author | isatest |
Sat, 26 Oct 2002 13:05:27 +0200 | |
changeset 13680 | a6ce43a59d4a |
parent 12338 | de0f4a63baa5 |
child 14096 | f79d139c7e46 |
permissions | -rw-r--r-- |
2640 | 1 |
(* Title: HOLCF/Lift.thy |
2 |
ID: $Id$ |
|
12026 | 3 |
Author: Olaf Mueller |
4 |
License: GPL (GNU GENERAL PUBLIC LICENSE) |
|
2640 | 5 |
*) |
6 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
7 |
header {* Lifting types of class type to flat pcpo's *} |
12026 | 8 |
|
9 |
theory Lift = Cprod3: |
|
10 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
11 |
defaultsort type |
12026 | 12 |
|
13 |
||
14 |
typedef 'a lift = "UNIV :: 'a option set" .. |
|
15 |
||
16 |
constdefs |
|
17 |
Undef :: "'a lift" |
|
18 |
"Undef == Abs_lift None" |
|
19 |
Def :: "'a => 'a lift" |
|
20 |
"Def x == Abs_lift (Some x)" |
|
21 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
22 |
instance lift :: (type) sq_ord .. |
12026 | 23 |
|
24 |
defs (overloaded) |
|
25 |
less_lift_def: "x << y == (x=y | x=Undef)" |
|
26 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
27 |
instance lift :: (type) po |
12026 | 28 |
proof |
29 |
fix x y z :: "'a lift" |
|
30 |
show "x << x" by (unfold less_lift_def) blast |
|
31 |
{ assume "x << y" and "y << x" thus "x = y" by (unfold less_lift_def) blast } |
|
32 |
{ assume "x << y" and "y << z" thus "x << z" by (unfold less_lift_def) blast } |
|
33 |
qed |
|
34 |
||
35 |
lemma inst_lift_po: "(op <<) = (\<lambda>x y. x = y | x = Undef)" |
|
36 |
-- {* For compatibility with old HOLCF-Version. *} |
|
37 |
by (simp only: less_lift_def [symmetric]) |
|
38 |
||
39 |
||
40 |
subsection {* Type lift is pointed *} |
|
41 |
||
42 |
lemma minimal_lift [iff]: "Undef << x" |
|
43 |
by (simp add: inst_lift_po) |
|
44 |
||
45 |
lemma UU_lift_def: "(SOME u. \<forall>y. u \<sqsubseteq> y) = Undef" |
|
46 |
apply (rule minimal2UU [symmetric]) |
|
47 |
apply (rule minimal_lift) |
|
48 |
done |
|
49 |
||
50 |
lemma least_lift: "EX x::'a lift. ALL y. x << y" |
|
51 |
apply (rule_tac x = Undef in exI) |
|
52 |
apply (rule minimal_lift [THEN allI]) |
|
53 |
done |
|
54 |
||
55 |
||
56 |
subsection {* Type lift is a cpo *} |
|
57 |
||
58 |
text {* |
|
59 |
The following lemmas have already been proved in @{text Pcpo.ML} and |
|
60 |
@{text Fix.ML}, but there class @{text pcpo} is assumed, although |
|
61 |
only @{text po} is necessary and a least element. Therefore they are |
|
62 |
redone here for the @{text po} lift with least element @{text |
|
63 |
Undef}. |
|
64 |
*} |
|
65 |
||
66 |
lemma notUndef_I: "[| x<<y; x ~= Undef |] ==> y ~= Undef" |
|
67 |
-- {* Tailoring @{text notUU_I} of @{text Pcpo.ML} to @{text Undef} *} |
|
68 |
by (blast intro: antisym_less) |
|
69 |
||
70 |
lemma chain_mono2_po: "[| EX j.~Y(j)=Undef; chain(Y::nat=>('a)lift) |] |
|
71 |
==> EX j. ALL i. j<i-->~Y(i)=Undef" |
|
72 |
-- {* Tailoring @{text chain_mono2} of @{text Pcpo.ML} to @{text Undef} *} |
|
73 |
apply safe |
|
74 |
apply (rule exI) |
|
75 |
apply (intro strip) |
|
76 |
apply (rule notUndef_I) |
|
77 |
apply (erule (1) chain_mono) |
|
78 |
apply assumption |
|
79 |
done |
|
80 |
||
81 |
lemma flat_imp_chfin_poo: "(ALL Y. chain(Y::nat=>('a)lift)-->(EX n. max_in_chain n Y))" |
|
82 |
-- {* Tailoring @{text flat_imp_chfin} of @{text Fix.ML} to @{text lift} *} |
|
83 |
apply (unfold max_in_chain_def) |
|
84 |
apply (intro strip) |
|
85 |
apply (rule_tac P = "ALL i. Y (i) = Undef" in case_split) |
|
86 |
apply (rule_tac x = 0 in exI) |
|
87 |
apply (intro strip) |
|
88 |
apply (rule trans) |
|
89 |
apply (erule spec) |
|
90 |
apply (rule sym) |
|
91 |
apply (erule spec) |
|
92 |
apply (subgoal_tac "ALL x y. x << (y:: ('a) lift) --> x=Undef | x=y") |
|
93 |
prefer 2 apply (simp add: inst_lift_po) |
|
94 |
apply (rule chain_mono2_po [THEN exE]) |
|
95 |
apply fast |
|
96 |
apply assumption |
|
97 |
apply (rule_tac x = "Suc x" in exI) |
|
98 |
apply (intro strip) |
|
99 |
apply (rule disjE) |
|
100 |
prefer 3 apply assumption |
|
101 |
apply (rule mp) |
|
102 |
apply (drule spec) |
|
103 |
apply (erule spec) |
|
104 |
apply (erule le_imp_less_or_eq [THEN disjE]) |
|
105 |
apply (erule chain_mono) |
|
106 |
apply auto |
|
107 |
done |
|
108 |
||
109 |
theorem cpo_lift: "chain (Y::nat => 'a lift) ==> EX x. range Y <<| x" |
|
110 |
apply (cut_tac flat_imp_chfin_poo) |
|
111 |
apply (blast intro: lub_finch1) |
|
112 |
done |
|
113 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
114 |
instance lift :: (type) pcpo |
12026 | 115 |
apply intro_classes |
116 |
apply (erule cpo_lift) |
|
117 |
apply (rule least_lift) |
|
118 |
done |
|
119 |
||
120 |
lemma inst_lift_pcpo: "UU = Undef" |
|
121 |
-- {* For compatibility with old HOLCF-Version. *} |
|
122 |
by (simp add: UU_def UU_lift_def) |
|
123 |
||
124 |
||
125 |
subsection {* Lift as a datatype *} |
|
126 |
||
127 |
lemma lift_distinct1: "UU ~= Def x" |
|
128 |
by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo) |
|
129 |
||
130 |
lemma lift_distinct2: "Def x ~= UU" |
|
131 |
by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo) |
|
132 |
||
133 |
lemma Def_inject: "(Def x = Def x') = (x = x')" |
|
134 |
by (simp add: Def_def Abs_lift_inject lift_def) |
|
135 |
||
136 |
lemma lift_induct: "P UU ==> (!!x. P (Def x)) ==> P y" |
|
137 |
apply (induct y) |
|
138 |
apply (induct_tac y) |
|
139 |
apply (simp_all add: Undef_def Def_def inst_lift_pcpo) |
|
140 |
done |
|
141 |
||
142 |
rep_datatype lift |
|
143 |
distinct lift_distinct1 lift_distinct2 |
|
144 |
inject Def_inject |
|
145 |
induction lift_induct |
|
146 |
||
147 |
lemma Def_not_UU: "Def a ~= UU" |
|
148 |
by simp |
|
149 |
||
150 |
||
151 |
subsection {* Further operations *} |
|
152 |
||
153 |
consts |
|
154 |
flift1 :: "('a => 'b::pcpo) => ('a lift -> 'b)" |
|
155 |
flift2 :: "('a => 'b) => ('a lift -> 'b lift)" |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
156 |
liftpair ::"'a::type lift * 'b::type lift => ('a * 'b) lift" |
2640 | 157 |
|
12026 | 158 |
defs |
159 |
flift1_def: |
|
160 |
"flift1 f == (LAM x. (case x of |
|
161 |
UU => UU |
|
162 |
| Def y => (f y)))" |
|
163 |
flift2_def: |
|
164 |
"flift2 f == (LAM x. (case x of |
|
165 |
UU => UU |
|
166 |
| Def y => Def (f y)))" |
|
167 |
liftpair_def: |
|
168 |
"liftpair x == (case (cfst$x) of |
|
169 |
UU => UU |
|
170 |
| Def x1 => (case (csnd$x) of |
|
171 |
UU => UU |
|
172 |
| Def x2 => Def (x1,x2)))" |
|
173 |
||
174 |
||
175 |
declare inst_lift_pcpo [symmetric, simp] |
|
176 |
||
177 |
||
178 |
lemma less_lift: "(x::'a lift) << y = (x=y | x=UU)" |
|
179 |
by (simp add: inst_lift_po) |
|
180 |
||
181 |
||
182 |
text {* @{text UU} and @{text Def} *} |
|
183 |
||
184 |
lemma Lift_exhaust: "x = UU | (EX y. x = Def y)" |
|
185 |
by (induct x) simp_all |
|
186 |
||
187 |
lemma Lift_cases: "[| x = UU ==> P; ? a. x = Def a ==> P |] ==> P" |
|
188 |
by (insert Lift_exhaust) blast |
|
189 |
||
190 |
lemma not_Undef_is_Def: "(x ~= UU) = (EX y. x = Def y)" |
|
191 |
by (cases x) simp_all |
|
192 |
||
193 |
text {* |
|
194 |
For @{term "x ~= UU"} in assumptions @{text def_tac} replaces @{text |
|
195 |
x} by @{text "Def a"} in conclusion. *} |
|
196 |
||
197 |
ML {* |
|
198 |
local val not_Undef_is_Def = thm "not_Undef_is_Def" |
|
199 |
in val def_tac = SIMPSET' (fn ss => |
|
200 |
etac (not_Undef_is_Def RS iffD1 RS exE) THEN' asm_simp_tac ss) |
|
201 |
end; |
|
202 |
*} |
|
203 |
||
204 |
lemma Undef_eq_UU: "Undef = UU" |
|
205 |
by (rule inst_lift_pcpo [symmetric]) |
|
206 |
||
207 |
lemma DefE: "Def x = UU ==> R" |
|
208 |
by simp |
|
209 |
||
210 |
lemma DefE2: "[| x = Def s; x = UU |] ==> R" |
|
211 |
by simp |
|
212 |
||
213 |
lemma Def_inject_less_eq: "Def x << Def y = (x = y)" |
|
214 |
by (simp add: less_lift_def) |
|
215 |
||
216 |
lemma Def_less_is_eq [simp]: "Def x << y = (Def x = y)" |
|
217 |
by (simp add: less_lift) |
|
218 |
||
219 |
||
220 |
subsection {* Lift is flat *} |
|
221 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
12026
diff
changeset
|
222 |
instance lift :: (type) flat |
12026 | 223 |
proof |
224 |
show "ALL x y::'a lift. x << y --> x = UU | x = y" |
|
225 |
by (simp add: less_lift) |
|
226 |
qed |
|
227 |
||
228 |
defaultsort pcpo |
|
229 |
||
230 |
||
231 |
text {* |
|
232 |
\medskip Two specific lemmas for the combination of LCF and HOL |
|
233 |
terms. |
|
234 |
*} |
|
235 |
||
236 |
lemma cont_Rep_CFun_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s)" |
|
237 |
apply (rule cont2cont_CF1L) |
|
238 |
apply (tactic "resolve_tac cont_lemmas1 1")+ |
|
239 |
apply auto |
|
240 |
done |
|
241 |
||
242 |
lemma cont_Rep_CFun_app_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s t)" |
|
243 |
apply (rule cont2cont_CF1L) |
|
244 |
apply (erule cont_Rep_CFun_app) |
|
245 |
apply assumption |
|
246 |
done |
|
2640 | 247 |
|
12026 | 248 |
text {* Continuity of if-then-else. *} |
249 |
||
250 |
lemma cont_if: "[| cont f1; cont f2 |] ==> cont (%x. if b then f1 x else f2 x)" |
|
251 |
by (cases b) simp_all |
|
252 |
||
253 |
||
254 |
subsection {* Continuity Proofs for flift1, flift2, if *} |
|
255 |
||
256 |
text {* Need the instance of @{text flat}. *} |
|
257 |
||
258 |
lemma cont_flift1_arg: "cont (lift_case UU f)" |
|
259 |
-- {* @{text flift1} is continuous in its argument itself. *} |
|
260 |
apply (rule flatdom_strict2cont) |
|
261 |
apply simp |
|
262 |
done |
|
263 |
||
264 |
lemma cont_flift1_not_arg: "!!f. [| !! a. cont (%y. (f y) a) |] ==> |
|
265 |
cont (%y. lift_case UU (f y))" |
|
266 |
-- {* @{text flift1} is continuous in a variable that occurs only |
|
267 |
in the @{text Def} branch. *} |
|
268 |
apply (rule cont2cont_CF1L_rev) |
|
269 |
apply (intro strip) |
|
270 |
apply (case_tac y) |
|
271 |
apply simp |
|
272 |
apply simp |
|
273 |
done |
|
274 |
||
275 |
lemma cont_flift1_arg_and_not_arg: "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==> |
|
276 |
cont (%y. lift_case UU (f y) (g y))" |
|
277 |
-- {* @{text flift1} is continuous in a variable that occurs either |
|
278 |
in the @{text Def} branch or in the argument. *} |
|
279 |
apply (rule_tac tt = g in cont2cont_app) |
|
280 |
apply (rule cont_flift1_not_arg) |
|
281 |
apply auto |
|
282 |
apply (rule cont_flift1_arg) |
|
283 |
done |
|
284 |
||
285 |
lemma cont_flift2_arg: "cont (lift_case UU (%y. Def (f y)))" |
|
286 |
-- {* @{text flift2} is continuous in its argument itself. *} |
|
287 |
apply (rule flatdom_strict2cont) |
|
288 |
apply simp |
|
289 |
done |
|
290 |
||
291 |
text {* |
|
292 |
\medskip Extension of cont_tac and installation of simplifier. |
|
293 |
*} |
|
294 |
||
295 |
lemma cont2cont_CF1L_rev2: "(!!y. cont (%x. c1 x y)) ==> cont c1" |
|
296 |
apply (rule cont2cont_CF1L_rev) |
|
297 |
apply simp |
|
298 |
done |
|
299 |
||
300 |
lemmas cont_lemmas_ext [simp] = |
|
301 |
cont_flift1_arg cont_flift2_arg |
|
302 |
cont_flift1_arg_and_not_arg cont2cont_CF1L_rev2 |
|
303 |
cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if |
|
304 |
||
305 |
ML_setup {* |
|
306 |
val cont_lemmas2 = cont_lemmas1 @ thms "cont_lemmas_ext"; |
|
307 |
||
308 |
fun cont_tac i = resolve_tac cont_lemmas2 i; |
|
309 |
fun cont_tacR i = REPEAT (cont_tac i); |
|
310 |
||
311 |
local val flift1_def = thm "flift1_def" and flift2_def = thm "flift2_def" |
|
312 |
in fun cont_tacRs i = |
|
313 |
simp_tac (simpset() addsimps [flift1_def, flift2_def]) i THEN |
|
314 |
REPEAT (cont_tac i) |
|
315 |
end; |
|
316 |
||
317 |
simpset_ref() := simpset() addSolver |
|
318 |
(mk_solver "cont_tac" (K (DEPTH_SOLVE_1 o cont_tac))); |
|
319 |
*} |
|
320 |
||
321 |
||
322 |
subsection {* flift1, flift2 *} |
|
323 |
||
324 |
lemma flift1_Def [simp]: "flift1 f$(Def x) = (f x)" |
|
325 |
by (simp add: flift1_def) |
|
326 |
||
327 |
lemma flift2_Def [simp]: "flift2 f$(Def x) = Def (f x)" |
|
328 |
by (simp add: flift2_def) |
|
329 |
||
330 |
lemma flift1_UU [simp]: "flift1 f$UU = UU" |
|
331 |
by (simp add: flift1_def) |
|
332 |
||
333 |
lemma flift2_UU [simp]: "flift2 f$UU = UU" |
|
334 |
by (simp add: flift2_def) |
|
335 |
||
336 |
lemma flift2_nUU [simp]: "x~=UU ==> (flift2 f)$x~=UU" |
|
337 |
by (tactic "def_tac 1") |
|
2640 | 338 |
|
339 |
end |