| author | wenzelm | 
| Sun, 20 Nov 2011 21:05:23 +0100 | |
| changeset 45605 | a89b4bc311a5 | 
| parent 45231 | d85a2fdc586c | 
| child 45696 | 476ad865f125 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Nat.thy | 
| 21243 | 2 | Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel | 
| 923 | 3 | |
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 4 | Type "nat" is a linear order, and a datatype; arithmetic operators + - | 
| 30496 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 5 | and * (for div and mod, see theory Divides). | 
| 923 | 6 | *) | 
| 7 | ||
| 13449 | 8 | header {* Natural numbers *}
 | 
| 9 | ||
| 15131 | 10 | theory Nat | 
| 35121 | 11 | imports Inductive Typedef Fun Fields | 
| 23263 | 12 | uses | 
| 13 | "~~/src/Tools/rat.ML" | |
| 14 | "~~/src/Provers/Arith/cancel_sums.ML" | |
| 30496 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 15 | "Tools/arith_data.ML" | 
| 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 16 |   ("Tools/nat_arith.ML")
 | 
| 24091 | 17 | "~~/src/Provers/Arith/fast_lin_arith.ML" | 
| 18 |   ("Tools/lin_arith.ML")
 | |
| 15131 | 19 | begin | 
| 13449 | 20 | |
| 21 | subsection {* Type @{text ind} *}
 | |
| 22 | ||
| 23 | typedecl ind | |
| 24 | ||
| 44325 | 25 | axiomatization Zero_Rep :: ind and Suc_Rep :: "ind => ind" where | 
| 13449 | 26 |   -- {* the axiom of infinity in 2 parts *}
 | 
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 27 | Suc_Rep_inject: "Suc_Rep x = Suc_Rep y ==> x = y" and | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 28 | Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" | 
| 19573 | 29 | |
| 13449 | 30 | subsection {* Type nat *}
 | 
| 31 | ||
| 32 | text {* Type definition *}
 | |
| 33 | ||
| 44325 | 34 | inductive Nat :: "ind \<Rightarrow> bool" where | 
| 35 | Zero_RepI: "Nat Zero_Rep" | |
| 36 | | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)" | |
| 13449 | 37 | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 38 | typedef (open Nat) nat = "{n. Nat n}"
 | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 39 | using Nat.Zero_RepI by auto | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 40 | |
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 41 | lemma Nat_Rep_Nat: | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 42 | "Nat (Rep_Nat n)" | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 43 | using Rep_Nat by simp | 
| 13449 | 44 | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 45 | lemma Nat_Abs_Nat_inverse: | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 46 | "Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n" | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 47 | using Abs_Nat_inverse by simp | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 48 | |
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 49 | lemma Nat_Abs_Nat_inject: | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 50 | "Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m" | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 51 | using Abs_Nat_inject by simp | 
| 13449 | 52 | |
| 25510 | 53 | instantiation nat :: zero | 
| 54 | begin | |
| 55 | ||
| 37767 | 56 | definition Zero_nat_def: | 
| 25510 | 57 | "0 = Abs_Nat Zero_Rep" | 
| 58 | ||
| 59 | instance .. | |
| 60 | ||
| 61 | end | |
| 24995 | 62 | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 63 | definition Suc :: "nat \<Rightarrow> nat" where | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 64 | "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 65 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 66 | lemma Suc_not_Zero: "Suc m \<noteq> 0" | 
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 67 | by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat) | 
| 13449 | 68 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 69 | lemma Zero_not_Suc: "0 \<noteq> Suc m" | 
| 13449 | 70 | by (rule not_sym, rule Suc_not_Zero not_sym) | 
| 71 | ||
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 72 | lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y" | 
| 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 73 | by (rule iffI, rule Suc_Rep_inject) simp_all | 
| 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 74 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 75 | rep_datatype "0 \<Colon> nat" Suc | 
| 27129 | 76 | apply (unfold Zero_nat_def Suc_def) | 
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 77 |   apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
 | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 78 | apply (erule Nat_Rep_Nat [THEN Nat.induct]) | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 79 | apply (iprover elim: Nat_Abs_Nat_inverse [THEN subst]) | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 80 | apply (simp_all add: Nat_Abs_Nat_inject Nat_Rep_Nat | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 81 | Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 82 | Suc_Rep_not_Zero_Rep [symmetric] | 
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 83 | Suc_Rep_inject' Rep_Nat_inject) | 
| 27129 | 84 | done | 
| 13449 | 85 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 86 | lemma nat_induct [case_names 0 Suc, induct type: nat]: | 
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 87 |   -- {* for backward compatibility -- names of variables differ *}
 | 
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 88 | fixes n | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 89 | assumes "P 0" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 90 | and "\<And>n. P n \<Longrightarrow> P (Suc n)" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 91 | shows "P n" | 
| 32772 | 92 | using assms by (rule nat.induct) | 
| 21411 | 93 | |
| 94 | declare nat.exhaust [case_names 0 Suc, cases type: nat] | |
| 13449 | 95 | |
| 21672 | 96 | lemmas nat_rec_0 = nat.recs(1) | 
| 97 | and nat_rec_Suc = nat.recs(2) | |
| 98 | ||
| 99 | lemmas nat_case_0 = nat.cases(1) | |
| 100 | and nat_case_Suc = nat.cases(2) | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 101 | |
| 24995 | 102 | |
| 103 | text {* Injectiveness and distinctness lemmas *}
 | |
| 104 | ||
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 105 | lemma inj_Suc[simp]: "inj_on Suc N" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 106 | by (simp add: inj_on_def) | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 107 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 108 | lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R" | 
| 25162 | 109 | by (rule notE, rule Suc_not_Zero) | 
| 24995 | 110 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 111 | lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R" | 
| 25162 | 112 | by (rule Suc_neq_Zero, erule sym) | 
| 24995 | 113 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 114 | lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y" | 
| 25162 | 115 | by (rule inj_Suc [THEN injD]) | 
| 24995 | 116 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 117 | lemma n_not_Suc_n: "n \<noteq> Suc n" | 
| 25162 | 118 | by (induct n) simp_all | 
| 13449 | 119 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 120 | lemma Suc_n_not_n: "Suc n \<noteq> n" | 
| 25162 | 121 | by (rule not_sym, rule n_not_Suc_n) | 
| 13449 | 122 | |
| 123 | text {* A special form of induction for reasoning
 | |
| 124 |   about @{term "m < n"} and @{term "m - n"} *}
 | |
| 125 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 126 | lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> | 
| 13449 | 127 | (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" | 
| 14208 | 128 | apply (rule_tac x = m in spec) | 
| 15251 | 129 | apply (induct n) | 
| 13449 | 130 | prefer 2 | 
| 131 | apply (rule allI) | |
| 17589 | 132 | apply (induct_tac x, iprover+) | 
| 13449 | 133 | done | 
| 134 | ||
| 24995 | 135 | |
| 136 | subsection {* Arithmetic operators *}
 | |
| 137 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 138 | instantiation nat :: "{minus, comm_monoid_add}"
 | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 139 | begin | 
| 24995 | 140 | |
| 44325 | 141 | primrec plus_nat where | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 142 | add_0: "0 + n = (n\<Colon>nat)" | 
| 44325 | 143 | | add_Suc: "Suc m + n = Suc (m + n)" | 
| 24995 | 144 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 145 | lemma add_0_right [simp]: "m + 0 = (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 146 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 147 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 148 | lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 149 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 150 | |
| 28514 | 151 | declare add_0 [code] | 
| 152 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 153 | lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 154 | by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 155 | |
| 44325 | 156 | primrec minus_nat where | 
| 39793 | 157 | diff_0 [code]: "m - 0 = (m\<Colon>nat)" | 
| 158 | | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" | |
| 24995 | 159 | |
| 28514 | 160 | declare diff_Suc [simp del] | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 161 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 162 | lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 163 | by (induct n) (simp_all add: diff_Suc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 164 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 165 | lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 166 | by (induct n) (simp_all add: diff_Suc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 167 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 168 | instance proof | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 169 | fix n m q :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 170 | show "(n + m) + q = n + (m + q)" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 171 | show "n + m = m + n" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 172 | show "0 + n = n" by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 173 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 174 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 175 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 176 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 177 | hide_fact (open) add_0 add_0_right diff_0 | 
| 35047 
1b2bae06c796
hide fact Nat.add_0_right; make add_0_right from Groups priority
 haftmann parents: 
35028diff
changeset | 178 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 179 | instantiation nat :: comm_semiring_1_cancel | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 180 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 181 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 182 | definition | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 183 | One_nat_def [simp]: "1 = Suc 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 184 | |
| 44325 | 185 | primrec times_nat where | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 186 | mult_0: "0 * n = (0\<Colon>nat)" | 
| 44325 | 187 | | mult_Suc: "Suc m * n = n + (m * n)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 188 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 189 | lemma mult_0_right [simp]: "(m::nat) * 0 = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 190 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 191 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 192 | lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 193 | by (induct m) (simp_all add: add_left_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 194 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 195 | lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 196 | by (induct m) (simp_all add: add_assoc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 197 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 198 | instance proof | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 199 | fix n m q :: nat | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 200 | show "0 \<noteq> (1::nat)" unfolding One_nat_def by simp | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 201 | show "1 * n = n" unfolding One_nat_def by simp | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 202 | show "n * m = m * n" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 203 | show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 204 | show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 205 | assume "n + m = n + q" thus "m = q" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 206 | qed | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 207 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 208 | end | 
| 24995 | 209 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 210 | subsubsection {* Addition *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 211 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 212 | lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 213 | by (rule add_assoc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 214 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 215 | lemma nat_add_commute: "m + n = n + (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 216 | by (rule add_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 217 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 218 | lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 219 | by (rule add_left_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 220 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 221 | lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 222 | by (rule add_left_cancel) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 223 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 224 | lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 225 | by (rule add_right_cancel) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 226 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 227 | text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 228 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 229 | lemma add_is_0 [iff]: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 230 | fixes m n :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 231 | shows "(m + n = 0) = (m = 0 & n = 0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 232 | by (cases m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 233 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 234 | lemma add_is_1: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 235 | "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 236 | by (cases m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 237 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 238 | lemma one_is_add: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 239 | "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 240 | by (rule trans, rule eq_commute, rule add_is_1) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 241 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 242 | lemma add_eq_self_zero: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 243 | fixes m n :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 244 | shows "m + n = m \<Longrightarrow> n = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 245 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 246 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 247 | lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 248 | apply (induct k) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 249 | apply simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 250 | apply(drule comp_inj_on[OF _ inj_Suc]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 251 | apply (simp add:o_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 252 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 253 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 254 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 255 | subsubsection {* Difference *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 256 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 257 | lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 258 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 259 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 260 | lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 261 | by (induct i j rule: diff_induct) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 262 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 263 | lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 264 | by (simp add: diff_diff_left) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 265 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 266 | lemma diff_commute: "(i::nat) - j - k = i - k - j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 267 | by (simp add: diff_diff_left add_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 268 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 269 | lemma diff_add_inverse: "(n + m) - n = (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 270 | by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 271 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 272 | lemma diff_add_inverse2: "(m + n) - n = (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 273 | by (simp add: diff_add_inverse add_commute [of m n]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 274 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 275 | lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 276 | by (induct k) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 277 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 278 | lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 279 | by (simp add: diff_cancel add_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 280 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 281 | lemma diff_add_0: "n - (n + m) = (0::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 282 | by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 283 | |
| 30093 | 284 | lemma diff_Suc_1 [simp]: "Suc n - 1 = n" | 
| 285 | unfolding One_nat_def by simp | |
| 286 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 287 | text {* Difference distributes over multiplication *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 288 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 289 | lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 290 | by (induct m n rule: diff_induct) (simp_all add: diff_cancel) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 291 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 292 | lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 293 | by (simp add: diff_mult_distrib mult_commute [of k]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 294 |   -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 295 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 296 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 297 | subsubsection {* Multiplication *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 298 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 299 | lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 300 | by (rule mult_assoc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 301 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 302 | lemma nat_mult_commute: "m * n = n * (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 303 | by (rule mult_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 304 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 305 | lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 306 | by (rule right_distrib) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 307 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 308 | lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 309 | by (induct m) auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 310 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 311 | lemmas nat_distrib = | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 312 | add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 313 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 314 | lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = Suc 0 & n = Suc 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 315 | apply (induct m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 316 | apply simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 317 | apply (induct n) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 318 | apply auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 319 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 320 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 321 | lemma one_eq_mult_iff [simp,no_atp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 322 | apply (rule trans) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44848diff
changeset | 323 | apply (rule_tac [2] mult_eq_1_iff, fastforce) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 324 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 325 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 326 | lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1" | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 327 | unfolding One_nat_def by (rule mult_eq_1_iff) | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 328 | |
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 329 | lemma nat_1_eq_mult_iff [simp]: "(1::nat) = m * n \<longleftrightarrow> m = 1 \<and> n = 1" | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 330 | unfolding One_nat_def by (rule one_eq_mult_iff) | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 331 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 332 | lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 333 | proof - | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 334 | have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 335 | proof (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 336 | case 0 then show "m = 0" by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 337 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 338 | case (Suc n) then show "m = Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 339 | by (cases m) (simp_all add: eq_commute [of "0"]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 340 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 341 | then show ?thesis by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 342 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 343 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 344 | lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 345 | by (simp add: mult_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 346 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 347 | lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 348 | by (subst mult_cancel1) simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 349 | |
| 24995 | 350 | |
| 351 | subsection {* Orders on @{typ nat} *}
 | |
| 352 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 353 | subsubsection {* Operation definition *}
 | 
| 24995 | 354 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 355 | instantiation nat :: linorder | 
| 25510 | 356 | begin | 
| 357 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 358 | primrec less_eq_nat where | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 359 | "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" | 
| 44325 | 360 | | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 361 | |
| 28514 | 362 | declare less_eq_nat.simps [simp del] | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 363 | lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 364 | lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 365 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 366 | definition less_nat where | 
| 28514 | 367 | less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 368 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 369 | lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 370 | by (simp add: less_eq_nat.simps(2)) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 371 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 372 | lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 373 | unfolding less_eq_Suc_le .. | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 374 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 375 | lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 376 | by (induct n) (simp_all add: less_eq_nat.simps(2)) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 377 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 378 | lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 379 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 380 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 381 | lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 382 | by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 383 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 384 | lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 385 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 386 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 387 | lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 388 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 389 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 390 | lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 391 | by (induct m arbitrary: n) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 392 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 393 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 394 | lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 395 | by (cases n) (auto intro: le_SucI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 396 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 397 | lemma less_SucI: "m < n \<Longrightarrow> m < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 398 | by (simp add: less_eq_Suc_le) (erule Suc_leD) | 
| 24995 | 399 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 400 | lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 401 | by (simp add: less_eq_Suc_le) (erule Suc_leD) | 
| 25510 | 402 | |
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 403 | instance | 
| 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 404 | proof | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 405 | fix n m :: nat | 
| 27679 | 406 | show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 407 | proof (induct n arbitrary: m) | 
| 27679 | 408 | case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 409 | next | 
| 27679 | 410 | case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 411 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 412 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 413 | fix n :: nat show "n \<le> n" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 414 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 415 | fix n m :: nat assume "n \<le> m" and "m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 416 | then show "n = m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 417 | by (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 418 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 419 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 420 | fix n m q :: nat assume "n \<le> m" and "m \<le> q" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 421 | then show "n \<le> q" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 422 | proof (induct n arbitrary: m q) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 423 | case 0 show ?case by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 424 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 425 | case (Suc n) then show ?case | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 426 | by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 427 | simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 428 | simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 429 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 430 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 431 | fix n m :: nat show "n \<le> m \<or> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 432 | by (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 433 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 434 | qed | 
| 25510 | 435 | |
| 436 | end | |
| 13449 | 437 | |
| 29652 | 438 | instantiation nat :: bot | 
| 439 | begin | |
| 440 | ||
| 441 | definition bot_nat :: nat where | |
| 442 | "bot_nat = 0" | |
| 443 | ||
| 444 | instance proof | |
| 445 | qed (simp add: bot_nat_def) | |
| 446 | ||
| 447 | end | |
| 448 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 449 | subsubsection {* Introduction properties *}
 | 
| 13449 | 450 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 451 | lemma lessI [iff]: "n < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 452 | by (simp add: less_Suc_eq_le) | 
| 13449 | 453 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 454 | lemma zero_less_Suc [iff]: "0 < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 455 | by (simp add: less_Suc_eq_le) | 
| 13449 | 456 | |
| 457 | ||
| 458 | subsubsection {* Elimination properties *}
 | |
| 459 | ||
| 460 | lemma less_not_refl: "~ n < (n::nat)" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 461 | by (rule order_less_irrefl) | 
| 13449 | 462 | |
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 463 | lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" | 
| 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 464 | by (rule not_sym) (rule less_imp_neq) | 
| 13449 | 465 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 466 | lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 467 | by (rule less_imp_neq) | 
| 13449 | 468 | |
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 469 | lemma less_irrefl_nat: "(n::nat) < n ==> R" | 
| 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 470 | by (rule notE, rule less_not_refl) | 
| 13449 | 471 | |
| 472 | lemma less_zeroE: "(n::nat) < 0 ==> R" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 473 | by (rule notE) (rule not_less0) | 
| 13449 | 474 | |
| 475 | lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 476 | unfolding less_Suc_eq_le le_less .. | 
| 13449 | 477 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 478 | lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 479 | by (simp add: less_Suc_eq) | 
| 13449 | 480 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 481 | lemma less_one [iff, no_atp]: "(n < (1::nat)) = (n = 0)" | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 482 | unfolding One_nat_def by (rule less_Suc0) | 
| 13449 | 483 | |
| 484 | lemma Suc_mono: "m < n ==> Suc m < Suc n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 485 | by simp | 
| 13449 | 486 | |
| 14302 | 487 | text {* "Less than" is antisymmetric, sort of *}
 | 
| 488 | lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 489 | unfolding not_less less_Suc_eq_le by (rule antisym) | 
| 14302 | 490 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 491 | lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 492 | by (rule linorder_neq_iff) | 
| 13449 | 493 | |
| 494 | lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" | |
| 495 | and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" | |
| 496 | shows "P n m" | |
| 497 | apply (rule less_linear [THEN disjE]) | |
| 498 | apply (erule_tac [2] disjE) | |
| 499 | apply (erule lessCase) | |
| 500 | apply (erule sym [THEN eqCase]) | |
| 501 | apply (erule major) | |
| 502 | done | |
| 503 | ||
| 504 | ||
| 505 | subsubsection {* Inductive (?) properties *}
 | |
| 506 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 507 | lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 508 | unfolding less_eq_Suc_le [of m] le_less by simp | 
| 13449 | 509 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 510 | lemma lessE: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 511 | assumes major: "i < k" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 512 | and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 513 | shows P | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 514 | proof - | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 515 | from major have "\<exists>j. i \<le> j \<and> k = Suc j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 516 | unfolding less_eq_Suc_le by (induct k) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 517 | then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 518 | by (clarsimp simp add: less_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 519 | with p1 p2 show P by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 520 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 521 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 522 | lemma less_SucE: assumes major: "m < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 523 | and less: "m < n ==> P" and eq: "m = n ==> P" shows P | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 524 | apply (rule major [THEN lessE]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 525 | apply (rule eq, blast) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 526 | apply (rule less, blast) | 
| 13449 | 527 | done | 
| 528 | ||
| 529 | lemma Suc_lessE: assumes major: "Suc i < k" | |
| 530 | and minor: "!!j. i < j ==> k = Suc j ==> P" shows P | |
| 531 | apply (rule major [THEN lessE]) | |
| 532 | apply (erule lessI [THEN minor]) | |
| 14208 | 533 | apply (erule Suc_lessD [THEN minor], assumption) | 
| 13449 | 534 | done | 
| 535 | ||
| 536 | lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 537 | by simp | 
| 13449 | 538 | |
| 539 | lemma less_trans_Suc: | |
| 540 | assumes le: "i < j" shows "j < k ==> Suc i < k" | |
| 14208 | 541 | apply (induct k, simp_all) | 
| 13449 | 542 | apply (insert le) | 
| 543 | apply (simp add: less_Suc_eq) | |
| 544 | apply (blast dest: Suc_lessD) | |
| 545 | done | |
| 546 | ||
| 547 | text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 548 | lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 549 | unfolding not_less less_Suc_eq_le .. | 
| 13449 | 550 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 551 | lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 552 | unfolding not_le Suc_le_eq .. | 
| 21243 | 553 | |
| 24995 | 554 | text {* Properties of "less than or equal" *}
 | 
| 13449 | 555 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 556 | lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 557 | unfolding less_Suc_eq_le . | 
| 13449 | 558 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 559 | lemma Suc_n_not_le_n: "~ Suc n \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 560 | unfolding not_le less_Suc_eq_le .. | 
| 13449 | 561 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 562 | lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 563 | by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq) | 
| 13449 | 564 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 565 | lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 566 | by (drule le_Suc_eq [THEN iffD1], iprover+) | 
| 13449 | 567 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 568 | lemma Suc_leI: "m < n ==> Suc(m) \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 569 | unfolding Suc_le_eq . | 
| 13449 | 570 | |
| 571 | text {* Stronger version of @{text Suc_leD} *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 572 | lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 573 | unfolding Suc_le_eq . | 
| 13449 | 574 | |
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 575 | lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 576 | unfolding less_eq_Suc_le by (rule Suc_leD) | 
| 13449 | 577 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 578 | text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
 | 
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 579 | lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq | 
| 13449 | 580 | |
| 581 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 582 | text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
 | 
| 13449 | 583 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 584 | lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 585 | unfolding le_less . | 
| 13449 | 586 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 587 | lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 588 | by (rule le_less) | 
| 13449 | 589 | |
| 22718 | 590 | text {* Useful with @{text blast}. *}
 | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 591 | lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 592 | by auto | 
| 13449 | 593 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 594 | lemma le_refl: "n \<le> (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 595 | by simp | 
| 13449 | 596 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 597 | lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 598 | by (rule order_trans) | 
| 13449 | 599 | |
| 33657 | 600 | lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 601 | by (rule antisym) | 
| 13449 | 602 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 603 | lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 604 | by (rule less_le) | 
| 13449 | 605 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 606 | lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 607 | unfolding less_le .. | 
| 13449 | 608 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 609 | lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 610 | by (rule linear) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 611 | |
| 22718 | 612 | lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat] | 
| 15921 | 613 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 614 | lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 615 | unfolding less_Suc_eq_le by auto | 
| 13449 | 616 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 617 | lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 618 | unfolding not_less by (rule le_less_Suc_eq) | 
| 13449 | 619 | |
| 620 | lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq | |
| 621 | ||
| 22718 | 622 | text {* These two rules ease the use of primitive recursion.
 | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 623 | NOTE USE OF @{text "=="} *}
 | 
| 13449 | 624 | lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" | 
| 25162 | 625 | by simp | 
| 13449 | 626 | |
| 627 | lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" | |
| 25162 | 628 | by simp | 
| 13449 | 629 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 630 | lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" | 
| 25162 | 631 | by (cases n) simp_all | 
| 632 | ||
| 633 | lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m" | |
| 634 | by (cases n) simp_all | |
| 13449 | 635 | |
| 22718 | 636 | lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0" | 
| 25162 | 637 | by (cases n) simp_all | 
| 13449 | 638 | |
| 25162 | 639 | lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)" | 
| 640 | by (cases n) simp_all | |
| 25140 | 641 | |
| 13449 | 642 | text {* This theorem is useful with @{text blast} *}
 | 
| 643 | lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" | |
| 25162 | 644 | by (rule neq0_conv[THEN iffD1], iprover) | 
| 13449 | 645 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 646 | lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" | 
| 25162 | 647 | by (fast intro: not0_implies_Suc) | 
| 13449 | 648 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 649 | lemma not_gr0 [iff,no_atp]: "!!n::nat. (~ (0 < n)) = (n = 0)" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 650 | using neq0_conv by blast | 
| 13449 | 651 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 652 | lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" | 
| 25162 | 653 | by (induct m') simp_all | 
| 13449 | 654 | |
| 655 | text {* Useful in certain inductive arguments *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 656 | lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))" | 
| 25162 | 657 | by (cases m) simp_all | 
| 13449 | 658 | |
| 659 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 660 | subsubsection {* Monotonicity of Addition *}
 | 
| 13449 | 661 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 662 | lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 663 | by (simp add: diff_Suc split: nat.split) | 
| 13449 | 664 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 665 | lemma Suc_diff_1 [simp]: "0 < n ==> Suc (n - 1) = n" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 666 | unfolding One_nat_def by (rule Suc_pred) | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 667 | |
| 14331 | 668 | lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" | 
| 25162 | 669 | by (induct k) simp_all | 
| 13449 | 670 | |
| 14331 | 671 | lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" | 
| 25162 | 672 | by (induct k) simp_all | 
| 13449 | 673 | |
| 25162 | 674 | lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)" | 
| 675 | by(auto dest:gr0_implies_Suc) | |
| 13449 | 676 | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 677 | text {* strict, in 1st argument *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 678 | lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" | 
| 25162 | 679 | by (induct k) simp_all | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 680 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 681 | text {* strict, in both arguments *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 682 | lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 683 | apply (rule add_less_mono1 [THEN less_trans], assumption+) | 
| 15251 | 684 | apply (induct j, simp_all) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 685 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 686 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 687 | text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 688 | lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 689 | apply (induct n) | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 690 | apply (simp_all add: order_le_less) | 
| 22718 | 691 | apply (blast elim!: less_SucE | 
| 35047 
1b2bae06c796
hide fact Nat.add_0_right; make add_0_right from Groups priority
 haftmann parents: 
35028diff
changeset | 692 | intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric]) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 693 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 694 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 695 | text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
 | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 696 | lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 697 | apply(auto simp: gr0_conv_Suc) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 698 | apply (induct_tac m) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 699 | apply (simp_all add: add_less_mono) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 700 | done | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 701 | |
| 14740 | 702 | text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
 | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 703 | instance nat :: linordered_semidom | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 704 | proof | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 705 | fix i j k :: nat | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 706 | show "0 < (1::nat)" by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 707 | show "i \<le> j ==> k + i \<le> k + j" by simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 708 | show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 709 | qed | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 710 | |
| 30056 | 711 | instance nat :: no_zero_divisors | 
| 712 | proof | |
| 713 | fix a::nat and b::nat show "a ~= 0 \<Longrightarrow> b ~= 0 \<Longrightarrow> a * b ~= 0" by auto | |
| 714 | qed | |
| 715 | ||
| 44817 | 716 | |
| 717 | subsubsection {* @{term min} and @{term max} *}
 | |
| 718 | ||
| 719 | lemma mono_Suc: "mono Suc" | |
| 720 | by (rule monoI) simp | |
| 721 | ||
| 722 | lemma min_0L [simp]: "min 0 n = (0::nat)" | |
| 723 | by (rule min_leastL) simp | |
| 724 | ||
| 725 | lemma min_0R [simp]: "min n 0 = (0::nat)" | |
| 726 | by (rule min_leastR) simp | |
| 727 | ||
| 728 | lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" | |
| 729 | by (simp add: mono_Suc min_of_mono) | |
| 730 | ||
| 731 | lemma min_Suc1: | |
| 732 | "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))" | |
| 733 | by (simp split: nat.split) | |
| 734 | ||
| 735 | lemma min_Suc2: | |
| 736 | "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))" | |
| 737 | by (simp split: nat.split) | |
| 738 | ||
| 739 | lemma max_0L [simp]: "max 0 n = (n::nat)" | |
| 740 | by (rule max_leastL) simp | |
| 741 | ||
| 742 | lemma max_0R [simp]: "max n 0 = (n::nat)" | |
| 743 | by (rule max_leastR) simp | |
| 744 | ||
| 745 | lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" | |
| 746 | by (simp add: mono_Suc max_of_mono) | |
| 747 | ||
| 748 | lemma max_Suc1: | |
| 749 | "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))" | |
| 750 | by (simp split: nat.split) | |
| 751 | ||
| 752 | lemma max_Suc2: | |
| 753 | "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))" | |
| 754 | by (simp split: nat.split) | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 755 | |
| 44817 | 756 | lemma nat_mult_min_left: | 
| 757 | fixes m n q :: nat | |
| 758 | shows "min m n * q = min (m * q) (n * q)" | |
| 759 | by (simp add: min_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans) | |
| 760 | ||
| 761 | lemma nat_mult_min_right: | |
| 762 | fixes m n q :: nat | |
| 763 | shows "m * min n q = min (m * n) (m * q)" | |
| 764 | by (simp add: min_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans) | |
| 765 | ||
| 766 | lemma nat_add_max_left: | |
| 767 | fixes m n q :: nat | |
| 768 | shows "max m n + q = max (m + q) (n + q)" | |
| 769 | by (simp add: max_def) | |
| 770 | ||
| 771 | lemma nat_add_max_right: | |
| 772 | fixes m n q :: nat | |
| 773 | shows "m + max n q = max (m + n) (m + q)" | |
| 774 | by (simp add: max_def) | |
| 775 | ||
| 776 | lemma nat_mult_max_left: | |
| 777 | fixes m n q :: nat | |
| 778 | shows "max m n * q = max (m * q) (n * q)" | |
| 779 | by (simp add: max_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans) | |
| 780 | ||
| 781 | lemma nat_mult_max_right: | |
| 782 | fixes m n q :: nat | |
| 783 | shows "m * max n q = max (m * n) (m * q)" | |
| 784 | by (simp add: max_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans) | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 785 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 786 | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 787 | subsubsection {* Additional theorems about @{term "op \<le>"} *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 788 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 789 | text {* Complete induction, aka course-of-values induction *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 790 | |
| 27823 | 791 | instance nat :: wellorder proof | 
| 792 | fix P and n :: nat | |
| 793 | assume step: "\<And>n::nat. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n" | |
| 794 | have "\<And>q. q \<le> n \<Longrightarrow> P q" | |
| 795 | proof (induct n) | |
| 796 | case (0 n) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 797 | have "P 0" by (rule step) auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 798 | thus ?case using 0 by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 799 | next | 
| 27823 | 800 | case (Suc m n) | 
| 801 | then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 802 | thus ?case | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 803 | proof | 
| 27823 | 804 | assume "n \<le> m" thus "P n" by (rule Suc(1)) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 805 | next | 
| 27823 | 806 | assume n: "n = Suc m" | 
| 807 | show "P n" | |
| 808 | by (rule step) (rule Suc(1), simp add: n le_simps) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 809 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 810 | qed | 
| 27823 | 811 | then show "P n" by auto | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 812 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 813 | |
| 27823 | 814 | lemma Least_Suc: | 
| 815 | "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" | |
| 816 | apply (case_tac "n", auto) | |
| 817 | apply (frule LeastI) | |
| 818 | apply (drule_tac P = "%x. P (Suc x) " in LeastI) | |
| 819 | apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") | |
| 820 | apply (erule_tac [2] Least_le) | |
| 821 | apply (case_tac "LEAST x. P x", auto) | |
| 822 | apply (drule_tac P = "%x. P (Suc x) " in Least_le) | |
| 823 | apply (blast intro: order_antisym) | |
| 824 | done | |
| 825 | ||
| 826 | lemma Least_Suc2: | |
| 827 | "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" | |
| 828 | apply (erule (1) Least_Suc [THEN ssubst]) | |
| 829 | apply simp | |
| 830 | done | |
| 831 | ||
| 832 | lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)" | |
| 833 | apply (cases n) | |
| 834 | apply blast | |
| 835 | apply (rule_tac x="LEAST k. P(k)" in exI) | |
| 836 | apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex) | |
| 837 | done | |
| 838 | ||
| 839 | lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)" | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 840 | unfolding One_nat_def | 
| 27823 | 841 | apply (cases n) | 
| 842 | apply blast | |
| 843 | apply (frule (1) ex_least_nat_le) | |
| 844 | apply (erule exE) | |
| 845 | apply (case_tac k) | |
| 846 | apply simp | |
| 847 | apply (rename_tac k1) | |
| 848 | apply (rule_tac x=k1 in exI) | |
| 849 | apply (auto simp add: less_eq_Suc_le) | |
| 850 | done | |
| 851 | ||
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 852 | lemma nat_less_induct: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 853 | assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 854 | using assms less_induct by blast | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 855 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 856 | lemma measure_induct_rule [case_names less]: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 857 | fixes f :: "'a \<Rightarrow> nat" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 858 | assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 859 | shows "P a" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 860 | by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 861 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 862 | text {* old style induction rules: *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 863 | lemma measure_induct: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 864 | fixes f :: "'a \<Rightarrow> nat" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 865 | shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 866 | by (rule measure_induct_rule [of f P a]) iprover | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 867 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 868 | lemma full_nat_induct: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 869 | assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 870 | shows "P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 871 | by (rule less_induct) (auto intro: step simp:le_simps) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 872 | |
| 19870 | 873 | text{*An induction rule for estabilishing binary relations*}
 | 
| 22718 | 874 | lemma less_Suc_induct: | 
| 19870 | 875 | assumes less: "i < j" | 
| 876 | and step: "!!i. P i (Suc i)" | |
| 31714 | 877 | and trans: "!!i j k. i < j ==> j < k ==> P i j ==> P j k ==> P i k" | 
| 19870 | 878 | shows "P i j" | 
| 879 | proof - | |
| 31714 | 880 | from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add) | 
| 22718 | 881 | have "P i (Suc (i + k))" | 
| 19870 | 882 | proof (induct k) | 
| 22718 | 883 | case 0 | 
| 884 | show ?case by (simp add: step) | |
| 19870 | 885 | next | 
| 886 | case (Suc k) | |
| 31714 | 887 | have "0 + i < Suc k + i" by (rule add_less_mono1) simp | 
| 888 | hence "i < Suc (i + k)" by (simp add: add_commute) | |
| 889 | from trans[OF this lessI Suc step] | |
| 890 | show ?case by simp | |
| 19870 | 891 | qed | 
| 22718 | 892 | thus "P i j" by (simp add: j) | 
| 19870 | 893 | qed | 
| 894 | ||
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 895 | text {* The method of infinite descent, frequently used in number theory.
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 896 | Provided by Roelof Oosterhuis. | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 897 | $P(n)$ is true for all $n\in\mathbb{N}$ if
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 898 | \begin{itemize}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 899 | \item case ``0'': given $n=0$ prove $P(n)$, | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 900 | \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 901 | a smaller integer $m$ such that $\neg P(m)$. | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 902 | \end{itemize} *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 903 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 904 | text{* A compact version without explicit base case: *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 905 | lemma infinite_descent: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 906 | "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m \<rbrakk> \<Longrightarrow> P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 907 | by (induct n rule: less_induct, auto) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 908 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 909 | lemma infinite_descent0[case_names 0 smaller]: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 910 | "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 911 | by (rule infinite_descent) (case_tac "n>0", auto) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 912 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 913 | text {*
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 914 | Infinite descent using a mapping to $\mathbb{N}$:
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 915 | $P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 916 | \begin{itemize}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 917 | \item case ``0'': given $V(x)=0$ prove $P(x)$, | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 918 | \item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$. | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 919 | \end{itemize}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 920 | NB: the proof also shows how to use the previous lemma. *} | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 921 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 922 | corollary infinite_descent0_measure [case_names 0 smaller]: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 923 | assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 924 | and A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 925 | shows "P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 926 | proof - | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 927 | obtain n where "n = V x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 928 | moreover have "\<And>x. V x = n \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 929 | proof (induct n rule: infinite_descent0) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 930 | case 0 -- "i.e. $V(x) = 0$" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 931 | with A0 show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 932 | next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 933 | case (smaller n) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 934 | then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 935 | with A1 obtain y where "V y < V x \<and> \<not> P y" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 936 | with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 937 | then show ?case by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 938 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 939 | ultimately show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 940 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 941 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 942 | text{* Again, without explicit base case: *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 943 | lemma infinite_descent_measure: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 944 | assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 945 | proof - | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 946 | from assms obtain n where "n = V x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 947 | moreover have "!!x. V x = n \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 948 | proof (induct n rule: infinite_descent, auto) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 949 | fix x assume "\<not> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 950 | with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 951 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 952 | ultimately show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 953 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 954 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 955 | text {* A [clumsy] way of lifting @{text "<"}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 956 |   monotonicity to @{text "\<le>"} monotonicity *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 957 | lemma less_mono_imp_le_mono: | 
| 24438 | 958 | "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)" | 
| 959 | by (simp add: order_le_less) (blast) | |
| 960 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 961 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 962 | text {* non-strict, in 1st argument *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 963 | lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" | 
| 24438 | 964 | by (rule add_right_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 965 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 966 | text {* non-strict, in both arguments *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 967 | lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)" | 
| 24438 | 968 | by (rule add_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 969 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 970 | lemma le_add2: "n \<le> ((m + n)::nat)" | 
| 24438 | 971 | by (insert add_right_mono [of 0 m n], simp) | 
| 13449 | 972 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 973 | lemma le_add1: "n \<le> ((n + m)::nat)" | 
| 24438 | 974 | by (simp add: add_commute, rule le_add2) | 
| 13449 | 975 | |
| 976 | lemma less_add_Suc1: "i < Suc (i + m)" | |
| 24438 | 977 | by (rule le_less_trans, rule le_add1, rule lessI) | 
| 13449 | 978 | |
| 979 | lemma less_add_Suc2: "i < Suc (m + i)" | |
| 24438 | 980 | by (rule le_less_trans, rule le_add2, rule lessI) | 
| 13449 | 981 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 982 | lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" | 
| 24438 | 983 | by (iprover intro!: less_add_Suc1 less_imp_Suc_add) | 
| 13449 | 984 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 985 | lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" | 
| 24438 | 986 | by (rule le_trans, assumption, rule le_add1) | 
| 13449 | 987 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 988 | lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" | 
| 24438 | 989 | by (rule le_trans, assumption, rule le_add2) | 
| 13449 | 990 | |
| 991 | lemma trans_less_add1: "(i::nat) < j ==> i < j + m" | |
| 24438 | 992 | by (rule less_le_trans, assumption, rule le_add1) | 
| 13449 | 993 | |
| 994 | lemma trans_less_add2: "(i::nat) < j ==> i < m + j" | |
| 24438 | 995 | by (rule less_le_trans, assumption, rule le_add2) | 
| 13449 | 996 | |
| 997 | lemma add_lessD1: "i + j < (k::nat) ==> i < k" | |
| 24438 | 998 | apply (rule le_less_trans [of _ "i+j"]) | 
| 999 | apply (simp_all add: le_add1) | |
| 1000 | done | |
| 13449 | 1001 | |
| 1002 | lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" | |
| 24438 | 1003 | apply (rule notI) | 
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 1004 | apply (drule add_lessD1) | 
| 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 1005 | apply (erule less_irrefl [THEN notE]) | 
| 24438 | 1006 | done | 
| 13449 | 1007 | |
| 1008 | lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1009 | by (simp add: add_commute) | 
| 13449 | 1010 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1011 | lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" | 
| 24438 | 1012 | apply (rule order_trans [of _ "m+k"]) | 
| 1013 | apply (simp_all add: le_add1) | |
| 1014 | done | |
| 13449 | 1015 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1016 | lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" | 
| 24438 | 1017 | apply (simp add: add_commute) | 
| 1018 | apply (erule add_leD1) | |
| 1019 | done | |
| 13449 | 1020 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1021 | lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" | 
| 24438 | 1022 | by (blast dest: add_leD1 add_leD2) | 
| 13449 | 1023 | |
| 1024 | text {* needs @{text "!!k"} for @{text add_ac} to work *}
 | |
| 1025 | lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" | |
| 24438 | 1026 | by (force simp del: add_Suc_right | 
| 13449 | 1027 | simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) | 
| 1028 | ||
| 1029 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1030 | subsubsection {* More results about difference *}
 | 
| 13449 | 1031 | |
| 1032 | text {* Addition is the inverse of subtraction:
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1033 |   if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
 | 
| 13449 | 1034 | lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" | 
| 24438 | 1035 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1036 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1037 | lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)" | 
| 24438 | 1038 | by (simp add: add_diff_inverse linorder_not_less) | 
| 13449 | 1039 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1040 | lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1041 | by (simp add: add_commute) | 
| 13449 | 1042 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1043 | lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)" | 
| 24438 | 1044 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1045 | |
| 1046 | lemma diff_less_Suc: "m - n < Suc m" | |
| 24438 | 1047 | apply (induct m n rule: diff_induct) | 
| 1048 | apply (erule_tac [3] less_SucE) | |
| 1049 | apply (simp_all add: less_Suc_eq) | |
| 1050 | done | |
| 13449 | 1051 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1052 | lemma diff_le_self [simp]: "m - n \<le> (m::nat)" | 
| 24438 | 1053 | by (induct m n rule: diff_induct) (simp_all add: le_SucI) | 
| 13449 | 1054 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1055 | lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1056 | by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1057 | |
| 13449 | 1058 | lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" | 
| 24438 | 1059 | by (rule le_less_trans, rule diff_le_self) | 
| 13449 | 1060 | |
| 1061 | lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n" | |
| 24438 | 1062 | by (cases n) (auto simp add: le_simps) | 
| 13449 | 1063 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1064 | lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)" | 
| 24438 | 1065 | by (induct j k rule: diff_induct) simp_all | 
| 13449 | 1066 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1067 | lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i" | 
| 24438 | 1068 | by (simp add: add_commute diff_add_assoc) | 
| 13449 | 1069 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1070 | lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)" | 
| 24438 | 1071 | by (auto simp add: diff_add_inverse2) | 
| 13449 | 1072 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1073 | lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)" | 
| 24438 | 1074 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1075 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1076 | lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0" | 
| 24438 | 1077 | by (rule iffD2, rule diff_is_0_eq) | 
| 13449 | 1078 | |
| 1079 | lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" | |
| 24438 | 1080 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1081 | |
| 22718 | 1082 | lemma less_imp_add_positive: | 
| 1083 | assumes "i < j" | |
| 1084 | shows "\<exists>k::nat. 0 < k & i + k = j" | |
| 1085 | proof | |
| 1086 | from assms show "0 < j - i & i + (j - i) = j" | |
| 23476 | 1087 | by (simp add: order_less_imp_le) | 
| 22718 | 1088 | qed | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1089 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1090 | text {* a nice rewrite for bounded subtraction *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1091 | lemma nat_minus_add_max: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1092 | fixes n m :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1093 | shows "n - m + m = max n m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1094 | by (simp add: max_def not_le order_less_imp_le) | 
| 13449 | 1095 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1096 | lemma nat_diff_split: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1097 | "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1098 |     -- {* elimination of @{text -} on @{text nat} *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1099 | by (cases "a < b") | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1100 | (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1101 | not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero) | 
| 13449 | 1102 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1103 | lemma nat_diff_split_asm: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1104 | "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1105 |     -- {* elimination of @{text -} on @{text nat} in assumptions *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1106 | by (auto split: nat_diff_split) | 
| 13449 | 1107 | |
| 1108 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1109 | subsubsection {* Monotonicity of Multiplication *}
 | 
| 13449 | 1110 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1111 | lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" | 
| 24438 | 1112 | by (simp add: mult_right_mono) | 
| 13449 | 1113 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1114 | lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" | 
| 24438 | 1115 | by (simp add: mult_left_mono) | 
| 13449 | 1116 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1117 | text {* @{text "\<le>"} monotonicity, BOTH arguments *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1118 | lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" | 
| 24438 | 1119 | by (simp add: mult_mono) | 
| 13449 | 1120 | |
| 1121 | lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" | |
| 24438 | 1122 | by (simp add: mult_strict_right_mono) | 
| 13449 | 1123 | |
| 14266 | 1124 | text{*Differs from the standard @{text zero_less_mult_iff} in that
 | 
| 1125 | there are no negative numbers.*} | |
| 1126 | lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" | |
| 13449 | 1127 | apply (induct m) | 
| 22718 | 1128 | apply simp | 
| 1129 | apply (case_tac n) | |
| 1130 | apply simp_all | |
| 13449 | 1131 | done | 
| 1132 | ||
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 1133 | lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (Suc 0 \<le> m & Suc 0 \<le> n)" | 
| 13449 | 1134 | apply (induct m) | 
| 22718 | 1135 | apply simp | 
| 1136 | apply (case_tac n) | |
| 1137 | apply simp_all | |
| 13449 | 1138 | done | 
| 1139 | ||
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 1140 | lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" | 
| 13449 | 1141 | apply (safe intro!: mult_less_mono1) | 
| 14208 | 1142 | apply (case_tac k, auto) | 
| 13449 | 1143 | apply (simp del: le_0_eq add: linorder_not_le [symmetric]) | 
| 1144 | apply (blast intro: mult_le_mono1) | |
| 1145 | done | |
| 1146 | ||
| 1147 | lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" | |
| 24438 | 1148 | by (simp add: mult_commute [of k]) | 
| 13449 | 1149 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1150 | lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)" | 
| 24438 | 1151 | by (simp add: linorder_not_less [symmetric], auto) | 
| 13449 | 1152 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1153 | lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)" | 
| 24438 | 1154 | by (simp add: linorder_not_less [symmetric], auto) | 
| 13449 | 1155 | |
| 1156 | lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" | |
| 24438 | 1157 | by (subst mult_less_cancel1) simp | 
| 13449 | 1158 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1159 | lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" | 
| 24438 | 1160 | by (subst mult_le_cancel1) simp | 
| 13449 | 1161 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1162 | lemma le_square: "m \<le> m * (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1163 | by (cases m) (auto intro: le_add1) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1164 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1165 | lemma le_cube: "(m::nat) \<le> m * (m * m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1166 | by (cases m) (auto intro: le_add1) | 
| 13449 | 1167 | |
| 1168 | text {* Lemma for @{text gcd} *}
 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 1169 | lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" | 
| 13449 | 1170 | apply (drule sym) | 
| 1171 | apply (rule disjCI) | |
| 1172 | apply (rule nat_less_cases, erule_tac [2] _) | |
| 25157 | 1173 | apply (drule_tac [2] mult_less_mono2) | 
| 25162 | 1174 | apply (auto) | 
| 13449 | 1175 | done | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1176 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1177 | text {* the lattice order on @{typ nat} *}
 | 
| 24995 | 1178 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1179 | instantiation nat :: distrib_lattice | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1180 | begin | 
| 24995 | 1181 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1182 | definition | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1183 | "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min" | 
| 24995 | 1184 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1185 | definition | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1186 | "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max" | 
| 24995 | 1187 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1188 | instance by intro_classes | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1189 | (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1190 | intro: order_less_imp_le antisym elim!: order_trans order_less_trans) | 
| 24995 | 1191 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1192 | end | 
| 24995 | 1193 | |
| 1194 | ||
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1195 | subsection {* Natural operation of natural numbers on functions *}
 | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1196 | |
| 30971 | 1197 | text {*
 | 
| 1198 | We use the same logical constant for the power operations on | |
| 1199 | functions and relations, in order to share the same syntax. | |
| 1200 | *} | |
| 1201 | ||
| 1202 | consts compow :: "nat \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | |
| 1203 | ||
| 1204 | abbreviation compower :: "('a \<Rightarrow> 'b) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'b" (infixr "^^" 80) where
 | |
| 1205 | "f ^^ n \<equiv> compow n f" | |
| 1206 | ||
| 1207 | notation (latex output) | |
| 1208 |   compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 1209 | ||
| 1210 | notation (HTML output) | |
| 1211 |   compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 1212 | ||
| 1213 | text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
 | |
| 1214 | ||
| 1215 | overloading | |
| 1216 |   funpow == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
 | |
| 1217 | begin | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1218 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1219 | primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
| 44325 | 1220 | "funpow 0 f = id" | 
| 1221 | | "funpow (Suc n) f = f o funpow n f" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1222 | |
| 30971 | 1223 | end | 
| 1224 | ||
| 1225 | text {* for code generation *}
 | |
| 1226 | ||
| 1227 | definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31714diff
changeset | 1228 | funpow_code_def [code_post]: "funpow = compow" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1229 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31714diff
changeset | 1230 | lemmas [code_unfold] = funpow_code_def [symmetric] | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1231 | |
| 30971 | 1232 | lemma [code]: | 
| 37430 | 1233 | "funpow (Suc n) f = f o funpow n f" | 
| 30971 | 1234 | "funpow 0 f = id" | 
| 37430 | 1235 | by (simp_all add: funpow_code_def) | 
| 30971 | 1236 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 1237 | hide_const (open) funpow | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1238 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1239 | lemma funpow_add: | 
| 30971 | 1240 | "f ^^ (m + n) = f ^^ m \<circ> f ^^ n" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1241 | by (induct m) simp_all | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1242 | |
| 37430 | 1243 | lemma funpow_mult: | 
| 1244 | fixes f :: "'a \<Rightarrow> 'a" | |
| 1245 | shows "(f ^^ m) ^^ n = f ^^ (m * n)" | |
| 1246 | by (induct n) (simp_all add: funpow_add) | |
| 1247 | ||
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1248 | lemma funpow_swap1: | 
| 30971 | 1249 | "f ((f ^^ n) x) = (f ^^ n) (f x)" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1250 | proof - | 
| 30971 | 1251 | have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp | 
| 1252 | also have "\<dots> = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add) | |
| 1253 | also have "\<dots> = (f ^^ n) (f x)" by simp | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1254 | finally show ?thesis . | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1255 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1256 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1257 | lemma comp_funpow: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1258 | fixes f :: "'a \<Rightarrow> 'a" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1259 | shows "comp f ^^ n = comp (f ^^ n)" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1260 | by (induct n) simp_all | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1261 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1262 | |
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1263 | subsection {* Embedding of the Naturals into any @{text semiring_1}: @{term of_nat} *}
 | 
| 24196 | 1264 | |
| 1265 | context semiring_1 | |
| 1266 | begin | |
| 1267 | ||
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1268 | definition of_nat :: "nat \<Rightarrow> 'a" where | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1269 | "of_nat n = (plus 1 ^^ n) 0" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1270 | |
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1271 | lemma of_nat_simps [simp]: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1272 | shows of_nat_0: "of_nat 0 = 0" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1273 | and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1274 | by (simp_all add: of_nat_def) | 
| 25193 | 1275 | |
| 1276 | lemma of_nat_1 [simp]: "of_nat 1 = 1" | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1277 | by (simp add: of_nat_def) | 
| 25193 | 1278 | |
| 1279 | lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n" | |
| 1280 | by (induct m) (simp_all add: add_ac) | |
| 1281 | ||
| 1282 | lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n" | |
| 1283 | by (induct m) (simp_all add: add_ac left_distrib) | |
| 1284 | ||
| 28514 | 1285 | primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
| 1286 | "of_nat_aux inc 0 i = i" | |
| 44325 | 1287 | | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" -- {* tail recursive *}
 | 
| 25928 | 1288 | |
| 30966 | 1289 | lemma of_nat_code: | 
| 28514 | 1290 | "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0" | 
| 1291 | proof (induct n) | |
| 1292 | case 0 then show ?case by simp | |
| 1293 | next | |
| 1294 | case (Suc n) | |
| 1295 | have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1" | |
| 1296 | by (induct n) simp_all | |
| 1297 | from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1" | |
| 1298 | by simp | |
| 1299 | with Suc show ?case by (simp add: add_commute) | |
| 1300 | qed | |
| 30966 | 1301 | |
| 24196 | 1302 | end | 
| 1303 | ||
| 45231 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 bulwahn parents: 
44890diff
changeset | 1304 | declare of_nat_code [code] | 
| 30966 | 1305 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1306 | text{*Class for unital semirings with characteristic zero.
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1307 | Includes non-ordered rings like the complex numbers.*} | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1308 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1309 | class semiring_char_0 = semiring_1 + | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1310 | assumes inj_of_nat: "inj of_nat" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1311 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1312 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1313 | lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1314 | by (auto intro: inj_of_nat injD) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1315 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1316 | text{*Special cases where either operand is zero*}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1317 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 1318 | lemma of_nat_0_eq_iff [simp, no_atp]: "0 = of_nat n \<longleftrightarrow> 0 = n" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1319 | by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1320 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 1321 | lemma of_nat_eq_0_iff [simp, no_atp]: "of_nat m = 0 \<longleftrightarrow> m = 0" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1322 | by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1323 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1324 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1325 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1326 | context linordered_semidom | 
| 25193 | 1327 | begin | 
| 1328 | ||
| 1329 | lemma zero_le_imp_of_nat: "0 \<le> of_nat m" | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36176diff
changeset | 1330 | by (induct m) simp_all | 
| 25193 | 1331 | |
| 1332 | lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n" | |
| 1333 | apply (induct m n rule: diff_induct, simp_all) | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36176diff
changeset | 1334 | apply (rule add_pos_nonneg [OF zero_less_one zero_le_imp_of_nat]) | 
| 25193 | 1335 | done | 
| 1336 | ||
| 1337 | lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n" | |
| 1338 | apply (induct m n rule: diff_induct, simp_all) | |
| 1339 | apply (insert zero_le_imp_of_nat) | |
| 1340 | apply (force simp add: not_less [symmetric]) | |
| 1341 | done | |
| 1342 | ||
| 1343 | lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n" | |
| 1344 | by (blast intro: of_nat_less_imp_less less_imp_of_nat_less) | |
| 1345 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1346 | lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1347 | by (simp add: not_less [symmetric] linorder_not_less [symmetric]) | 
| 25193 | 1348 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1349 | text{*Every @{text linordered_semidom} has characteristic zero.*}
 | 
| 25193 | 1350 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1351 | subclass semiring_char_0 proof | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1352 | qed (auto intro!: injI simp add: eq_iff) | 
| 25193 | 1353 | |
| 1354 | text{*Special cases where either operand is zero*}
 | |
| 1355 | ||
| 1356 | lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n" | |
| 1357 | by (rule of_nat_le_iff [of 0, simplified]) | |
| 1358 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 1359 | lemma of_nat_le_0_iff [simp, no_atp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0" | 
| 25193 | 1360 | by (rule of_nat_le_iff [of _ 0, simplified]) | 
| 1361 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1362 | lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1363 | by (rule of_nat_less_iff [of 0, simplified]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1364 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1365 | lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1366 | by (rule of_nat_less_iff [of _ 0, simplified]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1367 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1368 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1369 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1370 | context ring_1 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1371 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1372 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1373 | lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n" | 
| 29667 | 1374 | by (simp add: algebra_simps of_nat_add [symmetric]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1375 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1376 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1377 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1378 | context linordered_idom | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1379 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1380 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1381 | lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1382 | unfolding abs_if by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1383 | |
| 25193 | 1384 | end | 
| 1385 | ||
| 1386 | lemma of_nat_id [simp]: "of_nat n = n" | |
| 35216 | 1387 | by (induct n) simp_all | 
| 25193 | 1388 | |
| 1389 | lemma of_nat_eq_id [simp]: "of_nat = id" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1390 | by (auto simp add: fun_eq_iff) | 
| 25193 | 1391 | |
| 1392 | ||
| 26149 | 1393 | subsection {* The Set of Natural Numbers *}
 | 
| 25193 | 1394 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1395 | context semiring_1 | 
| 25193 | 1396 | begin | 
| 1397 | ||
| 37767 | 1398 | definition Nats :: "'a set" where | 
| 1399 | "Nats = range of_nat" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1400 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1401 | notation (xsymbols) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1402 |   Nats  ("\<nat>")
 | 
| 25193 | 1403 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1404 | lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1405 | by (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1406 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1407 | lemma Nats_0 [simp]: "0 \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1408 | apply (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1409 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1410 | apply (rule of_nat_0 [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1411 | done | 
| 25193 | 1412 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1413 | lemma Nats_1 [simp]: "1 \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1414 | apply (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1415 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1416 | apply (rule of_nat_1 [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1417 | done | 
| 25193 | 1418 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1419 | lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1420 | apply (auto simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1421 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1422 | apply (rule of_nat_add [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1423 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1424 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1425 | lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1426 | apply (auto simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1427 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1428 | apply (rule of_nat_mult [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1429 | done | 
| 25193 | 1430 | |
| 35633 | 1431 | lemma Nats_cases [cases set: Nats]: | 
| 1432 | assumes "x \<in> \<nat>" | |
| 1433 | obtains (of_nat) n where "x = of_nat n" | |
| 1434 | unfolding Nats_def | |
| 1435 | proof - | |
| 1436 | from `x \<in> \<nat>` have "x \<in> range of_nat" unfolding Nats_def . | |
| 1437 | then obtain n where "x = of_nat n" .. | |
| 1438 | then show thesis .. | |
| 1439 | qed | |
| 1440 | ||
| 1441 | lemma Nats_induct [case_names of_nat, induct set: Nats]: | |
| 1442 | "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x" | |
| 1443 | by (rule Nats_cases) auto | |
| 1444 | ||
| 25193 | 1445 | end | 
| 1446 | ||
| 1447 | ||
| 21243 | 1448 | subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
 | 
| 1449 | ||
| 22845 | 1450 | lemma subst_equals: | 
| 1451 | assumes 1: "t = s" and 2: "u = t" | |
| 1452 | shows "u = s" | |
| 1453 | using 2 1 by (rule trans) | |
| 1454 | ||
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 1455 | setup Arith_Data.setup | 
| 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 1456 | |
| 30496 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 1457 | use "Tools/nat_arith.ML" | 
| 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 1458 | declaration {* K Nat_Arith.setup *}
 | 
| 24091 | 1459 | |
| 1460 | use "Tools/lin_arith.ML" | |
| 31100 | 1461 | setup {* Lin_Arith.global_setup *}
 | 
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 1462 | declaration {* K Lin_Arith.setup *}
 | 
| 24091 | 1463 | |
| 43595 | 1464 | simproc_setup fast_arith_nat ("(m::nat) < n" | "(m::nat) <= n" | "(m::nat) = n") =
 | 
| 1465 |   {* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *}
 | |
| 1466 | (* Because of this simproc, the arithmetic solver is really only | |
| 1467 | useful to detect inconsistencies among the premises for subgoals which are | |
| 1468 | *not* themselves (in)equalities, because the latter activate | |
| 1469 | fast_nat_arith_simproc anyway. However, it seems cheaper to activate the | |
| 1470 | solver all the time rather than add the additional check. *) | |
| 1471 | ||
| 1472 | ||
| 21243 | 1473 | lemmas [arith_split] = nat_diff_split split_min split_max | 
| 1474 | ||
| 27625 | 1475 | context order | 
| 1476 | begin | |
| 1477 | ||
| 1478 | lemma lift_Suc_mono_le: | |
| 27627 | 1479 | assumes mono: "!!n. f n \<le> f(Suc n)" and "n\<le>n'" | 
| 1480 | shows "f n \<le> f n'" | |
| 1481 | proof (cases "n < n'") | |
| 1482 | case True | |
| 1483 | thus ?thesis | |
| 1484 | by (induct n n' rule: less_Suc_induct[consumes 1]) (auto intro: mono) | |
| 1485 | qed (insert `n \<le> n'`, auto) -- {*trivial for @{prop "n = n'"} *}
 | |
| 27625 | 1486 | |
| 1487 | lemma lift_Suc_mono_less: | |
| 27627 | 1488 | assumes mono: "!!n. f n < f(Suc n)" and "n < n'" | 
| 1489 | shows "f n < f n'" | |
| 1490 | using `n < n'` | |
| 1491 | by (induct n n' rule: less_Suc_induct[consumes 1]) (auto intro: mono) | |
| 27625 | 1492 | |
| 27789 | 1493 | lemma lift_Suc_mono_less_iff: | 
| 1494 | "(!!n. f n < f(Suc n)) \<Longrightarrow> f(n) < f(m) \<longleftrightarrow> n<m" | |
| 1495 | by(blast intro: less_asym' lift_Suc_mono_less[of f] | |
| 1496 | dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq[THEN iffD1]) | |
| 1497 | ||
| 27625 | 1498 | end | 
| 1499 | ||
| 29879 | 1500 | lemma mono_iff_le_Suc: "mono f = (\<forall>n. f n \<le> f (Suc n))" | 
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36977diff
changeset | 1501 | unfolding mono_def by (auto intro: lift_Suc_mono_le [of f]) | 
| 27625 | 1502 | |
| 27789 | 1503 | lemma mono_nat_linear_lb: | 
| 1504 | "(!!m n::nat. m<n \<Longrightarrow> f m < f n) \<Longrightarrow> f(m)+k \<le> f(m+k)" | |
| 1505 | apply(induct_tac k) | |
| 1506 | apply simp | |
| 1507 | apply(erule_tac x="m+n" in meta_allE) | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 1508 | apply(erule_tac x="Suc(m+n)" in meta_allE) | 
| 27789 | 1509 | apply simp | 
| 1510 | done | |
| 1511 | ||
| 1512 | ||
| 21243 | 1513 | text{*Subtraction laws, mostly by Clemens Ballarin*}
 | 
| 1514 | ||
| 1515 | lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c" | |
| 24438 | 1516 | by arith | 
| 21243 | 1517 | |
| 1518 | lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))" | |
| 24438 | 1519 | by arith | 
| 21243 | 1520 | |
| 1521 | lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)" | |
| 24438 | 1522 | by arith | 
| 21243 | 1523 | |
| 1524 | lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))" | |
| 24438 | 1525 | by arith | 
| 21243 | 1526 | |
| 1527 | lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i" | |
| 24438 | 1528 | by arith | 
| 21243 | 1529 | |
| 1530 | lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k" | |
| 24438 | 1531 | by arith | 
| 21243 | 1532 | |
| 1533 | (*Replaces the previous diff_less and le_diff_less, which had the stronger | |
| 1534 | second premise n\<le>m*) | |
| 1535 | lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m" | |
| 24438 | 1536 | by arith | 
| 21243 | 1537 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1538 | text {* Simplification of relational expressions involving subtraction *}
 | 
| 21243 | 1539 | |
| 1540 | lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)" | |
| 24438 | 1541 | by (simp split add: nat_diff_split) | 
| 21243 | 1542 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 1543 | hide_fact (open) diff_diff_eq | 
| 35064 
1bdef0c013d3
hide fact names clashing with fact names from Group.thy
 haftmann parents: 
35047diff
changeset | 1544 | |
| 21243 | 1545 | lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)" | 
| 24438 | 1546 | by (auto split add: nat_diff_split) | 
| 21243 | 1547 | |
| 1548 | lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)" | |
| 24438 | 1549 | by (auto split add: nat_diff_split) | 
| 21243 | 1550 | |
| 1551 | lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)" | |
| 24438 | 1552 | by (auto split add: nat_diff_split) | 
| 21243 | 1553 | |
| 1554 | text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
 | |
| 1555 | ||
| 1556 | (* Monotonicity of subtraction in first argument *) | |
| 1557 | lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)" | |
| 24438 | 1558 | by (simp split add: nat_diff_split) | 
| 21243 | 1559 | |
| 1560 | lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)" | |
| 24438 | 1561 | by (simp split add: nat_diff_split) | 
| 21243 | 1562 | |
| 1563 | lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)" | |
| 24438 | 1564 | by (simp split add: nat_diff_split) | 
| 21243 | 1565 | |
| 1566 | lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n" | |
| 24438 | 1567 | by (simp split add: nat_diff_split) | 
| 21243 | 1568 | |
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1569 | lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i" | 
| 32437 | 1570 | by auto | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1571 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1572 | lemma inj_on_diff_nat: | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1573 | assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1574 | shows "inj_on (\<lambda>n. n - k) N" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1575 | proof (rule inj_onI) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1576 | fix x y | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1577 | assume a: "x \<in> N" "y \<in> N" "x - k = y - k" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1578 | with k_le_n have "x - k + k = y - k + k" by auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1579 | with a k_le_n show "x = y" by auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1580 | qed | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1581 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1582 | text{*Rewriting to pull differences out*}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1583 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1584 | lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1585 | by arith | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1586 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1587 | lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1588 | by arith | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1589 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1590 | lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1591 | by arith | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1592 | |
| 21243 | 1593 | text{*Lemmas for ex/Factorization*}
 | 
| 1594 | ||
| 1595 | lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n" | |
| 24438 | 1596 | by (cases m) auto | 
| 21243 | 1597 | |
| 1598 | lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n" | |
| 24438 | 1599 | by (cases m) auto | 
| 21243 | 1600 | |
| 1601 | lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m" | |
| 24438 | 1602 | by (cases m) auto | 
| 21243 | 1603 | |
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1604 | text {* Specialized induction principles that work "backwards": *}
 | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1605 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1606 | lemma inc_induct[consumes 1, case_names base step]: | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1607 | assumes less: "i <= j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1608 | assumes base: "P j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1609 | assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1610 | shows "P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1611 | using less | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1612 | proof (induct d=="j - i" arbitrary: i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1613 | case (0 i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1614 | hence "i = j" by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1615 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1616 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1617 | case (Suc d i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1618 | hence "i < j" "P (Suc i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1619 | by simp_all | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1620 | thus "P i" by (rule step) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1621 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1622 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1623 | lemma strict_inc_induct[consumes 1, case_names base step]: | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1624 | assumes less: "i < j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1625 | assumes base: "!!i. j = Suc i ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1626 | assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1627 | shows "P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1628 | using less | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1629 | proof (induct d=="j - i - 1" arbitrary: i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1630 | case (0 i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1631 | with `i < j` have "j = Suc i" by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1632 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1633 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1634 | case (Suc d i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1635 | hence "i < j" "P (Suc i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1636 | by simp_all | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1637 | thus "P i" by (rule step) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1638 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1639 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1640 | lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1641 | using inc_induct[of "k - i" k P, simplified] by blast | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1642 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1643 | lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1644 | using inc_induct[of 0 k P] by blast | 
| 21243 | 1645 | |
| 1646 | (*The others are | |
| 1647 | i - j - k = i - (j + k), | |
| 1648 | k \<le> j ==> j - k + i = j + i - k, | |
| 1649 | k \<le> j ==> i + (j - k) = i + j - k *) | |
| 1650 | lemmas add_diff_assoc = diff_add_assoc [symmetric] | |
| 1651 | lemmas add_diff_assoc2 = diff_add_assoc2[symmetric] | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1652 | declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp] | 
| 21243 | 1653 | |
| 1654 | text{*At present we prove no analogue of @{text not_less_Least} or @{text
 | |
| 1655 | Least_Suc}, since there appears to be no need.*} | |
| 1656 | ||
| 27625 | 1657 | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1658 | subsection {* The divides relation on @{typ nat} *}
 | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1659 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1660 | lemma dvd_1_left [iff]: "Suc 0 dvd k" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1661 | unfolding dvd_def by simp | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1662 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1663 | lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1664 | by (simp add: dvd_def) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1665 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1666 | lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1667 | by (simp add: dvd_def) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1668 | |
| 33657 | 1669 | lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)" | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1670 | unfolding dvd_def | 
| 35216 | 1671 | by (force dest: mult_eq_self_implies_10 simp add: mult_assoc) | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1672 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1673 | text {* @{term "op dvd"} is a partial order *}
 | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1674 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1675 | interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n" | 
| 33657 | 1676 | proof qed (auto intro: dvd_refl dvd_trans dvd_antisym) | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1677 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1678 | lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1679 | unfolding dvd_def | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1680 | by (blast intro: diff_mult_distrib2 [symmetric]) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1681 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1682 | lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1683 | apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst]) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1684 | apply (blast intro: dvd_add) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1685 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1686 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1687 | lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1688 | by (drule_tac m = m in dvd_diff_nat, auto) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1689 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1690 | lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1691 | apply (rule iffI) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1692 | apply (erule_tac [2] dvd_add) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1693 | apply (rule_tac [2] dvd_refl) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1694 | apply (subgoal_tac "n = (n+k) -k") | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1695 | prefer 2 apply simp | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1696 | apply (erule ssubst) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1697 | apply (erule dvd_diff_nat) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1698 | apply (rule dvd_refl) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1699 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1700 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1701 | lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1702 | unfolding dvd_def | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1703 | apply (erule exE) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1704 | apply (simp add: mult_ac) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1705 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1706 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1707 | lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1708 | apply auto | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1709 | apply (subgoal_tac "m*n dvd m*1") | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1710 | apply (drule dvd_mult_cancel, auto) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1711 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1712 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1713 | lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1714 | apply (subst mult_commute) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1715 | apply (erule dvd_mult_cancel1) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1716 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1717 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1718 | lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1719 | by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1720 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1721 | lemma nat_dvd_not_less: | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1722 | fixes m n :: nat | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1723 | shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1724 | by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1725 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1726 | |
| 44817 | 1727 | subsection {* aliasses *}
 | 
| 1728 | ||
| 1729 | lemma nat_mult_1: "(1::nat) * n = n" | |
| 1730 | by simp | |
| 1731 | ||
| 1732 | lemma nat_mult_1_right: "n * (1::nat) = n" | |
| 1733 | by simp | |
| 1734 | ||
| 1735 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1736 | subsection {* size of a datatype value *}
 | 
| 25193 | 1737 | |
| 29608 | 1738 | class size = | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1739 |   fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
 | 
| 23852 | 1740 | |
| 33364 | 1741 | |
| 1742 | subsection {* code module namespace *}
 | |
| 1743 | ||
| 1744 | code_modulename SML | |
| 1745 | Nat Arith | |
| 1746 | ||
| 1747 | code_modulename OCaml | |
| 1748 | Nat Arith | |
| 1749 | ||
| 1750 | code_modulename Haskell | |
| 1751 | Nat Arith | |
| 1752 | ||
| 25193 | 1753 | end |