doc-src/TutorialI/Misc/document/AdvancedInd.tex
author nipkow
Tue, 29 Aug 2000 15:43:29 +0200
changeset 9722 a5f86aed785b
parent 9721 7e51c9f3d5a0
child 9723 a977245dfc8a
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     1
%
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     2
\begin{isabellebody}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     3
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     4
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     5
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     6
Now that we have learned about rules and logic, we take another look at the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     7
finer points of induction. The two questions we answer are: what to do if the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     8
proposition to be proved is not directly amenable to induction, and how to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     9
utilize and even derive new induction schemas.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    10
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    11
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    12
\isamarkupsubsection{Massaging the proposition\label{sec:ind-var-in-prems}}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    13
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    14
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    15
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    16
So far we have assumed that the theorem we want to prove is already in a form
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    17
that is amenable to induction, but this is not always the case:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    18
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    19
\isacommand{lemma}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isanewline
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    20
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    21
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    22
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    23
(where \isa{hd} and \isa{last} return the first and last element of a
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    24
non-empty list)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    25
produces the warning
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    26
\begin{quote}\tt
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    27
Induction variable occurs also among premises!
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    28
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    29
and leads to the base case
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    30
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    31
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ (rev\ [])\ =\ last\ []
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    32
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    33
which, after simplification, becomes
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    34
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    35
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ []
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    36
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    37
We cannot prove this equality because we do not know what \isa{hd} and
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    38
\isa{last} return when applied to \isa{[]}.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    39
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    40
The point is that we have violated the above warning. Because the induction
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    41
formula is only the conclusion, the occurrence of \isa{xs} in the premises is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    42
not modified by induction. Thus the case that should have been trivial
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    43
becomes unprovable. Fortunately, the solution is easy:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    44
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    45
\emph{Pull all occurrences of the induction variable into the conclusion
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    46
using \isa{\isasymlongrightarrow}.}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    47
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    48
This means we should prove%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    49
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    50
\isacommand{lemma}\ hd{\isacharunderscore}rev{\isacharcolon}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    51
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    52
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    53
This time, induction leaves us with the following base case
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    54
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    55
\ 1.\ []\ {\isasymnoteq}\ []\ {\isasymlongrightarrow}\ hd\ (rev\ [])\ =\ last\ []
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    56
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    57
which is trivial, and \isa{auto} finishes the whole proof.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    58
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
    59
If \isa{hd\_rev} is meant to be a simplification rule, you are done. But if you
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    60
really need the \isa{\isasymLongrightarrow}-version of \isa{hd\_rev}, for
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    61
example because you want to apply it as an introduction rule, you need to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    62
derive it separately, by combining it with modus ponens:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    63
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    64
\isacommand{lemmas}\ hd{\isacharunderscore}revI\ {\isacharequal}\ hd{\isacharunderscore}rev{\isacharbrackleft}THEN\ mp{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    65
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    66
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    67
which yields the lemma we originally set out to prove.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    68
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    69
In case there are multiple premises $A@1$, \dots, $A@n$ containing the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    70
induction variable, you should turn the conclusion $C$ into
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    71
\[ A@1 \longrightarrow \cdots A@n \longrightarrow C \]
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    72
(see the remark?? in \S\ref{??}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    73
Additionally, you may also have to universally quantify some other variables,
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    74
which can yield a fairly complex conclusion.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    75
Here is a simple example (which is proved by \isa{blast}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    76
\end{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
    77
\isacommand{lemma}\ simple{\isacharcolon}\ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isacharampersand}\ A\ y{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    78
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    79
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    80
You can get the desired lemma by explicit
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    81
application of modus ponens and \isa{spec}:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    82
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    83
\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}THEN\ spec{\isacharcomma}\ THEN\ mp{\isacharcomma}\ THEN\ mp{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    84
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    85
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    86
or the wholesale stripping of \isa{\isasymforall} and
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    87
\isa{\isasymlongrightarrow} in the conclusion via \isa{rulify}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    88
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    89
\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}rulify{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    90
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    91
\noindent
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
    92
yielding \isa{{\isasymlbrakk}\mbox{A}\ \mbox{y}{\isacharsemicolon}\ \mbox{B}\ \mbox{y}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{B}\ \mbox{y}\ {\isasymand}\ \mbox{A}\ \mbox{y}}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    93
You can go one step further and include these derivations already in the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    94
statement of your original lemma, thus avoiding the intermediate step:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    95
\end{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
    96
\isacommand{lemma}\ myrule{\isacharbrackleft}rulify{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isacharampersand}\ A\ y{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    97
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    98
\bigskip
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    99
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   100
A second reason why your proposition may not be amenable to induction is that
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   101
you want to induct on a whole term, rather than an individual variable. In
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   102
general, when inducting on some term $t$ you must rephrase the conclusion as
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   103
\[ \forall y@1 \dots y@n.~ x = t \longrightarrow C \] where $y@1 \dots y@n$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   104
are the free variables in $t$ and $x$ is new, and perform induction on $x$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   105
afterwards. An example appears below.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   106
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   107
%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   108
\isamarkupsubsection{Beyond structural and recursion induction}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   109
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   110
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   111
So far, inductive proofs where by structural induction for
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   112
primitive recursive functions and recursion induction for total recursive
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   113
functions. But sometimes structural induction is awkward and there is no
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   114
recursive function in sight either that could furnish a more appropriate
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   115
induction schema. In such cases some existing standard induction schema can
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   116
be helpful. We show how to apply such induction schemas by an example.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   117
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   118
Structural induction on \isa{nat} is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   119
usually known as ``mathematical induction''. There is also ``complete
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   120
induction'', where you must prove $P(n)$ under the assumption that $P(m)$
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   121
holds for all $m<n$. In Isabelle, this is the theorem \isa{less\_induct}:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   122
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   123
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   124
\begin{isabelle}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   125
{\isacharparenleft}{\isasymAnd}\mbox{n}{\isachardot}\ {\isasymforall}\mbox{m}{\isachardot}\ \mbox{m}\ {\isacharless}\ \mbox{n}\ {\isasymlongrightarrow}\ \mbox{P}\ \mbox{m}\ {\isasymLongrightarrow}\ \mbox{P}\ \mbox{n}{\isacharparenright}\ {\isasymLongrightarrow}\ \mbox{P}\ \mbox{n}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   126
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   127
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   128
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   129
Here is an example of its application.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   130
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   131
\isacommand{consts}\ f\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isacharequal}{\isachargreater}\ nat{\isachardoublequote}\isanewline
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   132
\isacommand{axioms}\ f{\isacharunderscore}ax{\isacharcolon}\ {\isachardoublequote}f{\isacharparenleft}f{\isacharparenleft}n{\isacharparenright}{\isacharparenright}\ {\isacharless}\ f{\isacharparenleft}Suc{\isacharparenleft}n{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   133
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   134
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   135
From the above axiom\footnote{In general, the use of axioms is strongly
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   136
discouraged, because of the danger of inconsistencies. The above axiom does
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   137
not introduce an inconsistency because, for example, the identity function
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   138
satisfies it.}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   139
for \isa{f} it follows that \isa{\mbox{n}\ {\isasymle}\ f\ \mbox{n}}, which can
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   140
be proved by induction on \isa{f\ \mbox{n}}. Following the recipy outlined
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   141
above, we have to phrase the proposition as follows to allow induction:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   142
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   143
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   144
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   145
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   146
To perform induction on \isa{k} using \isa{less\_induct}, we use the same
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   147
general induction method as for recursion induction (see
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   148
\S\ref{sec:recdef-induction}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   149
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   150
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ k\ rule{\isacharcolon}less{\isacharunderscore}induct{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   151
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   152
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   153
which leaves us with the following proof state:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   154
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   155
\ 1.\ {\isasymAnd}\mbox{n}.\ {\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ ({\isasymforall}\mbox{i}.\ \mbox{m}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i})\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   156
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymforall}\mbox{i}.\ \mbox{n}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   157
\end{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   158
After stripping the \isa{\isasymforall i}, the proof continues with a case
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   159
distinction on \isa{i}. The case \isa{i = 0} is trivial and we focus on the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   160
other case:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   161
\begin{isabellepar}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   162
\ 1.\ {\isasymAnd}\mbox{n}\ \mbox{i}\ \mbox{nat}.\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   163
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}\mbox{m}.\ \mbox{m}\ <\ \mbox{n}\ {\isasymlongrightarrow}\ ({\isasymforall}\mbox{i}.\ \mbox{m}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i});\ \mbox{i}\ =\ Suc\ \mbox{nat}{\isasymrbrakk}\isanewline
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   164
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ \mbox{n}\ =\ f\ \mbox{i}\ {\isasymlongrightarrow}\ \mbox{i}\ {\isasymle}\ f\ \mbox{i}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   165
\end{isabellepar}%%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   166
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   167
\isacommand{by}{\isacharparenleft}blast\ intro{\isacharbang}{\isacharcolon}\ f{\isacharunderscore}ax\ Suc{\isacharunderscore}leI\ intro{\isacharcolon}le{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   168
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   169
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   170
It is not surprising if you find the last step puzzling.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   171
The proof goes like this (writing \isa{j} instead of \isa{nat}).
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   172
Since \isa{\mbox{i}\ {\isacharequal}\ Suc\ \mbox{j}} it suffices to show
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   173
\isa{\mbox{j}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ \mbox{j}{\isacharparenright}} (by \isa{Suc\_leI}: \isa{\mbox{m}\ {\isacharless}\ \mbox{n}\ {\isasymLongrightarrow}\ Suc\ \mbox{m}\ {\isasymle}\ \mbox{n}}). This is
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   174
proved as follows. From \isa{f\_ax} we have \isa{f\ {\isacharparenleft}f\ \mbox{j}{\isacharparenright}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ \mbox{j}{\isacharparenright}}
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   175
(1) which implies \isa{f\ \mbox{j}\ {\isasymle}\ f\ {\isacharparenleft}f\ \mbox{j}{\isacharparenright}} (by the induction hypothesis).
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   176
Using (1) once more we obtain \isa{f\ \mbox{j}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ \mbox{j}{\isacharparenright}} (2) by transitivity
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   177
(\isa{le_less_trans}: \isa{{\isasymlbrakk}\mbox{i}\ {\isasymle}\ \mbox{j}{\isacharsemicolon}\ \mbox{j}\ {\isacharless}\ \mbox{k}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{i}\ {\isacharless}\ \mbox{k}}).
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   178
Using the induction hypothesis once more we obtain \isa{\mbox{j}\ {\isasymle}\ f\ \mbox{j}}
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   179
which, together with (2) yields \isa{\mbox{j}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ \mbox{j}{\isacharparenright}} (again by
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   180
\isa{le_less_trans}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   181
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   182
This last step shows both the power and the danger of automatic proofs: they
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   183
will usually not tell you how the proof goes, because it can be very hard to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   184
translate the internal proof into a human-readable format. Therefore
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   185
\S\ref{sec:part2?} introduces a language for writing readable yet concise
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   186
proofs.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   187
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   188
We can now derive the desired \isa{\mbox{i}\ {\isasymle}\ f\ \mbox{i}} from \isa{f\_incr}:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   189
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   190
\isacommand{lemmas}\ f{\isacharunderscore}incr\ {\isacharequal}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharbrackleft}rulify{\isacharcomma}\ OF\ refl{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   191
\begin{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   192
\noindent
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   193
The final \isa{refl} gets rid of the premise \isa{?k = f ?i}. Again, we could
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   194
have included this derivation in the original statement of the lemma:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   195
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   196
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharbrackleft}rulify{\isacharcomma}\ OF\ refl{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   197
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   198
\begin{exercise}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   199
From the above axiom and lemma for \isa{f} show that \isa{f} is the identity.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   200
\end{exercise}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   201
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   202
In general, \isa{induct\_tac} can be applied with any rule \isa{r}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   203
whose conclusion is of the form \isa{?P ?x1 \dots ?xn}, in which case the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   204
format is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   205
\begin{ttbox}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   206
apply(induct_tac y1 ... yn rule: r)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   207
\end{ttbox}\index{*induct_tac}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   208
where \isa{y1}, \dots, \isa{yn} are variables in the first subgoal.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   209
In fact, \isa{induct\_tac} even allows the conclusion of
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   210
\isa{r} to be an (iterated) conjunction of formulae of the above form, in
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   211
which case the application is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   212
\begin{ttbox}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   213
apply(induct_tac y1 ... yn and ... and z1 ... zm rule: r)
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   214
\end{ttbox}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   215
\end{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   216
%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   217
\isamarkupsubsection{Derivation of new induction schemas}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   218
%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   219
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   220
\label{sec:derive-ind}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   221
Induction schemas are ordinary theorems and you can derive new ones
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   222
whenever you wish.  This section shows you how to, using the example
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   223
of \isa{less\_induct}. Assume we only have structural induction
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   224
available for \isa{nat} and want to derive complete induction. This
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   225
requires us to generalize the statement first:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   226
\end{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   227
\isacommand{lemma}\ induct{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isacharequal}{\isacharequal}{\isachargreater}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m{\isachardoublequote}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   228
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ n{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   229
\begin{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   230
\noindent
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   231
The base case is trivially true. For the induction step (\isa{\mbox{m}\ {\isacharless}\ Suc\ \mbox{n}}) we distinguish two cases: \isa{\mbox{m}\ {\isacharless}\ \mbox{n}} is true by induction
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   232
hypothesis and \isa{\mbox{m}\ {\isacharequal}\ \mbox{n}} follow from the assumption again using
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   233
the induction hypothesis:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   234
\end{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   235
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   236
\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   237
\isacommand{ML}{\isachardoublequote}set\ quick{\isacharunderscore}and{\isacharunderscore}dirty{\isachardoublequote}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   238
\isacommand{sorry}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   239
\isacommand{ML}{\isachardoublequote}reset\ quick{\isacharunderscore}and{\isacharunderscore}dirty{\isachardoublequote}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   240
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   241
\noindent
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   242
The elimination rule \isa{less_SucE} expresses the case distinction:
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   243
\begin{quote}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   244
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   245
\begin{isabelle}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   246
{\isasymlbrakk}\mbox{m}\ {\isacharless}\ Suc\ \mbox{n}{\isacharsemicolon}\ \mbox{m}\ {\isacharless}\ \mbox{n}\ {\isasymLongrightarrow}\ \mbox{P}{\isacharsemicolon}\ \mbox{m}\ {\isacharequal}\ \mbox{n}\ {\isasymLongrightarrow}\ \mbox{P}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{P}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   247
\end{isabelle}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   248
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   249
\end{quote}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   250
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   251
Now it is straightforward to derive the original version of
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   252
\isa{less\_induct} by manipulting the conclusion of the above lemma:
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   253
instantiate \isa{n} by \isa{Suc\ \mbox{n}} and \isa{m} by \isa{n} and
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   254
remove the trivial condition \isa{\mbox{n}\ {\isacharless}\ \mbox{Sc}\ \mbox{n}}. Fortunately, this
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   255
happens automatically when we add the lemma as a new premise to the
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   256
desired goal:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   257
\end{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   258
\isacommand{theorem}\ less{\isacharunderscore}induct{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isacharequal}{\isacharequal}{\isachargreater}\ P\ n{\isachardoublequote}\isanewline
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   259
\isacommand{by}{\isacharparenleft}insert\ induct{\isacharunderscore}lem{\isacharcomma}\ blast{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   260
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   261
\noindent
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   262
Finally we should mention that HOL already provides the mother of all
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   263
inductions, \emph{wellfounded induction} (\isa{wf\_induct}):
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   264
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   265
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   266
\begin{isabelle}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   267
{\isasymlbrakk}wf\ \mbox{r}{\isacharsemicolon}\ {\isasymAnd}\mbox{x}{\isachardot}\ {\isasymforall}\mbox{y}{\isachardot}\ {\isacharparenleft}\mbox{y}{\isacharcomma}\ \mbox{x}{\isacharparenright}\ {\isasymin}\ \mbox{r}\ {\isasymlongrightarrow}\ \mbox{P}\ \mbox{y}\ {\isasymLongrightarrow}\ \mbox{P}\ \mbox{x}{\isasymrbrakk}\ {\isasymLongrightarrow}\ \mbox{P}\ \mbox{a}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   268
\end{isabelle}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   269
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   270
\end{quote}
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   271
where \isa{wf\ \mbox{r}} means that the relation \isa{r} is wellfounded.
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   272
For example \isa{less\_induct} is the special case where \isa{r} is \isa{<} on \isa{nat}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   273
For details see the library.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   274
\end{isamarkuptext}%
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
   275
\end{isabellebody}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   276
%%% Local Variables:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   277
%%% mode: latex
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   278
%%% TeX-master: "root"
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   279
%%% End: