| author | haftmann | 
| Tue, 22 Jan 2008 23:07:21 +0100 | |
| changeset 25942 | a52309ac4a4d | 
| parent 25571 | c9e39eafc7a0 | 
| child 25947 | 1f2f4d941e9e | 
| permissions | -rw-r--r-- | 
| 3366 | 1  | 
(* Title: HOL/Divides.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 
6865
 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 
paulson 
parents: 
3366 
diff
changeset
 | 
4  | 
Copyright 1999 University of Cambridge  | 
| 18154 | 5  | 
*)  | 
| 3366 | 6  | 
|
| 18154 | 7  | 
header {* The division operators div, mod and the divides relation "dvd" *}
 | 
| 3366 | 8  | 
|
| 15131 | 9  | 
theory Divides  | 
| 24268 | 10  | 
imports Power  | 
| 22993 | 11  | 
uses "~~/src/Provers/Arith/cancel_div_mod.ML"  | 
| 15131 | 12  | 
begin  | 
| 3366 | 13  | 
|
| 25942 | 14  | 
subsection {* Syntactic division operations *}
 | 
15  | 
||
| 24993 | 16  | 
class div = times +  | 
| 25062 | 17  | 
fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)  | 
18  | 
fixes mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)  | 
|
| 25942 | 19  | 
begin  | 
| 21408 | 20  | 
|
| 25942 | 21  | 
definition  | 
22  | 
dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50)  | 
|
23  | 
where  | 
|
24  | 
[code func del]: "m dvd n \<longleftrightarrow> (\<exists>k. n = m * k)"  | 
|
25  | 
||
26  | 
end  | 
|
27  | 
||
28  | 
subsection {* Abstract divisibility in commutative semirings. *}
 | 
|
29  | 
||
30  | 
class semiring_div = comm_semiring_1_cancel + div +  | 
|
31  | 
assumes mod_div_equality: "a div b * b + a mod b = a"  | 
|
32  | 
and div_by_0: "a div 0 = 0"  | 
|
33  | 
and mult_div: "b \<noteq> 0 \<Longrightarrow> a * b div b = a"  | 
|
34  | 
begin  | 
|
35  | 
||
36  | 
lemma div_by_1: "a div 1 = a"  | 
|
37  | 
using mult_div [of one a] zero_neq_one by simp  | 
|
38  | 
||
39  | 
lemma mod_by_1: "a mod 1 = 0"  | 
|
40  | 
proof -  | 
|
41  | 
from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp  | 
|
42  | 
then have "a + a mod 1 = a + 0" by simp  | 
|
43  | 
then show ?thesis by (rule add_left_imp_eq)  | 
|
44  | 
qed  | 
|
45  | 
||
46  | 
lemma mod_by_0: "a mod 0 = a"  | 
|
47  | 
using mod_div_equality [of a zero] by simp  | 
|
48  | 
||
49  | 
lemma mult_mod: "a * b mod b = 0"  | 
|
50  | 
proof (cases "b = 0")  | 
|
51  | 
case True then show ?thesis by (simp add: mod_by_0)  | 
|
52  | 
next  | 
|
53  | 
case False with mult_div have abb: "a * b div b = a" .  | 
|
54  | 
from mod_div_equality have "a * b div b * b + a * b mod b = a * b" .  | 
|
55  | 
with abb have "a * b + a * b mod b = a * b + 0" by simp  | 
|
56  | 
then show ?thesis by (rule add_left_imp_eq)  | 
|
57  | 
qed  | 
|
58  | 
||
59  | 
lemma mod_self: "a mod a = 0"  | 
|
60  | 
using mult_mod [of one] by simp  | 
|
61  | 
||
62  | 
lemma div_self: "a \<noteq> 0 \<Longrightarrow> a div a = 1"  | 
|
63  | 
using mult_div [of _ one] by simp  | 
|
64  | 
||
65  | 
lemma div_0: "0 div a = 0"  | 
|
66  | 
proof (cases "a = 0")  | 
|
67  | 
case True then show ?thesis by (simp add: div_by_0)  | 
|
68  | 
next  | 
|
69  | 
case False with mult_div have "0 * a div a = 0" .  | 
|
70  | 
then show ?thesis by simp  | 
|
71  | 
qed  | 
|
72  | 
||
73  | 
lemma mod_0: "0 mod a = 0"  | 
|
74  | 
using mod_div_equality [of zero a] div_0 by simp  | 
|
75  | 
||
76  | 
lemma dvd_def_mod [code func]: "a dvd b \<longleftrightarrow> b mod a = 0"  | 
|
77  | 
proof  | 
|
78  | 
assume "b mod a = 0"  | 
|
79  | 
with mod_div_equality [of b a] have "b div a * a = b" by simp  | 
|
80  | 
then have "b = a * (b div a)" unfolding mult_commute ..  | 
|
81  | 
then have "\<exists>c. b = a * c" ..  | 
|
82  | 
then show "a dvd b" unfolding dvd_def .  | 
|
83  | 
next  | 
|
84  | 
assume "a dvd b"  | 
|
85  | 
then have "\<exists>c. b = a * c" unfolding dvd_def .  | 
|
86  | 
then obtain c where "b = a * c" ..  | 
|
87  | 
then have "b mod a = a * c mod a" by simp  | 
|
88  | 
then have "b mod a = c * a mod a" by (simp add: mult_commute)  | 
|
89  | 
then show "b mod a = 0" by (simp add: mult_mod)  | 
|
90  | 
qed  | 
|
91  | 
||
92  | 
lemma dvd_refl: "a dvd a"  | 
|
93  | 
unfolding dvd_def_mod mod_self ..  | 
|
94  | 
||
95  | 
lemma dvd_trans:  | 
|
96  | 
assumes "a dvd b" and "b dvd c"  | 
|
97  | 
shows "a dvd c"  | 
|
98  | 
proof -  | 
|
99  | 
from assms obtain v where "b = a * v" unfolding dvd_def by auto  | 
|
100  | 
moreover from assms obtain w where "c = b * w" unfolding dvd_def by auto  | 
|
101  | 
ultimately have "c = a * (v * w)" by (simp add: mult_assoc)  | 
|
102  | 
then show ?thesis unfolding dvd_def ..  | 
|
103  | 
qed  | 
|
104  | 
||
105  | 
lemma one_dvd: "1 dvd a"  | 
|
106  | 
unfolding dvd_def by simp  | 
|
107  | 
||
108  | 
lemma dvd_0: "a dvd 0"  | 
|
109  | 
unfolding dvd_def proof  | 
|
110  | 
show "0 = a * 0" by simp  | 
|
111  | 
qed  | 
|
112  | 
||
113  | 
end  | 
|
114  | 
||
115  | 
||
116  | 
subsection {* Division on the natural numbers *}
 | 
|
117  | 
||
118  | 
instantiation nat :: semiring_div  | 
|
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
119  | 
begin  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
120  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
121  | 
definition  | 
| 22993 | 122  | 
div_def: "m div n == wfrec (pred_nat^+)  | 
123  | 
(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"  | 
|
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
124  | 
|
| 25942 | 125  | 
lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+)  | 
126  | 
(%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"  | 
|
127  | 
by (simp add: div_def)  | 
|
128  | 
||
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
129  | 
definition  | 
| 
22261
 
9e185f78e7d4
Adapted to changes in Transitive_Closure theory.
 
berghofe 
parents: 
21911 
diff
changeset
 | 
130  | 
mod_def: "m mod n == wfrec (pred_nat^+)  | 
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
131  | 
(%f j. if j<n | n=0 then j else f (j-n)) m"  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25162 
diff
changeset
 | 
132  | 
|
| 22718 | 133  | 
lemma mod_eq: "(%m. m mod n) =  | 
| 
22261
 
9e185f78e7d4
Adapted to changes in Transitive_Closure theory.
 
berghofe 
parents: 
21911 
diff
changeset
 | 
134  | 
wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))"  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
135  | 
by (simp add: mod_def)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
136  | 
|
| 25942 | 137  | 
lemmas wf_less_trans = def_wfrec [THEN trans,  | 
138  | 
OF eq_reflection wf_pred_nat [THEN wf_trancl], standard]  | 
|
139  | 
||
140  | 
lemma div_less [simp]: "m < n \<Longrightarrow> m div n = (0\<Colon>nat)"  | 
|
141  | 
by (rule div_eq [THEN wf_less_trans]) simp  | 
|
142  | 
||
143  | 
lemma le_div_geq: "0 < n \<Longrightarrow> n \<le> m \<Longrightarrow> m div n = Suc ((m - n) div n)"  | 
|
144  | 
by (rule div_eq [THEN wf_less_trans]) (simp add: cut_apply less_eq)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
145  | 
|
| 25942 | 146  | 
lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a\<Colon>nat)"  | 
147  | 
by (rule mod_eq [THEN wf_less_trans]) simp  | 
|
148  | 
||
149  | 
lemma mod_less [simp]: "m < n \<Longrightarrow> m mod n = (m\<Colon>nat)"  | 
|
150  | 
by (rule mod_eq [THEN wf_less_trans]) simp  | 
|
151  | 
||
152  | 
lemma le_mod_geq: "(n\<Colon>nat) \<le> m \<Longrightarrow> m mod n = (m - n) mod n"  | 
|
153  | 
by (cases "n = 0", simp, rule mod_eq [THEN wf_less_trans])  | 
|
154  | 
(simp add: cut_apply less_eq)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
155  | 
|
| 25942 | 156  | 
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)"  | 
157  | 
by (simp add: le_mod_geq)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
158  | 
|
| 25942 | 159  | 
instance proof  | 
160  | 
fix n m :: nat  | 
|
161  | 
show "(m div n) * n + m mod n = m"  | 
|
162  | 
apply (cases "n = 0", simp)  | 
|
163  | 
apply (induct m rule: nat_less_induct [rule_format])  | 
|
164  | 
apply (subst mod_if)  | 
|
165  | 
apply (simp add: add_assoc add_diff_inverse le_div_geq)  | 
|
166  | 
done  | 
|
167  | 
next  | 
|
168  | 
fix n :: nat  | 
|
169  | 
show "n div 0 = 0"  | 
|
170  | 
by (rule div_eq [THEN wf_less_trans], simp)  | 
|
171  | 
next  | 
|
172  | 
fix n m :: nat  | 
|
173  | 
assume "n \<noteq> 0"  | 
|
174  | 
then show "m * n div n = m"  | 
|
175  | 
by (induct m) (simp_all add: le_div_geq)  | 
|
176  | 
qed  | 
|
177  | 
||
178  | 
end  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
179  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
180  | 
|
| 25942 | 181  | 
subsubsection{*Simproc for Cancelling Div and Mod*}
 | 
182  | 
||
183  | 
lemmas mod_div_equality = semiring_div_class.times_div_mod_plus_zero_one.mod_div_equality [of "m\<Colon>nat" n, standard]  | 
|
184  | 
||
185  | 
lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"  | 
|
186  | 
unfolding mult_commute [of n]  | 
|
187  | 
by (rule mod_div_equality)  | 
|
188  | 
||
189  | 
lemma div_mod_equality: "((m div n)*n + m mod n) + k = (m::nat) + k"  | 
|
190  | 
by (simp add: mod_div_equality)  | 
|
191  | 
||
192  | 
lemma div_mod_equality2: "(n*(m div n) + m mod n) + k = (m::nat) + k"  | 
|
193  | 
by (simp add: mod_div_equality2)  | 
|
194  | 
||
195  | 
ML {*
 | 
|
196  | 
structure CancelDivModData =  | 
|
197  | 
struct  | 
|
198  | 
||
199  | 
val div_name = @{const_name Divides.div};
 | 
|
200  | 
val mod_name = @{const_name Divides.mod};
 | 
|
201  | 
val mk_binop = HOLogic.mk_binop;  | 
|
202  | 
val mk_sum = NatArithUtils.mk_sum;  | 
|
203  | 
val dest_sum = NatArithUtils.dest_sum;  | 
|
204  | 
||
205  | 
(*logic*)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
206  | 
|
| 25942 | 207  | 
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]
 | 
208  | 
||
209  | 
val trans = trans  | 
|
210  | 
||
211  | 
val prove_eq_sums =  | 
|
212  | 
  let val simps = @{thm add_0} :: @{thm add_0_right} :: @{thms add_ac}
 | 
|
213  | 
in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;  | 
|
214  | 
||
215  | 
end;  | 
|
216  | 
||
217  | 
structure CancelDivMod = CancelDivModFun(CancelDivModData);  | 
|
218  | 
||
219  | 
val cancel_div_mod_proc = NatArithUtils.prep_simproc  | 
|
220  | 
      ("cancel_div_mod", ["(m::nat) + n"], K CancelDivMod.proc);
 | 
|
221  | 
||
222  | 
Addsimprocs[cancel_div_mod_proc];  | 
|
223  | 
*}  | 
|
224  | 
||
225  | 
||
226  | 
subsubsection {* Remainder *}
 | 
|
227  | 
||
228  | 
lemmas DIVISION_BY_ZERO_MOD [simp] = mod_by_0 [of "a\<Colon>nat", standard]  | 
|
229  | 
||
230  | 
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"  | 
|
231  | 
by (induct m) (simp_all add: le_div_geq)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
232  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
233  | 
lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n"  | 
| 25942 | 234  | 
by (simp add: le_mod_geq linorder_not_less)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
235  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
236  | 
lemma mod_1 [simp]: "m mod Suc 0 = 0"  | 
| 22718 | 237  | 
by (induct m) (simp_all add: mod_geq)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
238  | 
|
| 25942 | 239  | 
lemmas mod_self [simp] = semiring_div_class.mod_self [of "n\<Colon>nat", standard]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
240  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
241  | 
lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)"  | 
| 22718 | 242  | 
apply (subgoal_tac "(n + m) mod n = (n+m-n) mod n")  | 
243  | 
apply (simp add: add_commute)  | 
|
| 25942 | 244  | 
apply (subst le_mod_geq [symmetric], simp_all)  | 
| 22718 | 245  | 
done  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
246  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
247  | 
lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)"  | 
| 22718 | 248  | 
by (simp add: add_commute mod_add_self2)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
249  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
250  | 
lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)"  | 
| 22718 | 251  | 
by (induct k) (simp_all add: add_left_commute [of _ n])  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
252  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
253  | 
lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)"  | 
| 22718 | 254  | 
by (simp add: mult_commute mod_mult_self1)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
255  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
256  | 
lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)"  | 
| 22718 | 257  | 
apply (cases "n = 0", simp)  | 
258  | 
apply (cases "k = 0", simp)  | 
|
259  | 
apply (induct m rule: nat_less_induct)  | 
|
260  | 
apply (subst mod_if, simp)  | 
|
261  | 
apply (simp add: mod_geq diff_mult_distrib)  | 
|
262  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
263  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
264  | 
lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"  | 
| 22718 | 265  | 
by (simp add: mult_commute [of k] mod_mult_distrib)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
266  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
267  | 
lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)"  | 
| 22718 | 268  | 
apply (cases "n = 0", simp)  | 
269  | 
apply (induct m, simp)  | 
|
270  | 
apply (rename_tac k)  | 
|
271  | 
apply (cut_tac m = "k * n" and n = n in mod_add_self2)  | 
|
272  | 
apply (simp add: add_commute)  | 
|
273  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
274  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
275  | 
lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)"  | 
| 22718 | 276  | 
by (simp add: mult_commute mod_mult_self_is_0)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
277  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
278  | 
|
| 25942 | 279  | 
subsubsection{*Quotient*}
 | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
280  | 
|
| 25942 | 281  | 
lemmas DIVISION_BY_ZERO_DIV [simp] = div_by_0 [of "a\<Colon>nat", standard]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
282  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
283  | 
lemma div_geq: "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"  | 
| 25942 | 284  | 
by (simp add: le_div_geq linorder_not_less)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
285  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
286  | 
lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"  | 
| 22718 | 287  | 
by (simp add: div_geq)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
288  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
289  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
290  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
291  | 
(* a simple rearrangement of mod_div_equality: *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
292  | 
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"  | 
| 22718 | 293  | 
by (cut_tac m = m and n = n in mod_div_equality2, arith)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
294  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
295  | 
lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)"  | 
| 22718 | 296  | 
apply (induct m rule: nat_less_induct)  | 
297  | 
apply (rename_tac m)  | 
|
298  | 
apply (case_tac "m<n", simp)  | 
|
299  | 
  txt{*case @{term "n \<le> m"}*}
 | 
|
300  | 
apply (simp add: mod_geq)  | 
|
301  | 
done  | 
|
| 15439 | 302  | 
|
303  | 
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"  | 
|
| 22718 | 304  | 
apply (drule mod_less_divisor [where m = m])  | 
305  | 
apply simp  | 
|
306  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
307  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
308  | 
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"  | 
| 22718 | 309  | 
by (simp add: mult_commute div_mult_self_is_m)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
310  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
311  | 
(*mod_mult_distrib2 above is the counterpart for remainder*)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
312  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
313  | 
|
| 25942 | 314  | 
subsubsection {* Proving advancedfacts about Quotient and Remainder *}
 | 
315  | 
||
316  | 
definition  | 
|
317  | 
quorem :: "(nat*nat) * (nat*nat) => bool" where  | 
|
318  | 
(*This definition helps prove the harder properties of div and mod.  | 
|
319  | 
It is copied from IntDiv.thy; should it be overloaded?*)  | 
|
320  | 
"quorem = (%((a,b), (q,r)).  | 
|
321  | 
a = b*q + r &  | 
|
322  | 
(if 0<b then 0\<le>r & r<b else b<r & r \<le>0))"  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
323  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
324  | 
lemma unique_quotient_lemma:  | 
| 22718 | 325  | 
"[| b*q' + r' \<le> b*q + r; x < b; r < b |]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
326  | 
==> q' \<le> (q::nat)"  | 
| 22718 | 327  | 
apply (rule leI)  | 
328  | 
apply (subst less_iff_Suc_add)  | 
|
329  | 
apply (auto simp add: add_mult_distrib2)  | 
|
330  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
331  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
332  | 
lemma unique_quotient:  | 
| 22718 | 333  | 
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
334  | 
==> q = q'"  | 
| 22718 | 335  | 
apply (simp add: split_ifs quorem_def)  | 
336  | 
apply (blast intro: order_antisym  | 
|
337  | 
dest: order_eq_refl [THEN unique_quotient_lemma] sym)  | 
|
338  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
339  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
340  | 
lemma unique_remainder:  | 
| 22718 | 341  | 
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
342  | 
==> r = r'"  | 
| 22718 | 343  | 
apply (subgoal_tac "q = q'")  | 
344  | 
prefer 2 apply (blast intro: unique_quotient)  | 
|
345  | 
apply (simp add: quorem_def)  | 
|
346  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
347  | 
|
| 25162 | 348  | 
lemma quorem_div_mod: "b > 0 ==> quorem ((a, b), (a div b, a mod b))"  | 
349  | 
unfolding quorem_def by simp  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
350  | 
|
| 25162 | 351  | 
lemma quorem_div: "[| quorem((a,b),(q,r)); b > 0 |] ==> a div b = q"  | 
352  | 
by (simp add: quorem_div_mod [THEN unique_quotient])  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
353  | 
|
| 25162 | 354  | 
lemma quorem_mod: "[| quorem((a,b),(q,r)); b > 0 |] ==> a mod b = r"  | 
355  | 
by (simp add: quorem_div_mod [THEN unique_remainder])  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
356  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
357  | 
(** A dividend of zero **)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
358  | 
|
| 25942 | 359  | 
lemmas div_0 [simp] = semiring_div_class.div_0 [of "n\<Colon>nat", standard]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
360  | 
|
| 25942 | 361  | 
lemmas mod_0 [simp] = semiring_div_class.mod_0 [of "n\<Colon>nat", standard]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
362  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
363  | 
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
364  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
365  | 
lemma quorem_mult1_eq:  | 
| 25162 | 366  | 
"[| quorem((b,c),(q,r)); c > 0 |]  | 
367  | 
==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"  | 
|
368  | 
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
369  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
370  | 
lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
371  | 
apply (cases "c = 0", simp)  | 
| 25942 | 372  | 
thm DIVISION_BY_ZERO_DIV  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
373  | 
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div])  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
374  | 
done  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
375  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
376  | 
lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
377  | 
apply (cases "c = 0", simp)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
378  | 
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod])  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
379  | 
done  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
380  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
381  | 
lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c"  | 
| 22718 | 382  | 
apply (rule trans)  | 
383  | 
apply (rule_tac s = "b*a mod c" in trans)  | 
|
384  | 
apply (rule_tac [2] mod_mult1_eq)  | 
|
385  | 
apply (simp_all add: mult_commute)  | 
|
386  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
387  | 
|
| 25162 | 388  | 
lemma mod_mult_distrib_mod:  | 
389  | 
"(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c"  | 
|
390  | 
apply (rule mod_mult1_eq' [THEN trans])  | 
|
391  | 
apply (rule mod_mult1_eq)  | 
|
392  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
393  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
394  | 
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
395  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
396  | 
lemma quorem_add1_eq:  | 
| 25162 | 397  | 
"[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c > 0 |]  | 
398  | 
==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"  | 
|
399  | 
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
400  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
401  | 
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
402  | 
lemma div_add1_eq:  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
403  | 
"(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
404  | 
apply (cases "c = 0", simp)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
405  | 
apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
406  | 
done  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
407  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
408  | 
lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c"  | 
| 
25134
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
409  | 
apply (cases "c = 0", simp)  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
410  | 
apply (blast intro: quorem_div_mod quorem_add1_eq [THEN quorem_mod])  | 
| 
 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 
nipkow 
parents: 
25112 
diff
changeset
 | 
411  | 
done  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
412  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
413  | 
|
| 25942 | 414  | 
subsubsection {* Proving @{prop "a div (b*c) = (a div b) div c"} *}
 | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
415  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
416  | 
(** first, a lemma to bound the remainder **)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
417  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
418  | 
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"  | 
| 22718 | 419  | 
apply (cut_tac m = q and n = c in mod_less_divisor)  | 
420  | 
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)  | 
|
421  | 
apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)  | 
|
422  | 
apply (simp add: add_mult_distrib2)  | 
|
423  | 
done  | 
|
| 
10559
 
d3fd54fc659b
many new div and mod properties (borrowed from Integ/IntDiv)
 
paulson 
parents: 
10214 
diff
changeset
 | 
424  | 
|
| 22718 | 425  | 
lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r)); 0 < b; 0 < c |]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
426  | 
==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"  | 
| 22718 | 427  | 
by (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
428  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
429  | 
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"  | 
| 22718 | 430  | 
apply (cases "b = 0", simp)  | 
431  | 
apply (cases "c = 0", simp)  | 
|
432  | 
apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div])  | 
|
433  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
434  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
435  | 
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"  | 
| 22718 | 436  | 
apply (cases "b = 0", simp)  | 
437  | 
apply (cases "c = 0", simp)  | 
|
438  | 
apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod])  | 
|
439  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
440  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
441  | 
|
| 25942 | 442  | 
subsubsection{*Cancellation of Common Factors in Division*}
 | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
443  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
444  | 
lemma div_mult_mult_lemma:  | 
| 22718 | 445  | 
"[| (0::nat) < b; 0 < c |] ==> (c*a) div (c*b) = a div b"  | 
446  | 
by (auto simp add: div_mult2_eq)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
447  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
448  | 
lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b"  | 
| 22718 | 449  | 
apply (cases "b = 0")  | 
450  | 
apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma)  | 
|
451  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
452  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
453  | 
lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b"  | 
| 22718 | 454  | 
apply (drule div_mult_mult1)  | 
455  | 
apply (auto simp add: mult_commute)  | 
|
456  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
457  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
458  | 
|
| 25942 | 459  | 
subsubsection{*Further Facts about Quotient and Remainder*}
 | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
460  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
461  | 
lemma div_1 [simp]: "m div Suc 0 = m"  | 
| 22718 | 462  | 
by (induct m) (simp_all add: div_geq)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
463  | 
|
| 25942 | 464  | 
lemmas div_self [simp] = semiring_div_class.div_self [of "n\<Colon>nat", standard]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
465  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
466  | 
lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)"  | 
| 22718 | 467  | 
apply (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n) ")  | 
468  | 
apply (simp add: add_commute)  | 
|
469  | 
apply (subst div_geq [symmetric], simp_all)  | 
|
470  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
471  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
472  | 
lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)"  | 
| 22718 | 473  | 
by (simp add: add_commute div_add_self2)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
474  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
475  | 
lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"  | 
| 22718 | 476  | 
apply (subst div_add1_eq)  | 
477  | 
apply (subst div_mult1_eq, simp)  | 
|
478  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
479  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
480  | 
lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)"  | 
| 22718 | 481  | 
by (simp add: mult_commute div_mult_self1)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
482  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
483  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
484  | 
(* Monotonicity of div in first argument *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
485  | 
lemma div_le_mono [rule_format (no_asm)]:  | 
| 22718 | 486  | 
"\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
487  | 
apply (case_tac "k=0", simp)  | 
| 15251 | 488  | 
apply (induct "n" rule: nat_less_induct, clarify)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
489  | 
apply (case_tac "n<k")  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
490  | 
(* 1 case n<k *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
491  | 
apply simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
492  | 
(* 2 case n >= k *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
493  | 
apply (case_tac "m<k")  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
494  | 
(* 2.1 case m<k *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
495  | 
apply simp  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
496  | 
(* 2.2 case m>=k *)  | 
| 15439 | 497  | 
apply (simp add: div_geq diff_le_mono)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
498  | 
done  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
499  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
500  | 
(* Antimonotonicity of div in second argument *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
501  | 
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
502  | 
apply (subgoal_tac "0<n")  | 
| 22718 | 503  | 
prefer 2 apply simp  | 
| 15251 | 504  | 
apply (induct_tac k rule: nat_less_induct)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
505  | 
apply (rename_tac "k")  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
506  | 
apply (case_tac "k<n", simp)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
507  | 
apply (subgoal_tac "~ (k<m) ")  | 
| 22718 | 508  | 
prefer 2 apply simp  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
509  | 
apply (simp add: div_geq)  | 
| 15251 | 510  | 
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
511  | 
prefer 2  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
512  | 
apply (blast intro: div_le_mono diff_le_mono2)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
513  | 
apply (rule le_trans, simp)  | 
| 15439 | 514  | 
apply (simp)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
515  | 
done  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
516  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
517  | 
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
518  | 
apply (case_tac "n=0", simp)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
519  | 
apply (subgoal_tac "m div n \<le> m div 1", simp)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
520  | 
apply (rule div_le_mono2)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
521  | 
apply (simp_all (no_asm_simp))  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
522  | 
done  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
523  | 
|
| 22718 | 524  | 
(* Similar for "less than" *)  | 
| 17085 | 525  | 
lemma div_less_dividend [rule_format]:  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
526  | 
"!!n::nat. 1<n ==> 0 < m --> m div n < m"  | 
| 15251 | 527  | 
apply (induct_tac m rule: nat_less_induct)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
528  | 
apply (rename_tac "m")  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
529  | 
apply (case_tac "m<n", simp)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
530  | 
apply (subgoal_tac "0<n")  | 
| 22718 | 531  | 
prefer 2 apply simp  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
532  | 
apply (simp add: div_geq)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
533  | 
apply (case_tac "n<m")  | 
| 15251 | 534  | 
apply (subgoal_tac "(m-n) div n < (m-n) ")  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
535  | 
apply (rule impI less_trans_Suc)+  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
536  | 
apply assumption  | 
| 15439 | 537  | 
apply (simp_all)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
538  | 
done  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
539  | 
|
| 17085 | 540  | 
declare div_less_dividend [simp]  | 
541  | 
||
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
542  | 
text{*A fact for the mutilated chess board*}
 | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
543  | 
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
544  | 
apply (case_tac "n=0", simp)  | 
| 15251 | 545  | 
apply (induct "m" rule: nat_less_induct)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
546  | 
apply (case_tac "Suc (na) <n")  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
547  | 
(* case Suc(na) < n *)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
548  | 
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
549  | 
(* case n \<le> Suc(na) *)  | 
| 16796 | 550  | 
apply (simp add: linorder_not_less le_Suc_eq mod_geq)  | 
| 15439 | 551  | 
apply (auto simp add: Suc_diff_le le_mod_geq)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
552  | 
done  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
553  | 
|
| 14437 | 554  | 
lemma nat_mod_div_trivial [simp]: "m mod n div n = (0 :: nat)"  | 
| 22718 | 555  | 
by (cases "n = 0") auto  | 
| 14437 | 556  | 
|
557  | 
lemma nat_mod_mod_trivial [simp]: "m mod n mod n = (m mod n :: nat)"  | 
|
| 22718 | 558  | 
by (cases "n = 0") auto  | 
| 14437 | 559  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
560  | 
|
| 25942 | 561  | 
subsubsection{*The Divides Relation*}
 | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
562  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
563  | 
lemma dvdI [intro?]: "n = m * k ==> m dvd n"  | 
| 22718 | 564  | 
unfolding dvd_def by blast  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
565  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
566  | 
lemma dvdE [elim?]: "!!P. [|m dvd n; !!k. n = m*k ==> P|] ==> P"  | 
| 22718 | 567  | 
unfolding dvd_def by blast  | 
| 13152 | 568  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
569  | 
lemma dvd_0_right [iff]: "m dvd (0::nat)"  | 
| 22718 | 570  | 
unfolding dvd_def by (blast intro: mult_0_right [symmetric])  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
571  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
572  | 
lemma dvd_0_left: "0 dvd m ==> m = (0::nat)"  | 
| 22718 | 573  | 
by (force simp add: dvd_def)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
574  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
575  | 
lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)"  | 
| 22718 | 576  | 
by (blast intro: dvd_0_left)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
577  | 
|
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
24268 
diff
changeset
 | 
578  | 
declare dvd_0_left_iff [noatp]  | 
| 
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
24268 
diff
changeset
 | 
579  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
580  | 
lemma dvd_1_left [iff]: "Suc 0 dvd k"  | 
| 22718 | 581  | 
unfolding dvd_def by simp  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
582  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
583  | 
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"  | 
| 22718 | 584  | 
by (simp add: dvd_def)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
585  | 
|
| 25942 | 586  | 
lemmas dvd_refl [simp] = semiring_div_class.dvd_refl [of "m\<Colon>nat", standard]  | 
587  | 
lemmas dvd_trans [trans] = semiring_div_class.dvd_trans [of "m\<Colon>nat" n p, standard]  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
588  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
589  | 
lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"  | 
| 22718 | 590  | 
unfolding dvd_def  | 
591  | 
by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
592  | 
|
| 
23684
 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 
haftmann 
parents: 
23162 
diff
changeset
 | 
593  | 
text {* @{term "op dvd"} is a partial order *}
 | 
| 
 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 
haftmann 
parents: 
23162 
diff
changeset
 | 
594  | 
|
| 25942 | 595  | 
interpretation dvd: order ["op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> n \<noteq> m"]  | 
| 
23684
 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 
haftmann 
parents: 
23162 
diff
changeset
 | 
596  | 
by unfold_locales (auto intro: dvd_trans dvd_anti_sym)  | 
| 
 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 
haftmann 
parents: 
23162 
diff
changeset
 | 
597  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
598  | 
lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"  | 
| 22718 | 599  | 
unfolding dvd_def  | 
600  | 
by (blast intro: add_mult_distrib2 [symmetric])  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
601  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
602  | 
lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"  | 
| 22718 | 603  | 
unfolding dvd_def  | 
604  | 
by (blast intro: diff_mult_distrib2 [symmetric])  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
605  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
606  | 
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"  | 
| 22718 | 607  | 
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])  | 
608  | 
apply (blast intro: dvd_add)  | 
|
609  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
610  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
611  | 
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"  | 
| 22718 | 612  | 
by (drule_tac m = m in dvd_diff, auto)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
613  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
614  | 
lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)"  | 
| 22718 | 615  | 
unfolding dvd_def by (blast intro: mult_left_commute)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
616  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
617  | 
lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)"  | 
| 22718 | 618  | 
apply (subst mult_commute)  | 
619  | 
apply (erule dvd_mult)  | 
|
620  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
621  | 
|
| 
17084
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16796 
diff
changeset
 | 
622  | 
lemma dvd_triv_right [iff]: "k dvd (m*k :: nat)"  | 
| 22718 | 623  | 
by (rule dvd_refl [THEN dvd_mult])  | 
| 
17084
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16796 
diff
changeset
 | 
624  | 
|
| 
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16796 
diff
changeset
 | 
625  | 
lemma dvd_triv_left [iff]: "k dvd (k*m :: nat)"  | 
| 22718 | 626  | 
by (rule dvd_refl [THEN dvd_mult2])  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
627  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
628  | 
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"  | 
| 22718 | 629  | 
apply (rule iffI)  | 
630  | 
apply (erule_tac [2] dvd_add)  | 
|
631  | 
apply (rule_tac [2] dvd_refl)  | 
|
632  | 
apply (subgoal_tac "n = (n+k) -k")  | 
|
633  | 
prefer 2 apply simp  | 
|
634  | 
apply (erule ssubst)  | 
|
635  | 
apply (erule dvd_diff)  | 
|
636  | 
apply (rule dvd_refl)  | 
|
637  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
638  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
639  | 
lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n"  | 
| 22718 | 640  | 
unfolding dvd_def  | 
641  | 
apply (case_tac "n = 0", auto)  | 
|
642  | 
apply (blast intro: mod_mult_distrib2 [symmetric])  | 
|
643  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
644  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
645  | 
lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n; k dvd n |] ==> k dvd m"  | 
| 22718 | 646  | 
apply (subgoal_tac "k dvd (m div n) *n + m mod n")  | 
647  | 
apply (simp add: mod_div_equality)  | 
|
648  | 
apply (simp only: dvd_add dvd_mult)  | 
|
649  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
650  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
651  | 
lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)"  | 
| 22718 | 652  | 
by (blast intro: dvd_mod_imp_dvd dvd_mod)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
653  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
654  | 
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"  | 
| 22718 | 655  | 
unfolding dvd_def  | 
656  | 
apply (erule exE)  | 
|
657  | 
apply (simp add: mult_ac)  | 
|
658  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
659  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
660  | 
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"  | 
| 22718 | 661  | 
apply auto  | 
662  | 
apply (subgoal_tac "m*n dvd m*1")  | 
|
663  | 
apply (drule dvd_mult_cancel, auto)  | 
|
664  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
665  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
666  | 
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"  | 
| 22718 | 667  | 
apply (subst mult_commute)  | 
668  | 
apply (erule dvd_mult_cancel1)  | 
|
669  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
670  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
671  | 
lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)"  | 
| 22718 | 672  | 
apply (unfold dvd_def, clarify)  | 
673  | 
apply (rule_tac x = "k*ka" in exI)  | 
|
674  | 
apply (simp add: mult_ac)  | 
|
675  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
676  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
677  | 
lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k"  | 
| 22718 | 678  | 
by (simp add: dvd_def mult_assoc, blast)  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
679  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
680  | 
lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k"  | 
| 22718 | 681  | 
apply (unfold dvd_def, clarify)  | 
682  | 
apply (rule_tac x = "i*k" in exI)  | 
|
683  | 
apply (simp add: mult_ac)  | 
|
684  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
685  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
686  | 
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"  | 
| 22718 | 687  | 
apply (unfold dvd_def, clarify)  | 
688  | 
apply (simp_all (no_asm_use) add: zero_less_mult_iff)  | 
|
689  | 
apply (erule conjE)  | 
|
690  | 
apply (rule le_trans)  | 
|
691  | 
apply (rule_tac [2] le_refl [THEN mult_le_mono])  | 
|
692  | 
apply (erule_tac [2] Suc_leI, simp)  | 
|
693  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
694  | 
|
| 25942 | 695  | 
lemmas dvd_eq_mod_eq_0 = dvd_def_mod [of "k\<Colon>nat" n, standard]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
696  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
697  | 
lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"  | 
| 22718 | 698  | 
apply (subgoal_tac "m mod n = 0")  | 
699  | 
apply (simp add: mult_div_cancel)  | 
|
700  | 
apply (simp only: dvd_eq_mod_eq_0)  | 
|
701  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
702  | 
|
| 21408 | 703  | 
lemma le_imp_power_dvd: "!!i::nat. m \<le> n ==> i^m dvd i^n"  | 
| 22718 | 704  | 
apply (unfold dvd_def)  | 
705  | 
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])  | 
|
706  | 
apply (simp add: power_add)  | 
|
707  | 
done  | 
|
| 21408 | 708  | 
|
| 25162 | 709  | 
lemma nat_zero_less_power_iff [simp]: "(x^n > 0) = (x > (0::nat) | n=0)"  | 
| 22718 | 710  | 
by (induct n) auto  | 
| 21408 | 711  | 
|
712  | 
lemma power_le_dvd [rule_format]: "k^j dvd n --> i\<le>j --> k^i dvd (n::nat)"  | 
|
| 22718 | 713  | 
apply (induct j)  | 
714  | 
apply (simp_all add: le_Suc_eq)  | 
|
715  | 
apply (blast dest!: dvd_mult_right)  | 
|
716  | 
done  | 
|
| 21408 | 717  | 
|
718  | 
lemma power_dvd_imp_le: "[|i^m dvd i^n; (1::nat) < i|] ==> m \<le> n"  | 
|
| 22718 | 719  | 
apply (rule power_le_imp_le_exp, assumption)  | 
720  | 
apply (erule dvd_imp_le, simp)  | 
|
721  | 
done  | 
|
| 21408 | 722  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
723  | 
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"  | 
| 22718 | 724  | 
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)  | 
| 
17084
 
fb0a80aef0be
classical rules must have names for ATP integration
 
paulson 
parents: 
16796 
diff
changeset
 | 
725  | 
|
| 22718 | 726  | 
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
727  | 
|
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
728  | 
(*Loses information, namely we also have r<d provided d is nonzero*)  | 
| 
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
729  | 
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"  | 
| 22718 | 730  | 
apply (cut_tac m = m in mod_div_equality)  | 
731  | 
apply (simp only: add_ac)  | 
|
732  | 
apply (blast intro: sym)  | 
|
733  | 
done  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
734  | 
|
| 14131 | 735  | 
|
| 13152 | 736  | 
lemma split_div:  | 
| 
13189
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
737  | 
"P(n div k :: nat) =  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
738  | 
((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
739  | 
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
740  | 
proof  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
741  | 
assume P: ?P  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
742  | 
show ?Q  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
743  | 
proof (cases)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
744  | 
assume "k = 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
745  | 
with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
746  | 
next  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
747  | 
assume not0: "k \<noteq> 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
748  | 
thus ?Q  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
749  | 
proof (simp, intro allI impI)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
750  | 
fix i j  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
751  | 
assume n: "n = k*i + j" and j: "j < k"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
752  | 
show "P i"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
753  | 
proof (cases)  | 
| 22718 | 754  | 
assume "i = 0"  | 
755  | 
with n j P show "P i" by simp  | 
|
| 
13189
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
756  | 
next  | 
| 22718 | 757  | 
assume "i \<noteq> 0"  | 
758  | 
with not0 n j P show "P i" by(simp add:add_ac)  | 
|
| 
13189
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
759  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
760  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
761  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
762  | 
next  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
763  | 
assume Q: ?Q  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
764  | 
show ?P  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
765  | 
proof (cases)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
766  | 
assume "k = 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
767  | 
with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
768  | 
next  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
769  | 
assume not0: "k \<noteq> 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
770  | 
with Q have R: ?R by simp  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
771  | 
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]  | 
| 13517 | 772  | 
show ?P by simp  | 
| 
13189
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
773  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
774  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
775  | 
|
| 13882 | 776  | 
lemma split_div_lemma:  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
777  | 
"0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))"  | 
| 25162 | 778  | 
apply (rule iffI)  | 
779  | 
apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient)  | 
|
780  | 
prefer 3; apply assumption  | 
|
781  | 
apply (simp_all add: quorem_def)  | 
|
782  | 
apply arith  | 
|
783  | 
apply (rule conjI)  | 
|
784  | 
apply (rule_tac P="%x. n * (m div n) \<le> x" in  | 
|
| 13882 | 785  | 
subst [OF mod_div_equality [of _ n]])  | 
| 25162 | 786  | 
apply (simp only: add: mult_ac)  | 
787  | 
apply (rule_tac P="%x. x < n + n * (m div n)" in  | 
|
| 13882 | 788  | 
subst [OF mod_div_equality [of _ n]])  | 
| 25162 | 789  | 
apply (simp only: add: mult_ac add_ac)  | 
790  | 
apply (rule add_less_mono1, simp)  | 
|
791  | 
done  | 
|
| 13882 | 792  | 
|
793  | 
theorem split_div':  | 
|
794  | 
"P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>  | 
|
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
795  | 
(\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"  | 
| 13882 | 796  | 
apply (case_tac "0 < n")  | 
797  | 
apply (simp only: add: split_div_lemma)  | 
|
798  | 
apply (simp_all add: DIVISION_BY_ZERO_DIV)  | 
|
799  | 
done  | 
|
800  | 
||
| 
13189
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
801  | 
lemma split_mod:  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
802  | 
"P(n mod k :: nat) =  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
803  | 
((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
804  | 
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
805  | 
proof  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
806  | 
assume P: ?P  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
807  | 
show ?Q  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
808  | 
proof (cases)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
809  | 
assume "k = 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
810  | 
with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
811  | 
next  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
812  | 
assume not0: "k \<noteq> 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
813  | 
thus ?Q  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
814  | 
proof (simp, intro allI impI)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
815  | 
fix i j  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
816  | 
assume "n = k*i + j" "j < k"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
817  | 
thus "P j" using not0 P by(simp add:add_ac mult_ac)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
818  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
819  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
820  | 
next  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
821  | 
assume Q: ?Q  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
822  | 
show ?P  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
823  | 
proof (cases)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
824  | 
assume "k = 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
825  | 
with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD)  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
826  | 
next  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
827  | 
assume not0: "k \<noteq> 0"  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
828  | 
with Q have R: ?R by simp  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
829  | 
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]  | 
| 13517 | 830  | 
show ?P by simp  | 
| 
13189
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
831  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
832  | 
qed  | 
| 
 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 
nipkow 
parents: 
13152 
diff
changeset
 | 
833  | 
|
| 13882 | 834  | 
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"  | 
835  | 
apply (rule_tac P="%x. m mod n = x - (m div n) * n" in  | 
|
836  | 
subst [OF mod_div_equality [of _ n]])  | 
|
837  | 
apply arith  | 
|
838  | 
done  | 
|
839  | 
||
| 22800 | 840  | 
lemma div_mod_equality':  | 
841  | 
fixes m n :: nat  | 
|
842  | 
shows "m div n * n = m - m mod n"  | 
|
843  | 
proof -  | 
|
844  | 
have "m mod n \<le> m mod n" ..  | 
|
845  | 
from div_mod_equality have  | 
|
846  | 
"m div n * n + m mod n - m mod n = m - m mod n" by simp  | 
|
847  | 
with diff_add_assoc [OF `m mod n \<le> m mod n`, of "m div n * n"] have  | 
|
848  | 
"m div n * n + (m mod n - m mod n) = m - m mod n"  | 
|
849  | 
by simp  | 
|
850  | 
then show ?thesis by simp  | 
|
851  | 
qed  | 
|
852  | 
||
853  | 
||
| 25942 | 854  | 
subsubsection {*An ``induction'' law for modulus arithmetic.*}
 | 
| 14640 | 855  | 
|
856  | 
lemma mod_induct_0:  | 
|
857  | 
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"  | 
|
858  | 
and base: "P i" and i: "i<p"  | 
|
859  | 
shows "P 0"  | 
|
860  | 
proof (rule ccontr)  | 
|
861  | 
assume contra: "\<not>(P 0)"  | 
|
862  | 
from i have p: "0<p" by simp  | 
|
863  | 
have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")  | 
|
864  | 
proof  | 
|
865  | 
fix k  | 
|
866  | 
show "?A k"  | 
|
867  | 
proof (induct k)  | 
|
868  | 
show "?A 0" by simp -- "by contradiction"  | 
|
869  | 
next  | 
|
870  | 
fix n  | 
|
871  | 
assume ih: "?A n"  | 
|
872  | 
show "?A (Suc n)"  | 
|
873  | 
proof (clarsimp)  | 
|
| 22718 | 874  | 
assume y: "P (p - Suc n)"  | 
875  | 
have n: "Suc n < p"  | 
|
876  | 
proof (rule ccontr)  | 
|
877  | 
assume "\<not>(Suc n < p)"  | 
|
878  | 
hence "p - Suc n = 0"  | 
|
879  | 
by simp  | 
|
880  | 
with y contra show "False"  | 
|
881  | 
by simp  | 
|
882  | 
qed  | 
|
883  | 
hence n2: "Suc (p - Suc n) = p-n" by arith  | 
|
884  | 
from p have "p - Suc n < p" by arith  | 
|
885  | 
with y step have z: "P ((Suc (p - Suc n)) mod p)"  | 
|
886  | 
by blast  | 
|
887  | 
show "False"  | 
|
888  | 
proof (cases "n=0")  | 
|
889  | 
case True  | 
|
890  | 
with z n2 contra show ?thesis by simp  | 
|
891  | 
next  | 
|
892  | 
case False  | 
|
893  | 
with p have "p-n < p" by arith  | 
|
894  | 
with z n2 False ih show ?thesis by simp  | 
|
895  | 
qed  | 
|
| 14640 | 896  | 
qed  | 
897  | 
qed  | 
|
898  | 
qed  | 
|
899  | 
moreover  | 
|
900  | 
from i obtain k where "0<k \<and> i+k=p"  | 
|
901  | 
by (blast dest: less_imp_add_positive)  | 
|
902  | 
hence "0<k \<and> i=p-k" by auto  | 
|
903  | 
moreover  | 
|
904  | 
note base  | 
|
905  | 
ultimately  | 
|
906  | 
show "False" by blast  | 
|
907  | 
qed  | 
|
908  | 
||
909  | 
lemma mod_induct:  | 
|
910  | 
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"  | 
|
911  | 
and base: "P i" and i: "i<p" and j: "j<p"  | 
|
912  | 
shows "P j"  | 
|
913  | 
proof -  | 
|
914  | 
have "\<forall>j<p. P j"  | 
|
915  | 
proof  | 
|
916  | 
fix j  | 
|
917  | 
show "j<p \<longrightarrow> P j" (is "?A j")  | 
|
918  | 
proof (induct j)  | 
|
919  | 
from step base i show "?A 0"  | 
|
| 22718 | 920  | 
by (auto elim: mod_induct_0)  | 
| 14640 | 921  | 
next  | 
922  | 
fix k  | 
|
923  | 
assume ih: "?A k"  | 
|
924  | 
show "?A (Suc k)"  | 
|
925  | 
proof  | 
|
| 22718 | 926  | 
assume suc: "Suc k < p"  | 
927  | 
hence k: "k<p" by simp  | 
|
928  | 
with ih have "P k" ..  | 
|
929  | 
with step k have "P (Suc k mod p)"  | 
|
930  | 
by blast  | 
|
931  | 
moreover  | 
|
932  | 
from suc have "Suc k mod p = Suc k"  | 
|
933  | 
by simp  | 
|
934  | 
ultimately  | 
|
935  | 
show "P (Suc k)" by simp  | 
|
| 14640 | 936  | 
qed  | 
937  | 
qed  | 
|
938  | 
qed  | 
|
939  | 
with j show ?thesis by blast  | 
|
940  | 
qed  | 
|
941  | 
||
942  | 
||
| 
18202
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
943  | 
lemma mod_add_left_eq: "((a::nat) + b) mod c = (a mod c + b) mod c"  | 
| 
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
944  | 
apply (rule trans [symmetric])  | 
| 22718 | 945  | 
apply (rule mod_add1_eq, simp)  | 
| 
18202
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
946  | 
apply (rule mod_add1_eq [symmetric])  | 
| 
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
947  | 
done  | 
| 
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
948  | 
|
| 
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
949  | 
lemma mod_add_right_eq: "(a+b) mod (c::nat) = (a + (b mod c)) mod c"  | 
| 22718 | 950  | 
apply (rule trans [symmetric])  | 
951  | 
apply (rule mod_add1_eq, simp)  | 
|
952  | 
apply (rule mod_add1_eq [symmetric])  | 
|
953  | 
done  | 
|
| 
18202
 
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
 
chaieb 
parents: 
18154 
diff
changeset
 | 
954  | 
|
| 22800 | 955  | 
lemma mod_div_decomp:  | 
956  | 
fixes n k :: nat  | 
|
957  | 
obtains m q where "m = n div k" and "q = n mod k"  | 
|
958  | 
and "n = m * k + q"  | 
|
959  | 
proof -  | 
|
960  | 
from mod_div_equality have "n = n div k * k + n mod k" by auto  | 
|
961  | 
moreover have "n div k = n div k" ..  | 
|
962  | 
moreover have "n mod k = n mod k" ..  | 
|
963  | 
note that ultimately show thesis by blast  | 
|
964  | 
qed  | 
|
965  | 
||
| 20589 | 966  | 
|
| 25942 | 967  | 
subsubsection {* Code generation for div, mod and dvd on nat *}
 | 
| 20589 | 968  | 
|
| 22845 | 969  | 
definition [code func del]:  | 
| 20589 | 970  | 
"divmod (m\<Colon>nat) n = (m div n, m mod n)"  | 
971  | 
||
| 22718 | 972  | 
lemma divmod_zero [code]: "divmod m 0 = (0, m)"  | 
| 20589 | 973  | 
unfolding divmod_def by simp  | 
974  | 
||
975  | 
lemma divmod_succ [code]:  | 
|
976  | 
"divmod m (Suc k) = (if m < Suc k then (0, m) else  | 
|
977  | 
let  | 
|
978  | 
(p, q) = divmod (m - Suc k) (Suc k)  | 
|
| 22718 | 979  | 
in (Suc p, q))"  | 
| 20589 | 980  | 
unfolding divmod_def Let_def split_def  | 
981  | 
by (auto intro: div_geq mod_geq)  | 
|
982  | 
||
| 22718 | 983  | 
lemma div_divmod [code]: "m div n = fst (divmod m n)"  | 
| 20589 | 984  | 
unfolding divmod_def by simp  | 
985  | 
||
| 22718 | 986  | 
lemma mod_divmod [code]: "m mod n = snd (divmod m n)"  | 
| 20589 | 987  | 
unfolding divmod_def by simp  | 
988  | 
||
| 21191 | 989  | 
code_modulename SML  | 
| 23017 | 990  | 
Divides Nat  | 
| 20640 | 991  | 
|
| 
21911
 
e29bcab0c81c
added OCaml code generation (without dictionaries)
 
haftmann 
parents: 
21408 
diff
changeset
 | 
992  | 
code_modulename OCaml  | 
| 23017 | 993  | 
Divides Nat  | 
994  | 
||
995  | 
code_modulename Haskell  | 
|
996  | 
Divides Nat  | 
|
| 
21911
 
e29bcab0c81c
added OCaml code generation (without dictionaries)
 
haftmann 
parents: 
21408 
diff
changeset
 | 
997  | 
|
| 
23684
 
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
 
haftmann 
parents: 
23162 
diff
changeset
 | 
998  | 
hide (open) const divmod  | 
| 
14267
 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 
paulson 
parents: 
14208 
diff
changeset
 | 
999  | 
|
| 3366 | 1000  | 
end  |