| author | huffman | 
| Thu, 12 Sep 2013 09:03:52 -0700 | |
| changeset 53593 | a7bcbb5a17d8 | 
| parent 51481 | ef949192e5d6 | 
| child 53640 | 3170b5eb9f5a | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/Multivariate_Analysis/Path_Connected.thy  | 
| 36583 | 2  | 
Author: Robert Himmelmann, TU Muenchen  | 
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Continuous paths and path-connected sets *}
 | 
|
6  | 
||
7  | 
theory Path_Connected  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
8  | 
imports Convex_Euclidean_Space  | 
| 36583 | 9  | 
begin  | 
10  | 
||
11  | 
subsection {* Paths. *}
 | 
|
12  | 
||
| 49653 | 13  | 
definition path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"  | 
| 36583 | 14  | 
  where "path g \<longleftrightarrow> continuous_on {0 .. 1} g"
 | 
15  | 
||
| 49653 | 16  | 
definition pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a"  | 
| 36583 | 17  | 
where "pathstart g = g 0"  | 
18  | 
||
| 49653 | 19  | 
definition pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a"  | 
| 36583 | 20  | 
where "pathfinish g = g 1"  | 
21  | 
||
| 49653 | 22  | 
definition path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set"  | 
| 36583 | 23  | 
  where "path_image g = g ` {0 .. 1}"
 | 
24  | 
||
| 49653 | 25  | 
definition reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a)"  | 
| 36583 | 26  | 
where "reversepath g = (\<lambda>x. g(1 - x))"  | 
27  | 
||
| 49653 | 28  | 
definition joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a)"  | 
| 36583 | 29  | 
(infixr "+++" 75)  | 
30  | 
where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))"  | 
|
31  | 
||
| 49653 | 32  | 
definition simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"  | 
| 36583 | 33  | 
where "simple_path g \<longleftrightarrow>  | 
| 49653 | 34  | 
    (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | 
| 36583 | 35  | 
|
| 49653 | 36  | 
definition injective_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool"  | 
| 36583 | 37  | 
  where "injective_path g \<longleftrightarrow> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
 | 
38  | 
||
| 49653 | 39  | 
|
| 36583 | 40  | 
subsection {* Some lemmas about these concepts. *}
 | 
41  | 
||
| 49653 | 42  | 
lemma injective_imp_simple_path: "injective_path g \<Longrightarrow> simple_path g"  | 
| 36583 | 43  | 
unfolding injective_path_def simple_path_def by auto  | 
44  | 
||
45  | 
lemma path_image_nonempty: "path_image g \<noteq> {}"
 | 
|
46  | 
unfolding path_image_def image_is_empty interval_eq_empty by auto  | 
|
47  | 
||
48  | 
lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g"  | 
|
49  | 
unfolding pathstart_def path_image_def by auto  | 
|
50  | 
||
51  | 
lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g"  | 
|
52  | 
unfolding pathfinish_def path_image_def by auto  | 
|
53  | 
||
54  | 
lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)"  | 
|
55  | 
unfolding path_def path_image_def  | 
|
56  | 
apply (erule connected_continuous_image)  | 
|
| 49653 | 57  | 
apply (rule convex_connected, rule convex_real_interval)  | 
58  | 
done  | 
|
| 36583 | 59  | 
|
| 
50935
 
cfdf19d3ca32
generalize compact_path_image to topological_space
 
hoelzl 
parents: 
50884 
diff
changeset
 | 
60  | 
lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)"  | 
| 36583 | 61  | 
unfolding path_def path_image_def  | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36583 
diff
changeset
 | 
62  | 
by (erule compact_continuous_image, rule compact_interval)  | 
| 36583 | 63  | 
|
64  | 
lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g"  | 
|
65  | 
unfolding reversepath_def by auto  | 
|
66  | 
||
67  | 
lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g"  | 
|
68  | 
unfolding pathstart_def reversepath_def pathfinish_def by auto  | 
|
69  | 
||
70  | 
lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g"  | 
|
71  | 
unfolding pathstart_def reversepath_def pathfinish_def by auto  | 
|
72  | 
||
| 49653 | 73  | 
lemma pathstart_join[simp]: "pathstart (g1 +++ g2) = pathstart g1"  | 
| 36583 | 74  | 
unfolding pathstart_def joinpaths_def pathfinish_def by auto  | 
75  | 
||
| 49653 | 76  | 
lemma pathfinish_join[simp]: "pathfinish (g1 +++ g2) = pathfinish g2"  | 
| 36583 | 77  | 
unfolding pathstart_def joinpaths_def pathfinish_def by auto  | 
78  | 
||
| 49653 | 79  | 
lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g"  | 
80  | 
proof -  | 
|
81  | 
have *: "\<And>g. path_image(reversepath g) \<subseteq> path_image g"  | 
|
82  | 
unfolding path_image_def subset_eq reversepath_def Ball_def image_iff  | 
|
83  | 
apply(rule,rule,erule bexE)  | 
|
84  | 
apply(rule_tac x="1 - xa" in bexI)  | 
|
85  | 
apply auto  | 
|
86  | 
done  | 
|
87  | 
show ?thesis  | 
|
88  | 
using *[of g] *[of "reversepath g"]  | 
|
89  | 
unfolding reversepath_reversepath by auto  | 
|
90  | 
qed  | 
|
| 36583 | 91  | 
|
| 49653 | 92  | 
lemma path_reversepath[simp]: "path (reversepath g) \<longleftrightarrow> path g"  | 
93  | 
proof -  | 
|
94  | 
have *: "\<And>g. path g \<Longrightarrow> path (reversepath g)"  | 
|
95  | 
unfolding path_def reversepath_def  | 
|
96  | 
apply (rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"])  | 
|
97  | 
apply (intro continuous_on_intros)  | 
|
98  | 
    apply (rule continuous_on_subset[of "{0..1}"], assumption)
 | 
|
99  | 
apply auto  | 
|
100  | 
done  | 
|
101  | 
show ?thesis  | 
|
102  | 
using *[of "reversepath g"] *[of g]  | 
|
103  | 
unfolding reversepath_reversepath  | 
|
104  | 
by (rule iffI)  | 
|
105  | 
qed  | 
|
106  | 
||
107  | 
lemmas reversepath_simps =  | 
|
108  | 
path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath  | 
|
| 36583 | 109  | 
|
| 49653 | 110  | 
lemma path_join[simp]:  | 
111  | 
assumes "pathfinish g1 = pathstart g2"  | 
|
112  | 
shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2"  | 
|
113  | 
unfolding path_def pathfinish_def pathstart_def  | 
|
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
114  | 
proof safe  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
115  | 
  assume cont: "continuous_on {0..1} (g1 +++ g2)"
 | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
116  | 
  have g1: "continuous_on {0..1} g1 \<longleftrightarrow> continuous_on {0..1} ((g1 +++ g2) \<circ> (\<lambda>x. x / 2))"
 | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
117  | 
by (intro continuous_on_cong refl) (auto simp: joinpaths_def)  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
118  | 
  have g2: "continuous_on {0..1} g2 \<longleftrightarrow> continuous_on {0..1} ((g1 +++ g2) \<circ> (\<lambda>x. x / 2 + 1/2))"
 | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
119  | 
using assms by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def pathstart_def)  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
120  | 
  show "continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | 
| 
51481
 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 
hoelzl 
parents: 
51478 
diff
changeset
 | 
121  | 
unfolding g1 g2  | 
| 
 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 
hoelzl 
parents: 
51478 
diff
changeset
 | 
122  | 
by (auto intro!: continuous_on_intros continuous_on_subset[OF cont] simp del: o_apply)  | 
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
123  | 
next  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
124  | 
  assume g1g2: "continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
125  | 
  have 01: "{0 .. 1} = {0..1/2} \<union> {1/2 .. 1::real}"
 | 
| 36583 | 126  | 
by auto  | 
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
127  | 
  { fix x :: real assume "0 \<le> x" "x \<le> 1" then have "x \<in> (\<lambda>x. x * 2) ` {0..1 / 2}"
 | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
128  | 
by (intro image_eqI[where x="x/2"]) auto }  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
129  | 
note 1 = this  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
130  | 
  { fix x :: real assume "0 \<le> x" "x \<le> 1" then have "x \<in> (\<lambda>x. x * 2 - 1) ` {1 / 2..1}"
 | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
131  | 
by (intro image_eqI[where x="x/2 + 1/2"]) auto }  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
132  | 
note 2 = this  | 
| 49653 | 133  | 
  show "continuous_on {0..1} (g1 +++ g2)"
 | 
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
134  | 
using assms unfolding joinpaths_def 01  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
135  | 
by (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_on_intros)  | 
| 
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
136  | 
(auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2)  | 
| 49653 | 137  | 
qed  | 
| 36583 | 138  | 
|
| 49653 | 139  | 
lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)"  | 
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
140  | 
unfolding path_image_def joinpaths_def by auto  | 
| 36583 | 141  | 
|
142  | 
lemma subset_path_image_join:  | 
|
| 49653 | 143  | 
assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s"  | 
144  | 
shows "path_image(g1 +++ g2) \<subseteq> s"  | 
|
| 36583 | 145  | 
using path_image_join_subset[of g1 g2] and assms by auto  | 
146  | 
||
147  | 
lemma path_image_join:  | 
|
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
148  | 
assumes "pathfinish g1 = pathstart g2"  | 
| 36583 | 149  | 
shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)"  | 
| 49653 | 150  | 
apply (rule, rule path_image_join_subset, rule)  | 
151  | 
unfolding Un_iff  | 
|
152  | 
proof (erule disjE)  | 
|
153  | 
fix x  | 
|
154  | 
assume "x \<in> path_image g1"  | 
|
155  | 
  then obtain y where y: "y\<in>{0..1}" "x = g1 y"
 | 
|
156  | 
unfolding path_image_def image_iff by auto  | 
|
| 49654 | 157  | 
then show "x \<in> path_image (g1 +++ g2)"  | 
| 49653 | 158  | 
unfolding joinpaths_def path_image_def image_iff  | 
159  | 
apply (rule_tac x="(1/2) *\<^sub>R y" in bexI)  | 
|
160  | 
apply auto  | 
|
161  | 
done  | 
|
162  | 
next  | 
|
163  | 
fix x  | 
|
164  | 
assume "x \<in> path_image g2"  | 
|
165  | 
  then obtain y where y: "y\<in>{0..1}" "x = g2 y"
 | 
|
166  | 
unfolding path_image_def image_iff by auto  | 
|
167  | 
then show "x \<in> path_image (g1 +++ g2)"  | 
|
168  | 
unfolding joinpaths_def path_image_def image_iff  | 
|
169  | 
apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI)  | 
|
| 
51478
 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 
hoelzl 
parents: 
50935 
diff
changeset
 | 
170  | 
using assms(1)[unfolded pathfinish_def pathstart_def]  | 
| 49653 | 171  | 
apply (auto simp add: add_divide_distrib)  | 
172  | 
done  | 
|
173  | 
qed  | 
|
| 36583 | 174  | 
|
175  | 
lemma not_in_path_image_join:  | 
|
| 49653 | 176  | 
assumes "x \<notin> path_image g1" "x \<notin> path_image g2"  | 
177  | 
shows "x \<notin> path_image(g1 +++ g2)"  | 
|
| 36583 | 178  | 
using assms and path_image_join_subset[of g1 g2] by auto  | 
179  | 
||
| 49653 | 180  | 
lemma simple_path_reversepath:  | 
181  | 
assumes "simple_path g"  | 
|
182  | 
shows "simple_path (reversepath g)"  | 
|
183  | 
using assms  | 
|
184  | 
unfolding simple_path_def reversepath_def  | 
|
185  | 
apply -  | 
|
186  | 
apply (rule ballI)+  | 
|
187  | 
apply (erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE)  | 
|
188  | 
apply auto  | 
|
189  | 
done  | 
|
| 36583 | 190  | 
|
191  | 
lemma simple_path_join_loop:  | 
|
192  | 
assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1"  | 
|
| 49653 | 193  | 
    "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
 | 
| 36583 | 194  | 
shows "simple_path(g1 +++ g2)"  | 
| 49653 | 195  | 
unfolding simple_path_def  | 
196  | 
proof ((rule ballI)+, rule impI)  | 
|
197  | 
let ?g = "g1 +++ g2"  | 
|
| 36583 | 198  | 
note inj = assms(1,2)[unfolded injective_path_def, rule_format]  | 
| 49653 | 199  | 
fix x y :: real  | 
200  | 
  assume xy: "x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
 | 
|
201  | 
show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0"  | 
|
202  | 
proof (case_tac "x \<le> 1/2", case_tac[!] "y \<le> 1/2", unfold not_le)  | 
|
203  | 
assume as: "x \<le> 1 / 2" "y \<le> 1 / 2"  | 
|
| 49654 | 204  | 
then have "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)"  | 
| 49653 | 205  | 
using xy(3) unfolding joinpaths_def by auto  | 
206  | 
moreover  | 
|
207  | 
    have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
 | 
|
| 36583 | 208  | 
by auto  | 
| 49653 | 209  | 
ultimately  | 
210  | 
show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto  | 
|
211  | 
next  | 
|
212  | 
assume as:"x > 1 / 2" "y > 1 / 2"  | 
|
| 49654 | 213  | 
then have "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)"  | 
| 49653 | 214  | 
using xy(3) unfolding joinpaths_def by auto  | 
215  | 
moreover  | 
|
216  | 
    have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}"
 | 
|
217  | 
using xy(1,2) as by auto  | 
|
218  | 
ultimately  | 
|
219  | 
show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto  | 
|
220  | 
next  | 
|
221  | 
assume as:"x \<le> 1 / 2" "y > 1 / 2"  | 
|
| 49654 | 222  | 
then have "?g x \<in> path_image g1" "?g y \<in> path_image g2"  | 
| 49653 | 223  | 
unfolding path_image_def joinpaths_def  | 
| 36583 | 224  | 
using xy(1,2) by auto  | 
| 49653 | 225  | 
moreover  | 
226  | 
have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def  | 
|
| 36583 | 227  | 
using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2)  | 
228  | 
by (auto simp add: field_simps)  | 
|
| 49653 | 229  | 
ultimately  | 
230  | 
have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto  | 
|
| 49654 | 231  | 
then have "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)  | 
| 36583 | 232  | 
using inj(1)[of "2 *\<^sub>R x" 0] by auto  | 
| 49653 | 233  | 
moreover  | 
234  | 
have "y = 1" using * unfolding xy(3) assms(3)[THEN sym]  | 
|
| 36583 | 235  | 
unfolding joinpaths_def pathfinish_def using as(2) and xy(2)  | 
236  | 
using inj(2)[of "2 *\<^sub>R y - 1" 1] by auto  | 
|
237  | 
ultimately show ?thesis by auto  | 
|
| 49653 | 238  | 
next  | 
239  | 
assume as: "x > 1 / 2" "y \<le> 1 / 2"  | 
|
| 49654 | 240  | 
then have "?g x \<in> path_image g2" "?g y \<in> path_image g1"  | 
| 49653 | 241  | 
unfolding path_image_def joinpaths_def  | 
| 36583 | 242  | 
using xy(1,2) by auto  | 
| 49653 | 243  | 
moreover  | 
244  | 
have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def  | 
|
| 36583 | 245  | 
using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1)  | 
246  | 
by (auto simp add: field_simps)  | 
|
| 49653 | 247  | 
ultimately  | 
248  | 
have *: "?g y = pathstart g1" using assms(4) unfolding xy(3) by auto  | 
|
| 49654 | 249  | 
then have "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)  | 
| 36583 | 250  | 
using inj(1)[of "2 *\<^sub>R y" 0] by auto  | 
| 49653 | 251  | 
moreover  | 
252  | 
have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym]  | 
|
| 36583 | 253  | 
unfolding joinpaths_def pathfinish_def using as(1) and xy(1)  | 
254  | 
using inj(2)[of "2 *\<^sub>R x - 1" 1] by auto  | 
|
| 49653 | 255  | 
ultimately show ?thesis by auto  | 
256  | 
qed  | 
|
257  | 
qed  | 
|
| 36583 | 258  | 
|
259  | 
lemma injective_path_join:  | 
|
260  | 
assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2"  | 
|
| 49653 | 261  | 
    "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
 | 
| 36583 | 262  | 
shows "injective_path(g1 +++ g2)"  | 
| 49653 | 263  | 
unfolding injective_path_def  | 
264  | 
proof (rule, rule, rule)  | 
|
265  | 
let ?g = "g1 +++ g2"  | 
|
| 36583 | 266  | 
note inj = assms(1,2)[unfolded injective_path_def, rule_format]  | 
| 49653 | 267  | 
fix x y  | 
268  | 
  assume xy: "x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
 | 
|
269  | 
show "x = y"  | 
|
270  | 
proof (cases "x \<le> 1/2", case_tac[!] "y \<le> 1/2", unfold not_le)  | 
|
271  | 
assume "x \<le> 1 / 2" "y \<le> 1 / 2"  | 
|
| 49654 | 272  | 
then show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy  | 
| 36583 | 273  | 
unfolding joinpaths_def by auto  | 
| 49653 | 274  | 
next  | 
275  | 
assume "x > 1 / 2" "y > 1 / 2"  | 
|
| 49654 | 276  | 
then show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy  | 
| 36583 | 277  | 
unfolding joinpaths_def by auto  | 
| 49653 | 278  | 
next  | 
279  | 
assume as: "x \<le> 1 / 2" "y > 1 / 2"  | 
|
| 49654 | 280  | 
then have "?g x \<in> path_image g1" "?g y \<in> path_image g2"  | 
| 49653 | 281  | 
unfolding path_image_def joinpaths_def  | 
| 36583 | 282  | 
using xy(1,2) by auto  | 
| 49654 | 283  | 
then have "?g x = pathfinish g1" "?g y = pathstart g2"  | 
| 49653 | 284  | 
using assms(4) unfolding assms(3) xy(3) by auto  | 
| 49654 | 285  | 
then show ?thesis  | 
| 49653 | 286  | 
using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2)  | 
| 36583 | 287  | 
unfolding pathstart_def pathfinish_def joinpaths_def  | 
288  | 
by auto  | 
|
| 49653 | 289  | 
next  | 
290  | 
assume as:"x > 1 / 2" "y \<le> 1 / 2"  | 
|
| 49654 | 291  | 
then have "?g x \<in> path_image g2" "?g y \<in> path_image g1"  | 
| 49653 | 292  | 
unfolding path_image_def joinpaths_def  | 
| 36583 | 293  | 
using xy(1,2) by auto  | 
| 49654 | 294  | 
then have "?g x = pathstart g2" "?g y = pathfinish g1"  | 
| 49653 | 295  | 
using assms(4) unfolding assms(3) xy(3) by auto  | 
| 49654 | 296  | 
then show ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2)  | 
| 36583 | 297  | 
unfolding pathstart_def pathfinish_def joinpaths_def  | 
| 49653 | 298  | 
by auto  | 
299  | 
qed  | 
|
300  | 
qed  | 
|
| 36583 | 301  | 
|
302  | 
lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join  | 
|
303  | 
||
| 49653 | 304  | 
|
| 36583 | 305  | 
subsection {* Reparametrizing a closed curve to start at some chosen point. *}
 | 
306  | 
||
307  | 
definition "shiftpath a (f::real \<Rightarrow> 'a::topological_space) =  | 
|
308  | 
(\<lambda>x. if (a + x) \<le> 1 then f(a + x) else f(a + x - 1))"  | 
|
309  | 
||
310  | 
lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a"  | 
|
311  | 
unfolding pathstart_def shiftpath_def by auto  | 
|
312  | 
||
| 49653 | 313  | 
lemma pathfinish_shiftpath:  | 
314  | 
assumes "0 \<le> a" "pathfinish g = pathstart g"  | 
|
| 36583 | 315  | 
shows "pathfinish(shiftpath a g) = g a"  | 
316  | 
using assms unfolding pathstart_def pathfinish_def shiftpath_def  | 
|
317  | 
by auto  | 
|
318  | 
||
319  | 
lemma endpoints_shiftpath:  | 
|
320  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
 | 
|
321  | 
shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a"  | 
|
322  | 
using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath)  | 
|
323  | 
||
324  | 
lemma closed_shiftpath:  | 
|
325  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
 | 
|
326  | 
shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)"  | 
|
327  | 
using endpoints_shiftpath[OF assms] by auto  | 
|
328  | 
||
329  | 
lemma path_shiftpath:  | 
|
330  | 
  assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
 | 
|
| 49653 | 331  | 
shows "path(shiftpath a g)"  | 
332  | 
proof -  | 
|
333  | 
  have *: "{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by auto
 | 
|
334  | 
have **: "\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)"  | 
|
| 36583 | 335  | 
using assms(2)[unfolded pathfinish_def pathstart_def] by auto  | 
| 49653 | 336  | 
show ?thesis  | 
337  | 
unfolding path_def shiftpath_def *  | 
|
338  | 
apply (rule continuous_on_union)  | 
|
339  | 
apply (rule closed_real_atLeastAtMost)+  | 
|
340  | 
apply (rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3  | 
|
341  | 
apply (rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3  | 
|
342  | 
apply (rule continuous_on_intros)+ prefer 2  | 
|
343  | 
apply (rule continuous_on_intros)+  | 
|
344  | 
apply (rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]])  | 
|
345  | 
using assms(3) and **  | 
|
346  | 
apply (auto, auto simp add: field_simps)  | 
|
347  | 
done  | 
|
348  | 
qed  | 
|
| 36583 | 349  | 
|
| 49653 | 350  | 
lemma shiftpath_shiftpath:  | 
351  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
 | 
|
| 36583 | 352  | 
shows "shiftpath (1 - a) (shiftpath a g) x = g x"  | 
353  | 
using assms unfolding pathfinish_def pathstart_def shiftpath_def by auto  | 
|
354  | 
||
355  | 
lemma path_image_shiftpath:  | 
|
356  | 
  assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
 | 
|
| 49653 | 357  | 
shows "path_image(shiftpath a g) = path_image g"  | 
358  | 
proof -  | 
|
359  | 
  { fix x
 | 
|
360  | 
    assume as:"g 1 = g 0" "x \<in> {0..1::real}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a + x \<le> 1}. g x \<noteq> g (a + y - 1)" 
 | 
|
| 49654 | 361  | 
    then have "\<exists>y\<in>{0..1} \<inter> {x. a + x \<le> 1}. g x = g (a + y)"
 | 
| 49653 | 362  | 
proof (cases "a \<le> x")  | 
363  | 
case False  | 
|
| 49654 | 364  | 
then show ?thesis  | 
| 49653 | 365  | 
apply (rule_tac x="1 + x - a" in bexI)  | 
| 36583 | 366  | 
using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1)  | 
| 49653 | 367  | 
apply (auto simp add: field_simps atomize_not)  | 
368  | 
done  | 
|
369  | 
next  | 
|
370  | 
case True  | 
|
| 49654 | 371  | 
then show ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI)  | 
| 49653 | 372  | 
by(auto simp add: field_simps)  | 
373  | 
qed  | 
|
374  | 
}  | 
|
| 49654 | 375  | 
then show ?thesis  | 
| 49653 | 376  | 
using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def  | 
377  | 
by(auto simp add: image_iff)  | 
|
378  | 
qed  | 
|
379  | 
||
| 36583 | 380  | 
|
381  | 
subsection {* Special case of straight-line paths. *}
 | 
|
382  | 
||
| 49653 | 383  | 
definition linepath :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a"  | 
384  | 
where "linepath a b = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b)"  | 
|
| 36583 | 385  | 
|
386  | 
lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a"  | 
|
387  | 
unfolding pathstart_def linepath_def by auto  | 
|
388  | 
||
389  | 
lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b"  | 
|
390  | 
unfolding pathfinish_def linepath_def by auto  | 
|
391  | 
||
392  | 
lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"  | 
|
393  | 
unfolding linepath_def by (intro continuous_intros)  | 
|
394  | 
||
395  | 
lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)"  | 
|
396  | 
using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on)  | 
|
397  | 
||
398  | 
lemma path_linepath[intro]: "path(linepath a b)"  | 
|
399  | 
unfolding path_def by(rule continuous_on_linepath)  | 
|
400  | 
||
401  | 
lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"  | 
|
| 49653 | 402  | 
unfolding path_image_def segment linepath_def  | 
403  | 
apply (rule set_eqI, rule) defer  | 
|
404  | 
unfolding mem_Collect_eq image_iff  | 
|
405  | 
apply(erule exE)  | 
|
406  | 
apply(rule_tac x="u *\<^sub>R 1" in bexI)  | 
|
407  | 
apply auto  | 
|
408  | 
done  | 
|
409  | 
||
410  | 
lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a"  | 
|
411  | 
unfolding reversepath_def linepath_def  | 
|
| 36583 | 412  | 
by auto  | 
413  | 
||
414  | 
lemma injective_path_linepath:  | 
|
| 49653 | 415  | 
assumes "a \<noteq> b"  | 
416  | 
shows "injective_path (linepath a b)"  | 
|
| 36583 | 417  | 
proof -  | 
418  | 
  { fix x y :: "real"
 | 
|
419  | 
assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b"  | 
|
| 49654 | 420  | 
then have "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" by (simp add: algebra_simps)  | 
| 36583 | 421  | 
with assms have "x = y" by simp }  | 
| 49654 | 422  | 
then show ?thesis  | 
| 49653 | 423  | 
unfolding injective_path_def linepath_def  | 
424  | 
by (auto simp add: algebra_simps)  | 
|
425  | 
qed  | 
|
| 36583 | 426  | 
|
| 49653 | 427  | 
lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)"  | 
428  | 
by(auto intro!: injective_imp_simple_path injective_path_linepath)  | 
|
429  | 
||
| 36583 | 430  | 
|
431  | 
subsection {* Bounding a point away from a path. *}
 | 
|
432  | 
||
433  | 
lemma not_on_path_ball:  | 
|
434  | 
fixes g :: "real \<Rightarrow> 'a::heine_borel"  | 
|
435  | 
assumes "path g" "z \<notin> path_image g"  | 
|
| 49653 | 436  | 
  shows "\<exists>e > 0. ball z e \<inter> (path_image g) = {}"
 | 
437  | 
proof -  | 
|
438  | 
obtain a where "a \<in> path_image g" "\<forall>y \<in> path_image g. dist z a \<le> dist z y"  | 
|
| 36583 | 439  | 
using distance_attains_inf[OF _ path_image_nonempty, of g z]  | 
440  | 
using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto  | 
|
| 49654 | 441  | 
then show ?thesis  | 
| 49653 | 442  | 
apply (rule_tac x="dist z a" in exI)  | 
443  | 
using assms(2)  | 
|
444  | 
apply (auto intro!: dist_pos_lt)  | 
|
445  | 
done  | 
|
446  | 
qed  | 
|
| 36583 | 447  | 
|
448  | 
lemma not_on_path_cball:  | 
|
449  | 
fixes g :: "real \<Rightarrow> 'a::heine_borel"  | 
|
450  | 
assumes "path g" "z \<notin> path_image g"  | 
|
| 49653 | 451  | 
  shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}"
 | 
452  | 
proof -  | 
|
453  | 
  obtain e where "ball z e \<inter> path_image g = {}" "e>0"
 | 
|
454  | 
using not_on_path_ball[OF assms] by auto  | 
|
| 36583 | 455  | 
moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto  | 
| 49653 | 456  | 
ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto  | 
457  | 
qed  | 
|
458  | 
||
| 36583 | 459  | 
|
460  | 
subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
 | 
|
461  | 
||
| 49653 | 462  | 
definition "path_component s x y \<longleftrightarrow>  | 
463  | 
(\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"  | 
|
| 36583 | 464  | 
|
465  | 
lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def  | 
|
466  | 
||
| 49653 | 467  | 
lemma path_component_mem:  | 
468  | 
assumes "path_component s x y"  | 
|
469  | 
shows "x \<in> s" "y \<in> s"  | 
|
| 36583 | 470  | 
using assms unfolding path_defs by auto  | 
471  | 
||
| 49653 | 472  | 
lemma path_component_refl:  | 
473  | 
assumes "x \<in> s"  | 
|
474  | 
shows "path_component s x x"  | 
|
475  | 
unfolding path_defs  | 
|
476  | 
apply (rule_tac x="\<lambda>u. x" in exI)  | 
|
477  | 
using assms apply (auto intro!:continuous_on_intros) done  | 
|
| 36583 | 478  | 
|
479  | 
lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s"  | 
|
| 49653 | 480  | 
by (auto intro!: path_component_mem path_component_refl)  | 
| 36583 | 481  | 
|
482  | 
lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x"  | 
|
| 49653 | 483  | 
using assms  | 
484  | 
unfolding path_component_def  | 
|
485  | 
apply (erule exE)  | 
|
486  | 
apply (rule_tac x="reversepath g" in exI)  | 
|
487  | 
apply auto  | 
|
488  | 
done  | 
|
| 36583 | 489  | 
|
| 49653 | 490  | 
lemma path_component_trans:  | 
491  | 
assumes "path_component s x y" "path_component s y z"  | 
|
492  | 
shows "path_component s x z"  | 
|
493  | 
using assms  | 
|
494  | 
unfolding path_component_def  | 
|
495  | 
apply -  | 
|
496  | 
apply (erule exE)+  | 
|
497  | 
apply (rule_tac x="g +++ ga" in exI)  | 
|
498  | 
apply (auto simp add: path_image_join)  | 
|
499  | 
done  | 
|
| 36583 | 500  | 
|
501  | 
lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y"  | 
|
502  | 
unfolding path_component_def by auto  | 
|
503  | 
||
| 49653 | 504  | 
|
| 36583 | 505  | 
subsection {* Can also consider it as a set, as the name suggests. *}
 | 
506  | 
||
| 49653 | 507  | 
lemma path_component_set:  | 
508  | 
  "{y. path_component s x y} =
 | 
|
509  | 
    {y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)}"
 | 
|
510  | 
apply (rule set_eqI)  | 
|
511  | 
unfolding mem_Collect_eq  | 
|
512  | 
unfolding path_component_def  | 
|
513  | 
apply auto  | 
|
514  | 
done  | 
|
| 36583 | 515  | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
41959 
diff
changeset
 | 
516  | 
lemma path_component_subset: "{y. path_component s x y} \<subseteq> s"
 | 
| 49653 | 517  | 
apply (rule, rule path_component_mem(2))  | 
518  | 
apply auto  | 
|
519  | 
done  | 
|
| 36583 | 520  | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
41959 
diff
changeset
 | 
521  | 
lemma path_component_eq_empty: "{y. path_component s x y} = {} \<longleftrightarrow> x \<notin> s"
 | 
| 49653 | 522  | 
apply rule  | 
523  | 
apply (drule equals0D[of _ x]) defer  | 
|
524  | 
apply (rule equals0I)  | 
|
525  | 
unfolding mem_Collect_eq  | 
|
526  | 
apply (drule path_component_mem(1))  | 
|
527  | 
using path_component_refl  | 
|
528  | 
apply auto  | 
|
529  | 
done  | 
|
530  | 
||
| 36583 | 531  | 
|
532  | 
subsection {* Path connectedness of a space. *}
 | 
|
533  | 
||
| 49653 | 534  | 
definition "path_connected s \<longleftrightarrow>  | 
535  | 
(\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"  | 
|
| 36583 | 536  | 
|
537  | 
lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)"  | 
|
538  | 
unfolding path_connected_def path_component_def by auto  | 
|
539  | 
||
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
41959 
diff
changeset
 | 
540  | 
lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. {y. path_component s x y} = s)" 
 | 
| 49653 | 541  | 
unfolding path_connected_component  | 
542  | 
apply (rule, rule, rule, rule path_component_subset)  | 
|
543  | 
unfolding subset_eq mem_Collect_eq Ball_def  | 
|
544  | 
apply auto  | 
|
545  | 
done  | 
|
546  | 
||
| 36583 | 547  | 
|
548  | 
subsection {* Some useful lemmas about path-connectedness. *}
 | 
|
549  | 
||
550  | 
lemma convex_imp_path_connected:  | 
|
551  | 
fixes s :: "'a::real_normed_vector set"  | 
|
552  | 
assumes "convex s" shows "path_connected s"  | 
|
| 49653 | 553  | 
unfolding path_connected_def  | 
554  | 
apply (rule, rule, rule_tac x = "linepath x y" in exI)  | 
|
555  | 
unfolding path_image_linepath  | 
|
556  | 
using assms [unfolded convex_contains_segment]  | 
|
557  | 
apply auto  | 
|
558  | 
done  | 
|
| 36583 | 559  | 
|
| 49653 | 560  | 
lemma path_connected_imp_connected:  | 
561  | 
assumes "path_connected s"  | 
|
562  | 
shows "connected s"  | 
|
563  | 
unfolding connected_def not_ex  | 
|
564  | 
apply (rule, rule, rule ccontr)  | 
|
565  | 
unfolding not_not  | 
|
566  | 
apply (erule conjE)+  | 
|
567  | 
proof -  | 
|
568  | 
fix e1 e2  | 
|
569  | 
  assume as: "open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | 
|
| 36583 | 570  | 
then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto  | 
571  | 
then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2"  | 
|
572  | 
using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto  | 
|
| 49653 | 573  | 
  have *: "connected {0..1::real}"
 | 
574  | 
by (auto intro!: convex_connected convex_real_interval)  | 
|
575  | 
  have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}"
 | 
|
576  | 
using as(3) g(2)[unfolded path_defs] by blast  | 
|
577  | 
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}"
 | 
|
578  | 
using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto  | 
|
579  | 
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}"
 | 
|
580  | 
using g(3,4)[unfolded path_defs] using obt  | 
|
| 36583 | 581  | 
by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl)  | 
| 49653 | 582  | 
ultimately show False  | 
583  | 
    using *[unfolded connected_local not_ex, rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | 
|
| 36583 | 584  | 
using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)]  | 
| 49653 | 585  | 
using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)]  | 
586  | 
by auto  | 
|
587  | 
qed  | 
|
| 36583 | 588  | 
|
589  | 
lemma open_path_component:  | 
|
| 53593 | 590  | 
fixes s :: "'a::real_normed_vector set"  | 
| 49653 | 591  | 
assumes "open s"  | 
592  | 
  shows "open {y. path_component s x y}"
 | 
|
593  | 
unfolding open_contains_ball  | 
|
594  | 
proof  | 
|
595  | 
fix y  | 
|
596  | 
  assume as: "y \<in> {y. path_component s x y}"
 | 
|
| 49654 | 597  | 
then have "y \<in> s"  | 
| 49653 | 598  | 
apply -  | 
599  | 
apply (rule path_component_mem(2))  | 
|
600  | 
unfolding mem_Collect_eq  | 
|
601  | 
apply auto  | 
|
602  | 
done  | 
|
603  | 
then obtain e where e:"e>0" "ball y e \<subseteq> s"  | 
|
604  | 
using assms[unfolded open_contains_ball] by auto  | 
|
605  | 
  show "\<exists>e > 0. ball y e \<subseteq> {y. path_component s x y}"
 | 
|
606  | 
apply (rule_tac x=e in exI)  | 
|
607  | 
apply (rule,rule `e>0`, rule)  | 
|
608  | 
unfolding mem_ball mem_Collect_eq  | 
|
609  | 
proof -  | 
|
610  | 
fix z  | 
|
611  | 
assume "dist y z < e"  | 
|
| 49654 | 612  | 
then show "path_component s x z"  | 
| 49653 | 613  | 
apply (rule_tac path_component_trans[of _ _ y]) defer  | 
614  | 
apply (rule path_component_of_subset[OF e(2)])  | 
|
615  | 
apply (rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format])  | 
|
616  | 
using `e>0` as  | 
|
617  | 
apply auto  | 
|
618  | 
done  | 
|
619  | 
qed  | 
|
620  | 
qed  | 
|
| 36583 | 621  | 
|
622  | 
lemma open_non_path_component:  | 
|
| 53593 | 623  | 
fixes s :: "'a::real_normed_vector set"  | 
| 49653 | 624  | 
assumes "open s"  | 
625  | 
  shows "open(s - {y. path_component s x y})"
 | 
|
626  | 
unfolding open_contains_ball  | 
|
627  | 
proof  | 
|
628  | 
fix y  | 
|
629  | 
  assume as: "y\<in>s - {y. path_component s x y}"
 | 
|
630  | 
then obtain e where e:"e>0" "ball y e \<subseteq> s"  | 
|
631  | 
using assms [unfolded open_contains_ball] by auto  | 
|
632  | 
  show "\<exists>e>0. ball y e \<subseteq> s - {y. path_component s x y}"
 | 
|
633  | 
apply (rule_tac x=e in exI)  | 
|
634  | 
apply (rule, rule `e>0`, rule, rule) defer  | 
|
635  | 
proof (rule ccontr)  | 
|
636  | 
fix z  | 
|
637  | 
    assume "z \<in> ball y e" "\<not> z \<notin> {y. path_component s x y}"
 | 
|
| 49654 | 638  | 
    then have "y \<in> {y. path_component s x y}"
 | 
| 49653 | 639  | 
unfolding not_not mem_Collect_eq using `e>0`  | 
640  | 
apply -  | 
|
641  | 
apply (rule path_component_trans, assumption)  | 
|
642  | 
apply (rule path_component_of_subset[OF e(2)])  | 
|
643  | 
apply (rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format])  | 
|
644  | 
apply auto  | 
|
645  | 
done  | 
|
| 49654 | 646  | 
then show False using as by auto  | 
| 49653 | 647  | 
qed (insert e(2), auto)  | 
648  | 
qed  | 
|
| 36583 | 649  | 
|
650  | 
lemma connected_open_path_connected:  | 
|
| 53593 | 651  | 
fixes s :: "'a::real_normed_vector set"  | 
| 49653 | 652  | 
assumes "open s" "connected s"  | 
653  | 
shows "path_connected s"  | 
|
654  | 
unfolding path_connected_component_set  | 
|
655  | 
proof (rule, rule, rule path_component_subset, rule)  | 
|
656  | 
fix x y  | 
|
657  | 
assume "x \<in> s" "y \<in> s"  | 
|
658  | 
  show "y \<in> {y. path_component s x y}"
 | 
|
659  | 
proof (rule ccontr)  | 
|
660  | 
    assume "y \<notin> {y. path_component s x y}"
 | 
|
661  | 
moreover  | 
|
662  | 
    have "{y. path_component s x y} \<inter> s \<noteq> {}"
 | 
|
663  | 
using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto  | 
|
664  | 
ultimately  | 
|
665  | 
show False  | 
|
666  | 
using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]  | 
|
667  | 
      using assms(2)[unfolded connected_def not_ex, rule_format, of"{y. path_component s x y}" "s - {y. path_component s x y}"]
 | 
|
668  | 
by auto  | 
|
669  | 
qed  | 
|
670  | 
qed  | 
|
| 36583 | 671  | 
|
672  | 
lemma path_connected_continuous_image:  | 
|
| 49653 | 673  | 
assumes "continuous_on s f" "path_connected s"  | 
674  | 
shows "path_connected (f ` s)"  | 
|
675  | 
unfolding path_connected_def  | 
|
676  | 
proof (rule, rule)  | 
|
677  | 
fix x' y'  | 
|
678  | 
assume "x' \<in> f ` s" "y' \<in> f ` s"  | 
|
679  | 
then obtain x y where xy: "x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto  | 
|
680  | 
guess g using assms(2)[unfolded path_connected_def, rule_format, OF xy(1,2)] ..  | 
|
| 49654 | 681  | 
then show "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'"  | 
| 49653 | 682  | 
unfolding xy  | 
683  | 
apply (rule_tac x="f \<circ> g" in exI)  | 
|
684  | 
unfolding path_defs  | 
|
| 
51481
 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 
hoelzl 
parents: 
51478 
diff
changeset
 | 
685  | 
apply (intro conjI continuous_on_compose continuous_on_subset[OF assms(1)])  | 
| 
 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 
hoelzl 
parents: 
51478 
diff
changeset
 | 
686  | 
apply auto  | 
| 49653 | 687  | 
done  | 
688  | 
qed  | 
|
| 36583 | 689  | 
|
690  | 
lemma homeomorphic_path_connectedness:  | 
|
691  | 
"s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)"  | 
|
| 49653 | 692  | 
unfolding homeomorphic_def homeomorphism_def  | 
693  | 
apply (erule exE|erule conjE)+  | 
|
694  | 
apply rule  | 
|
695  | 
apply (drule_tac f=f in path_connected_continuous_image) prefer 3  | 
|
696  | 
apply (drule_tac f=g in path_connected_continuous_image)  | 
|
697  | 
apply auto  | 
|
698  | 
done  | 
|
| 36583 | 699  | 
|
700  | 
lemma path_connected_empty: "path_connected {}"
 | 
|
701  | 
unfolding path_connected_def by auto  | 
|
702  | 
||
703  | 
lemma path_connected_singleton: "path_connected {a}"
 | 
|
704  | 
unfolding path_connected_def pathstart_def pathfinish_def path_image_def  | 
|
705  | 
apply (clarify, rule_tac x="\<lambda>x. a" in exI, simp add: image_constant_conv)  | 
|
706  | 
apply (simp add: path_def continuous_on_const)  | 
|
707  | 
done  | 
|
708  | 
||
| 49653 | 709  | 
lemma path_connected_Un:  | 
710  | 
  assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
 | 
|
711  | 
shows "path_connected (s \<union> t)"  | 
|
712  | 
unfolding path_connected_component  | 
|
713  | 
proof (rule, rule)  | 
|
714  | 
fix x y  | 
|
715  | 
assume as: "x \<in> s \<union> t" "y \<in> s \<union> t"  | 
|
| 36583 | 716  | 
from assms(3) obtain z where "z \<in> s \<inter> t" by auto  | 
| 49654 | 717  | 
then show "path_component (s \<union> t) x y"  | 
| 49653 | 718  | 
using as and assms(1-2)[unfolded path_connected_component]  | 
719  | 
apply -  | 
|
720  | 
apply (erule_tac[!] UnE)+  | 
|
721  | 
apply (rule_tac[2-3] path_component_trans[of _ _ z])  | 
|
722  | 
apply (auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2])  | 
|
723  | 
done  | 
|
724  | 
qed  | 
|
| 36583 | 725  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
726  | 
lemma path_connected_UNION:  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
727  | 
assumes "\<And>i. i \<in> A \<Longrightarrow> path_connected (S i)"  | 
| 49653 | 728  | 
and "\<And>i. i \<in> A \<Longrightarrow> z \<in> S i"  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
729  | 
shows "path_connected (\<Union>i\<in>A. S i)"  | 
| 49653 | 730  | 
unfolding path_connected_component  | 
731  | 
proof clarify  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
732  | 
fix x i y j  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
733  | 
assume *: "i \<in> A" "x \<in> S i" "j \<in> A" "y \<in> S j"  | 
| 49654 | 734  | 
then have "path_component (S i) x z" and "path_component (S j) z y"  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
735  | 
using assms by (simp_all add: path_connected_component)  | 
| 49654 | 736  | 
then have "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y"  | 
| 
48125
 
602dc0215954
tuned proofs -- prefer direct "rotated" instead of old-style COMP;
 
wenzelm 
parents: 
44647 
diff
changeset
 | 
737  | 
using *(1,3) by (auto elim!: path_component_of_subset [rotated])  | 
| 49654 | 738  | 
then show "path_component (\<Union>i\<in>A. S i) x y"  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
739  | 
by (rule path_component_trans)  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
740  | 
qed  | 
| 36583 | 741  | 
|
| 49653 | 742  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
743  | 
subsection {* sphere is path-connected. *}
 | 
| 
37489
 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 
hoelzl 
parents: 
36583 
diff
changeset
 | 
744  | 
|
| 36583 | 745  | 
lemma path_connected_punctured_universe:  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
746  | 
  assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
747  | 
  shows "path_connected((UNIV::'a::euclidean_space set) - {a})"
 | 
| 49653 | 748  | 
proof -  | 
| 
50526
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
749  | 
  let ?A = "{x::'a. \<exists>i\<in>Basis. x \<bullet> i < a \<bullet> i}"
 | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
750  | 
  let ?B = "{x::'a. \<exists>i\<in>Basis. a \<bullet> i < x \<bullet> i}"
 | 
| 36583 | 751  | 
|
| 49653 | 752  | 
have A: "path_connected ?A"  | 
753  | 
unfolding Collect_bex_eq  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
754  | 
proof (rule path_connected_UNION)  | 
| 
50526
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
755  | 
fix i :: 'a  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
756  | 
assume "i \<in> Basis"  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
757  | 
    then show "(\<Sum>i\<in>Basis. (a \<bullet> i - 1)*\<^sub>R i) \<in> {x::'a. x \<bullet> i < a \<bullet> i}" by simp
 | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
758  | 
    show "path_connected {x. x \<bullet> i < a \<bullet> i}"
 | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
759  | 
using convex_imp_path_connected [OF convex_halfspace_lt, of i "a \<bullet> i"]  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
760  | 
by (simp add: inner_commute)  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
761  | 
qed  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
762  | 
have B: "path_connected ?B" unfolding Collect_bex_eq  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
763  | 
proof (rule path_connected_UNION)  | 
| 
50526
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
764  | 
fix i :: 'a  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
765  | 
assume "i \<in> Basis"  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
766  | 
    then show "(\<Sum>i\<in>Basis. (a \<bullet> i + 1) *\<^sub>R i) \<in> {x::'a. a \<bullet> i < x \<bullet> i}" by simp
 | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
767  | 
    show "path_connected {x. a \<bullet> i < x \<bullet> i}"
 | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
768  | 
using convex_imp_path_connected [OF convex_halfspace_gt, of "a \<bullet> i" i]  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
769  | 
by (simp add: inner_commute)  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
770  | 
qed  | 
| 
50526
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
771  | 
obtain S :: "'a set" where "S \<subseteq> Basis" "card S = Suc (Suc 0)"  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
772  | 
using ex_card[OF assms] by auto  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
773  | 
then obtain b0 b1 :: 'a where "b0 \<in> Basis" "b1 \<in> Basis" "b0 \<noteq> b1"  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
774  | 
unfolding card_Suc_eq by auto  | 
| 
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
775  | 
then have "a + b0 - b1 \<in> ?A \<inter> ?B" by (auto simp: inner_simps inner_Basis)  | 
| 49654 | 776  | 
  then have "?A \<inter> ?B \<noteq> {}" by fast
 | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
777  | 
with A B have "path_connected (?A \<union> ?B)"  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
778  | 
by (rule path_connected_Un)  | 
| 
50526
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
779  | 
  also have "?A \<union> ?B = {x. \<exists>i\<in>Basis. x \<bullet> i \<noteq> a \<bullet> i}"
 | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
780  | 
unfolding neq_iff bex_disj_distrib Collect_disj_eq ..  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
781  | 
  also have "\<dots> = {x. x \<noteq> a}"
 | 
| 
50526
 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 
hoelzl 
parents: 
49654 
diff
changeset
 | 
782  | 
unfolding euclidean_eq_iff [where 'a='a] by (simp add: Bex_def)  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
783  | 
  also have "\<dots> = UNIV - {a}" by auto
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
784  | 
finally show ?thesis .  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
785  | 
qed  | 
| 36583 | 786  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
787  | 
lemma path_connected_sphere:  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
788  | 
  assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
789  | 
  shows "path_connected {x::'a::euclidean_space. norm(x - a) = r}"
 | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
790  | 
proof (rule linorder_cases [of r 0])  | 
| 49653 | 791  | 
assume "r < 0"  | 
| 49654 | 792  | 
  then have "{x::'a. norm(x - a) = r} = {}" by auto
 | 
793  | 
then show ?thesis using path_connected_empty by simp  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
794  | 
next  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
795  | 
assume "r = 0"  | 
| 49654 | 796  | 
then show ?thesis using path_connected_singleton by simp  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
797  | 
next  | 
| 
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
798  | 
assume r: "0 < r"  | 
| 49654 | 799  | 
  then have *: "{x::'a. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}"
 | 
| 49653 | 800  | 
apply -  | 
801  | 
apply (rule set_eqI, rule)  | 
|
802  | 
unfolding image_iff  | 
|
803  | 
apply (rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI)  | 
|
804  | 
unfolding mem_Collect_eq norm_scaleR  | 
|
805  | 
apply (auto simp add: scaleR_right_diff_distrib)  | 
|
806  | 
done  | 
|
807  | 
  have **: "{x::'a. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})"
 | 
|
808  | 
apply (rule set_eqI,rule)  | 
|
809  | 
unfolding image_iff  | 
|
810  | 
apply (rule_tac x=x in bexI)  | 
|
811  | 
unfolding mem_Collect_eq  | 
|
812  | 
apply (auto split:split_if_asm)  | 
|
813  | 
done  | 
|
| 
44647
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
814  | 
  have "continuous_on (UNIV - {0}) (\<lambda>x::'a. 1 / norm x)"
 | 
| 
 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 
huffman 
parents: 
44531 
diff
changeset
 | 
815  | 
unfolding field_divide_inverse by (simp add: continuous_on_intros)  | 
| 49654 | 816  | 
then show ?thesis unfolding * ** using path_connected_punctured_universe[OF assms]  | 
| 49653 | 817  | 
by (auto intro!: path_connected_continuous_image continuous_on_intros)  | 
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
818  | 
qed  | 
| 36583 | 819  | 
|
| 
37674
 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 
huffman 
parents: 
37489 
diff
changeset
 | 
820  | 
lemma connected_sphere: "2 \<le> DIM('a::euclidean_space) \<Longrightarrow> connected {x::'a. norm(x - a) = r}"
 | 
| 36583 | 821  | 
using path_connected_sphere path_connected_imp_connected by auto  | 
822  | 
||
823  | 
end  |