| 
10267
 | 
     1  | 
%
  | 
| 
 | 
     2  | 
\begin{isabellebody}%
 | 
| 
 | 
     3  | 
\def\isabellecontext{CTLind}%
 | 
| 
 | 
     4  | 
%
  | 
| 
10878
 | 
     5  | 
\isamarkupsubsection{CTL Revisited%
 | 
| 
10395
 | 
     6  | 
}
  | 
| 
10267
 | 
     7  | 
%
  | 
| 
 | 
     8  | 
\begin{isamarkuptext}%
 | 
| 
 | 
     9  | 
\label{sec:CTL-revisited}
 | 
| 
10283
 | 
    10  | 
The purpose of this section is twofold: we want to demonstrate
  | 
| 
 | 
    11  | 
some of the induction principles and heuristics discussed above and we want to
  | 
| 
 | 
    12  | 
show how inductive definitions can simplify proofs.
  | 
| 
10267
 | 
    13  | 
In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
 | 
| 
10795
 | 
    14  | 
model checker for CTL\@. In particular the proof of the
  | 
| 
10267
 | 
    15  | 
\isa{infinity{\isacharunderscore}lemma} on the way to \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} is not as
 | 
| 
 | 
    16  | 
simple as one might intuitively expect, due to the \isa{SOME} operator
 | 
| 
10283
 | 
    17  | 
involved. Below we give a simpler proof of \isa{AF{\isacharunderscore}lemma{\isadigit{2}}}
 | 
| 
 | 
    18  | 
based on an auxiliary inductive definition.
  | 
| 
10267
 | 
    19  | 
  | 
| 
 | 
    20  | 
Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does
 | 
| 
 | 
    21  | 
not touch any node in the set \isa{A}. Then \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} says
 | 
| 
 | 
    22  | 
that if no infinite path from some state \isa{s} is \isa{A}-avoiding,
 | 
| 
 | 
    23  | 
then \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. We prove this by inductively defining the set
 | 
| 
 | 
    24  | 
\isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path:
 | 
| 
 | 
    25  | 
% Second proof of opposite direction, directly by well-founded induction
  | 
| 
 | 
    26  | 
% on the initial segment of M that avoids A.%
  | 
| 
 | 
    27  | 
\end{isamarkuptext}%
 | 
| 
 | 
    28  | 
\isacommand{consts}\ Avoid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ state\ set\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
 | 
| 
 | 
    29  | 
\isacommand{inductive}\ {\isachardoublequote}Avoid\ s\ A{\isachardoublequote}\isanewline
 | 
| 
 | 
    30  | 
\isakeyword{intros}\ {\isachardoublequote}s\ {\isasymin}\ Avoid\ s\ A{\isachardoublequote}\isanewline
 | 
| 
 | 
    31  | 
\ \ \ \ \ \ \ {\isachardoublequote}{\isasymlbrakk}\ t\ {\isasymin}\ Avoid\ s\ A{\isacharsemicolon}\ t\ {\isasymnotin}\ A{\isacharsemicolon}\ {\isacharparenleft}t{\isacharcomma}u{\isacharparenright}\ {\isasymin}\ M\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ u\ {\isasymin}\ Avoid\ s\ A{\isachardoublequote}%
 | 
| 
 | 
    32  | 
\begin{isamarkuptext}%
 | 
| 
 | 
    33  | 
It is easy to see that for any infinite \isa{A}-avoiding path \isa{f}
 | 
| 
 | 
    34  | 
with \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path
 | 
| 
 | 
    35  | 
starting with \isa{s} because (by definition of \isa{Avoid}) there is a
 | 
| 
 | 
    36  | 
finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}.
 | 
| 
 | 
    37  | 
The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A}. However,
 | 
| 
 | 
    38  | 
this requires the following
  | 
| 
 | 
    39  | 
reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
 | 
| 
 | 
    40  | 
the \isa{rule{\isacharunderscore}format} directive undoes the reformulation after the proof.%
 | 
| 
 | 
    41  | 
\end{isamarkuptext}%
 | 
| 
 | 
    42  | 
\isacommand{lemma}\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
 | 
| 
 | 
    43  | 
\ \ {\isachardoublequote}t\ {\isasymin}\ Avoid\ s\ A\ \ {\isasymLongrightarrow}\isanewline
 | 
| 
 | 
    44  | 
\ \ \ {\isasymforall}f{\isasymin}Paths\ t{\isachardot}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ f\ i\ {\isasymnotin}\ A{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ A{\isacharparenright}{\isachardoublequote}\isanewline
 | 
| 
 | 
    45  | 
\isacommand{apply}{\isacharparenleft}erule\ Avoid{\isachardot}induct{\isacharparenright}\isanewline
 | 
| 
 | 
    46  | 
\ \isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
 | 
| 
 | 
    47  | 
\isacommand{apply}{\isacharparenleft}clarify{\isacharparenright}\isanewline
 | 
| 
 | 
    48  | 
\isacommand{apply}{\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequote}{\isasymlambda}i{\isachardot}\ case\ i\ of\ {\isadigit{0}}\ {\isasymRightarrow}\ t\ {\isacharbar}\ Suc\ i\ {\isasymRightarrow}\ f\ i{\isachardoublequote}\ \isakeyword{in}\ bspec{\isacharparenright}\isanewline
 | 
| 
 | 
    49  | 
\isacommand{apply}{\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}Paths{\isacharunderscore}def\ split{\isacharcolon}nat{\isachardot}split{\isacharparenright}\isanewline
 | 
| 
 | 
    50  | 
\isacommand{done}%
 | 
| 
 | 
    51  | 
\begin{isamarkuptext}%
 | 
| 
 | 
    52  | 
\noindent
  | 
| 
 | 
    53  | 
The base case (\isa{t\ {\isacharequal}\ s}) is trivial (\isa{blast}).
 | 
| 
 | 
    54  | 
In the induction step, we have an infinite \isa{A}-avoiding path \isa{f}
 | 
| 
 | 
    55  | 
starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate
 | 
| 
 | 
    56  | 
the \isa{{\isasymforall}f{\isasymin}Paths\ t} in the induction hypothesis by the path starting with
 | 
| 
 | 
    57  | 
\isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
 | 
| 
10878
 | 
    58  | 
expresses.  Simplification shows that this is a path starting with \isa{t} 
 | 
| 
 | 
    59  | 
and that the instantiated induction hypothesis implies the conclusion.
  | 
| 
10267
 | 
    60  | 
  | 
| 
11196
 | 
    61  | 
Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
 | 
| 
11277
 | 
    62  | 
path starts from \isa{s}, we want to show \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. For the
 | 
| 
 | 
    63  | 
inductive proof this must be generalized to the statement that every point \isa{t}
 | 
| 
 | 
    64  | 
``between'' \isa{s} and \isa{A}, i.e.\ all of \isa{Avoid\ s\ A},
 | 
| 
11196
 | 
    65  | 
is contained in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}:%
 | 
| 
10267
 | 
    66  | 
\end{isamarkuptext}%
 | 
| 
 | 
    67  | 
\isacommand{lemma}\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp{\isacharbrackleft}rule{\isacharunderscore}format{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}{\isacharbrackright}{\isacharcolon}\isanewline
 | 
| 
 | 
    68  | 
\ \ {\isachardoublequote}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ t\ {\isasymin}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}%
 | 
| 
 | 
    69  | 
\begin{isamarkuptxt}%
 | 
| 
 | 
    70  | 
\noindent
  | 
| 
11196
 | 
    71  | 
The proof is by induction on the ``distance'' between \isa{t} and \isa{A}. Remember that \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}\ {\isacharequal}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}.
 | 
| 
 | 
    72  | 
If \isa{t} is already in \isa{A}, then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}} is
 | 
| 
 | 
    73  | 
trivial. If \isa{t} is not in \isa{A} but all successors are in
 | 
| 
 | 
    74  | 
\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}} (induction hypothesis), then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}} is
 | 
| 
 | 
    75  | 
again trivial.
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
The formal counterpart of this proof sketch is a well-founded induction
  | 
| 
 | 
    78  | 
w.r.t.\ \isa{M} restricted to (roughly speaking) \isa{Avoid\ s\ A\ {\isacharminus}\ A}:
 | 
| 
10267
 | 
    79  | 
\begin{isabelle}%
 | 
| 
11196
 | 
    80  | 
\ \ \ \ \ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
 | 
| 
10267
 | 
    81  | 
\end{isabelle}
 | 
| 
11277
 | 
    82  | 
As we shall see presently, the absence of infinite \isa{A}-avoiding paths
 | 
| 
10267
 | 
    83  | 
starting from \isa{s} implies well-foundedness of this relation. For the
 | 
| 
 | 
    84  | 
moment we assume this and proceed with the induction:%
  | 
| 
 | 
    85  | 
\end{isamarkuptxt}%
 | 
| 
11196
 | 
    86  | 
\isacommand{apply}{\isacharparenleft}subgoal{\isacharunderscore}tac\ {\isachardoublequote}wf{\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}{\isachardoublequote}{\isacharparenright}\isanewline
 | 
| 
10267
 | 
    87  | 
\ \isacommand{apply}{\isacharparenleft}erule{\isacharunderscore}tac\ a\ {\isacharequal}\ t\ \isakeyword{in}\ wf{\isacharunderscore}induct{\isacharparenright}\isanewline
 | 
| 
 | 
    88  | 
\ \isacommand{apply}{\isacharparenleft}clarsimp{\isacharparenright}%
 | 
| 
 | 
    89  | 
\begin{isamarkuptxt}%
 | 
| 
 | 
    90  | 
\noindent
  | 
| 
10878
 | 
    91  | 
\begin{isabelle}%
 | 
| 
11196
 | 
    92  | 
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\ t\ {\isasymin}\ Avoid\ s\ A{\isacharsemicolon}\isanewline
 | 
| 
 | 
    93  | 
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ \ \ }{\isasymforall}y{\isachardot}\ {\isacharparenleft}t{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymnotin}\ A\ {\isasymlongrightarrow}\isanewline
 | 
| 
 | 
    94  | 
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ \ \ {\isasymforall}y{\isachardot}\ }y\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ y\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}{\isasymrbrakk}\isanewline
 | 
| 
 | 
    95  | 
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ }{\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\isanewline
 | 
| 
10878
 | 
    96  | 
\ {\isadigit{2}}{\isachardot}\ {\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\isanewline
 | 
| 
11196
 | 
    97  | 
\isaindent{\ {\isadigit{2}}{\isachardot}\ }wf\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
 | 
| 
10878
 | 
    98  | 
\end{isabelle}
 | 
| 
 | 
    99  | 
Now the induction hypothesis states that if \isa{t\ {\isasymnotin}\ A}
 | 
| 
10267
 | 
   100  | 
then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in
 | 
| 
11196
 | 
   101  | 
\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Unfolding \isa{lfp} in the conclusion of the first
 | 
| 
 | 
   102  | 
subgoal once, we have to prove that \isa{t} is in \isa{A} or all successors
 | 
| 
 | 
   103  | 
of \isa{t} are in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}: if \isa{t} is not in \isa{A},
 | 
| 
 | 
   104  | 
the second 
  | 
| 
10267
 | 
   105  | 
\isa{Avoid}-rule implies that all successors of \isa{t} are in
 | 
| 
 | 
   106  | 
\isa{Avoid\ s\ A} (because we also assume \isa{t\ {\isasymin}\ Avoid\ s\ A}), and
 | 
| 
 | 
   107  | 
hence, by the induction hypothesis, all successors of \isa{t} are indeed in
 | 
| 
 | 
   108  | 
\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Mechanically:%
 | 
| 
 | 
   109  | 
\end{isamarkuptxt}%
 | 
| 
11196
 | 
   110  | 
\ \isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}af{\isacharbrackright}{\isacharparenright}\isanewline
 | 
| 
 | 
   111  | 
\ \isacommand{apply}{\isacharparenleft}simp\ {\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}\ add{\isacharcolon}\ af{\isacharunderscore}def{\isacharparenright}\isanewline
 | 
| 
10267
 | 
   112  | 
\ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}Avoid{\isachardot}intros{\isacharparenright}%
 | 
| 
 | 
   113  | 
\begin{isamarkuptxt}%
 | 
| 
 | 
   114  | 
Having proved the main goal we return to the proof obligation that the above
  | 
| 
10878
 | 
   115  | 
relation is indeed well-founded. This is proved by contradiction: if
  | 
| 
 | 
   116  | 
the relation is not well-founded then there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem
 | 
| 
10267
 | 
   117  | 
\isa{wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain}:
 | 
| 
 | 
   118  | 
\begin{isabelle}%
 | 
| 
 | 
   119  | 
\ \ \ \ \ wf\ r\ {\isacharequal}\ {\isacharparenleft}{\isasymnot}\ {\isacharparenleft}{\isasymexists}f{\isachardot}\ {\isasymforall}i{\isachardot}\ {\isacharparenleft}f\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharcomma}\ f\ i{\isacharparenright}\ {\isasymin}\ r{\isacharparenright}{\isacharparenright}%
 | 
| 
 | 
   120  | 
\end{isabelle}
 | 
| 
 | 
   121  | 
From lemma \isa{ex{\isacharunderscore}infinite{\isacharunderscore}path} the existence of an infinite
 | 
| 
10878
 | 
   122  | 
\isa{A}-avoiding path starting in \isa{s} follows, contradiction.%
 | 
| 
10267
 | 
   123  | 
\end{isamarkuptxt}%
 | 
| 
 | 
   124  | 
\isacommand{apply}{\isacharparenleft}erule\ contrapos{\isacharunderscore}pp{\isacharparenright}\isanewline
 | 
| 
 | 
   125  | 
\isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain{\isacharparenright}\isanewline
 | 
| 
 | 
   126  | 
\isacommand{apply}{\isacharparenleft}erule\ exE{\isacharparenright}\isanewline
 | 
| 
 | 
   127  | 
\isacommand{apply}{\isacharparenleft}rule\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharparenright}\isanewline
 | 
| 
 | 
   128  | 
\isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}Paths{\isacharunderscore}def{\isacharparenright}\isanewline
 | 
| 
 | 
   129  | 
\isacommand{done}%
 | 
| 
 | 
   130  | 
\begin{isamarkuptext}%
 | 
| 
11196
 | 
   131  | 
The \isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}} modifier of the \isa{rule{\isacharunderscore}format} directive in the
 | 
| 
 | 
   132  | 
statement of the lemma means
  | 
| 
10971
 | 
   133  | 
that the assumption is left unchanged --- otherwise the \isa{{\isasymforall}p} is turned
 | 
| 
10267
 | 
   134  | 
into a \isa{{\isasymAnd}p}, which would complicate matters below. As it is,
 | 
| 
 | 
   135  | 
\isa{Avoid{\isacharunderscore}in{\isacharunderscore}lfp} is now
 | 
| 
 | 
   136  | 
\begin{isabelle}%
 | 
| 
10696
 | 
   137  | 
\ \ \ \ \ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\ t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}%
 | 
| 
10267
 | 
   138  | 
\end{isabelle}
 | 
| 
 | 
   139  | 
The main theorem is simply the corollary where \isa{t\ {\isacharequal}\ s},
 | 
| 
 | 
   140  | 
in which case the assumption \isa{t\ {\isasymin}\ Avoid\ s\ A} is trivially true
 | 
| 
10845
 | 
   141  | 
by the first \isa{Avoid}-rule. Isabelle confirms this:%
 | 
| 
10267
 | 
   142  | 
\end{isamarkuptext}%
 | 
| 
10855
 | 
   143  | 
\isacommand{theorem}\ AF{\isacharunderscore}lemma{\isadigit{2}}{\isacharcolon}\ \ {\isachardoublequote}{\isacharbraceleft}s{\isachardot}\ {\isasymforall}p\ {\isasymin}\ Paths\ s{\isachardot}\ {\isasymexists}\ i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharbraceright}\ {\isasymsubseteq}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequote}\isanewline
 | 
| 
10267
 | 
   144  | 
\isacommand{by}{\isacharparenleft}auto\ elim{\isacharcolon}Avoid{\isacharunderscore}in{\isacharunderscore}lfp\ intro{\isacharcolon}Avoid{\isachardot}intros{\isacharparenright}\isanewline
 | 
| 
 | 
   145  | 
\isanewline
  | 
| 
 | 
   146  | 
\end{isabellebody}%
 | 
| 
 | 
   147  | 
%%% Local Variables:
  | 
| 
 | 
   148  | 
%%% mode: latex
  | 
| 
 | 
   149  | 
%%% TeX-master: "root"
  | 
| 
 | 
   150  | 
%%% End:
  |