 |
qed
|
|
115 |
show ?thesis
|
|
116 |
apply (rule exI [of _ Rep])
|
|
117 |
apply (rule ed)
|
|
118 |
.
|
|
119 |
qed
|
|
120 |
|
|
121 |
lemma typedef_hol2hollight:
|
|
122 |
assumes a: "type_definition (Rep::'a=>'b) Abs (Collect P)"
|
|
123 |
shows "(Abs (Rep a) = a) & (P r = (Rep (Abs r) = r))"
|
|
124 |
proof
|
|
125 |
from a
|
|
126 |
show "Abs (Rep a) = a"
|
|
127 |
by (rule type_definition.Rep_inverse)
|
|
128 |
next
|
|
129 |
show "P r = (Rep (Abs r) = r)"
|
|
130 |
proof
|
|
131 |
assume "P r"
|
|
132 |
hence "r \<in> (Collect P)"
|
|
133 |
by simp
|
|
134 |
with a
|
|
135 |
show "Rep (Abs r) = r"
|
|
136 |
by (rule type_definition.Abs_inverse)
|
|
137 |
next
|
|
138 |
assume ra: "Rep (Abs r) = r"
|
|
139 |
from a
|
|
140 |
have "Rep (Abs r) \<in> (Collect P)"
|
|
141 |
by (rule type_definition.Rep)
|
|
142 |
thus "P r"
|
|
143 |
by (simp add: ra)
|
|
144 |
qed
|
|
145 |
qed
|
|
146 |
|
|
147 |
lemma termspec_help: "[| Ex P ; c == Eps P |] ==> P c"
|
|
148 |
apply simp
|
|
149 |
apply (rule someI_ex)
|
|
150 |
.
|
|
151 |
|
|
152 |
lemma typedef_helper: "EX x. P x \<Longrightarrow> EX x. x \<in> (Collect P)"
|
|
153 |
by simp
|
|
154 |
|
|
155 |
use "hol4rews.ML"
|
|
156 |
|
|
157 |
setup hol4_setup
|
|
158 |
parse_ast_translation smarter_trueprop_parsing
|
|
159 |
|
|
160 |
use "proof_kernel.ML"
|
|
161 |
use "replay.ML"
|
|
162 |
use "import_package.ML"
|
|
163 |
|
|
164 |
setup ImportPackage.setup
|
|
165 |
|
|
166 |
end
|