| author | nipkow | 
| Mon, 09 Feb 2009 18:50:10 +0100 | |
| changeset 29849 | a2baf1b221be | 
| parent 29833 | 409138c4de12 | 
| child 29886 | b8a6b9c56fdd | 
| permissions | -rw-r--r-- | 
| 14770 | 1 | (* Title: HOL/OrderedGroup.thy | 
| 29269 
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
 wenzelm parents: 
28823diff
changeset | 2 | Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad | 
| 14738 | 3 | *) | 
| 4 | ||
| 5 | header {* Ordered Groups *}
 | |
| 6 | ||
| 15131 | 7 | theory OrderedGroup | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 8 | imports Lattices | 
| 19798 | 9 | uses "~~/src/Provers/Arith/abel_cancel.ML" | 
| 15131 | 10 | begin | 
| 14738 | 11 | |
| 12 | text {*
 | |
| 13 | The theory of partially ordered groups is taken from the books: | |
| 14 |   \begin{itemize}
 | |
| 15 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 16 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 17 |   \end{itemize}
 | |
| 18 | Most of the used notions can also be looked up in | |
| 19 |   \begin{itemize}
 | |
| 14770 | 20 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 21 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 22 |   \end{itemize}
 | |
| 23 | *} | |
| 24 | ||
| 29667 | 25 | ML{*
 | 
| 26 | structure AlgebraSimps = | |
| 27 | NamedThmsFun(val name = "algebra_simps" | |
| 28 | val description = "algebra simplification rules"); | |
| 29 | *} | |
| 30 | ||
| 31 | setup AlgebraSimps.setup | |
| 32 | ||
| 33 | text{* The rewrites accumulated in @{text algebra_simps} deal with the
 | |
| 34 | classical algebraic structures of groups, rings and family. They simplify | |
| 35 | terms by multiplying everything out (in case of a ring) and bringing sums and | |
| 36 | products into a canonical form (by ordered rewriting). As a result it decides | |
| 37 | group and ring equalities but also helps with inequalities. | |
| 38 | ||
| 39 | Of course it also works for fields, but it knows nothing about multiplicative | |
| 40 | inverses or division. This is catered for by @{text field_simps}. *}
 | |
| 41 | ||
| 23085 | 42 | subsection {* Semigroups and Monoids *}
 | 
| 14738 | 43 | |
| 22390 | 44 | class semigroup_add = plus + | 
| 29667 | 45 | assumes add_assoc[algebra_simps]: "(a + b) + c = a + (b + c)" | 
| 22390 | 46 | |
| 47 | class ab_semigroup_add = semigroup_add + | |
| 29667 | 48 | assumes add_commute[algebra_simps]: "a + b = b + a" | 
| 25062 | 49 | begin | 
| 14738 | 50 | |
| 29667 | 51 | lemma add_left_commute[algebra_simps]: "a + (b + c) = b + (a + c)" | 
| 52 | by (rule mk_left_commute [of "plus", OF add_assoc add_commute]) | |
| 25062 | 53 | |
| 54 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 55 | ||
| 56 | end | |
| 14738 | 57 | |
| 58 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 59 | ||
| 22390 | 60 | class semigroup_mult = times + | 
| 29667 | 61 | assumes mult_assoc[algebra_simps]: "(a * b) * c = a * (b * c)" | 
| 14738 | 62 | |
| 22390 | 63 | class ab_semigroup_mult = semigroup_mult + | 
| 29667 | 64 | assumes mult_commute[algebra_simps]: "a * b = b * a" | 
| 23181 | 65 | begin | 
| 14738 | 66 | |
| 29667 | 67 | lemma mult_left_commute[algebra_simps]: "a * (b * c) = b * (a * c)" | 
| 68 | by (rule mk_left_commute [of "times", OF mult_assoc mult_commute]) | |
| 25062 | 69 | |
| 70 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 23181 | 71 | |
| 72 | end | |
| 14738 | 73 | |
| 74 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 75 | ||
| 26015 | 76 | class ab_semigroup_idem_mult = ab_semigroup_mult + | 
| 29667 | 77 | assumes mult_idem[simp]: "x * x = x" | 
| 26015 | 78 | begin | 
| 79 | ||
| 29667 | 80 | lemma mult_left_idem[simp]: "x * (x * y) = x * y" | 
| 26015 | 81 | unfolding mult_assoc [symmetric, of x] mult_idem .. | 
| 82 | ||
| 83 | end | |
| 84 | ||
| 23085 | 85 | class monoid_add = zero + semigroup_add + | 
| 25062 | 86 | assumes add_0_left [simp]: "0 + a = a" | 
| 87 | and add_0_right [simp]: "a + 0 = a" | |
| 23085 | 88 | |
| 26071 | 89 | lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0" | 
| 29667 | 90 | by (rule eq_commute) | 
| 26071 | 91 | |
| 22390 | 92 | class comm_monoid_add = zero + ab_semigroup_add + | 
| 25062 | 93 | assumes add_0: "0 + a = a" | 
| 94 | begin | |
| 23085 | 95 | |
| 25062 | 96 | subclass monoid_add | 
| 28823 | 97 | proof qed (insert add_0, simp_all add: add_commute) | 
| 25062 | 98 | |
| 99 | end | |
| 14738 | 100 | |
| 22390 | 101 | class monoid_mult = one + semigroup_mult + | 
| 25062 | 102 | assumes mult_1_left [simp]: "1 * a = a" | 
| 103 | assumes mult_1_right [simp]: "a * 1 = a" | |
| 14738 | 104 | |
| 26071 | 105 | lemma one_reorient: "1 = x \<longleftrightarrow> x = 1" | 
| 29667 | 106 | by (rule eq_commute) | 
| 26071 | 107 | |
| 22390 | 108 | class comm_monoid_mult = one + ab_semigroup_mult + | 
| 25062 | 109 | assumes mult_1: "1 * a = a" | 
| 110 | begin | |
| 14738 | 111 | |
| 25062 | 112 | subclass monoid_mult | 
| 28823 | 113 | proof qed (insert mult_1, simp_all add: mult_commute) | 
| 25062 | 114 | |
| 115 | end | |
| 14738 | 116 | |
| 22390 | 117 | class cancel_semigroup_add = semigroup_add + | 
| 25062 | 118 | assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 119 | assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c" | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 120 | begin | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 121 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 122 | lemma add_left_cancel [simp]: | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 123 | "a + b = a + c \<longleftrightarrow> b = c" | 
| 29667 | 124 | by (blast dest: add_left_imp_eq) | 
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 125 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 126 | lemma add_right_cancel [simp]: | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 127 | "b + a = c + a \<longleftrightarrow> b = c" | 
| 29667 | 128 | by (blast dest: add_right_imp_eq) | 
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 129 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 130 | end | 
| 14738 | 131 | |
| 22390 | 132 | class cancel_ab_semigroup_add = ab_semigroup_add + | 
| 25062 | 133 | assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 25267 | 134 | begin | 
| 14738 | 135 | |
| 25267 | 136 | subclass cancel_semigroup_add | 
| 28823 | 137 | proof | 
| 22390 | 138 | fix a b c :: 'a | 
| 139 | assume "a + b = a + c" | |
| 140 | then show "b = c" by (rule add_imp_eq) | |
| 141 | next | |
| 14738 | 142 | fix a b c :: 'a | 
| 143 | assume "b + a = c + a" | |
| 22390 | 144 | then have "a + b = a + c" by (simp only: add_commute) | 
| 145 | then show "b = c" by (rule add_imp_eq) | |
| 14738 | 146 | qed | 
| 147 | ||
| 25267 | 148 | end | 
| 149 | ||
| 23085 | 150 | subsection {* Groups *}
 | 
| 151 | ||
| 25762 | 152 | class group_add = minus + uminus + monoid_add + | 
| 25062 | 153 | assumes left_minus [simp]: "- a + a = 0" | 
| 154 | assumes diff_minus: "a - b = a + (- b)" | |
| 155 | begin | |
| 23085 | 156 | |
| 25062 | 157 | lemma minus_add_cancel: "- a + (a + b) = b" | 
| 29667 | 158 | by (simp add: add_assoc[symmetric]) | 
| 14738 | 159 | |
| 25062 | 160 | lemma minus_zero [simp]: "- 0 = 0" | 
| 14738 | 161 | proof - | 
| 25062 | 162 | have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right) | 
| 163 | also have "\<dots> = 0" by (rule minus_add_cancel) | |
| 14738 | 164 | finally show ?thesis . | 
| 165 | qed | |
| 166 | ||
| 25062 | 167 | lemma minus_minus [simp]: "- (- a) = a" | 
| 23085 | 168 | proof - | 
| 25062 | 169 | have "- (- a) = - (- a) + (- a + a)" by simp | 
| 170 | also have "\<dots> = a" by (rule minus_add_cancel) | |
| 23085 | 171 | finally show ?thesis . | 
| 172 | qed | |
| 14738 | 173 | |
| 25062 | 174 | lemma right_minus [simp]: "a + - a = 0" | 
| 14738 | 175 | proof - | 
| 25062 | 176 | have "a + - a = - (- a) + - a" by simp | 
| 177 | also have "\<dots> = 0" by (rule left_minus) | |
| 14738 | 178 | finally show ?thesis . | 
| 179 | qed | |
| 180 | ||
| 25062 | 181 | lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b" | 
| 14738 | 182 | proof | 
| 23085 | 183 | assume "a - b = 0" | 
| 184 | have "a = (a - b) + b" by (simp add:diff_minus add_assoc) | |
| 185 | also have "\<dots> = b" using `a - b = 0` by simp | |
| 186 | finally show "a = b" . | |
| 14738 | 187 | next | 
| 23085 | 188 | assume "a = b" thus "a - b = 0" by (simp add: diff_minus) | 
| 14738 | 189 | qed | 
| 190 | ||
| 25062 | 191 | lemma equals_zero_I: | 
| 29667 | 192 | assumes "a + b = 0" shows "- a = b" | 
| 23085 | 193 | proof - | 
| 25062 | 194 | have "- a = - a + (a + b)" using assms by simp | 
| 195 | also have "\<dots> = b" by (simp add: add_assoc[symmetric]) | |
| 23085 | 196 | finally show ?thesis . | 
| 197 | qed | |
| 14738 | 198 | |
| 25062 | 199 | lemma diff_self [simp]: "a - a = 0" | 
| 29667 | 200 | by (simp add: diff_minus) | 
| 14738 | 201 | |
| 25062 | 202 | lemma diff_0 [simp]: "0 - a = - a" | 
| 29667 | 203 | by (simp add: diff_minus) | 
| 14738 | 204 | |
| 25062 | 205 | lemma diff_0_right [simp]: "a - 0 = a" | 
| 29667 | 206 | by (simp add: diff_minus) | 
| 14738 | 207 | |
| 25062 | 208 | lemma diff_minus_eq_add [simp]: "a - - b = a + b" | 
| 29667 | 209 | by (simp add: diff_minus) | 
| 14738 | 210 | |
| 25062 | 211 | lemma neg_equal_iff_equal [simp]: | 
| 212 | "- a = - b \<longleftrightarrow> a = b" | |
| 14738 | 213 | proof | 
| 214 | assume "- a = - b" | |
| 29667 | 215 | hence "- (- a) = - (- b)" by simp | 
| 25062 | 216 | thus "a = b" by simp | 
| 14738 | 217 | next | 
| 25062 | 218 | assume "a = b" | 
| 219 | thus "- a = - b" by simp | |
| 14738 | 220 | qed | 
| 221 | ||
| 25062 | 222 | lemma neg_equal_0_iff_equal [simp]: | 
| 223 | "- a = 0 \<longleftrightarrow> a = 0" | |
| 29667 | 224 | by (subst neg_equal_iff_equal [symmetric], simp) | 
| 14738 | 225 | |
| 25062 | 226 | lemma neg_0_equal_iff_equal [simp]: | 
| 227 | "0 = - a \<longleftrightarrow> 0 = a" | |
| 29667 | 228 | by (subst neg_equal_iff_equal [symmetric], simp) | 
| 14738 | 229 | |
| 230 | text{*The next two equations can make the simplifier loop!*}
 | |
| 231 | ||
| 25062 | 232 | lemma equation_minus_iff: | 
| 233 | "a = - b \<longleftrightarrow> b = - a" | |
| 14738 | 234 | proof - | 
| 25062 | 235 | have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal) | 
| 236 | thus ?thesis by (simp add: eq_commute) | |
| 237 | qed | |
| 238 | ||
| 239 | lemma minus_equation_iff: | |
| 240 | "- a = b \<longleftrightarrow> - b = a" | |
| 241 | proof - | |
| 242 | have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal) | |
| 14738 | 243 | thus ?thesis by (simp add: eq_commute) | 
| 244 | qed | |
| 245 | ||
| 28130 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 246 | lemma diff_add_cancel: "a - b + b = a" | 
| 29667 | 247 | by (simp add: diff_minus add_assoc) | 
| 28130 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 248 | |
| 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 249 | lemma add_diff_cancel: "a + b - b = a" | 
| 29667 | 250 | by (simp add: diff_minus add_assoc) | 
| 251 | ||
| 252 | declare diff_minus[symmetric, algebra_simps] | |
| 28130 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 huffman parents: 
27516diff
changeset | 253 | |
| 25062 | 254 | end | 
| 255 | ||
| 25762 | 256 | class ab_group_add = minus + uminus + comm_monoid_add + | 
| 25062 | 257 | assumes ab_left_minus: "- a + a = 0" | 
| 258 | assumes ab_diff_minus: "a - b = a + (- b)" | |
| 25267 | 259 | begin | 
| 25062 | 260 | |
| 25267 | 261 | subclass group_add | 
| 28823 | 262 | proof qed (simp_all add: ab_left_minus ab_diff_minus) | 
| 25062 | 263 | |
| 25267 | 264 | subclass cancel_ab_semigroup_add | 
| 28823 | 265 | proof | 
| 25062 | 266 | fix a b c :: 'a | 
| 267 | assume "a + b = a + c" | |
| 268 | then have "- a + a + b = - a + a + c" | |
| 269 | unfolding add_assoc by simp | |
| 270 | then show "b = c" by simp | |
| 271 | qed | |
| 272 | ||
| 29667 | 273 | lemma uminus_add_conv_diff[algebra_simps]: | 
| 25062 | 274 | "- a + b = b - a" | 
| 29667 | 275 | by (simp add:diff_minus add_commute) | 
| 25062 | 276 | |
| 277 | lemma minus_add_distrib [simp]: | |
| 278 | "- (a + b) = - a + - b" | |
| 29667 | 279 | by (rule equals_zero_I) (simp add: add_ac) | 
| 25062 | 280 | |
| 281 | lemma minus_diff_eq [simp]: | |
| 282 | "- (a - b) = b - a" | |
| 29667 | 283 | by (simp add: diff_minus add_commute) | 
| 25077 | 284 | |
| 29667 | 285 | lemma add_diff_eq[algebra_simps]: "a + (b - c) = (a + b) - c" | 
| 286 | by (simp add: diff_minus add_ac) | |
| 25077 | 287 | |
| 29667 | 288 | lemma diff_add_eq[algebra_simps]: "(a - b) + c = (a + c) - b" | 
| 289 | by (simp add: diff_minus add_ac) | |
| 25077 | 290 | |
| 29667 | 291 | lemma diff_eq_eq[algebra_simps]: "a - b = c \<longleftrightarrow> a = c + b" | 
| 292 | by (auto simp add: diff_minus add_assoc) | |
| 25077 | 293 | |
| 29667 | 294 | lemma eq_diff_eq[algebra_simps]: "a = c - b \<longleftrightarrow> a + b = c" | 
| 295 | by (auto simp add: diff_minus add_assoc) | |
| 25077 | 296 | |
| 29667 | 297 | lemma diff_diff_eq[algebra_simps]: "(a - b) - c = a - (b + c)" | 
| 298 | by (simp add: diff_minus add_ac) | |
| 25077 | 299 | |
| 29667 | 300 | lemma diff_diff_eq2[algebra_simps]: "a - (b - c) = (a + c) - b" | 
| 301 | by (simp add: diff_minus add_ac) | |
| 25077 | 302 | |
| 303 | lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0" | |
| 29667 | 304 | by (simp add: algebra_simps) | 
| 25077 | 305 | |
| 25062 | 306 | end | 
| 14738 | 307 | |
| 308 | subsection {* (Partially) Ordered Groups *} 
 | |
| 309 | ||
| 22390 | 310 | class pordered_ab_semigroup_add = order + ab_semigroup_add + | 
| 25062 | 311 | assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b" | 
| 312 | begin | |
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 313 | |
| 25062 | 314 | lemma add_right_mono: | 
| 315 | "a \<le> b \<Longrightarrow> a + c \<le> b + c" | |
| 29667 | 316 | by (simp add: add_commute [of _ c] add_left_mono) | 
| 14738 | 317 | |
| 318 | text {* non-strict, in both arguments *}
 | |
| 319 | lemma add_mono: | |
| 25062 | 320 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d" | 
| 14738 | 321 | apply (erule add_right_mono [THEN order_trans]) | 
| 322 | apply (simp add: add_commute add_left_mono) | |
| 323 | done | |
| 324 | ||
| 25062 | 325 | end | 
| 326 | ||
| 327 | class pordered_cancel_ab_semigroup_add = | |
| 328 | pordered_ab_semigroup_add + cancel_ab_semigroup_add | |
| 329 | begin | |
| 330 | ||
| 14738 | 331 | lemma add_strict_left_mono: | 
| 25062 | 332 | "a < b \<Longrightarrow> c + a < c + b" | 
| 29667 | 333 | by (auto simp add: less_le add_left_mono) | 
| 14738 | 334 | |
| 335 | lemma add_strict_right_mono: | |
| 25062 | 336 | "a < b \<Longrightarrow> a + c < b + c" | 
| 29667 | 337 | by (simp add: add_commute [of _ c] add_strict_left_mono) | 
| 14738 | 338 | |
| 339 | text{*Strict monotonicity in both arguments*}
 | |
| 25062 | 340 | lemma add_strict_mono: | 
| 341 | "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | |
| 342 | apply (erule add_strict_right_mono [THEN less_trans]) | |
| 14738 | 343 | apply (erule add_strict_left_mono) | 
| 344 | done | |
| 345 | ||
| 346 | lemma add_less_le_mono: | |
| 25062 | 347 | "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d" | 
| 348 | apply (erule add_strict_right_mono [THEN less_le_trans]) | |
| 349 | apply (erule add_left_mono) | |
| 14738 | 350 | done | 
| 351 | ||
| 352 | lemma add_le_less_mono: | |
| 25062 | 353 | "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 354 | apply (erule add_right_mono [THEN le_less_trans]) | |
| 14738 | 355 | apply (erule add_strict_left_mono) | 
| 356 | done | |
| 357 | ||
| 25062 | 358 | end | 
| 359 | ||
| 360 | class pordered_ab_semigroup_add_imp_le = | |
| 361 | pordered_cancel_ab_semigroup_add + | |
| 362 | assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b" | |
| 363 | begin | |
| 364 | ||
| 14738 | 365 | lemma add_less_imp_less_left: | 
| 29667 | 366 | assumes less: "c + a < c + b" shows "a < b" | 
| 14738 | 367 | proof - | 
| 368 | from less have le: "c + a <= c + b" by (simp add: order_le_less) | |
| 369 | have "a <= b" | |
| 370 | apply (insert le) | |
| 371 | apply (drule add_le_imp_le_left) | |
| 372 | by (insert le, drule add_le_imp_le_left, assumption) | |
| 373 | moreover have "a \<noteq> b" | |
| 374 | proof (rule ccontr) | |
| 375 | assume "~(a \<noteq> b)" | |
| 376 | then have "a = b" by simp | |
| 377 | then have "c + a = c + b" by simp | |
| 378 | with less show "False"by simp | |
| 379 | qed | |
| 380 | ultimately show "a < b" by (simp add: order_le_less) | |
| 381 | qed | |
| 382 | ||
| 383 | lemma add_less_imp_less_right: | |
| 25062 | 384 | "a + c < b + c \<Longrightarrow> a < b" | 
| 14738 | 385 | apply (rule add_less_imp_less_left [of c]) | 
| 386 | apply (simp add: add_commute) | |
| 387 | done | |
| 388 | ||
| 389 | lemma add_less_cancel_left [simp]: | |
| 25062 | 390 | "c + a < c + b \<longleftrightarrow> a < b" | 
| 29667 | 391 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | 
| 14738 | 392 | |
| 393 | lemma add_less_cancel_right [simp]: | |
| 25062 | 394 | "a + c < b + c \<longleftrightarrow> a < b" | 
| 29667 | 395 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | 
| 14738 | 396 | |
| 397 | lemma add_le_cancel_left [simp]: | |
| 25062 | 398 | "c + a \<le> c + b \<longleftrightarrow> a \<le> b" | 
| 29667 | 399 | by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) | 
| 14738 | 400 | |
| 401 | lemma add_le_cancel_right [simp]: | |
| 25062 | 402 | "a + c \<le> b + c \<longleftrightarrow> a \<le> b" | 
| 29667 | 403 | by (simp add: add_commute [of a c] add_commute [of b c]) | 
| 14738 | 404 | |
| 405 | lemma add_le_imp_le_right: | |
| 25062 | 406 | "a + c \<le> b + c \<Longrightarrow> a \<le> b" | 
| 29667 | 407 | by simp | 
| 25062 | 408 | |
| 25077 | 409 | lemma max_add_distrib_left: | 
| 410 | "max x y + z = max (x + z) (y + z)" | |
| 411 | unfolding max_def by auto | |
| 412 | ||
| 413 | lemma min_add_distrib_left: | |
| 414 | "min x y + z = min (x + z) (y + z)" | |
| 415 | unfolding min_def by auto | |
| 416 | ||
| 25062 | 417 | end | 
| 418 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 419 | subsection {* Support for reasoning about signs *}
 | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 420 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 421 | class pordered_comm_monoid_add = | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 422 | pordered_cancel_ab_semigroup_add + comm_monoid_add | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 423 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 424 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 425 | lemma add_pos_nonneg: | 
| 29667 | 426 | assumes "0 < a" and "0 \<le> b" shows "0 < a + b" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 427 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 428 | have "0 + 0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 429 | using assms by (rule add_less_le_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 430 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 431 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 432 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 433 | lemma add_pos_pos: | 
| 29667 | 434 | assumes "0 < a" and "0 < b" shows "0 < a + b" | 
| 435 | by (rule add_pos_nonneg) (insert assms, auto) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 436 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 437 | lemma add_nonneg_pos: | 
| 29667 | 438 | assumes "0 \<le> a" and "0 < b" shows "0 < a + b" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 439 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 440 | have "0 + 0 < a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 441 | using assms by (rule add_le_less_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 442 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 443 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 444 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 445 | lemma add_nonneg_nonneg: | 
| 29667 | 446 | assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 447 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 448 | have "0 + 0 \<le> a + b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 449 | using assms by (rule add_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 450 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 451 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 452 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 453 | lemma add_neg_nonpos: | 
| 29667 | 454 | assumes "a < 0" and "b \<le> 0" shows "a + b < 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 455 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 456 | have "a + b < 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 457 | using assms by (rule add_less_le_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 458 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 459 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 460 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 461 | lemma add_neg_neg: | 
| 29667 | 462 | assumes "a < 0" and "b < 0" shows "a + b < 0" | 
| 463 | by (rule add_neg_nonpos) (insert assms, auto) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 464 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 465 | lemma add_nonpos_neg: | 
| 29667 | 466 | assumes "a \<le> 0" and "b < 0" shows "a + b < 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 467 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 468 | have "a + b < 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 469 | using assms by (rule add_le_less_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 470 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 471 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 472 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 473 | lemma add_nonpos_nonpos: | 
| 29667 | 474 | assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 475 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 476 | have "a + b \<le> 0 + 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 477 | using assms by (rule add_mono) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 478 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 479 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 480 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 481 | end | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 482 | |
| 25062 | 483 | class pordered_ab_group_add = | 
| 484 | ab_group_add + pordered_ab_semigroup_add | |
| 485 | begin | |
| 486 | ||
| 27516 | 487 | subclass pordered_cancel_ab_semigroup_add .. | 
| 25062 | 488 | |
| 489 | subclass pordered_ab_semigroup_add_imp_le | |
| 28823 | 490 | proof | 
| 25062 | 491 | fix a b c :: 'a | 
| 492 | assume "c + a \<le> c + b" | |
| 493 | hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono) | |
| 494 | hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc) | |
| 495 | thus "a \<le> b" by simp | |
| 496 | qed | |
| 497 | ||
| 27516 | 498 | subclass pordered_comm_monoid_add .. | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 499 | |
| 25077 | 500 | lemma max_diff_distrib_left: | 
| 501 | shows "max x y - z = max (x - z) (y - z)" | |
| 29667 | 502 | by (simp add: diff_minus, rule max_add_distrib_left) | 
| 25077 | 503 | |
| 504 | lemma min_diff_distrib_left: | |
| 505 | shows "min x y - z = min (x - z) (y - z)" | |
| 29667 | 506 | by (simp add: diff_minus, rule min_add_distrib_left) | 
| 25077 | 507 | |
| 508 | lemma le_imp_neg_le: | |
| 29667 | 509 | assumes "a \<le> b" shows "-b \<le> -a" | 
| 25077 | 510 | proof - | 
| 29667 | 511 | have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) | 
| 512 | hence "0 \<le> -a+b" by simp | |
| 513 | hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) | |
| 514 | thus ?thesis by (simp add: add_assoc) | |
| 25077 | 515 | qed | 
| 516 | ||
| 517 | lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b" | |
| 518 | proof | |
| 519 | assume "- b \<le> - a" | |
| 29667 | 520 | hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le) | 
| 25077 | 521 | thus "a\<le>b" by simp | 
| 522 | next | |
| 523 | assume "a\<le>b" | |
| 524 | thus "-b \<le> -a" by (rule le_imp_neg_le) | |
| 525 | qed | |
| 526 | ||
| 527 | lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 29667 | 528 | by (subst neg_le_iff_le [symmetric], simp) | 
| 25077 | 529 | |
| 530 | lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 29667 | 531 | by (subst neg_le_iff_le [symmetric], simp) | 
| 25077 | 532 | |
| 533 | lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b" | |
| 29667 | 534 | by (force simp add: less_le) | 
| 25077 | 535 | |
| 536 | lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a" | |
| 29667 | 537 | by (subst neg_less_iff_less [symmetric], simp) | 
| 25077 | 538 | |
| 539 | lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0" | |
| 29667 | 540 | by (subst neg_less_iff_less [symmetric], simp) | 
| 25077 | 541 | |
| 542 | text{*The next several equations can make the simplifier loop!*}
 | |
| 543 | ||
| 544 | lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a" | |
| 545 | proof - | |
| 546 | have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less) | |
| 547 | thus ?thesis by simp | |
| 548 | qed | |
| 549 | ||
| 550 | lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a" | |
| 551 | proof - | |
| 552 | have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less) | |
| 553 | thus ?thesis by simp | |
| 554 | qed | |
| 555 | ||
| 556 | lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a" | |
| 557 | proof - | |
| 558 | have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff) | |
| 559 | have "(- (- a) <= -b) = (b <= - a)" | |
| 560 | apply (auto simp only: le_less) | |
| 561 | apply (drule mm) | |
| 562 | apply (simp_all) | |
| 563 | apply (drule mm[simplified], assumption) | |
| 564 | done | |
| 565 | then show ?thesis by simp | |
| 566 | qed | |
| 567 | ||
| 568 | lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a" | |
| 29667 | 569 | by (auto simp add: le_less minus_less_iff) | 
| 25077 | 570 | |
| 571 | lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0" | |
| 572 | proof - | |
| 573 | have "(a < b) = (a + (- b) < b + (-b))" | |
| 574 | by (simp only: add_less_cancel_right) | |
| 575 | also have "... = (a - b < 0)" by (simp add: diff_minus) | |
| 576 | finally show ?thesis . | |
| 577 | qed | |
| 578 | ||
| 29667 | 579 | lemma diff_less_eq[algebra_simps]: "a - b < c \<longleftrightarrow> a < c + b" | 
| 25077 | 580 | apply (subst less_iff_diff_less_0 [of a]) | 
| 581 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | |
| 582 | apply (simp add: diff_minus add_ac) | |
| 583 | done | |
| 584 | ||
| 29667 | 585 | lemma less_diff_eq[algebra_simps]: "a < c - b \<longleftrightarrow> a + b < c" | 
| 25077 | 586 | apply (subst less_iff_diff_less_0 [of "plus a b"]) | 
| 587 | apply (subst less_iff_diff_less_0 [of a]) | |
| 588 | apply (simp add: diff_minus add_ac) | |
| 589 | done | |
| 590 | ||
| 29667 | 591 | lemma diff_le_eq[algebra_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b" | 
| 592 | by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel) | |
| 25077 | 593 | |
| 29667 | 594 | lemma le_diff_eq[algebra_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c" | 
| 595 | by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel) | |
| 25077 | 596 | |
| 597 | lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0" | |
| 29667 | 598 | by (simp add: algebra_simps) | 
| 25077 | 599 | |
| 29667 | 600 | text{*Legacy - use @{text algebra_simps} *}
 | 
| 29833 | 601 | lemmas group_simps[noatp] = algebra_simps | 
| 25230 | 602 | |
| 25077 | 603 | end | 
| 604 | ||
| 29667 | 605 | text{*Legacy - use @{text algebra_simps} *}
 | 
| 29833 | 606 | lemmas group_simps[noatp] = algebra_simps | 
| 25230 | 607 | |
| 25062 | 608 | class ordered_ab_semigroup_add = | 
| 609 | linorder + pordered_ab_semigroup_add | |
| 610 | ||
| 611 | class ordered_cancel_ab_semigroup_add = | |
| 612 | linorder + pordered_cancel_ab_semigroup_add | |
| 25267 | 613 | begin | 
| 25062 | 614 | |
| 27516 | 615 | subclass ordered_ab_semigroup_add .. | 
| 25062 | 616 | |
| 25267 | 617 | subclass pordered_ab_semigroup_add_imp_le | 
| 28823 | 618 | proof | 
| 25062 | 619 | fix a b c :: 'a | 
| 620 | assume le: "c + a <= c + b" | |
| 621 | show "a <= b" | |
| 622 | proof (rule ccontr) | |
| 623 | assume w: "~ a \<le> b" | |
| 624 | hence "b <= a" by (simp add: linorder_not_le) | |
| 625 | hence le2: "c + b <= c + a" by (rule add_left_mono) | |
| 626 | have "a = b" | |
| 627 | apply (insert le) | |
| 628 | apply (insert le2) | |
| 629 | apply (drule antisym, simp_all) | |
| 630 | done | |
| 631 | with w show False | |
| 632 | by (simp add: linorder_not_le [symmetric]) | |
| 633 | qed | |
| 634 | qed | |
| 635 | ||
| 25267 | 636 | end | 
| 637 | ||
| 25230 | 638 | class ordered_ab_group_add = | 
| 639 | linorder + pordered_ab_group_add | |
| 25267 | 640 | begin | 
| 25230 | 641 | |
| 27516 | 642 | subclass ordered_cancel_ab_semigroup_add .. | 
| 25230 | 643 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 644 | lemma neg_less_eq_nonneg: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 645 | "- a \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 646 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 647 | assume A: "- a \<le> a" show "0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 648 | proof (rule classical) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 649 | assume "\<not> 0 \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 650 | then have "a < 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 651 | with A have "- a < 0" by (rule le_less_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 652 | then show ?thesis by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 653 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 654 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 655 | assume A: "0 \<le> a" show "- a \<le> a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 656 | proof (rule order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 657 | show "- a \<le> 0" using A by (simp add: minus_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 658 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 659 | show "0 \<le> a" using A . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 660 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 661 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 662 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 663 | lemma less_eq_neg_nonpos: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 664 | "a \<le> - a \<longleftrightarrow> a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 665 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 666 | assume A: "a \<le> - a" show "a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 667 | proof (rule classical) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 668 | assume "\<not> a \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 669 | then have "0 < a" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 670 | then have "0 < - a" using A by (rule less_le_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 671 | then show ?thesis by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 672 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 673 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 674 | assume A: "a \<le> 0" show "a \<le> - a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 675 | proof (rule order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 676 | show "0 \<le> - a" using A by (simp add: minus_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 677 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 678 | show "a \<le> 0" using A . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 679 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 680 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 681 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 682 | lemma equal_neg_zero: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 683 | "a = - a \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 684 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 685 | assume "a = 0" then show "a = - a" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 686 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 687 | assume A: "a = - a" show "a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 688 | proof (cases "0 \<le> a") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 689 | case True with A have "0 \<le> - a" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 690 | with le_minus_iff have "a \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 691 | with True show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 692 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 693 | case False then have B: "a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 694 | with A have "- a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 695 | with B show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 696 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 697 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 698 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 699 | lemma neg_equal_zero: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 700 | "- a = a \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 701 | unfolding equal_neg_zero [symmetric] by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 702 | |
| 25267 | 703 | end | 
| 704 | ||
| 25077 | 705 | -- {* FIXME localize the following *}
 | 
| 14738 | 706 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 707 | lemma add_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 708 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 709 | shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c" | 
| 14738 | 710 | by (insert add_mono [of 0 a b c], simp) | 
| 711 | ||
| 15539 | 712 | lemma add_increasing2: | 
| 713 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | |
| 714 | shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c" | |
| 715 | by (simp add:add_increasing add_commute[of a]) | |
| 716 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 717 | lemma add_strict_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 718 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 719 | shows "[|0<a; b\<le>c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 720 | by (insert add_less_le_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 721 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 722 | lemma add_strict_increasing2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 723 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 724 | shows "[|0\<le>a; b<c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 725 | by (insert add_le_less_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 726 | |
| 14738 | 727 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 728 | class pordered_ab_group_add_abs = pordered_ab_group_add + abs + | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 729 | assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 730 | and abs_ge_self: "a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 731 | and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 732 | and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 733 | and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 734 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 735 | |
| 25307 | 736 | lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0" | 
| 737 | unfolding neg_le_0_iff_le by simp | |
| 738 | ||
| 739 | lemma abs_of_nonneg [simp]: | |
| 29667 | 740 | assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a" | 
| 25307 | 741 | proof (rule antisym) | 
| 742 | from nonneg le_imp_neg_le have "- a \<le> 0" by simp | |
| 743 | from this nonneg have "- a \<le> a" by (rule order_trans) | |
| 744 | then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI) | |
| 745 | qed (rule abs_ge_self) | |
| 746 | ||
| 747 | lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 29667 | 748 | by (rule antisym) | 
| 749 | (auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"]) | |
| 25307 | 750 | |
| 751 | lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 752 | proof - | |
| 753 | have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0" | |
| 754 | proof (rule antisym) | |
| 755 | assume zero: "\<bar>a\<bar> = 0" | |
| 756 | with abs_ge_self show "a \<le> 0" by auto | |
| 757 | from zero have "\<bar>-a\<bar> = 0" by simp | |
| 758 | with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto | |
| 759 | with neg_le_0_iff_le show "0 \<le> a" by auto | |
| 760 | qed | |
| 761 | then show ?thesis by auto | |
| 762 | qed | |
| 763 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 764 | lemma abs_zero [simp]: "\<bar>0\<bar> = 0" | 
| 29667 | 765 | by simp | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 766 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 767 | lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 768 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 769 | have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 770 | thus ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 771 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 772 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 773 | lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 774 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 775 | assume "\<bar>a\<bar> \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 776 | then have "\<bar>a\<bar> = 0" by (rule antisym) simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 777 | thus "a = 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 778 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 779 | assume "a = 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 780 | thus "\<bar>a\<bar> \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 781 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 782 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 783 | lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0" | 
| 29667 | 784 | by (simp add: less_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 785 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 786 | lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 787 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 788 | have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 789 | show ?thesis by (simp add: a) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 790 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 791 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 792 | lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 793 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 794 | have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 795 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 796 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 797 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 798 | lemma abs_minus_commute: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 799 | "\<bar>a - b\<bar> = \<bar>b - a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 800 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 801 | have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 802 | also have "... = \<bar>b - a\<bar>" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 803 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 804 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 805 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 806 | lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a" | 
| 29667 | 807 | by (rule abs_of_nonneg, rule less_imp_le) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 808 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 809 | lemma abs_of_nonpos [simp]: | 
| 29667 | 810 | assumes "a \<le> 0" shows "\<bar>a\<bar> = - a" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 811 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 812 | let ?b = "- a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 813 | have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 814 | unfolding abs_minus_cancel [of "?b"] | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 815 | unfolding neg_le_0_iff_le [of "?b"] | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 816 | unfolding minus_minus by (erule abs_of_nonneg) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 817 | then show ?thesis using assms by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 818 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 819 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 820 | lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a" | 
| 29667 | 821 | by (rule abs_of_nonpos, rule less_imp_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 822 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 823 | lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b" | 
| 29667 | 824 | by (insert abs_ge_self, blast intro: order_trans) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 825 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 826 | lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b" | 
| 29667 | 827 | by (insert abs_le_D1 [of "uminus a"], simp) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 828 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 829 | lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b" | 
| 29667 | 830 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 831 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 832 | lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>" | 
| 29667 | 833 | apply (simp add: algebra_simps) | 
| 834 | apply (subgoal_tac "abs a = abs (plus b (minus a b))") | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 835 | apply (erule ssubst) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 836 | apply (rule abs_triangle_ineq) | 
| 29667 | 837 | apply (rule arg_cong[of _ _ abs]) | 
| 838 | apply (simp add: algebra_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 839 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 840 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 841 | lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 842 | apply (subst abs_le_iff) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 843 | apply auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 844 | apply (rule abs_triangle_ineq2) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 845 | apply (subst abs_minus_commute) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 846 | apply (rule abs_triangle_ineq2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 847 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 848 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 849 | lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 850 | proof - | 
| 29667 | 851 | have "abs(a - b) = abs(a + - b)" by (subst diff_minus, rule refl) | 
| 852 | also have "... <= abs a + abs (- b)" by (rule abs_triangle_ineq) | |
| 853 | finally show ?thesis by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 854 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 855 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 856 | lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 857 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 858 | have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 859 | also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 860 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 861 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 862 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 863 | lemma abs_add_abs [simp]: | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 864 | "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R") | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 865 | proof (rule antisym) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 866 | show "?L \<ge> ?R" by(rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 867 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 868 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 869 | also have "\<dots> = ?R" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 870 | finally show "?L \<le> ?R" . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 871 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 872 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 873 | end | 
| 14738 | 874 | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 875 | |
| 14738 | 876 | subsection {* Lattice Ordered (Abelian) Groups *}
 | 
| 877 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 878 | class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice | 
| 25090 | 879 | begin | 
| 14738 | 880 | |
| 25090 | 881 | lemma add_inf_distrib_left: | 
| 882 | "a + inf b c = inf (a + b) (a + c)" | |
| 883 | apply (rule antisym) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 884 | apply (simp_all add: le_infI) | 
| 25090 | 885 | apply (rule add_le_imp_le_left [of "uminus a"]) | 
| 886 | apply (simp only: add_assoc [symmetric], simp) | |
| 21312 | 887 | apply rule | 
| 888 | apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+ | |
| 14738 | 889 | done | 
| 890 | ||
| 25090 | 891 | lemma add_inf_distrib_right: | 
| 892 | "inf a b + c = inf (a + c) (b + c)" | |
| 893 | proof - | |
| 894 | have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left) | |
| 895 | thus ?thesis by (simp add: add_commute) | |
| 896 | qed | |
| 897 | ||
| 898 | end | |
| 899 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 900 | class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice | 
| 25090 | 901 | begin | 
| 902 | ||
| 903 | lemma add_sup_distrib_left: | |
| 904 | "a + sup b c = sup (a + b) (a + c)" | |
| 905 | apply (rule antisym) | |
| 906 | apply (rule add_le_imp_le_left [of "uminus a"]) | |
| 14738 | 907 | apply (simp only: add_assoc[symmetric], simp) | 
| 21312 | 908 | apply rule | 
| 909 | apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+ | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 910 | apply (rule le_supI) | 
| 21312 | 911 | apply (simp_all) | 
| 14738 | 912 | done | 
| 913 | ||
| 25090 | 914 | lemma add_sup_distrib_right: | 
| 915 | "sup a b + c = sup (a+c) (b+c)" | |
| 14738 | 916 | proof - | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 917 | have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left) | 
| 14738 | 918 | thus ?thesis by (simp add: add_commute) | 
| 919 | qed | |
| 920 | ||
| 25090 | 921 | end | 
| 922 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 923 | class lordered_ab_group_add = pordered_ab_group_add + lattice | 
| 25090 | 924 | begin | 
| 925 | ||
| 27516 | 926 | subclass lordered_ab_group_add_meet .. | 
| 927 | subclass lordered_ab_group_add_join .. | |
| 25090 | 928 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 929 | lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left | 
| 14738 | 930 | |
| 25090 | 931 | lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 932 | proof (rule inf_unique) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 933 | fix a b :: 'a | 
| 25090 | 934 | show "- sup (-a) (-b) \<le> a" | 
| 935 | by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"]) | |
| 936 | (simp, simp add: add_sup_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 937 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 938 | fix a b :: 'a | 
| 25090 | 939 | show "- sup (-a) (-b) \<le> b" | 
| 940 | by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"]) | |
| 941 | (simp, simp add: add_sup_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 942 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 943 | fix a b c :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 944 | assume "a \<le> b" "a \<le> c" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 945 | then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 946 | (simp add: le_supI) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 947 | qed | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 948 | |
| 25090 | 949 | lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)" | 
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 950 | proof (rule sup_unique) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 951 | fix a b :: 'a | 
| 25090 | 952 | show "a \<le> - inf (-a) (-b)" | 
| 953 | by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"]) | |
| 954 | (simp, simp add: add_inf_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 955 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 956 | fix a b :: 'a | 
| 25090 | 957 | show "b \<le> - inf (-a) (-b)" | 
| 958 | by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"]) | |
| 959 | (simp, simp add: add_inf_distrib_left) | |
| 22452 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 960 | next | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 961 | fix a b c :: 'a | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 962 | assume "a \<le> c" "b \<le> c" | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 963 | then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric]) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 964 | (simp add: le_infI) | 
| 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 haftmann parents: 
22422diff
changeset | 965 | qed | 
| 14738 | 966 | |
| 25230 | 967 | lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)" | 
| 29667 | 968 | by (simp add: inf_eq_neg_sup) | 
| 25230 | 969 | |
| 970 | lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)" | |
| 29667 | 971 | by (simp add: sup_eq_neg_inf) | 
| 25230 | 972 | |
| 25090 | 973 | lemma add_eq_inf_sup: "a + b = sup a b + inf a b" | 
| 14738 | 974 | proof - | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 975 | have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 976 | hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 977 | hence "0 = (-a + sup a b) + (inf a b + (-b))" | 
| 29667 | 978 | by (simp add: add_sup_distrib_left add_inf_distrib_right) | 
| 979 | (simp add: algebra_simps) | |
| 980 | thus ?thesis by (simp add: algebra_simps) | |
| 14738 | 981 | qed | 
| 982 | ||
| 983 | subsection {* Positive Part, Negative Part, Absolute Value *}
 | |
| 984 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 985 | definition | 
| 25090 | 986 | nprt :: "'a \<Rightarrow> 'a" where | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 987 | "nprt x = inf x 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 988 | |
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 989 | definition | 
| 25090 | 990 | pprt :: "'a \<Rightarrow> 'a" where | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 991 | "pprt x = sup x 0" | 
| 14738 | 992 | |
| 25230 | 993 | lemma pprt_neg: "pprt (- x) = - nprt x" | 
| 994 | proof - | |
| 995 | have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero .. | |
| 996 | also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup .. | |
| 997 | finally have "sup (- x) 0 = - inf x 0" . | |
| 998 | then show ?thesis unfolding pprt_def nprt_def . | |
| 999 | qed | |
| 1000 | ||
| 1001 | lemma nprt_neg: "nprt (- x) = - pprt x" | |
| 1002 | proof - | |
| 1003 | from pprt_neg have "pprt (- (- x)) = - nprt (- x)" . | |
| 1004 | then have "pprt x = - nprt (- x)" by simp | |
| 1005 | then show ?thesis by simp | |
| 1006 | qed | |
| 1007 | ||
| 14738 | 1008 | lemma prts: "a = pprt a + nprt a" | 
| 29667 | 1009 | by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric]) | 
| 14738 | 1010 | |
| 1011 | lemma zero_le_pprt[simp]: "0 \<le> pprt a" | |
| 29667 | 1012 | by (simp add: pprt_def) | 
| 14738 | 1013 | |
| 1014 | lemma nprt_le_zero[simp]: "nprt a \<le> 0" | |
| 29667 | 1015 | by (simp add: nprt_def) | 
| 14738 | 1016 | |
| 25090 | 1017 | lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r") | 
| 14738 | 1018 | proof - | 
| 1019 | have a: "?l \<longrightarrow> ?r" | |
| 1020 | apply (auto) | |
| 25090 | 1021 | apply (rule add_le_imp_le_right[of _ "uminus b" _]) | 
| 14738 | 1022 | apply (simp add: add_assoc) | 
| 1023 | done | |
| 1024 | have b: "?r \<longrightarrow> ?l" | |
| 1025 | apply (auto) | |
| 1026 | apply (rule add_le_imp_le_right[of _ "b" _]) | |
| 1027 | apply (simp) | |
| 1028 | done | |
| 1029 | from a b show ?thesis by blast | |
| 1030 | qed | |
| 1031 | ||
| 15580 | 1032 | lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def) | 
| 1033 | lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def) | |
| 1034 | ||
| 25090 | 1035 | lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x" | 
| 29667 | 1036 | by (simp add: pprt_def le_iff_sup sup_ACI) | 
| 15580 | 1037 | |
| 25090 | 1038 | lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x" | 
| 29667 | 1039 | by (simp add: nprt_def le_iff_inf inf_ACI) | 
| 15580 | 1040 | |
| 25090 | 1041 | lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0" | 
| 29667 | 1042 | by (simp add: pprt_def le_iff_sup sup_ACI) | 
| 15580 | 1043 | |
| 25090 | 1044 | lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0" | 
| 29667 | 1045 | by (simp add: nprt_def le_iff_inf inf_ACI) | 
| 15580 | 1046 | |
| 25090 | 1047 | lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0" | 
| 14738 | 1048 | proof - | 
| 1049 |   {
 | |
| 1050 | fix a::'a | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1051 | assume hyp: "sup a (-a) = 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1052 | hence "sup a (-a) + a = a" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1053 | hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1054 | hence "sup (a+a) 0 <= a" by (simp) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1055 | hence "0 <= a" by (blast intro: order_trans inf_sup_ord) | 
| 14738 | 1056 | } | 
| 1057 | note p = this | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1058 | assume hyp:"sup a (-a) = 0" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1059 | hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute) | 
| 14738 | 1060 | from p[OF hyp] p[OF hyp2] show "a = 0" by simp | 
| 1061 | qed | |
| 1062 | ||
| 25090 | 1063 | lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1064 | apply (simp add: inf_eq_neg_sup) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1065 | apply (simp add: sup_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1066 | apply (erule sup_0_imp_0) | 
| 15481 | 1067 | done | 
| 14738 | 1068 | |
| 25090 | 1069 | lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0" | 
| 29667 | 1070 | by (rule, erule inf_0_imp_0) simp | 
| 14738 | 1071 | |
| 25090 | 1072 | lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0" | 
| 29667 | 1073 | by (rule, erule sup_0_imp_0) simp | 
| 14738 | 1074 | |
| 25090 | 1075 | lemma zero_le_double_add_iff_zero_le_single_add [simp]: | 
| 1076 | "0 \<le> a + a \<longleftrightarrow> 0 \<le> a" | |
| 14738 | 1077 | proof | 
| 1078 | assume "0 <= a + a" | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1079 | hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute) | 
| 25090 | 1080 | have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_") | 
| 1081 | by (simp add: add_sup_inf_distribs inf_ACI) | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1082 | hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1083 | hence "inf a 0 = 0" by (simp only: add_right_cancel) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22390diff
changeset | 1084 | then show "0 <= a" by (simp add: le_iff_inf inf_commute) | 
| 14738 | 1085 | next | 
| 1086 | assume a: "0 <= a" | |
| 1087 | show "0 <= a + a" by (simp add: add_mono[OF a a, simplified]) | |
| 1088 | qed | |
| 1089 | ||
| 25090 | 1090 | lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0" | 
| 1091 | proof | |
| 1092 | assume assm: "a + a = 0" | |
| 1093 | then have "a + a + - a = - a" by simp | |
| 1094 | then have "a + (a + - a) = - a" by (simp only: add_assoc) | |
| 1095 | then have a: "- a = a" by simp (*FIXME tune proof*) | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25090diff
changeset | 1096 | show "a = 0" apply (rule antisym) | 
| 25090 | 1097 | apply (unfold neg_le_iff_le [symmetric, of a]) | 
| 1098 | unfolding a apply simp | |
| 1099 | unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a] | |
| 1100 | unfolding assm unfolding le_less apply simp_all done | |
| 1101 | next | |
| 1102 | assume "a = 0" then show "a + a = 0" by simp | |
| 1103 | qed | |
| 1104 | ||
| 1105 | lemma zero_less_double_add_iff_zero_less_single_add: | |
| 1106 | "0 < a + a \<longleftrightarrow> 0 < a" | |
| 1107 | proof (cases "a = 0") | |
| 1108 | case True then show ?thesis by auto | |
| 1109 | next | |
| 1110 | case False then show ?thesis (*FIXME tune proof*) | |
| 1111 | unfolding less_le apply simp apply rule | |
| 1112 | apply clarify | |
| 1113 | apply rule | |
| 1114 | apply assumption | |
| 1115 | apply (rule notI) | |
| 1116 | unfolding double_zero [symmetric, of a] apply simp | |
| 1117 | done | |
| 1118 | qed | |
| 1119 | ||
| 1120 | lemma double_add_le_zero_iff_single_add_le_zero [simp]: | |
| 1121 | "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" | |
| 14738 | 1122 | proof - | 
| 25090 | 1123 | have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp) | 
| 1124 | moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add) | |
| 14738 | 1125 | ultimately show ?thesis by blast | 
| 1126 | qed | |
| 1127 | ||
| 25090 | 1128 | lemma double_add_less_zero_iff_single_less_zero [simp]: | 
| 1129 | "a + a < 0 \<longleftrightarrow> a < 0" | |
| 1130 | proof - | |
| 1131 | have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp) | |
| 1132 | moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add) | |
| 1133 | ultimately show ?thesis by blast | |
| 14738 | 1134 | qed | 
| 1135 | ||
| 25230 | 1136 | declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp] | 
| 1137 | ||
| 1138 | lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 1139 | proof - | |
| 1140 | from add_le_cancel_left [of "uminus a" "plus a a" zero] | |
| 1141 | have "(a <= -a) = (a+a <= 0)" | |
| 1142 | by (simp add: add_assoc[symmetric]) | |
| 1143 | thus ?thesis by simp | |
| 1144 | qed | |
| 1145 | ||
| 1146 | lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a" | |
| 1147 | proof - | |
| 1148 | from add_le_cancel_left [of "uminus a" zero "plus a a"] | |
| 1149 | have "(-a <= a) = (0 <= a+a)" | |
| 1150 | by (simp add: add_assoc[symmetric]) | |
| 1151 | thus ?thesis by simp | |
| 1152 | qed | |
| 1153 | ||
| 1154 | lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0" | |
| 29667 | 1155 | by (simp add: le_iff_inf nprt_def inf_commute) | 
| 25230 | 1156 | |
| 1157 | lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0" | |
| 29667 | 1158 | by (simp add: le_iff_sup pprt_def sup_commute) | 
| 25230 | 1159 | |
| 1160 | lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a" | |
| 29667 | 1161 | by (simp add: le_iff_sup pprt_def sup_commute) | 
| 25230 | 1162 | |
| 1163 | lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a" | |
| 29667 | 1164 | by (simp add: le_iff_inf nprt_def inf_commute) | 
| 25230 | 1165 | |
| 1166 | lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b" | |
| 29667 | 1167 | by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a]) | 
| 25230 | 1168 | |
| 1169 | lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b" | |
| 29667 | 1170 | by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a]) | 
| 25230 | 1171 | |
| 25090 | 1172 | end | 
| 1173 | ||
| 1174 | lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left | |
| 1175 | ||
| 25230 | 1176 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1177 | class lordered_ab_group_add_abs = lordered_ab_group_add + abs + | 
| 25230 | 1178 | assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)" | 
| 1179 | begin | |
| 1180 | ||
| 1181 | lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a" | |
| 1182 | proof - | |
| 1183 | have "0 \<le> \<bar>a\<bar>" | |
| 1184 | proof - | |
| 1185 | have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice) | |
| 1186 | show ?thesis by (rule add_mono [OF a b, simplified]) | |
| 1187 | qed | |
| 1188 | then have "0 \<le> sup a (- a)" unfolding abs_lattice . | |
| 1189 | then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1) | |
| 1190 | then show ?thesis | |
| 1191 | by (simp add: add_sup_inf_distribs sup_ACI | |
| 1192 | pprt_def nprt_def diff_minus abs_lattice) | |
| 1193 | qed | |
| 1194 | ||
| 1195 | subclass pordered_ab_group_add_abs | |
| 29557 | 1196 | proof | 
| 25230 | 1197 | have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>" | 
| 1198 | proof - | |
| 1199 | fix a b | |
| 1200 | have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice) | |
| 1201 | show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified]) | |
| 1202 | qed | |
| 1203 | have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | |
| 1204 | by (simp add: abs_lattice le_supI) | |
| 29557 | 1205 | fix a b | 
| 1206 | show "0 \<le> \<bar>a\<bar>" by simp | |
| 1207 | show "a \<le> \<bar>a\<bar>" | |
| 1208 | by (auto simp add: abs_lattice) | |
| 1209 | show "\<bar>-a\<bar> = \<bar>a\<bar>" | |
| 1210 | by (simp add: abs_lattice sup_commute) | |
| 1211 | show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (fact abs_leI) | |
| 1212 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | |
| 1213 | proof - | |
| 1214 | have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n") | |
| 1215 | by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus) | |
| 1216 | have a:"a+b <= sup ?m ?n" by (simp) | |
| 1217 | have b:"-a-b <= ?n" by (simp) | |
| 1218 | have c:"?n <= sup ?m ?n" by (simp) | |
| 1219 | from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans) | |
| 1220 | have e:"-a-b = -(a+b)" by (simp add: diff_minus) | |
| 1221 | from a d e have "abs(a+b) <= sup ?m ?n" | |
| 1222 | by (drule_tac abs_leI, auto) | |
| 1223 | with g[symmetric] show ?thesis by simp | |
| 1224 | qed | |
| 25230 | 1225 | qed | 
| 1226 | ||
| 1227 | end | |
| 1228 | ||
| 25090 | 1229 | lemma sup_eq_if: | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1230 |   fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
 | 
| 25090 | 1231 | shows "sup a (- a) = (if a < 0 then - a else a)" | 
| 1232 | proof - | |
| 1233 | note add_le_cancel_right [of a a "- a", symmetric, simplified] | |
| 1234 | moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified] | |
| 1235 | then show ?thesis by (auto simp: sup_max max_def) | |
| 1236 | qed | |
| 1237 | ||
| 1238 | lemma abs_if_lattice: | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1239 |   fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
 | 
| 25090 | 1240 | shows "\<bar>a\<bar> = (if a < 0 then - a else a)" | 
| 29667 | 1241 | by auto | 
| 25090 | 1242 | |
| 1243 | ||
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1244 | text {* Needed for abelian cancellation simprocs: *}
 | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1245 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1246 | lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1247 | apply (subst add_left_commute) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1248 | apply (subst add_left_cancel) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1249 | apply simp | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1250 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1251 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1252 | lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1253 | apply (subst add_cancel_21[of _ _ _ 0, simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1254 | apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1255 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1256 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1257 | lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1258 | by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1259 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1260 | lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1261 | apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1262 | apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1263 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1264 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1265 | lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1266 | by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1267 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1268 | lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1269 | by (simp add: diff_minus) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1270 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1271 | lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1272 | by (simp add: add_assoc[symmetric]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1273 | |
| 25090 | 1274 | lemma le_add_right_mono: | 
| 15178 | 1275 | assumes | 
| 1276 | "a <= b + (c::'a::pordered_ab_group_add)" | |
| 1277 | "c <= d" | |
| 1278 | shows "a <= b + d" | |
| 1279 | apply (rule_tac order_trans[where y = "b+c"]) | |
| 1280 | apply (simp_all add: prems) | |
| 1281 | done | |
| 1282 | ||
| 1283 | lemma estimate_by_abs: | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1284 | "a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b" | 
| 15178 | 1285 | proof - | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23389diff
changeset | 1286 | assume "a+b <= c" | 
| 29667 | 1287 | hence 2: "a <= c+(-b)" by (simp add: algebra_simps) | 
| 15178 | 1288 | have 3: "(-b) <= abs b" by (rule abs_ge_minus_self) | 
| 1289 | show ?thesis by (rule le_add_right_mono[OF 2 3]) | |
| 1290 | qed | |
| 1291 | ||
| 25090 | 1292 | subsection {* Tools setup *}
 | 
| 1293 | ||
| 25077 | 1294 | lemma add_mono_thms_ordered_semiring [noatp]: | 
| 1295 | fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add" | |
| 1296 | shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1297 | and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1298 | and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l" | |
| 1299 | and "i = j \<and> k = l \<Longrightarrow> i + k = j + l" | |
| 1300 | by (rule add_mono, clarify+)+ | |
| 1301 | ||
| 1302 | lemma add_mono_thms_ordered_field [noatp]: | |
| 1303 | fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add" | |
| 1304 | shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l" | |
| 1305 | and "i = j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1306 | and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l" | |
| 1307 | and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1308 | and "i < j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1309 | by (auto intro: add_strict_right_mono add_strict_left_mono | |
| 1310 | add_less_le_mono add_le_less_mono add_strict_mono) | |
| 1311 | ||
| 17085 | 1312 | text{*Simplification of @{term "x-y < 0"}, etc.*}
 | 
| 29833 | 1313 | lemmas diff_less_0_iff_less [simp, noatp] = less_iff_diff_less_0 [symmetric] | 
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 1314 | lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric] | 
| 29833 | 1315 | lemmas diff_le_0_iff_le [simp, noatp] = le_iff_diff_le_0 [symmetric] | 
| 17085 | 1316 | |
| 22482 | 1317 | ML {*
 | 
| 27250 | 1318 | structure ab_group_add_cancel = Abel_Cancel | 
| 1319 | ( | |
| 22482 | 1320 | |
| 1321 | (* term order for abelian groups *) | |
| 1322 | ||
| 1323 | fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a') | |
| 22997 | 1324 |       [@{const_name HOL.zero}, @{const_name HOL.plus},
 | 
| 1325 |         @{const_name HOL.uminus}, @{const_name HOL.minus}]
 | |
| 22482 | 1326 | | agrp_ord _ = ~1; | 
| 1327 | ||
| 29269 
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
 wenzelm parents: 
28823diff
changeset | 1328 | fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS); | 
| 22482 | 1329 | |
| 1330 | local | |
| 1331 |   val ac1 = mk_meta_eq @{thm add_assoc};
 | |
| 1332 |   val ac2 = mk_meta_eq @{thm add_commute};
 | |
| 1333 |   val ac3 = mk_meta_eq @{thm add_left_commute};
 | |
| 22997 | 1334 |   fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
 | 
| 22482 | 1335 | SOME ac1 | 
| 22997 | 1336 |     | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
 | 
| 22482 | 1337 | if termless_agrp (y, x) then SOME ac3 else NONE | 
| 1338 | | solve_add_ac thy _ (_ $ x $ y) = | |
| 1339 | if termless_agrp (y, x) then SOME ac2 else NONE | |
| 1340 | | solve_add_ac thy _ _ = NONE | |
| 1341 | in | |
| 28262 
aa7ca36d67fd
back to dynamic the_context(), because static @{theory} is invalidated if ML environment changes within the same code block;
 wenzelm parents: 
28130diff
changeset | 1342 | val add_ac_proc = Simplifier.simproc (the_context ()) | 
| 22482 | 1343 | "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac; | 
| 1344 | end; | |
| 1345 | ||
| 27250 | 1346 | val eq_reflection = @{thm eq_reflection};
 | 
| 1347 | ||
| 1348 | val T = @{typ "'a::ab_group_add"};
 | |
| 1349 | ||
| 22482 | 1350 | val cancel_ss = HOL_basic_ss settermless termless_agrp | 
| 1351 | addsimprocs [add_ac_proc] addsimps | |
| 23085 | 1352 |   [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
 | 
| 22482 | 1353 |    @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
 | 
| 1354 |    @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
 | |
| 1355 |    @{thm minus_add_cancel}];
 | |
| 27250 | 1356 | |
| 1357 | val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
 | |
| 22482 | 1358 | |
| 22548 | 1359 | val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
 | 
| 22482 | 1360 | |
| 1361 | val dest_eqI = | |
| 1362 | fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of; | |
| 1363 | ||
| 27250 | 1364 | ); | 
| 22482 | 1365 | *} | 
| 1366 | ||
| 26480 | 1367 | ML {*
 | 
| 22482 | 1368 | Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]; | 
| 1369 | *} | |
| 17085 | 1370 | |
| 14738 | 1371 | end |