| author | wenzelm | 
| Mon, 12 Apr 2021 22:36:13 +0200 | |
| changeset 73573 | a30a60aef59f | 
| parent 71886 | 4f4695757980 | 
| child 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 41777 | 1 | (* Title: ZF/pair.thy | 
| 13240 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1992 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 60770 | 6 | section\<open>Ordered Pairs\<close> | 
| 13357 | 7 | |
| 16417 | 8 | theory pair imports upair | 
| 42455 | 9 | begin | 
| 10 | ||
| 69605 | 11 | ML_file \<open>simpdata.ML\<close> | 
| 48891 | 12 | |
| 60770 | 13 | setup \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
48891diff
changeset | 14 | map_theory_simpset | 
| 60822 | 15 | (Simplifier.set_mksimps (fn ctxt => map mk_eq o ZF_atomize o Variable.gen_all ctxt) | 
| 45625 
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
 wenzelm parents: 
45620diff
changeset | 16 |       #> Simplifier.add_cong @{thm if_weak_cong})
 | 
| 60770 | 17 | \<close> | 
| 42794 | 18 | |
| 69593 | 19 | ML \<open>val ZF_ss = simpset_of \<^context>\<close> | 
| 42794 | 20 | |
| 60770 | 21 | simproc_setup defined_Bex ("\<exists>x\<in>A. P(x) & Q(x)") = \<open>
 | 
| 71886 | 22 | fn _ => Quantifier1.rearrange_Bex | 
| 23 |     (fn ctxt => unfold_tac ctxt @{thms Bex_def})
 | |
| 60770 | 24 | \<close> | 
| 42455 | 25 | |
| 60770 | 26 | simproc_setup defined_Ball ("\<forall>x\<in>A. P(x) \<longrightarrow> Q(x)") = \<open>
 | 
| 71886 | 27 | fn _ => Quantifier1.rearrange_Ball | 
| 28 |     (fn ctxt => unfold_tac ctxt @{thms Ball_def})
 | |
| 60770 | 29 | \<close> | 
| 42455 | 30 | |
| 13240 | 31 | |
| 32 | (** Lemmas for showing that <a,b> uniquely determines a and b **) | |
| 33 | ||
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 34 | lemma singleton_eq_iff [iff]: "{a} = {b} \<longleftrightarrow> a=b"
 | 
| 13240 | 35 | by (rule extension [THEN iff_trans], blast) | 
| 36 | ||
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 37 | lemma doubleton_eq_iff: "{a,b} = {c,d} \<longleftrightarrow> (a=c & b=d) | (a=d & b=c)"
 | 
| 13240 | 38 | by (rule extension [THEN iff_trans], blast) | 
| 39 | ||
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 40 | lemma Pair_iff [simp]: "<a,b> = <c,d> \<longleftrightarrow> a=c & b=d" | 
| 13240 | 41 | by (simp add: Pair_def doubleton_eq_iff, blast) | 
| 42 | ||
| 45602 | 43 | lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!] | 
| 13240 | 44 | |
| 45602 | 45 | lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1] | 
| 46 | lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2] | |
| 13240 | 47 | |
| 46820 | 48 | lemma Pair_not_0: "<a,b> \<noteq> 0" | 
| 13240 | 49 | apply (unfold Pair_def) | 
| 50 | apply (blast elim: equalityE) | |
| 51 | done | |
| 52 | ||
| 45602 | 53 | lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!] | 
| 13240 | 54 | |
| 55 | declare sym [THEN Pair_neq_0, elim!] | |
| 56 | ||
| 57 | lemma Pair_neq_fst: "<a,b>=a ==> P" | |
| 46841 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 58 | proof (unfold Pair_def) | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 59 |   assume eq: "{{a, a}, {a, b}} = a"
 | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 60 |   have  "{a, a} \<in> {{a, a}, {a, b}}" by (rule consI1)
 | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 61 |   hence "{a, a} \<in> a" by (simp add: eq)
 | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 62 |   moreover have "a \<in> {a, a}" by (rule consI1)
 | 
| 46953 | 63 | ultimately show "P" by (rule mem_asym) | 
| 46841 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 64 | qed | 
| 13240 | 65 | |
| 66 | lemma Pair_neq_snd: "<a,b>=b ==> P" | |
| 46841 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 67 | proof (unfold Pair_def) | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 68 |   assume eq: "{{a, a}, {a, b}} = b"
 | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 69 |   have  "{a, b} \<in> {{a, a}, {a, b}}" by blast
 | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 70 |   hence "{a, b} \<in> b" by (simp add: eq)
 | 
| 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 71 |   moreover have "b \<in> {a, b}" by blast
 | 
| 46953 | 72 | ultimately show "P" by (rule mem_asym) | 
| 46841 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 73 | qed | 
| 13240 | 74 | |
| 75 | ||
| 60770 | 76 | subsection\<open>Sigma: Disjoint Union of a Family of Sets\<close> | 
| 13357 | 77 | |
| 60770 | 78 | text\<open>Generalizes Cartesian product\<close> | 
| 13240 | 79 | |
| 46953 | 80 | lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) \<longleftrightarrow> a \<in> A & b \<in> B(a)" | 
| 13240 | 81 | by (simp add: Sigma_def) | 
| 82 | ||
| 46953 | 83 | lemma SigmaI [TC,intro!]: "[| a \<in> A; b \<in> B(a) |] ==> <a,b> \<in> Sigma(A,B)" | 
| 13240 | 84 | by simp | 
| 85 | ||
| 45602 | 86 | lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1] | 
| 87 | lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2] | |
| 13240 | 88 | |
| 89 | (*The general elimination rule*) | |
| 90 | lemma SigmaE [elim!]: | |
| 46953 | 91 | "[| c \<in> Sigma(A,B); | 
| 92 | !!x y.[| x \<in> A; y \<in> B(x); c=<x,y> |] ==> P | |
| 13240 | 93 | |] ==> P" | 
| 46953 | 94 | by (unfold Sigma_def, blast) | 
| 13240 | 95 | |
| 96 | lemma SigmaE2 [elim!]: | |
| 46953 | 97 | "[| <a,b> \<in> Sigma(A,B); | 
| 98 | [| a \<in> A; b \<in> B(a) |] ==> P | |
| 13240 | 99 | |] ==> P" | 
| 46953 | 100 | by (unfold Sigma_def, blast) | 
| 13240 | 101 | |
| 102 | lemma Sigma_cong: | |
| 46953 | 103 | "[| A=A'; !!x. x \<in> A' ==> B(x)=B'(x) |] ==> | 
| 13240 | 104 | Sigma(A,B) = Sigma(A',B')" | 
| 105 | by (simp add: Sigma_def) | |
| 106 | ||
| 107 | (*Sigma_cong, Pi_cong NOT given to Addcongs: they cause | |
| 108 | flex-flex pairs and the "Check your prover" error. Most | |
| 109 | Sigmas and Pis are abbreviated as * or -> *) | |
| 110 | ||
| 111 | lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0" | |
| 112 | by blast | |
| 113 | ||
| 114 | lemma Sigma_empty2 [simp]: "A*0 = 0" | |
| 115 | by blast | |
| 116 | ||
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 117 | lemma Sigma_empty_iff: "A*B=0 \<longleftrightarrow> A=0 | B=0" | 
| 13240 | 118 | by blast | 
| 119 | ||
| 120 | ||
| 69593 | 121 | subsection\<open>Projections \<^term>\<open>fst\<close> and \<^term>\<open>snd\<close>\<close> | 
| 13240 | 122 | |
| 123 | lemma fst_conv [simp]: "fst(<a,b>) = a" | |
| 13544 | 124 | by (simp add: fst_def) | 
| 13240 | 125 | |
| 126 | lemma snd_conv [simp]: "snd(<a,b>) = b" | |
| 13544 | 127 | by (simp add: snd_def) | 
| 13240 | 128 | |
| 46953 | 129 | lemma fst_type [TC]: "p \<in> Sigma(A,B) ==> fst(p) \<in> A" | 
| 13240 | 130 | by auto | 
| 131 | ||
| 46953 | 132 | lemma snd_type [TC]: "p \<in> Sigma(A,B) ==> snd(p) \<in> B(fst(p))" | 
| 13240 | 133 | by auto | 
| 134 | ||
| 46953 | 135 | lemma Pair_fst_snd_eq: "a \<in> Sigma(A,B) ==> <fst(a),snd(a)> = a" | 
| 13240 | 136 | by auto | 
| 137 | ||
| 138 | ||
| 69593 | 139 | subsection\<open>The Eliminator, \<^term>\<open>split\<close>\<close> | 
| 13240 | 140 | |
| 141 | (*A META-equality, so that it applies to higher types as well...*) | |
| 142 | lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)" | |
| 143 | by (simp add: split_def) | |
| 144 | ||
| 145 | lemma split_type [TC]: | |
| 46953 | 146 | "[| p \<in> Sigma(A,B); | 
| 147 | !!x y.[| x \<in> A; y \<in> B(x) |] ==> c(x,y):C(<x,y>) | |
| 46820 | 148 | |] ==> split(%x y. c(x,y), p) \<in> C(p)" | 
| 46953 | 149 | by (erule SigmaE, auto) | 
| 13240 | 150 | |
| 46953 | 151 | lemma expand_split: | 
| 152 | "u \<in> A*B ==> | |
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 153 | R(split(c,u)) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. u = <x,y> \<longrightarrow> R(c(x,y)))" | 
| 46841 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 154 | by (auto simp add: split_def) | 
| 13240 | 155 | |
| 156 | ||
| 69593 | 157 | subsection\<open>A version of \<^term>\<open>split\<close> for Formulae: Result Type \<^typ>\<open>o\<close>\<close> | 
| 13240 | 158 | |
| 159 | lemma splitI: "R(a,b) ==> split(R, <a,b>)" | |
| 160 | by (simp add: split_def) | |
| 161 | ||
| 162 | lemma splitE: | |
| 46953 | 163 | "[| split(R,z); z \<in> Sigma(A,B); | 
| 164 | !!x y. [| z = <x,y>; R(x,y) |] ==> P | |
| 13240 | 165 | |] ==> P" | 
| 46841 
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
 paulson parents: 
46821diff
changeset | 166 | by (auto simp add: split_def) | 
| 13240 | 167 | |
| 168 | lemma splitD: "split(R,<a,b>) ==> R(a,b)" | |
| 169 | by (simp add: split_def) | |
| 170 | ||
| 60770 | 171 | text \<open> | 
| 14864 | 172 | \bigskip Complex rules for Sigma. | 
| 60770 | 173 | \<close> | 
| 14864 | 174 | |
| 175 | lemma split_paired_Bex_Sigma [simp]: | |
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 176 | "(\<exists>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(<x,y>))" | 
| 14864 | 177 | by blast | 
| 178 | ||
| 179 | lemma split_paired_Ball_Sigma [simp]: | |
| 46821 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 paulson parents: 
46820diff
changeset | 180 | "(\<forall>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(<x,y>))" | 
| 14864 | 181 | by blast | 
| 182 | ||
| 9570 
e16e168984e1
installation of cancellation simprocs for the integers
 paulson parents: 
2469diff
changeset | 183 | end | 
| 124 | 184 | |
| 2469 | 185 |