--- a/src/HOL/Finite_Set.thy Mon Jun 25 15:14:07 2012 +0200
+++ b/src/HOL/Finite_Set.thy Mon Jun 25 17:41:20 2012 +0200
@@ -865,7 +865,7 @@
case (insert x F) then show ?case apply -
apply (simp add: subset_insert_iff, clarify)
apply (subgoal_tac "finite C")
- prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
+ prefer 2 apply (blast dest: finite_subset [rotated])
apply (subgoal_tac "C = insert x (C - {x})")
prefer 2 apply blast
apply (erule ssubst)
@@ -1517,7 +1517,7 @@
apply - apply (erule finite_induct) apply simp
apply (simp add: subset_insert_iff, clarify)
apply (subgoal_tac "finite C")
- prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
+ prefer 2 apply (blast dest: finite_subset [rotated])
apply (subgoal_tac "C = insert x (C - {x})")
prefer 2 apply blast
apply (erule ssubst)
--- a/src/HOL/Multivariate_Analysis/Path_Connected.thy Mon Jun 25 15:14:07 2012 +0200
+++ b/src/HOL/Multivariate_Analysis/Path_Connected.thy Mon Jun 25 17:41:20 2012 +0200
@@ -511,7 +511,7 @@
hence "path_component (S i) x z" and "path_component (S j) z y"
using assms by (simp_all add: path_connected_component)
hence "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y"
- using *(1,3) by (auto elim!: path_component_of_subset [COMP swap_prems_rl])
+ using *(1,3) by (auto elim!: path_component_of_subset [rotated])
thus "path_component (\<Union>i\<in>A. S i) x y"
by (rule path_component_trans)
qed
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Mon Jun 25 15:14:07 2012 +0200
+++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Mon Jun 25 17:41:20 2012 +0200
@@ -4208,7 +4208,7 @@
apply (rule_tac x="(l1, l2)" in rev_bexI, simp)
apply (rule_tac x="r1 \<circ> r2" in exI)
apply (rule conjI, simp add: subseq_def)
-apply (drule_tac r=r2 in lim_subseq [COMP swap_prems_rl], assumption)
+apply (drule_tac r=r2 in lim_subseq [rotated], assumption)
apply (drule (1) tendsto_Pair) back
apply (simp add: o_def)
done