| author | wenzelm | 
| Thu, 04 Mar 2021 22:02:44 +0100 | |
| changeset 73370 | a89cd55dfa76 | 
| parent 72686 | 703b601d71b5 | 
| child 74362 | 0135a0c77b64 | 
| permissions | -rw-r--r-- | 
| 65435 | 1 | (* Title: HOL/Computational_Algebra/Formal_Power_Series.thy | 
| 29687 | 2 | Author: Amine Chaieb, University of Cambridge | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3 | Author: Jeremy Sylvestre, University of Alberta (Augustana Campus) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4 | Author: Manuel Eberl, TU München | 
| 29687 | 5 | *) | 
| 6 | ||
| 60501 | 7 | section \<open>A formalization of formal power series\<close> | 
| 29687 | 8 | |
| 9 | theory Formal_Power_Series | |
| 65417 | 10 | imports | 
| 11 | Complex_Main | |
| 12 | Euclidean_Algorithm | |
| 29687 | 13 | begin | 
| 14 | ||
| 60501 | 15 | |
| 60500 | 16 | subsection \<open>The type of formal power series\<close> | 
| 29687 | 17 | |
| 49834 | 18 | typedef 'a fps = "{f :: nat \<Rightarrow> 'a. True}"
 | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 19 | morphisms fps_nth Abs_fps | 
| 29687 | 20 | by simp | 
| 21 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 22 | notation fps_nth (infixl "$" 75) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 23 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 24 | lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p $ n = q $ n)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 25 | by (simp add: fps_nth_inject [symmetric] fun_eq_iff) | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 26 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 27 | lemmas fps_eq_iff = expand_fps_eq | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 28 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 29 | lemma fps_ext: "(\<And>n. p $ n = q $ n) \<Longrightarrow> p = q" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 30 | by (simp add: expand_fps_eq) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 31 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 32 | lemma fps_nth_Abs_fps [simp]: "Abs_fps f $ n = f n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 33 | by (simp add: Abs_fps_inverse) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 34 | |
| 60501 | 35 | text \<open>Definition of the basic elements 0 and 1 and the basic operations of addition, | 
| 36 | negation and multiplication.\<close> | |
| 29687 | 37 | |
| 36409 | 38 | instantiation fps :: (zero) zero | 
| 29687 | 39 | begin | 
| 60501 | 40 | definition fps_zero_def: "0 = Abs_fps (\<lambda>n. 0)" | 
| 41 | instance .. | |
| 29687 | 42 | end | 
| 43 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 44 | lemma fps_zero_nth [simp]: "0 $ n = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 45 | unfolding fps_zero_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 46 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 47 | lemma fps_nonzero_nth: "f \<noteq> 0 \<longleftrightarrow> (\<exists> n. f $n \<noteq> 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 48 | by (simp add: expand_fps_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 49 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 50 | lemma fps_nonzero_nth_minimal: "f \<noteq> 0 \<longleftrightarrow> (\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m < n. f $ m = 0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 51 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 52 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 53 | let ?n = "LEAST n. f $ n \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 54 | show ?rhs if ?lhs | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 55 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 56 | from that have "\<exists>n. f $ n \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 57 | by (simp add: fps_nonzero_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 58 | then have "f $ ?n \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 59 | by (rule LeastI_ex) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 60 | moreover have "\<forall>m<?n. f $ m = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 61 | by (auto dest: not_less_Least) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 62 | ultimately have "f $ ?n \<noteq> 0 \<and> (\<forall>m<?n. f $ m = 0)" .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 63 | then show ?thesis .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 64 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 65 | show ?lhs if ?rhs | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 66 | using that by (auto simp add: expand_fps_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 67 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 68 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 69 | lemma fps_nonzeroI: "f$n \<noteq> 0 \<Longrightarrow> f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 70 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 71 | |
| 36409 | 72 | instantiation fps :: ("{one, zero}") one
 | 
| 29687 | 73 | begin | 
| 60501 | 74 | definition fps_one_def: "1 = Abs_fps (\<lambda>n. if n = 0 then 1 else 0)" | 
| 75 | instance .. | |
| 29687 | 76 | end | 
| 77 | ||
| 30488 | 78 | lemma fps_one_nth [simp]: "1 $ n = (if n = 0 then 1 else 0)" | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 79 | unfolding fps_one_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 80 | |
| 54681 | 81 | instantiation fps :: (plus) plus | 
| 29687 | 82 | begin | 
| 67399 | 83 | definition fps_plus_def: "(+) = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n + g $ n))" | 
| 60501 | 84 | instance .. | 
| 29687 | 85 | end | 
| 86 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 87 | lemma fps_add_nth [simp]: "(f + g) $ n = f $ n + g $ n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 88 | unfolding fps_plus_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 89 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 90 | instantiation fps :: (minus) minus | 
| 29687 | 91 | begin | 
| 67399 | 92 | definition fps_minus_def: "(-) = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n - g $ n))" | 
| 60501 | 93 | instance .. | 
| 29687 | 94 | end | 
| 95 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 96 | lemma fps_sub_nth [simp]: "(f - g) $ n = f $ n - g $ n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 97 | unfolding fps_minus_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 98 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 99 | instantiation fps :: (uminus) uminus | 
| 29687 | 100 | begin | 
| 60501 | 101 | definition fps_uminus_def: "uminus = (\<lambda>f. Abs_fps (\<lambda>n. - (f $ n)))" | 
| 102 | instance .. | |
| 29687 | 103 | end | 
| 104 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 105 | lemma fps_neg_nth [simp]: "(- f) $ n = - (f $ n)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 106 | unfolding fps_uminus_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 107 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 108 | lemma fps_neg_0 [simp]: "-(0::'a::group_add fps) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 109 | by (rule iffD2, rule fps_eq_iff, auto) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 110 | |
| 54681 | 111 | instantiation fps :: ("{comm_monoid_add, times}") times
 | 
| 29687 | 112 | begin | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68975diff
changeset | 113 | definition fps_times_def: "(*) = (\<lambda>f g. Abs_fps (\<lambda>n. \<Sum>i=0..n. f $ i * g $ (n - i)))" | 
| 60501 | 114 | instance .. | 
| 29687 | 115 | end | 
| 116 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 117 | lemma fps_mult_nth: "(f * g) $ n = (\<Sum>i=0..n. f$i * g$(n - i))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 118 | unfolding fps_times_def by simp | 
| 29687 | 119 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 120 | lemma fps_mult_nth_0 [simp]: "(f * g) $ 0 = f $ 0 * g $ 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 121 | unfolding fps_times_def by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 122 | |
| 72686 | 123 | lemma fps_mult_nth_1: "(f * g) $ 1 = f$0 * g$1 + f$1 * g$0" | 
| 124 | by (simp add: fps_mult_nth) | |
| 125 | ||
| 126 | lemma fps_mult_nth_1' [simp]: "(f * g) $ Suc 0 = f$0 * g$Suc 0 + f$Suc 0 * g$0" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 127 | by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 128 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 129 | lemmas mult_nth_0 = fps_mult_nth_0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 130 | lemmas mult_nth_1 = fps_mult_nth_1 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 131 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 132 | instance fps :: ("{comm_monoid_add, mult_zero}") mult_zero
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 133 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 134 | fix a :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 135 | show "0 * a = 0" by (simp add: fps_ext fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 136 | show "a * 0 = 0" by (simp add: fps_ext fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 137 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 138 | |
| 52891 | 139 | declare atLeastAtMost_iff [presburger] | 
| 140 | declare Bex_def [presburger] | |
| 141 | declare Ball_def [presburger] | |
| 29687 | 142 | |
| 29913 | 143 | lemma mult_delta_left: | 
| 144 | fixes x y :: "'a::mult_zero" | |
| 145 | shows "(if b then x else 0) * y = (if b then x * y else 0)" | |
| 146 | by simp | |
| 147 | ||
| 148 | lemma mult_delta_right: | |
| 149 | fixes x y :: "'a::mult_zero" | |
| 150 | shows "x * (if b then y else 0) = (if b then x * y else 0)" | |
| 151 | by simp | |
| 152 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 153 | lemma fps_one_mult: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 154 |   fixes f :: "'a::{comm_monoid_add, mult_zero, monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 155 | shows "1 * f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 156 | and "f * 1 = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 157 | by (simp_all add: fps_ext fps_mult_nth mult_delta_left mult_delta_right) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 158 | |
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 159 | |
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 160 | subsection \<open>Subdegrees\<close> | 
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 161 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 162 | definition subdegree :: "('a::zero) fps \<Rightarrow> nat" where
 | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 163 | "subdegree f = (if f = 0 then 0 else LEAST n. f$n \<noteq> 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 164 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 165 | lemma subdegreeI: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 166 | assumes "f $ d \<noteq> 0" and "\<And>i. i < d \<Longrightarrow> f $ i = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 167 | shows "subdegree f = d" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 168 | proof- | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 169 | from assms(1) have "f \<noteq> 0" by auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 170 | moreover from assms(1) have "(LEAST i. f $ i \<noteq> 0) = d" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 171 | proof (rule Least_equality) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 172 | fix e assume "f $ e \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 173 | with assms(2) have "\<not>(e < d)" by blast | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 174 | thus "e \<ge> d" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 175 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 176 | ultimately show ?thesis unfolding subdegree_def by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 177 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 178 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 179 | lemma nth_subdegree_nonzero [simp,intro]: "f \<noteq> 0 \<Longrightarrow> f $ subdegree f \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 180 | proof- | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 181 | assume "f \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 182 | hence "subdegree f = (LEAST n. f $ n \<noteq> 0)" by (simp add: subdegree_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 183 | also from \<open>f \<noteq> 0\<close> have "\<exists>n. f$n \<noteq> 0" using fps_nonzero_nth by blast | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 184 | from LeastI_ex[OF this] have "f $ (LEAST n. f $ n \<noteq> 0) \<noteq> 0" . | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 185 | finally show ?thesis . | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 186 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 187 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 188 | lemma nth_less_subdegree_zero [dest]: "n < subdegree f \<Longrightarrow> f $ n = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 189 | proof (cases "f = 0") | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 190 | assume "f \<noteq> 0" and less: "n < subdegree f" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 191 | note less | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 192 | also from \<open>f \<noteq> 0\<close> have "subdegree f = (LEAST n. f $ n \<noteq> 0)" by (simp add: subdegree_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 193 | finally show "f $ n = 0" using not_less_Least by blast | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 194 | qed simp_all | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 195 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 196 | lemma subdegree_geI: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 197 | assumes "f \<noteq> 0" "\<And>i. i < n \<Longrightarrow> f$i = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 198 | shows "subdegree f \<ge> n" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 199 | proof (rule ccontr) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 200 | assume "\<not>(subdegree f \<ge> n)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 201 | with assms(2) have "f $ subdegree f = 0" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 202 | moreover from assms(1) have "f $ subdegree f \<noteq> 0" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 203 | ultimately show False by contradiction | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 204 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 205 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 206 | lemma subdegree_greaterI: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 207 | assumes "f \<noteq> 0" "\<And>i. i \<le> n \<Longrightarrow> f$i = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 208 | shows "subdegree f > n" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 209 | proof (rule ccontr) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 210 | assume "\<not>(subdegree f > n)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 211 | with assms(2) have "f $ subdegree f = 0" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 212 | moreover from assms(1) have "f $ subdegree f \<noteq> 0" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 213 | ultimately show False by contradiction | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 214 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 215 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 216 | lemma subdegree_leI: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 217 | "f $ n \<noteq> 0 \<Longrightarrow> subdegree f \<le> n" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 218 | by (rule leI) auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 219 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 220 | lemma subdegree_0 [simp]: "subdegree 0 = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 221 | by (simp add: subdegree_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 222 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 223 | lemma subdegree_1 [simp]: "subdegree 1 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 224 | by (cases "(1::'a) = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 225 | (auto intro: subdegreeI fps_ext simp: subdegree_def) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 226 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 227 | lemma subdegree_eq_0_iff: "subdegree f = 0 \<longleftrightarrow> f = 0 \<or> f $ 0 \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 228 | proof (cases "f = 0") | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 229 | assume "f \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 230 | thus ?thesis | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 231 | using nth_subdegree_nonzero[OF \<open>f \<noteq> 0\<close>] by (fastforce intro!: subdegreeI) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 232 | qed simp_all | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 233 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 234 | lemma subdegree_eq_0 [simp]: "f $ 0 \<noteq> 0 \<Longrightarrow> subdegree f = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 235 | by (simp add: subdegree_eq_0_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 236 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 237 | lemma nth_subdegree_zero_iff [simp]: "f $ subdegree f = 0 \<longleftrightarrow> f = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 238 | by (cases "f = 0") auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 239 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 240 | lemma fps_nonzero_subdegree_nonzeroI: "subdegree f > 0 \<Longrightarrow> f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 241 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 242 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 243 | lemma subdegree_uminus [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 244 |   "subdegree (-(f::('a::group_add) fps)) = subdegree f"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 245 | proof (cases "f=0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 246 | case False thus ?thesis by (force intro: subdegreeI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 247 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 248 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 249 | lemma subdegree_minus_commute [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 250 |   "subdegree (f-(g::('a::group_add) fps)) = subdegree (g - f)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 251 | proof (-, cases "g-f=0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 252 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 253 | have "\<And>n. (f - g) $ n = -((g - f) $ n)" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 254 | with True have "f - g = 0" by (intro fps_ext) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 255 | with True show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 256 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 257 | case False show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 258 | using nth_subdegree_nonzero[OF False] by (fastforce intro: subdegreeI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 259 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 260 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 261 | lemma subdegree_add_ge': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 262 | fixes f g :: "'a::monoid_add fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 263 | assumes "f + g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 264 | shows "subdegree (f + g) \<ge> min (subdegree f) (subdegree g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 265 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 266 | by (force intro: subdegree_geI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 267 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 268 | lemma subdegree_add_ge: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 269 |   assumes "f \<noteq> -(g :: ('a :: group_add) fps)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 270 | shows "subdegree (f + g) \<ge> min (subdegree f) (subdegree g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 271 | proof (rule subdegree_add_ge') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 272 | have "f + g = 0 \<Longrightarrow> False" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 273 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 274 | assume fg: "f + g = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 275 | have "\<And>n. f $ n = - g $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 276 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 277 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 278 | from fg have "(f + g) $ n = 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 279 | hence "f $ n + g $ n - g $ n = - g $ n" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 280 | thus "f $ n = - g $ n" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 281 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 282 | with assms show False by (auto intro: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 283 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 284 | thus "f + g \<noteq> 0" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 285 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 286 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 287 | lemma subdegree_add_eq1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 288 | assumes "f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 289 | and "subdegree f < subdegree (g :: 'a::monoid_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 290 | shows "subdegree (f + g) = subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 291 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 292 | by (auto intro: subdegreeI simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 293 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 294 | lemma subdegree_add_eq2: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 295 | assumes "g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 296 | and "subdegree g < subdegree (f :: 'a :: monoid_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 297 | shows "subdegree (f + g) = subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 298 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 299 | by (auto intro: subdegreeI simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 300 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 301 | lemma subdegree_diff_eq1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 302 | assumes "f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 303 | and "subdegree f < subdegree (g :: 'a :: group_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 304 | shows "subdegree (f - g) = subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 305 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 306 | by (auto intro: subdegreeI simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 307 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 308 | lemma subdegree_diff_eq1_cancel: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 309 | assumes "f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 310 | and "subdegree f < subdegree (g :: 'a :: cancel_comm_monoid_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 311 | shows "subdegree (f - g) = subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 312 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 313 | by (auto intro: subdegreeI simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 314 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 315 | lemma subdegree_diff_eq2: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 316 | assumes "g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 317 | and "subdegree g < subdegree (f :: 'a :: group_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 318 | shows "subdegree (f - g) = subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 319 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 320 | by (auto intro: subdegreeI simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 321 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 322 | lemma subdegree_diff_ge [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 323 | assumes "f \<noteq> (g :: 'a :: group_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 324 | shows "subdegree (f - g) \<ge> min (subdegree f) (subdegree g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 325 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 326 | from assms have "f = - (- g) \<Longrightarrow> False" using expand_fps_eq by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 327 | hence "f \<noteq> - (- g)" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 328 | moreover have "f + - g = f - g" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 329 | ultimately show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 330 | using subdegree_add_ge[of f "-g"] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 331 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 332 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 333 | lemma subdegree_diff_ge': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 334 | fixes f g :: "'a :: comm_monoid_diff fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 335 | assumes "f - g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 336 | shows "subdegree (f - g) \<ge> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 337 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 338 | by (auto intro: subdegree_geI simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 339 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 340 | lemma nth_subdegree_mult_left [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 341 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 342 | shows "(f * g) $ (subdegree f) = f $ subdegree f * g $ 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 343 | by (cases "subdegree f") (simp_all add: fps_mult_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 344 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 345 | lemma nth_subdegree_mult_right [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 346 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 347 | shows "(f * g) $ (subdegree g) = f $ 0 * g $ subdegree g" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 348 | by (cases "subdegree g") (simp_all add: fps_mult_nth nth_less_subdegree_zero sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 349 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 350 | lemma nth_subdegree_mult [simp]: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 351 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 352 | shows "(f * g) $ (subdegree f + subdegree g) = f $ subdegree f * g $ subdegree g" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 353 | proof- | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 354 | let ?n = "subdegree f + subdegree g" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 355 | have "(f * g) $ ?n = (\<Sum>i=0..?n. f$i * g$(?n-i))" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 356 | by (simp add: fps_mult_nth) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 357 | also have "... = (\<Sum>i=0..?n. if i = subdegree f then f$i * g$(?n-i) else 0)" | 
| 64267 | 358 | proof (intro sum.cong) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 359 |     fix x assume x: "x \<in> {0..?n}"
 | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 360 | hence "x = subdegree f \<or> x < subdegree f \<or> ?n - x < subdegree g" by auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 361 | thus "f $ x * g $ (?n - x) = (if x = subdegree f then f $ x * g $ (?n - x) else 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 362 | by (elim disjE conjE) auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 363 | qed auto | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 364 | also have "... = f $ subdegree f * g $ subdegree g" by simp | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 365 | finally show ?thesis . | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 366 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 367 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 368 | lemma fps_mult_nth_eq0: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 369 |   fixes f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 370 | assumes "n < subdegree f + subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 371 | shows "(f*g) $ n = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 372 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 373 |   have "\<And>i. i\<in>{0..n} \<Longrightarrow> f$i * g$(n - i) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 374 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 375 |     fix i assume i: "i\<in>{0..n}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 376 | show "f$i * g$(n - i) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 377 | proof (cases "i < subdegree f \<or> n - i < subdegree g") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 378 | case False with assms i show ?thesis by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 379 | qed (auto simp: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 380 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 381 | thus "(f * g) $ n = 0" by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 382 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 383 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 384 | lemma fps_mult_subdegree_ge: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 385 |   fixes   f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 386 | assumes "f*g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 387 | shows "subdegree (f*g) \<ge> subdegree f + subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 388 | using assms fps_mult_nth_eq0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 389 | by (intro subdegree_geI) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 390 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 391 | lemma subdegree_mult': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 392 |   fixes   f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 393 | assumes "f $ subdegree f * g $ subdegree g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 394 | shows "subdegree (f*g) = subdegree f + subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 395 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 396 | from assms have "(f * g) $ (subdegree f + subdegree g) \<noteq> 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 397 | hence "f*g \<noteq> 0" by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 398 | hence "subdegree (f*g) \<ge> subdegree f + subdegree g" using fps_mult_subdegree_ge by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 399 | moreover from assms have "subdegree (f*g) \<le> subdegree f + subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 400 | by (intro subdegree_leI) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 401 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 402 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 403 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 404 | lemma subdegree_mult [simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 405 |   fixes   f g :: "'a :: {semiring_no_zero_divisors} fps"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 406 | assumes "f \<noteq> 0" "g \<noteq> 0" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 407 | shows "subdegree (f * g) = subdegree f + subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 408 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 409 | by (intro subdegree_mult') simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 410 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 411 | lemma fps_mult_nth_conv_upto_subdegree_left: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 412 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 413 | shows "(f * g) $ n = (\<Sum>i=subdegree f..n. f $ i * g $ (n - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 414 | proof (cases "subdegree f \<le> n") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 415 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 416 |   hence "{0..n} = {0..<subdegree f} \<union> {subdegree f..n}" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 417 |   moreover have "{0..<subdegree f} \<inter> {subdegree f..n} = {}" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 418 | ultimately show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 419 | using nth_less_subdegree_zero[of _ f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 420 | by (simp add: fps_mult_nth sum.union_disjoint) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 421 | qed (simp add: fps_mult_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 422 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 423 | lemma fps_mult_nth_conv_upto_subdegree_right: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 424 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 425 | shows "(f * g) $ n = (\<Sum>i=0..n - subdegree g. f $ i * g $ (n - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 426 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 427 |   have "{0..n} = {0..n - subdegree g} \<union> {n - subdegree g<..n}" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 428 |   moreover have "{0..n - subdegree g} \<inter> {n - subdegree g<..n} = {}" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 429 |   moreover have "\<forall>i\<in>{n - subdegree g<..n}. g $ (n - i) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 430 | using nth_less_subdegree_zero[of _ g] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 431 | ultimately show ?thesis by (simp add: fps_mult_nth sum.union_disjoint) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 432 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 433 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 434 | lemma fps_mult_nth_conv_inside_subdegrees: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 435 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 436 | shows "(f * g) $ n = (\<Sum>i=subdegree f..n - subdegree g. f $ i * g $ (n - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 437 | proof (cases "subdegree f \<le> n - subdegree g") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 438 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 439 |   hence "{subdegree f..n} = {subdegree f..n - subdegree g} \<union> {n - subdegree g<..n}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 440 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 441 |   moreover have "{subdegree f..n - subdegree g} \<inter> {n - subdegree g<..n} = {}" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 442 |   moreover have "\<forall>i\<in>{n - subdegree g<..n}. f $ i * g $ (n - i) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 443 | using nth_less_subdegree_zero[of _ g] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 444 | ultimately show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 445 | using fps_mult_nth_conv_upto_subdegree_left[of f g n] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 446 | by (simp add: sum.union_disjoint) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 447 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 448 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 449 | hence 1: "subdegree f > n - subdegree g" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 450 | show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 451 | proof (cases "f*g = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 452 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 453 | with 1 have "n < subdegree (f*g)" using fps_mult_subdegree_ge[of f g] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 454 | with 1 show ?thesis by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 455 | qed (simp add: 1) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 456 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 457 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 458 | lemma fps_mult_nth_outside_subdegrees: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 459 |   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 460 | shows "n < subdegree f \<Longrightarrow> (f * g) $ n = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 461 | and "n < subdegree g \<Longrightarrow> (f * g) $ n = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 462 | by (auto simp: fps_mult_nth_conv_inside_subdegrees) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 463 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 464 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 465 | subsection \<open>Formal power series form a commutative ring with unity, if the range of sequences | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 466 | they represent is a commutative ring with unity\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 467 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 468 | instance fps :: (semigroup_add) semigroup_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 469 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 470 | fix a b c :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 471 | show "a + b + c = a + (b + c)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 472 | by (simp add: fps_ext add.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 473 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 474 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 475 | instance fps :: (ab_semigroup_add) ab_semigroup_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 476 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 477 | fix a b :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 478 | show "a + b = b + a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 479 | by (simp add: fps_ext add.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 480 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 481 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 482 | instance fps :: (monoid_add) monoid_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 483 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 484 | fix a :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 485 | show "0 + a = a" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 486 | show "a + 0 = a" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 487 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 488 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 489 | instance fps :: (comm_monoid_add) comm_monoid_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 490 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 491 | fix a :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 492 | show "0 + a = a" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 493 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 494 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 495 | instance fps :: (cancel_semigroup_add) cancel_semigroup_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 496 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 497 | fix a b c :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 498 | show "b = c" if "a + b = a + c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 499 | using that by (simp add: expand_fps_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 500 | show "b = c" if "b + a = c + a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 501 | using that by (simp add: expand_fps_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 502 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 503 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 504 | instance fps :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 505 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 506 | fix a b c :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 507 | show "a + b - a = b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 508 | by (simp add: expand_fps_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 509 | show "a - b - c = a - (b + c)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 510 | by (simp add: expand_fps_eq diff_diff_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 511 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 512 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 513 | instance fps :: (cancel_comm_monoid_add) cancel_comm_monoid_add .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 514 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 515 | instance fps :: (group_add) group_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 516 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 517 | fix a b :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 518 | show "- a + a = 0" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 519 | show "a + - b = a - b" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 520 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 521 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 522 | instance fps :: (ab_group_add) ab_group_add | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 523 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 524 | fix a b :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 525 | show "- a + a = 0" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 526 | show "a - b = a + - b" by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 527 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 528 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 529 | instance fps :: (zero_neq_one) zero_neq_one | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 530 | by standard (simp add: expand_fps_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 531 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 532 | lemma fps_mult_assoc_lemma: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 533 | fixes k :: nat | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 534 | and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 535 | shows "(\<Sum>j=0..k. \<Sum>i=0..j. f i (j - i) (n - j)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 536 | (\<Sum>j=0..k. \<Sum>i=0..k - j. f j i (n - j - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 537 | by (induct k) (simp_all add: Suc_diff_le sum.distrib add.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 538 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 539 | instance fps :: (semiring_0) semiring_0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 540 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 541 | fix a b c :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 542 | show "(a + b) * c = a * c + b * c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 543 | by (simp add: expand_fps_eq fps_mult_nth distrib_right sum.distrib) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 544 | show "a * (b + c) = a * b + a * c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 545 | by (simp add: expand_fps_eq fps_mult_nth distrib_left sum.distrib) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 546 | show "(a * b) * c = a * (b * c)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 547 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 548 | fix n :: nat | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 549 | have "(\<Sum>j=0..n. \<Sum>i=0..j. a$i * b$(j - i) * c$(n - j)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 550 | (\<Sum>j=0..n. \<Sum>i=0..n - j. a$j * b$i * c$(n - j - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 551 | by (rule fps_mult_assoc_lemma) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 552 | then show "((a * b) * c) $ n = (a * (b * c)) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 553 | by (simp add: fps_mult_nth sum_distrib_left sum_distrib_right mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 554 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 555 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 556 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 557 | instance fps :: (semiring_0_cancel) semiring_0_cancel .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 558 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 559 | lemma fps_mult_commute_lemma: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 560 | fixes n :: nat | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 561 | and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 562 | shows "(\<Sum>i=0..n. f i (n - i)) = (\<Sum>i=0..n. f (n - i) i)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 563 | by (rule sum.reindex_bij_witness[where i="(-) n" and j="(-) n"]) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 564 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 565 | instance fps :: (comm_semiring_0) comm_semiring_0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 566 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 567 | fix a b c :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 568 | show "a * b = b * a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 569 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 570 | fix n :: nat | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 571 | have "(\<Sum>i=0..n. a$i * b$(n - i)) = (\<Sum>i=0..n. a$(n - i) * b$i)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 572 | by (rule fps_mult_commute_lemma) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 573 | then show "(a * b) $ n = (b * a) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 574 | by (simp add: fps_mult_nth mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 575 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 576 | qed (simp add: distrib_right) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 577 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 578 | instance fps :: (comm_semiring_0_cancel) comm_semiring_0_cancel .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 579 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 580 | instance fps :: (semiring_1) semiring_1 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 581 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 582 | fix a :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 583 | show "1 * a = a" "a * 1 = a" by (simp_all add: fps_one_mult) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 584 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 585 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 586 | instance fps :: (comm_semiring_1) comm_semiring_1 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 587 | by standard simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 588 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 589 | instance fps :: (semiring_1_cancel) semiring_1_cancel .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 590 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 591 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 592 | subsection \<open>Selection of the nth power of the implicit variable in the infinite sum\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 593 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 594 | lemma fps_square_nth: "(f^2) $ n = (\<Sum>k\<le>n. f $ k * f $ (n - k))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 595 | by (simp add: power2_eq_square fps_mult_nth atLeast0AtMost) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 596 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 597 | lemma fps_sum_nth: "sum f S $ n = sum (\<lambda>k. (f k) $ n) S" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 598 | proof (cases "finite S") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 599 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 600 | then show ?thesis by (induct set: finite) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 601 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 602 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 603 | then show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 604 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 605 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 606 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 607 | subsection \<open>Injection of the basic ring elements and multiplication by scalars\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 608 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 609 | definition "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 610 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 611 | lemma fps_nth_fps_const [simp]: "fps_const c $ n = (if n = 0 then c else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 612 | unfolding fps_const_def by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 613 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 614 | lemma fps_const_0_eq_0 [simp]: "fps_const 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 615 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 616 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 617 | lemma fps_const_nonzero_eq_nonzero: "c \<noteq> 0 \<Longrightarrow> fps_const c \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 618 | using fps_nonzeroI[of "fps_const c" 0] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 619 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 620 | lemma fps_const_1_eq_1 [simp]: "fps_const 1 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 621 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 622 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 623 | lemma subdegree_fps_const [simp]: "subdegree (fps_const c) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 624 | by (cases "c = 0") (auto intro!: subdegreeI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 625 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 626 | lemma fps_const_neg [simp]: "- (fps_const (c::'a::group_add)) = fps_const (- c)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 627 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 628 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 629 | lemma fps_const_add [simp]: "fps_const (c::'a::monoid_add) + fps_const d = fps_const (c + d)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 630 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 631 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 632 | lemma fps_const_add_left: "fps_const (c::'a::monoid_add) + f = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 633 | Abs_fps (\<lambda>n. if n = 0 then c + f$0 else f$n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 634 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 635 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 636 | lemma fps_const_add_right: "f + fps_const (c::'a::monoid_add) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 637 | Abs_fps (\<lambda>n. if n = 0 then f$0 + c else f$n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 638 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 639 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 640 | lemma fps_const_sub [simp]: "fps_const (c::'a::group_add) - fps_const d = fps_const (c - d)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 641 | by (simp add: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 642 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 643 | lemmas fps_const_minus = fps_const_sub | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 644 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 645 | lemma fps_const_mult[simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 646 |   fixes c d :: "'a::{comm_monoid_add,mult_zero}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 647 | shows "fps_const c * fps_const d = fps_const (c * d)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 648 | by (simp add: fps_eq_iff fps_mult_nth sum.neutral) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 649 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 650 | lemma fps_const_mult_left: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 651 |   "fps_const (c::'a::{comm_monoid_add,mult_zero}) * f = Abs_fps (\<lambda>n. c * f$n)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 652 | unfolding fps_eq_iff fps_mult_nth | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 653 | by (simp add: fps_const_def mult_delta_left) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 654 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 655 | lemma fps_const_mult_right: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 656 |   "f * fps_const (c::'a::{comm_monoid_add,mult_zero}) = Abs_fps (\<lambda>n. f$n * c)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 657 | unfolding fps_eq_iff fps_mult_nth | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 658 | by (simp add: fps_const_def mult_delta_right) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 659 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 660 | lemma fps_mult_left_const_nth [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 661 |   "(fps_const (c::'a::{comm_monoid_add,mult_zero}) * f)$n = c* f$n"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 662 | by (simp add: fps_mult_nth mult_delta_left) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 663 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 664 | lemma fps_mult_right_const_nth [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 665 |   "(f * fps_const (c::'a::{comm_monoid_add,mult_zero}))$n = f$n * c"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 666 | by (simp add: fps_mult_nth mult_delta_right) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 667 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 668 | lemma fps_const_power [simp]: "fps_const c ^ n = fps_const (c^n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 669 | by (induct n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 670 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 671 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 672 | subsection \<open>Formal power series form an integral domain\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 673 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 674 | instance fps :: (ring) ring .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 675 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 676 | instance fps :: (comm_ring) comm_ring .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 677 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 678 | instance fps :: (ring_1) ring_1 .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 679 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 680 | instance fps :: (comm_ring_1) comm_ring_1 .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 681 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 682 | instance fps :: (semiring_no_zero_divisors) semiring_no_zero_divisors | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 683 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 684 | fix a b :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 685 | assume "a \<noteq> 0" and "b \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 686 | hence "(a * b) $ (subdegree a + subdegree b) \<noteq> 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 687 | thus "a * b \<noteq> 0" using fps_nonzero_nth by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 688 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 689 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 690 | instance fps :: (semiring_1_no_zero_divisors) semiring_1_no_zero_divisors .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 691 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 692 | instance fps :: ("{cancel_semigroup_add,semiring_no_zero_divisors_cancel}")
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 693 | semiring_no_zero_divisors_cancel | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 694 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 695 | fix a b c :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 696 | show "(a * c = b * c) = (c = 0 \<or> a = b)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 697 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 698 | assume ab: "a * c = b * c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 699 | have "c \<noteq> 0 \<Longrightarrow> a = b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 700 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 701 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 702 | assume c: "c \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 703 | show "a $ n = b $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 704 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 705 | case (1 n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 706 | with ab c show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 707 | using fps_mult_nth_conv_upto_subdegree_right[of a c "subdegree c + n"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 708 | fps_mult_nth_conv_upto_subdegree_right[of b c "subdegree c + n"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 709 | by (cases n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 710 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 711 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 712 | thus "c = 0 \<or> a = b" by fast | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 713 | qed auto | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 714 | show "(c * a = c * b) = (c = 0 \<or> a = b)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 715 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 716 | assume ab: "c * a = c * b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 717 | have "c \<noteq> 0 \<Longrightarrow> a = b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 718 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 719 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 720 | assume c: "c \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 721 | show "a $ n = b $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 722 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 723 | case (1 n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 724 |         moreover have "\<forall>i\<in>{Suc (subdegree c)..subdegree c + n}. subdegree c + n - i < n" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 725 | ultimately show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 726 | using ab c fps_mult_nth_conv_upto_subdegree_left[of c a "subdegree c + n"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 727 | fps_mult_nth_conv_upto_subdegree_left[of c b "subdegree c + n"] | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 728 | by (simp add: sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 729 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 730 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 731 | thus "c = 0 \<or> a = b" by fast | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 732 | qed auto | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 733 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 734 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 735 | instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 736 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 737 | instance fps :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 738 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 739 | instance fps :: (idom) idom .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 740 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 741 | lemma fps_numeral_fps_const: "numeral k = fps_const (numeral k)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 742 | by (induct k) (simp_all only: numeral.simps fps_const_1_eq_1 fps_const_add [symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 743 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 744 | lemmas numeral_fps_const = fps_numeral_fps_const | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 745 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 746 | lemma neg_numeral_fps_const: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 747 | "(- numeral k :: 'a :: ring_1 fps) = fps_const (- numeral k)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 748 | by (simp add: numeral_fps_const) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 749 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 750 | lemma fps_numeral_nth: "numeral n $ i = (if i = 0 then numeral n else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 751 | by (simp add: numeral_fps_const) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 752 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 753 | lemma fps_numeral_nth_0 [simp]: "numeral n $ 0 = numeral n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 754 | by (simp add: numeral_fps_const) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 755 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 756 | lemma subdegree_numeral [simp]: "subdegree (numeral n) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 757 | by (simp add: numeral_fps_const) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 758 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 759 | lemma fps_of_nat: "fps_const (of_nat c) = of_nat c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 760 | by (induction c) (simp_all add: fps_const_add [symmetric] del: fps_const_add) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 761 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 762 | lemma fps_of_int: "fps_const (of_int c) = of_int c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 763 | by (induction c) (simp_all add: fps_const_minus [symmetric] fps_of_nat fps_const_neg [symmetric] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 764 | del: fps_const_minus fps_const_neg) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 765 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 766 | lemma fps_nth_of_nat [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 767 | "(of_nat c) $ n = (if n=0 then of_nat c else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 768 | by (simp add: fps_of_nat[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 769 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 770 | lemma fps_nth_of_int [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 771 | "(of_int c) $ n = (if n=0 then of_int c else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 772 | by (simp add: fps_of_int[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 773 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 774 | lemma fps_mult_of_nat_nth [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 775 | shows "(of_nat k * f) $ n = of_nat k * f$n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 776 | and "(f * of_nat k ) $ n = f$n * of_nat k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 777 | by (simp_all add: fps_of_nat[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 778 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 779 | lemma fps_mult_of_int_nth [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 780 | shows "(of_int k * f) $ n = of_int k * f$n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 781 | and "(f * of_int k ) $ n = f$n * of_int k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 782 | by (simp_all add: fps_of_int[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 783 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 784 | lemma numeral_neq_fps_zero [simp]: "(numeral f :: 'a :: field_char_0 fps) \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 785 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 786 | assume "numeral f = (0 :: 'a fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 787 | from arg_cong[of _ _ "\<lambda>F. F $ 0", OF this] show False by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 788 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 789 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 790 | lemma subdegree_power_ge: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 791 | "f^n \<noteq> 0 \<Longrightarrow> subdegree (f^n) \<ge> n * subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 792 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 793 | case (Suc n) thus ?case using fps_mult_subdegree_ge by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 794 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 795 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 796 | lemma fps_pow_nth_below_subdegree: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 797 | "k < n * subdegree f \<Longrightarrow> (f^n) $ k = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 798 | proof (cases "f^n = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 799 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 800 | assume "k < n * subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 801 | with False have "k < subdegree (f^n)" using subdegree_power_ge[of f n] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 802 | thus "(f^n) $ k = 0" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 803 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 804 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 805 | lemma fps_pow_base [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 806 | "(f ^ n) $ (n * subdegree f) = (f $ subdegree f) ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 807 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 808 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 809 | show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 810 | proof (cases "Suc n * subdegree f < subdegree f + subdegree (f^n)") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 811 | case True with Suc show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 812 | by (auto simp: fps_mult_nth_eq0 distrib_right) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 813 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 814 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 815 |     hence "\<forall>i\<in>{Suc (subdegree f)..Suc n * subdegree f - subdegree (f ^ n)}.
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 816 | f ^ n $ (Suc n * subdegree f - i) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 817 | by (auto simp: fps_pow_nth_below_subdegree) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 818 | with False Suc show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 819 | using fps_mult_nth_conv_inside_subdegrees[of f "f^n" "Suc n * subdegree f"] | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 820 | sum.atLeast_Suc_atMost[of | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 821 | "subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 822 | "Suc n * subdegree f - subdegree (f ^ n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 823 | "\<lambda>i. f $ i * f ^ n $ (Suc n * subdegree f - i)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 824 | ] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 825 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 826 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 827 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 828 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 829 | lemma subdegree_power_eqI: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 830 | fixes f :: "'a::semiring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 831 | shows "(f $ subdegree f) ^ n \<noteq> 0 \<Longrightarrow> subdegree (f ^ n) = n * subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 832 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 833 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 834 | from Suc have 1: "subdegree (f ^ n) = n * subdegree f" by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 835 | with Suc(2) have "f $ subdegree f * f ^ n $ subdegree (f ^ n) \<noteq> 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 836 | with 1 show ?case using subdegree_mult'[of f "f^n"] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 837 | qed simp | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 838 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 839 | lemma subdegree_power [simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 840 |   "subdegree ((f :: ('a :: semiring_1_no_zero_divisors) fps) ^ n) = n * subdegree f"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 841 | by (cases "f = 0"; induction n) simp_all | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 842 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 843 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 844 | subsection \<open>The efps_Xtractor series fps_X\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 845 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 846 | lemma minus_one_power_iff: "(- (1::'a::ring_1)) ^ n = (if even n then 1 else - 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 847 | by (induct n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 848 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 849 | definition "fps_X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 850 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 851 | lemma subdegree_fps_X [simp]: "subdegree (fps_X :: ('a :: zero_neq_one) fps) = 1"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 852 | by (auto intro!: subdegreeI simp: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 853 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 854 | lemma fps_X_mult_nth [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 855 |   fixes f :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 856 | shows "(fps_X * f) $ n = (if n = 0 then 0 else f $ (n - 1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 857 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 858 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 859 | moreover have "(fps_X * f) $ Suc m = f $ (Suc m - 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 860 | proof (cases m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 861 | case 0 thus ?thesis using fps_mult_nth_1[of "fps_X" f] by (simp add: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 862 | next | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 863 | case (Suc k) thus ?thesis by (simp add: fps_mult_nth fps_X_def sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 864 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 865 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 866 | qed (simp add: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 867 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 868 | lemma fps_X_mult_right_nth [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 869 |   fixes a :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 870 | shows "(a * fps_X) $ n = (if n = 0 then 0 else a $ (n - 1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 871 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 872 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 873 | moreover have "(a * fps_X) $ Suc m = a $ (Suc m - 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 874 | proof (cases m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 875 | case 0 thus ?thesis using fps_mult_nth_1[of a "fps_X"] by (simp add: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 876 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 877 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 878 | hence "(a * fps_X) $ Suc m = (\<Sum>i=0..k. a$i * fps_X$(Suc m - i)) + a$(Suc k)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 879 | by (simp add: fps_mult_nth fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 880 |     moreover have "\<forall>i\<in>{0..k}. a$i * fps_X$(Suc m - i) = 0" by (auto simp: Suc fps_X_def)
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 881 | ultimately show ?thesis by (simp add: Suc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 882 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 883 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 884 | qed (simp add: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 885 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 886 | lemma fps_mult_fps_X_commute: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 887 |   fixes a :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 888 | shows "fps_X * a = a * fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 889 | by (simp add: fps_eq_iff) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 890 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 891 | lemma fps_mult_fps_X_power_commute: "fps_X ^ k * a = a * fps_X ^ k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 892 | proof (induct k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 893 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 894 | hence "fps_X ^ Suc k * a = a * fps_X * fps_X ^ k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 895 | by (simp add: mult.assoc fps_mult_fps_X_commute[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 896 | thus ?case by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 897 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 898 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 899 | lemma fps_subdegree_mult_fps_X: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 900 |   fixes   f :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 901 | assumes "f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 902 | shows "subdegree (fps_X * f) = subdegree f + 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 903 | and "subdegree (f * fps_X) = subdegree f + 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 904 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 905 | show "subdegree (fps_X * f) = subdegree f + 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 906 | proof (intro subdegreeI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 907 | fix i :: nat assume i: "i < subdegree f + 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 908 | show "(fps_X * f) $ i = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 909 | proof (cases "i=0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 910 | case False with i show ?thesis by (simp add: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 911 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 912 | case True thus ?thesis using fps_X_mult_nth[of f i] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 913 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 914 | qed (simp add: assms) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 915 | thus "subdegree (f * fps_X) = subdegree f + 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 916 | by (simp add: fps_mult_fps_X_commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 917 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 918 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 919 | lemma fps_mult_fps_X_nonzero: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 920 |   fixes   f :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 921 | assumes "f \<noteq> 0" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 922 | shows "fps_X * f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 923 | and "f * fps_X \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 924 | using assms fps_subdegree_mult_fps_X[of f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 925 | fps_nonzero_subdegree_nonzeroI[of "fps_X * f"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 926 | fps_nonzero_subdegree_nonzeroI[of "f * fps_X"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 927 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 928 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 929 | lemma fps_mult_fps_X_power_nonzero: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 930 | assumes "f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 931 | shows "fps_X ^ n * f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 932 | and "f * fps_X ^ n \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 933 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 934 | show "fps_X ^ n * f \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 935 | by (induct n) (simp_all add: assms mult.assoc fps_mult_fps_X_nonzero(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 936 | thus "f * fps_X ^ n \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 937 | by (simp add: fps_mult_fps_X_power_commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 938 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 939 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 940 | lemma fps_X_power_iff: "fps_X ^ n = Abs_fps (\<lambda>m. if m = n then 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 941 | by (induction n) (auto simp: fps_eq_iff) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 942 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 943 | lemma fps_X_nth[simp]: "fps_X$n = (if n = 1 then 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 944 | by (simp add: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 945 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 946 | lemma fps_X_power_nth[simp]: "(fps_X^k) $n = (if n = k then 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 947 | by (simp add: fps_X_power_iff) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 948 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 949 | lemma fps_X_power_subdegree: "subdegree (fps_X^n) = n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 950 | by (auto intro: subdegreeI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 951 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 952 | lemma fps_X_power_mult_nth: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 953 | "(fps_X^k * f) $ n = (if n < k then 0 else f $ (n - k))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 954 | by (cases "n<k") | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 955 | (simp_all add: fps_mult_nth_conv_upto_subdegree_left fps_X_power_subdegree sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 956 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 957 | lemma fps_X_power_mult_right_nth: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 958 | "(f * fps_X^k) $ n = (if n < k then 0 else f $ (n - k))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 959 | using fps_mult_fps_X_power_commute[of k f] fps_X_power_mult_nth[of k f] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 960 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 961 | lemma fps_subdegree_mult_fps_X_power: | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 962 | assumes "f \<noteq> 0" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 963 | shows "subdegree (fps_X ^ n * f) = subdegree f + n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 964 | and "subdegree (f * fps_X ^ n) = subdegree f + n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 965 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 966 | from assms show "subdegree (fps_X ^ n * f) = subdegree f + n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 967 | by (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 968 | (simp_all add: algebra_simps fps_subdegree_mult_fps_X(1) fps_mult_fps_X_power_nonzero(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 969 | thus "subdegree (f * fps_X ^ n) = subdegree f + n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 970 | by (simp add: fps_mult_fps_X_power_commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 971 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 972 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 973 | lemma fps_mult_fps_X_plus_1_nth: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 974 | "((1+fps_X)*a) $n = (if n = 0 then (a$n :: 'a::semiring_1) else a$n + a$(n - 1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 975 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 976 | case 0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 977 | then show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 978 | by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 979 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 980 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 981 |   have "((1 + fps_X)*a) $ n = sum (\<lambda>i. (1 + fps_X) $ i * a $ (n - i)) {0..n}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 982 | by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 983 |   also have "\<dots> = sum (\<lambda>i. (1+fps_X)$i * a$(n-i)) {0.. 1}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 984 | unfolding Suc by (rule sum.mono_neutral_right) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 985 | also have "\<dots> = (if n = 0 then a$n else a$n + a$(n - 1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 986 | by (simp add: Suc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 987 | finally show ?thesis . | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 988 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 989 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 990 | lemma fps_mult_right_fps_X_plus_1_nth: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 991 | fixes a :: "'a :: semiring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 992 | shows "(a*(1+fps_X)) $ n = (if n = 0 then a$n else a$n + a$(n - 1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 993 | using fps_mult_fps_X_plus_1_nth | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 994 | by (simp add: distrib_left fps_mult_fps_X_commute distrib_right) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 995 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 996 | lemma fps_X_neq_fps_const [simp]: "(fps_X :: 'a :: zero_neq_one fps) \<noteq> fps_const c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 997 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 998 | assume "(fps_X::'a fps) = fps_const (c::'a)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 999 | hence "fps_X$1 = (fps_const (c::'a))$1" by (simp only:) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1000 | thus False by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1001 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1002 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1003 | lemma fps_X_neq_zero [simp]: "(fps_X :: 'a :: zero_neq_one fps) \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1004 | by (simp only: fps_const_0_eq_0[symmetric] fps_X_neq_fps_const) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1005 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1006 | lemma fps_X_neq_one [simp]: "(fps_X :: 'a :: zero_neq_one fps) \<noteq> 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1007 | by (simp only: fps_const_1_eq_1[symmetric] fps_X_neq_fps_const) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1008 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1009 | lemma fps_X_neq_numeral [simp]: "fps_X \<noteq> numeral c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1010 | by (simp only: numeral_fps_const fps_X_neq_fps_const) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1011 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1012 | lemma fps_X_pow_eq_fps_X_pow_iff [simp]: "fps_X ^ m = fps_X ^ n \<longleftrightarrow> m = n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1013 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1014 | assume "(fps_X :: 'a fps) ^ m = fps_X ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1015 | hence "(fps_X :: 'a fps) ^ m $ m = fps_X ^ n $ m" by (simp only:) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1016 | thus "m = n" by (simp split: if_split_asm) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1017 | qed simp_all | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1018 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1019 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1020 | subsection \<open>Shifting and slicing\<close> | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1021 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1022 | definition fps_shift :: "nat \<Rightarrow> 'a fps \<Rightarrow> 'a fps" where | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1023 | "fps_shift n f = Abs_fps (\<lambda>i. f $ (i + n))" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1024 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1025 | lemma fps_shift_nth [simp]: "fps_shift n f $ i = f $ (i + n)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1026 | by (simp add: fps_shift_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1027 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1028 | lemma fps_shift_0 [simp]: "fps_shift 0 f = f" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1029 | by (intro fps_ext) (simp add: fps_shift_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1030 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1031 | lemma fps_shift_zero [simp]: "fps_shift n 0 = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1032 | by (intro fps_ext) (simp add: fps_shift_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1033 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1034 | lemma fps_shift_one: "fps_shift n 1 = (if n = 0 then 1 else 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1035 | by (intro fps_ext) (simp add: fps_shift_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1036 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1037 | lemma fps_shift_fps_const: "fps_shift n (fps_const c) = (if n = 0 then fps_const c else 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1038 | by (intro fps_ext) (simp add: fps_shift_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1039 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1040 | lemma fps_shift_numeral: "fps_shift n (numeral c) = (if n = 0 then numeral c else 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1041 | by (simp add: numeral_fps_const fps_shift_fps_const) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1042 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1043 | lemma fps_shift_fps_X [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1044 | "n \<ge> 1 \<Longrightarrow> fps_shift n fps_X = (if n = 1 then 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1045 | by (intro fps_ext) (auto simp: fps_X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1046 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 1047 | lemma fps_shift_fps_X_power [simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1048 | "n \<le> m \<Longrightarrow> fps_shift n (fps_X ^ m) = fps_X ^ (m - n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1049 | by (intro fps_ext) auto | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1050 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1051 | lemma fps_shift_subdegree [simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1052 | "n \<le> subdegree f \<Longrightarrow> subdegree (fps_shift n f) = subdegree f - n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1053 | by (cases "f=0") (auto intro: subdegreeI simp: nth_less_subdegree_zero) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1054 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1055 | lemma fps_shift_fps_shift: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1056 | "fps_shift (m + n) f = fps_shift m (fps_shift n f)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1057 | by (rule fps_ext) (simp add: add_ac) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1058 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1059 | lemma fps_shift_fps_shift_reorder: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1060 | "fps_shift m (fps_shift n f) = fps_shift n (fps_shift m f)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1061 | using fps_shift_fps_shift[of m n f] fps_shift_fps_shift[of n m f] by (simp add: add.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1062 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1063 | lemma fps_shift_rev_shift: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1064 | "m \<le> n \<Longrightarrow> fps_shift n (Abs_fps (\<lambda>k. if k<m then 0 else f $ (k-m))) = fps_shift (n-m) f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1065 | "m > n \<Longrightarrow> fps_shift n (Abs_fps (\<lambda>k. if k<m then 0 else f $ (k-m))) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1066 | Abs_fps (\<lambda>k. if k<m-n then 0 else f $ (k-(m-n)))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1067 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1068 | assume "m \<le> n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1069 | thus "fps_shift n (Abs_fps (\<lambda>k. if k<m then 0 else f $ (k-m))) = fps_shift (n-m) f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1070 | by (intro fps_ext) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1071 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1072 | assume mn: "m > n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1073 | hence "\<And>k. k \<ge> m-n \<Longrightarrow> k+n-m = k - (m-n)" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1074 | thus | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1075 | "fps_shift n (Abs_fps (\<lambda>k. if k<m then 0 else f $ (k-m))) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1076 | Abs_fps (\<lambda>k. if k<m-n then 0 else f $ (k-(m-n)))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1077 | by (intro fps_ext) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1078 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1079 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1080 | lemma fps_shift_add: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1081 | "fps_shift n (f + g) = fps_shift n f + fps_shift n g" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1082 | by (simp add: fps_eq_iff) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1083 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1084 | lemma fps_shift_diff: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1085 | "fps_shift n (f - g) = fps_shift n f - fps_shift n g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1086 | by (auto intro: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1087 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1088 | lemma fps_shift_uminus: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1089 | "fps_shift n (-f) = - fps_shift n f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1090 | by (auto intro: fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1091 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1092 | lemma fps_shift_mult: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1093 |   assumes "n \<le> subdegree (g :: 'b :: {comm_monoid_add, mult_zero} fps)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1094 | shows "fps_shift n (h*g) = h * fps_shift n g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1095 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1096 | have case1: "\<And>a b::'b fps. 1 \<le> subdegree b \<Longrightarrow> fps_shift 1 (a*b) = a * fps_shift 1 b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1097 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1098 | fix a b :: "'b fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1099 | and n :: nat | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1100 | assume b: "1 \<le> subdegree b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1101 | have "\<And>i. i \<le> n \<Longrightarrow> n + 1 - i = (n-i) + 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1102 | by (simp add: algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1103 | with b show "fps_shift 1 (a*b) $ n = (a * fps_shift 1 b) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1104 | by (simp add: fps_mult_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1105 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1106 | have "n \<le> subdegree g \<Longrightarrow> fps_shift n (h*g) = h * fps_shift n g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1107 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1108 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1109 | have "fps_shift (Suc n) (h*g) = fps_shift 1 (fps_shift n (h*g))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1110 | by (simp add: fps_shift_fps_shift[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1111 | also have "\<dots> = h * (fps_shift 1 (fps_shift n g))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1112 | using Suc case1 by force | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1113 | finally show ?case by (simp add: fps_shift_fps_shift[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1114 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1115 | with assms show ?thesis by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1116 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1117 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1118 | lemma fps_shift_mult_right_noncomm: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1119 |   assumes "n \<le> subdegree (g :: 'b :: {comm_monoid_add, mult_zero} fps)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1120 | shows "fps_shift n (g*h) = fps_shift n g * h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1121 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1122 | have case1: "\<And>a b::'b fps. 1 \<le> subdegree a \<Longrightarrow> fps_shift 1 (a*b) = fps_shift 1 a * b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1123 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1124 | fix a b :: "'b fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1125 | and n :: nat | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1126 | assume "1 \<le> subdegree a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1127 | hence "fps_shift 1 (a*b) $ n = (\<Sum>i=Suc 0..Suc n. a$i * b$(n+1-i))" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 1128 | using sum.atLeast_Suc_atMost[of 0 "n+1" "\<lambda>i. a$i * b$(n+1-i)"] | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1129 | by (simp add: fps_mult_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1130 | thus "fps_shift 1 (a*b) $ n = (fps_shift 1 a * b) $ n" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 1131 | using sum.shift_bounds_cl_Suc_ivl[of "\<lambda>i. a$i * b$(n+1-i)" 0 n] | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1132 | by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1133 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1134 | have "n \<le> subdegree g \<Longrightarrow> fps_shift n (g*h) = fps_shift n g * h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1135 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1136 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1137 | have "fps_shift (Suc n) (g*h) = fps_shift 1 (fps_shift n (g*h))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1138 | by (simp add: fps_shift_fps_shift[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1139 | also have "\<dots> = (fps_shift 1 (fps_shift n g)) * h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1140 | using Suc case1 by force | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1141 | finally show ?case by (simp add: fps_shift_fps_shift[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1142 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1143 | with assms show ?thesis by fast | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1144 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1145 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1146 | lemma fps_shift_mult_right: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1147 | assumes "n \<le> subdegree (g :: 'b :: comm_semiring_0 fps)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1148 | shows "fps_shift n (g*h) = h * fps_shift n g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1149 | by (simp add: assms fps_shift_mult_right_noncomm mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1150 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1151 | lemma fps_shift_mult_both: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1152 |   fixes   f g :: "'a::{comm_monoid_add, mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1153 | assumes "m \<le> subdegree f" "n \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1154 | shows "fps_shift m f * fps_shift n g = fps_shift (m+n) (f*g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1155 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1156 | by (simp add: fps_shift_mult fps_shift_mult_right_noncomm fps_shift_fps_shift) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1157 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1158 | lemma fps_shift_subdegree_zero_iff [simp]: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1159 | "fps_shift (subdegree f) f = 0 \<longleftrightarrow> f = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1160 | by (subst (1) nth_subdegree_zero_iff[symmetric], cases "f = 0") | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1161 | (simp_all del: nth_subdegree_zero_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1162 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1163 | lemma fps_shift_times_fps_X: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1164 |   fixes f g :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1165 | shows "1 \<le> subdegree f \<Longrightarrow> fps_shift 1 f * fps_X = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1166 | by (intro fps_ext) (simp add: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1167 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1168 | lemma fps_shift_times_fps_X' [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1169 |   fixes f :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1170 | shows "fps_shift 1 (f * fps_X) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1171 | by (intro fps_ext) (simp add: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1172 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1173 | lemma fps_shift_times_fps_X'': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1174 |   fixes f :: "'a::{comm_monoid_add,mult_zero,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1175 | shows "1 \<le> n \<Longrightarrow> fps_shift n (f * fps_X) = fps_shift (n - 1) f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1176 | by (intro fps_ext) (simp add: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1177 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1178 | lemma fps_shift_times_fps_X_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1179 | "n \<le> subdegree f \<Longrightarrow> fps_shift n f * fps_X ^ n = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1180 | by (intro fps_ext) (simp add: fps_X_power_mult_right_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1181 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1182 | lemma fps_shift_times_fps_X_power' [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1183 | "fps_shift n (f * fps_X^n) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1184 | by (intro fps_ext) (simp add: fps_X_power_mult_right_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1185 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1186 | lemma fps_shift_times_fps_X_power'': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1187 | "m \<le> n \<Longrightarrow> fps_shift n (f * fps_X^m) = fps_shift (n - m) f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1188 | by (intro fps_ext) (simp add: fps_X_power_mult_right_nth nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1189 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1190 | lemma fps_shift_times_fps_X_power''': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1191 | "m > n \<Longrightarrow> fps_shift n (f * fps_X^m) = f * fps_X^(m - n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1192 | proof (cases "f=0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1193 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1194 | assume m: "m>n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1195 | hence "m = n + (m-n)" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1196 | with False m show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1197 | using power_add[of "fps_X::'a fps" n "m-n"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1198 | fps_shift_mult_right_noncomm[of n "f * fps_X^n" "fps_X^(m-n)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1199 | by (simp add: mult.assoc fps_subdegree_mult_fps_X_power(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1200 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1201 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1202 | lemma subdegree_decompose: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1203 | "f = fps_shift (subdegree f) f * fps_X ^ subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1204 | by (rule fps_ext) (auto simp: fps_X_power_mult_right_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1205 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1206 | lemma subdegree_decompose': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1207 | "n \<le> subdegree f \<Longrightarrow> f = fps_shift n f * fps_X^n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1208 | by (rule fps_ext) (auto simp: fps_X_power_mult_right_nth intro!: nth_less_subdegree_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1209 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1210 | instantiation fps :: (zero) unit_factor | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1211 | begin | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1212 | definition fps_unit_factor_def [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1213 | "unit_factor f = fps_shift (subdegree f) f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1214 | instance .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1215 | end | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1216 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1217 | lemma fps_unit_factor_zero_iff: "unit_factor (f::'a::zero fps) = 0 \<longleftrightarrow> f = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1218 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1219 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1220 | lemma fps_unit_factor_nth_0: "f \<noteq> 0 \<Longrightarrow> unit_factor f $ 0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1221 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1222 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1223 | lemma fps_X_unit_factor: "unit_factor (fps_X :: 'a :: zero_neq_one fps) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1224 | by (intro fps_ext) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1225 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1226 | lemma fps_X_power_unit_factor: "unit_factor (fps_X ^ n) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1227 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1228 | define X :: "'a fps" where "X \<equiv> fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1229 | hence "unit_factor (X^n) = fps_shift n (X^n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1230 | by (simp add: fps_X_power_subdegree) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1231 | moreover have "fps_shift n (X^n) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1232 | by (auto intro: fps_ext simp: fps_X_power_iff X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1233 | ultimately show ?thesis by (simp add: X_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1234 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1235 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1236 | lemma fps_unit_factor_decompose: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1237 | "f = unit_factor f * fps_X ^ subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1238 | by (simp add: subdegree_decompose) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1239 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1240 | lemma fps_unit_factor_decompose': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1241 | "f = fps_X ^ subdegree f * unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1242 | using fps_unit_factor_decompose by (simp add: fps_mult_fps_X_power_commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1243 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1244 | lemma fps_unit_factor_uminus: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1245 | "unit_factor (-f) = - unit_factor (f::'a::group_add fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1246 | by (simp add: fps_shift_uminus) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1247 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1248 | lemma fps_unit_factor_shift: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1249 | assumes "n \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1250 | shows "unit_factor (fps_shift n f) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1251 | by (simp add: assms fps_shift_fps_shift[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1252 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1253 | lemma fps_unit_factor_mult_fps_X: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1254 |   fixes f :: "'a::{comm_monoid_add,monoid_mult,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1255 | shows "unit_factor (fps_X * f) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1256 | and "unit_factor (f * fps_X) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1257 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1258 | show "unit_factor (fps_X * f) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1259 | by (cases "f=0") (auto intro: fps_ext simp: fps_subdegree_mult_fps_X(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1260 | thus "unit_factor (f * fps_X) = unit_factor f" by (simp add: fps_mult_fps_X_commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1261 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1262 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1263 | lemma fps_unit_factor_mult_fps_X_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1264 | shows "unit_factor (fps_X ^ n * f) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1265 | and "unit_factor (f * fps_X ^ n) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1266 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1267 | show "unit_factor (fps_X ^ n * f) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1268 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1269 | case (Suc m) thus ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1270 | using fps_unit_factor_mult_fps_X(1)[of "fps_X ^ m * f"] by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1271 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1272 | thus "unit_factor (f * fps_X ^ n) = unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1273 | by (simp add: fps_mult_fps_X_power_commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1274 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1275 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1276 | lemma fps_unit_factor_mult_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1277 |   fixes f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1278 | shows "unit_factor (f * unit_factor g) = unit_factor (f * g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1279 | and "unit_factor (unit_factor f * g) = unit_factor (f * g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1280 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1281 | show "unit_factor (f * unit_factor g) = unit_factor (f * g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1282 | proof (cases "f*g = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1283 | case False thus ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1284 | using fps_mult_subdegree_ge[of f g] fps_unit_factor_shift[of "subdegree g" "f*g"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1285 | by (simp add: fps_shift_mult) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1286 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1287 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1288 | moreover have "f * unit_factor g = fps_shift (subdegree g) (f*g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1289 | by (simp add: fps_shift_mult) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1290 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1291 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1292 | show "unit_factor (unit_factor f * g) = unit_factor (f * g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1293 | proof (cases "f*g = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1294 | case False thus ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1295 | using fps_mult_subdegree_ge[of f g] fps_unit_factor_shift[of "subdegree f" "f*g"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1296 | by (simp add: fps_shift_mult_right_noncomm) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1297 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1298 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1299 | moreover have "unit_factor f * g = fps_shift (subdegree f) (f*g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1300 | by (simp add: fps_shift_mult_right_noncomm) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1301 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1302 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1303 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1304 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1305 | lemma fps_unit_factor_mult_both_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1306 |   fixes f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1307 | shows "unit_factor (unit_factor f * unit_factor g) = unit_factor (f * g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1308 | using fps_unit_factor_mult_unit_factor(1)[of "unit_factor f" g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1309 | fps_unit_factor_mult_unit_factor(2)[of f g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1310 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1311 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1312 | lemma fps_unit_factor_mult': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1313 |   fixes   f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1314 | assumes "f $ subdegree f * g $ subdegree g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1315 | shows "unit_factor (f * g) = unit_factor f * unit_factor g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1316 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1317 | by (simp add: subdegree_mult' fps_shift_mult_both) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1318 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1319 | lemma fps_unit_factor_mult: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1320 | fixes f g :: "'a::semiring_no_zero_divisors fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1321 | shows "unit_factor (f * g) = unit_factor f * unit_factor g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1322 | using fps_unit_factor_mult'[of f g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1323 | by (cases "f=0 \<or> g=0") auto | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1324 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1325 | definition "fps_cutoff n f = Abs_fps (\<lambda>i. if i < n then f$i else 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1326 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1327 | lemma fps_cutoff_nth [simp]: "fps_cutoff n f $ i = (if i < n then f$i else 0)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1328 | unfolding fps_cutoff_def by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1329 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1330 | lemma fps_cutoff_zero_iff: "fps_cutoff n f = 0 \<longleftrightarrow> (f = 0 \<or> n \<le> subdegree f)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1331 | proof | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1332 | assume A: "fps_cutoff n f = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1333 | thus "f = 0 \<or> n \<le> subdegree f" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1334 | proof (cases "f = 0") | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1335 | assume "f \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1336 | with A have "n \<le> subdegree f" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1337 | by (intro subdegree_geI) (simp_all add: fps_eq_iff split: if_split_asm) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1338 | thus ?thesis .. | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1339 | qed simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1340 | qed (auto simp: fps_eq_iff intro: nth_less_subdegree_zero) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1341 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1342 | lemma fps_cutoff_0 [simp]: "fps_cutoff 0 f = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1343 | by (simp add: fps_eq_iff) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1344 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1345 | lemma fps_cutoff_zero [simp]: "fps_cutoff n 0 = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1346 | by (simp add: fps_eq_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1347 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1348 | lemma fps_cutoff_one: "fps_cutoff n 1 = (if n = 0 then 0 else 1)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1349 | by (simp add: fps_eq_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1350 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1351 | lemma fps_cutoff_fps_const: "fps_cutoff n (fps_const c) = (if n = 0 then 0 else fps_const c)" | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1352 | by (simp add: fps_eq_iff) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1353 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1354 | lemma fps_cutoff_numeral: "fps_cutoff n (numeral c) = (if n = 0 then 0 else numeral c)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1355 | by (simp add: numeral_fps_const fps_cutoff_fps_const) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1356 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1357 | lemma fps_shift_cutoff: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1358 | "fps_shift n f * fps_X^n + fps_cutoff n f = f" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 1359 | by (simp add: fps_eq_iff fps_X_power_mult_right_nth) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1360 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1361 | lemma fps_shift_cutoff': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1362 | "fps_X^n * fps_shift n f + fps_cutoff n f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1363 | by (simp add: fps_eq_iff fps_X_power_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1364 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1365 | lemma fps_cutoff_left_mult_nth: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1366 | "k < n \<Longrightarrow> (fps_cutoff n f * g) $ k = (f * g) $ k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1367 | by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1368 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1369 | lemma fps_cutoff_right_mult_nth: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1370 | assumes "k < n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1371 | shows "(f * fps_cutoff n g) $ k = (f * g) $ k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1372 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1373 |   from assms have "\<forall>i\<in>{0..k}. fps_cutoff n g $ (k - i) = g $ (k - i)" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1374 | thus ?thesis by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1375 | qed | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1376 | |
| 60501 | 1377 | subsection \<open>Formal Power series form a metric space\<close> | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1378 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1379 | instantiation fps :: ("{minus,zero}") dist
 | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1380 | begin | 
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1381 | |
| 52891 | 1382 | definition | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1383 | dist_fps_def: "dist (a :: 'a fps) b = (if a = b then 0 else inverse (2 ^ subdegree (a - b)))" | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1384 | |
| 54681 | 1385 | lemma dist_fps_ge0: "dist (a :: 'a fps) b \<ge> 0" | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1386 | by (simp add: dist_fps_def) | 
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1387 | |
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1388 | instance .. | 
| 48757 | 1389 | |
| 30746 | 1390 | end | 
| 1391 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1392 | instantiation fps :: (group_add) metric_space | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1393 | begin | 
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1394 | |
| 62101 | 1395 | definition uniformity_fps_def [code del]: | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 1396 |   "(uniformity :: ('a fps \<times> 'a fps) filter) = (INF e\<in>{0 <..}. principal {(x, y). dist x y < e})"
 | 
| 62101 | 1397 | |
| 1398 | definition open_fps_def' [code del]: | |
| 1399 | "open (U :: 'a fps set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)" | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1400 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1401 | lemma dist_fps_sym: "dist (a :: 'a fps) b = dist b a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1402 | by (simp add: dist_fps_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1403 | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1404 | instance | 
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1405 | proof | 
| 60501 | 1406 | show th: "dist a b = 0 \<longleftrightarrow> a = b" for a b :: "'a fps" | 
| 62390 | 1407 | by (simp add: dist_fps_def split: if_split_asm) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1408 | then have th'[simp]: "dist a a = 0" for a :: "'a fps" by simp | 
| 60501 | 1409 | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1410 | fix a b c :: "'a fps" | 
| 60501 | 1411 | consider "a = b" | "c = a \<or> c = b" | "a \<noteq> b" "a \<noteq> c" "b \<noteq> c" by blast | 
| 1412 | then show "dist a b \<le> dist a c + dist b c" | |
| 1413 | proof cases | |
| 1414 | case 1 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1415 | then show ?thesis by (simp add: dist_fps_def) | 
| 60501 | 1416 | next | 
| 1417 | case 2 | |
| 1418 | then show ?thesis | |
| 52891 | 1419 | by (cases "c = a") (simp_all add: th dist_fps_sym) | 
| 60501 | 1420 | next | 
| 60567 | 1421 | case neq: 3 | 
| 60558 | 1422 | have False if "dist a b > dist a c + dist b c" | 
| 1423 | proof - | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1424 | let ?n = "subdegree (a - b)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1425 | from neq have "dist a b > 0" "dist b c > 0" and "dist a c > 0" by (simp_all add: dist_fps_def) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1426 | with that have "dist a b > dist a c" and "dist a b > dist b c" by simp_all | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1427 | with neq have "?n < subdegree (a - c)" and "?n < subdegree (b - c)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1428 | by (simp_all add: dist_fps_def field_simps) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1429 | hence "(a - c) $ ?n = 0" and "(b - c) $ ?n = 0" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1430 | by (simp_all only: nth_less_subdegree_zero) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1431 | hence "(a - b) $ ?n = 0" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1432 | moreover from neq have "(a - b) $ ?n \<noteq> 0" by (intro nth_subdegree_nonzero) simp_all | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1433 | ultimately show False by contradiction | 
| 60558 | 1434 | qed | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1435 | thus ?thesis by (auto simp add: not_le[symmetric]) | 
| 60501 | 1436 | qed | 
| 62101 | 1437 | qed (rule open_fps_def' uniformity_fps_def)+ | 
| 52891 | 1438 | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1439 | end | 
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1440 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1441 | declare uniformity_Abort[where 'a="'a :: group_add fps", code] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1442 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1443 | lemma open_fps_def: "open (S :: 'a::group_add fps set) = (\<forall>a \<in> S. \<exists>r. r >0 \<and> {y. dist y a < r} \<subseteq> S)"
 | 
| 66373 
56f8bfe1211c
Removed unnecessary constant 'ball' from Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
66311diff
changeset | 1444 | unfolding open_dist subset_eq by simp | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1445 | |
| 60558 | 1446 | text \<open>The infinite sums and justification of the notation in textbooks.\<close> | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1447 | |
| 52891 | 1448 | lemma reals_power_lt_ex: | 
| 54681 | 1449 | fixes x y :: real | 
| 1450 | assumes xp: "x > 0" | |
| 1451 | and y1: "y > 1" | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1452 | shows "\<exists>k>0. (1/y)^k < x" | 
| 52891 | 1453 | proof - | 
| 54681 | 1454 | have yp: "y > 0" | 
| 1455 | using y1 by simp | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1456 | from reals_Archimedean2[of "max 0 (- log y x) + 1"] | 
| 54681 | 1457 | obtain k :: nat where k: "real k > max 0 (- log y x) + 1" | 
| 1458 | by blast | |
| 1459 | from k have kp: "k > 0" | |
| 1460 | by simp | |
| 1461 | from k have "real k > - log y x" | |
| 1462 | by simp | |
| 1463 | then have "ln y * real k > - ln x" | |
| 1464 | unfolding log_def | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1465 | using ln_gt_zero_iff[OF yp] y1 | 
| 54681 | 1466 | by (simp add: minus_divide_left field_simps del: minus_divide_left[symmetric]) | 
| 1467 | then have "ln y * real k + ln x > 0" | |
| 1468 | by simp | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1469 | then have "exp (real k * ln y + ln x) > exp 0" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1470 | by (simp add: ac_simps) | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1471 | then have "y ^ k * x > 1" | 
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
65435diff
changeset | 1472 | unfolding exp_zero exp_add exp_of_nat_mult exp_ln [OF xp] exp_ln [OF yp] | 
| 52891 | 1473 | by simp | 
| 1474 | then have "x > (1 / y)^k" using yp | |
| 60867 | 1475 | by (simp add: field_simps) | 
| 54681 | 1476 | then show ?thesis | 
| 1477 | using kp by blast | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1478 | qed | 
| 52891 | 1479 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1480 | lemma fps_sum_rep_nth: "(sum (\<lambda>i. fps_const(a$i)*fps_X^i) {0..m})$n = (if n \<le> m then a$n else 0)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1481 | by (simp add: fps_sum_nth if_distrib cong del: if_weak_cong) | 
| 52891 | 1482 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 1483 | lemma fps_notation: "(\<lambda>n. sum (\<lambda>i. fps_const(a$i) * fps_X^i) {0..n}) \<longlonglongrightarrow> a"
 | 
| 61969 | 1484 | (is "?s \<longlonglongrightarrow> a") | 
| 52891 | 1485 | proof - | 
| 60558 | 1486 | have "\<exists>n0. \<forall>n \<ge> n0. dist (?s n) a < r" if "r > 0" for r | 
| 1487 | proof - | |
| 60501 | 1488 | obtain n0 where n0: "(1/2)^n0 < r" "n0 > 0" | 
| 1489 | using reals_power_lt_ex[OF \<open>r > 0\<close>, of 2] by auto | |
| 60558 | 1490 | show ?thesis | 
| 60501 | 1491 | proof - | 
| 60558 | 1492 | have "dist (?s n) a < r" if nn0: "n \<ge> n0" for n | 
| 1493 | proof - | |
| 1494 | from that have thnn0: "(1/2)^n \<le> (1/2 :: real)^n0" | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70365diff
changeset | 1495 | by (simp add: field_split_simps) | 
| 60558 | 1496 | show ?thesis | 
| 60501 | 1497 | proof (cases "?s n = a") | 
| 1498 | case True | |
| 1499 | then show ?thesis | |
| 1500 | unfolding dist_eq_0_iff[of "?s n" a, symmetric] | |
| 1501 | using \<open>r > 0\<close> by (simp del: dist_eq_0_iff) | |
| 1502 | next | |
| 1503 | case False | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1504 | from False have dth: "dist (?s n) a = (1/2)^subdegree (?s n - a)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1505 | by (simp add: dist_fps_def field_simps) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1506 | from False have kn: "subdegree (?s n - a) > n" | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1507 | by (intro subdegree_greaterI) (simp_all add: fps_sum_rep_nth) | 
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1508 | then have "dist (?s n) a < (1/2)^n" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1509 | by (simp add: field_simps dist_fps_def) | 
| 60501 | 1510 | also have "\<dots> \<le> (1/2)^n0" | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70365diff
changeset | 1511 | using nn0 by (simp add: field_split_simps) | 
| 60501 | 1512 | also have "\<dots> < r" | 
| 1513 | using n0 by simp | |
| 1514 | finally show ?thesis . | |
| 1515 | qed | |
| 60558 | 1516 | qed | 
| 60501 | 1517 | then show ?thesis by blast | 
| 1518 | qed | |
| 60558 | 1519 | qed | 
| 54681 | 1520 | then show ?thesis | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 1521 | unfolding lim_sequentially by blast | 
| 52891 | 1522 | qed | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 1523 | |
| 54681 | 1524 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1525 | subsection \<open>Inverses and division of formal power series\<close> | 
| 29687 | 1526 | |
| 64267 | 1527 | declare sum.cong[fundef_cong] | 
| 29687 | 1528 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1529 | fun fps_left_inverse_constructor :: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1530 |   "'a::{comm_monoid_add,times,uminus} fps \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1531 | where | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1532 | "fps_left_inverse_constructor f a 0 = a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1533 | | "fps_left_inverse_constructor f a (Suc n) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1534 |     - sum (\<lambda>i. fps_left_inverse_constructor f a i * f$(Suc n - i)) {0..n} * a"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1535 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1536 | \<comment> \<open>This will construct a left inverse for f in case that x * f$0 = 1\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1537 | abbreviation "fps_left_inverse \<equiv> (\<lambda>f x. Abs_fps (fps_left_inverse_constructor f x))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1538 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1539 | fun fps_right_inverse_constructor :: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1540 |   "'a::{comm_monoid_add,times,uminus} fps \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1541 | where | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1542 | "fps_right_inverse_constructor f a 0 = a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1543 | | "fps_right_inverse_constructor f a n = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1544 |     - a * sum (\<lambda>i. f$i * fps_right_inverse_constructor f a (n - i)) {1..n}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1545 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1546 | \<comment> \<open>This will construct a right inverse for f in case that f$0 * y = 1\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1547 | abbreviation "fps_right_inverse \<equiv> (\<lambda>f y. Abs_fps (fps_right_inverse_constructor f y))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1548 | |
| 60558 | 1549 | instantiation fps :: ("{comm_monoid_add,inverse,times,uminus}") inverse
 | 
| 29687 | 1550 | begin | 
| 1551 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1552 | \<comment> \<open>For backwards compatibility.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1553 | abbreviation natfun_inverse:: "'a fps \<Rightarrow> nat \<Rightarrow> 'a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1554 | where "natfun_inverse f \<equiv> fps_right_inverse_constructor f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1555 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1556 | definition fps_inverse_def: "inverse f = Abs_fps (natfun_inverse f)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1557 | \<comment> \<open> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1558 | With scalars from a (possibly non-commutative) ring, this defines a right inverse. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1559 |   Furthermore, if scalars are of class @{class mult_zero} and satisfy
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1560 |   condition @{term "inverse 0 = 0"}, then this will evaluate to zero when
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1561 | the zeroth term is zero. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1562 | \<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1563 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1564 | definition fps_divide_def: "f div g = fps_shift (subdegree g) (f * inverse (unit_factor g))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1565 | \<comment> \<open> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1566 |   If scalars are of class @{class mult_zero} and satisfy condition
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1567 |   @{term "inverse 0 = 0"}, then div by zero will equal zero.
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1568 | \<close> | 
| 36311 
ed3a87a7f977
epheremal replacement of field_simps by field_eq_simps; dropped old division_by_zero instance
 haftmann parents: 
36309diff
changeset | 1569 | |
| 29687 | 1570 | instance .. | 
| 36311 
ed3a87a7f977
epheremal replacement of field_simps by field_eq_simps; dropped old division_by_zero instance
 haftmann parents: 
36309diff
changeset | 1571 | |
| 29687 | 1572 | end | 
| 1573 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1574 | lemma fps_lr_inverse_0_iff: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1575 | "(fps_left_inverse f x) $ 0 = 0 \<longleftrightarrow> x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1576 | "(fps_right_inverse f x) $ 0 = 0 \<longleftrightarrow> x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1577 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1578 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1579 | lemma fps_inverse_0_iff': "(inverse f) $ 0 = 0 \<longleftrightarrow> inverse (f $ 0) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1580 | by (simp add: fps_inverse_def fps_lr_inverse_0_iff(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1581 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1582 | lemma fps_inverse_0_iff[simp]: "(inverse f) $ 0 = (0::'a::division_ring) \<longleftrightarrow> f $ 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1583 | by (simp add: fps_inverse_0_iff') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1584 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1585 | lemma fps_lr_inverse_nth_0: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1586 | "(fps_left_inverse f x) $ 0 = x" "(fps_right_inverse f x) $ 0 = x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1587 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1588 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1589 | lemma fps_inverse_nth_0 [simp]: "(inverse f) $ 0 = inverse (f $ 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1590 | by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1591 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1592 | lemma fps_lr_inverse_starting0: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1593 |   fixes f :: "'a::{comm_monoid_add,mult_zero,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1594 |   and   g :: "'b::{ab_group_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1595 | shows "fps_left_inverse f 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1596 | and "fps_right_inverse g 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1597 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1598 | show "fps_left_inverse f 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1599 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1600 | fix n show "fps_left_inverse f 0 $ n = 0 $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1601 | by (cases n) (simp_all add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1602 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1603 | show "fps_right_inverse g 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1604 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1605 | fix n show "fps_right_inverse g 0 $ n = 0 $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1606 | by (cases n) (simp_all add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1607 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1608 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1609 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1610 | lemma fps_lr_inverse_eq0_imp_starting0: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1611 | "fps_left_inverse f x = 0 \<Longrightarrow> x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1612 | "fps_right_inverse f x = 0 \<Longrightarrow> x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1613 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1614 | assume A: "fps_left_inverse f x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1615 | have "0 = fps_left_inverse f x $ 0" by (subst A) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1616 | thus "x = 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1617 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1618 | assume A: "fps_right_inverse f x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1619 | have "0 = fps_right_inverse f x $ 0" by (subst A) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1620 | thus "x = 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1621 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1622 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1623 | lemma fps_lr_inverse_eq_0_iff: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1624 |   fixes x :: "'a::{comm_monoid_add,mult_zero,uminus}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1625 |   and   y :: "'b::{ab_group_add,mult_zero}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1626 | shows "fps_left_inverse f x = 0 \<longleftrightarrow> x = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1627 | and "fps_right_inverse g y = 0 \<longleftrightarrow> y = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1628 | using fps_lr_inverse_starting0 fps_lr_inverse_eq0_imp_starting0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1629 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1630 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1631 | lemma fps_inverse_eq_0_iff': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1632 |   fixes f :: "'a::{ab_group_add,inverse,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1633 | shows "inverse f = 0 \<longleftrightarrow> inverse (f $ 0) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1634 | by (simp add: fps_inverse_def fps_lr_inverse_eq_0_iff(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1635 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1636 | lemma fps_inverse_eq_0_iff[simp]: "inverse f = (0:: ('a::division_ring) fps) \<longleftrightarrow> f $ 0 = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1637 | using fps_inverse_eq_0_iff'[of f] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1638 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1639 | lemmas fps_inverse_eq_0' = iffD2[OF fps_inverse_eq_0_iff'] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1640 | lemmas fps_inverse_eq_0 = iffD2[OF fps_inverse_eq_0_iff] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1641 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1642 | lemma fps_const_lr_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1643 |   fixes a :: "'a::{ab_group_add,mult_zero}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1644 |   and   b :: "'b::{comm_monoid_add,mult_zero,uminus}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1645 | shows "fps_left_inverse (fps_const a) x = fps_const x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1646 | and "fps_right_inverse (fps_const b) y = fps_const y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1647 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1648 | show "fps_left_inverse (fps_const a) x = fps_const x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1649 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1650 | fix n show "fps_left_inverse (fps_const a) x $ n = fps_const x $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1651 | by (cases n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1652 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1653 | show "fps_right_inverse (fps_const b) y = fps_const y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1654 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1655 | fix n show "fps_right_inverse (fps_const b) y $ n = fps_const y $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1656 | by (cases n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1657 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1658 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1659 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1660 | lemma fps_const_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1661 |   fixes     a :: "'a::{comm_monoid_add,inverse,mult_zero,uminus}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1662 | shows "inverse (fps_const a) = fps_const (inverse a)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1663 | unfolding fps_inverse_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1664 | by (simp add: fps_const_lr_inverse(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1665 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1666 | lemma fps_lr_inverse_zero: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1667 |   fixes x :: "'a::{ab_group_add,mult_zero}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1668 |   and   y :: "'b::{comm_monoid_add,mult_zero,uminus}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1669 | shows "fps_left_inverse 0 x = fps_const x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1670 | and "fps_right_inverse 0 y = fps_const y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1671 | using fps_const_lr_inverse[of 0] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1672 | by simp_all | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1673 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1674 | lemma fps_inverse_zero_conv_fps_const: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1675 |   "inverse (0::'a::{comm_monoid_add,mult_zero,uminus,inverse} fps) = fps_const (inverse 0)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1676 | using fps_lr_inverse_zero(2)[of "inverse (0::'a)"] by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1677 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1678 | lemma fps_inverse_zero': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1679 |   assumes "inverse (0::'a::{comm_monoid_add,inverse,mult_zero,uminus}) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1680 | shows "inverse (0::'a fps) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1681 | by (simp add: assms fps_inverse_zero_conv_fps_const) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1682 | |
| 52891 | 1683 | lemma fps_inverse_zero [simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1684 | "inverse (0::'a::division_ring fps) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1685 | by (rule fps_inverse_zero'[OF inverse_zero]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1686 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1687 | lemma fps_lr_inverse_one: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1688 |   fixes x :: "'a::{ab_group_add,mult_zero,one}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1689 |   and   y :: "'b::{comm_monoid_add,mult_zero,uminus,one}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1690 | shows "fps_left_inverse 1 x = fps_const x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1691 | and "fps_right_inverse 1 y = fps_const y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1692 | using fps_const_lr_inverse[of 1] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1693 | by simp_all | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1694 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1695 | lemma fps_lr_inverse_one_one: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1696 |   "fps_left_inverse 1 1 = (1::'a::{ab_group_add,mult_zero,one} fps)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1697 |   "fps_right_inverse 1 1 = (1::'b::{comm_monoid_add,mult_zero,uminus,one} fps)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1698 | by (simp_all add: fps_lr_inverse_one) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1699 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1700 | lemma fps_inverse_one': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1701 |   assumes "inverse (1::'a::{comm_monoid_add,inverse,mult_zero,uminus,one}) = 1"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1702 | shows "inverse (1 :: 'a fps) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1703 | using assms fps_lr_inverse_one_one(2) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1704 | by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1705 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1706 | lemma fps_inverse_one [simp]: "inverse (1 :: 'a :: division_ring fps) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1707 | by (rule fps_inverse_one'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1708 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1709 | lemma fps_lr_inverse_minus: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1710 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1711 | shows "fps_left_inverse (-f) (-x) = - fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1712 | and "fps_right_inverse (-f) (-x) = - fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1713 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1714 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1715 | show "fps_left_inverse (-f) (-x) = - fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1716 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1717 | fix n show "fps_left_inverse (-f) (-x) $ n = - fps_left_inverse f x $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1718 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1719 | case (1 n) thus ?case by (cases n) (simp_all add: sum_negf algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1720 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1721 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1722 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1723 | show "fps_right_inverse (-f) (-x) = - fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1724 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1725 | fix n show "fps_right_inverse (-f) (-x) $ n = - fps_right_inverse f x $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1726 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1727 | case (1 n) show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1728 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1729 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1730 | with 1 have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1731 |           "\<forall>i\<in>{1..Suc m}. fps_right_inverse (-f) (-x) $ (Suc m - i) =
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1732 | - fps_right_inverse f x $ (Suc m - i)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1733 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1734 | with Suc show ?thesis by (simp add: sum_negf algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1735 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1736 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1737 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1738 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1739 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1740 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1741 | lemma fps_inverse_minus [simp]: "inverse (-f) = -inverse (f :: 'a :: division_ring fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1742 | by (simp add: fps_inverse_def fps_lr_inverse_minus(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1743 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1744 | lemma fps_left_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1745 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1746 | assumes f0: "x * f$0 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1747 | shows "fps_left_inverse f x * f = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1748 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1749 | fix n show "(fps_left_inverse f x * f) $ n = 1 $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1750 | by (cases n) (simp_all add: f0 fps_mult_nth mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1751 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1752 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1753 | lemma fps_right_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1754 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1755 | assumes f0: "f$0 * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1756 | shows "f * fps_right_inverse f y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1757 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1758 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1759 | show "(f * fps_right_inverse f y) $ n = 1 $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1760 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1761 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1762 | moreover from Suc have "fps_right_inverse f y $ n = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1763 |             - y * sum (\<lambda>i. f$i * fps_right_inverse_constructor f y (n - i)) {1..n}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1764 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1765 | hence | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1766 | "(f * fps_right_inverse f y) $ n = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1767 |         - 1 * sum (\<lambda>i. f$i * fps_right_inverse_constructor f y (n - i)) {1..n} +
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1768 |         sum (\<lambda>i. f$i * (fps_right_inverse_constructor f y (n - i))) {1..n}"
 | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 1769 | by (simp add: fps_mult_nth sum.atLeast_Suc_atMost mult.assoc f0[symmetric]) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1770 | thus "(f * fps_right_inverse f y) $ n = 1 $ n" by (simp add: Suc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1771 | qed (simp add: f0 fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1772 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1773 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1774 | \<comment> \<open> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1775 | It is possible in a ring for an element to have a left inverse but not a right inverse, or | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1776 | vice versa. But when an element has both, they must be the same. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1777 | \<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1778 | lemma fps_left_inverse_eq_fps_right_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1779 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1780 | assumes f0: "x * f$0 = 1" "f $ 0 * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1781 | \<comment> \<open>These assumptions imply x equals y, but no need to assume that.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1782 | shows "fps_left_inverse f x = fps_right_inverse f y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1783 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1784 | from f0(2) have "f * fps_right_inverse f y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1785 | by (simp add: fps_right_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1786 | hence "fps_left_inverse f x * f * fps_right_inverse f y = fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1787 | by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1788 | moreover from f0(1) have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1789 | "fps_left_inverse f x * f * fps_right_inverse f y = fps_right_inverse f y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1790 | by (simp add: fps_left_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1791 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1792 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1793 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1794 | lemma fps_left_inverse_eq_fps_right_inverse_comm: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1795 | fixes f :: "'a::comm_ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1796 | assumes f0: "x * f$0 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1797 | shows "fps_left_inverse f x = fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1798 | using assms fps_left_inverse_eq_fps_right_inverse[of x f x] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1799 | by (simp add: mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1800 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1801 | lemma fps_left_inverse': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1802 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1803 | assumes "x * f$0 = 1" "f$0 * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1804 | \<comment> \<open>These assumptions imply x equals y, but no need to assume that.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1805 | shows "fps_right_inverse f y * f = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1806 | using assms fps_left_inverse_eq_fps_right_inverse[of x f y] fps_left_inverse[of x f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1807 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1808 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1809 | lemma fps_right_inverse': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1810 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1811 | assumes "x * f$0 = 1" "f$0 * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1812 | \<comment> \<open>These assumptions imply x equals y, but no need to assume that.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1813 | shows "f * fps_left_inverse f x = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1814 | using assms fps_left_inverse_eq_fps_right_inverse[of x f y] fps_right_inverse[of f y] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1815 | by simp | 
| 52891 | 1816 | |
| 1817 | lemma inverse_mult_eq_1 [intro]: | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1818 | assumes "f$0 \<noteq> (0::'a::division_ring)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1819 | shows "inverse f * f = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1820 | using fps_left_inverse'[of "inverse (f$0)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1821 | by (simp add: assms fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1822 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1823 | lemma inverse_mult_eq_1': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1824 | assumes "f$0 \<noteq> (0::'a::division_ring)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1825 | shows "f * inverse f = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1826 | using assms fps_right_inverse | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1827 | by (force simp: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1828 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1829 | lemma fps_mult_left_inverse_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1830 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1831 | assumes "x * f $ subdegree f = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1832 | shows "fps_left_inverse (unit_factor f) x * f = fps_X ^ subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1833 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1834 | have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1835 | "fps_left_inverse (unit_factor f) x * f = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1836 | fps_left_inverse (unit_factor f) x * unit_factor f * fps_X ^ subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1837 | using fps_unit_factor_decompose[of f] by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1838 | with assms show ?thesis by (simp add: fps_left_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1839 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1840 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1841 | lemma fps_mult_right_inverse_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1842 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1843 | assumes "f $ subdegree f * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1844 | shows "f * fps_right_inverse (unit_factor f) y = fps_X ^ subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1845 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1846 | have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1847 | "f * fps_right_inverse (unit_factor f) y = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1848 | fps_X ^ subdegree f * (unit_factor f * fps_right_inverse (unit_factor f) y)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1849 | using fps_unit_factor_decompose'[of f] by (simp add: mult.assoc[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1850 | with assms show ?thesis by (simp add: fps_right_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1851 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1852 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1853 | lemma fps_mult_right_inverse_unit_factor_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1854 | "(f :: 'a::division_ring fps) \<noteq> 0 \<Longrightarrow> f * inverse (unit_factor f) = fps_X ^ subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1855 | using fps_mult_right_inverse_unit_factor[of f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1856 | by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1857 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1858 | lemma fps_left_inverse_idempotent_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1859 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1860 | assumes "x * f$0 = 1" "y * x = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1861 | \<comment> \<open>These assumptions imply y equals f$0, but no need to assume that.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1862 | shows "fps_left_inverse (fps_left_inverse f x) y = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1863 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1864 | from assms(1) have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1865 | "fps_left_inverse (fps_left_inverse f x) y * fps_left_inverse f x * f = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1866 | fps_left_inverse (fps_left_inverse f x) y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1867 | by (simp add: fps_left_inverse mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1868 | moreover from assms(2) have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1869 | "fps_left_inverse (fps_left_inverse f x) y * fps_left_inverse f x = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1870 | by (simp add: fps_left_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1871 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1872 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1873 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1874 | lemma fps_left_inverse_idempotent_comm_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1875 | fixes f :: "'a::comm_ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1876 | assumes "x * f$0 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1877 | shows "fps_left_inverse (fps_left_inverse f x) (f$0) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1878 | using assms fps_left_inverse_idempotent_ring1[of x f "f$0"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1879 | by (simp add: mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1880 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1881 | lemma fps_right_inverse_idempotent_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1882 | fixes f :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1883 | assumes "f$0 * x = 1" "x * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1884 | \<comment> \<open>These assumptions imply y equals f$0, but no need to assume that.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1885 | shows "fps_right_inverse (fps_right_inverse f x) y = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1886 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1887 | from assms(1) have "f * (fps_right_inverse f x * fps_right_inverse (fps_right_inverse f x) y) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1888 | fps_right_inverse (fps_right_inverse f x) y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1889 | by (simp add: fps_right_inverse mult.assoc[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1890 | moreover from assms(2) have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1891 | "fps_right_inverse f x * fps_right_inverse (fps_right_inverse f x) y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1892 | by (simp add: fps_right_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1893 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1894 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1895 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1896 | lemma fps_right_inverse_idempotent_comm_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1897 | fixes f :: "'a::comm_ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1898 | assumes "f$0 * x = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1899 | shows "fps_right_inverse (fps_right_inverse f x) (f$0) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1900 | using assms fps_right_inverse_idempotent_ring1[of f x "f$0"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1901 | by (simp add: mult.commute) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1902 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1903 | lemma fps_inverse_idempotent[intro, simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1904 | "f$0 \<noteq> (0::'a::division_ring) \<Longrightarrow> inverse (inverse f) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1905 | using fps_right_inverse_idempotent_ring1[of f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1906 | by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1907 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1908 | lemma fps_lr_inverse_unique_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1909 | fixes f g :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1910 | assumes fg: "f * g = 1" "g$0 * f$0 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1911 | shows "fps_left_inverse g (f$0) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1912 | and "fps_right_inverse f (g$0) = g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1913 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1914 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1915 | show "fps_left_inverse g (f$0) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1916 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1917 | fix n show "fps_left_inverse g (f$0) $ n = f $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1918 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1919 | case (1 n) show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1920 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1921 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1922 |         hence "\<forall>i\<in>{0..k}. fps_left_inverse g (f$0) $ i = f $ i" using 1 by simp
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1923 | hence "fps_left_inverse g (f$0) $ Suc k = f $ Suc k - 1 $ Suc k * f$0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1924 | by (simp add: fps_mult_nth fg(1)[symmetric] distrib_right mult.assoc fg(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1925 | with Suc show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1926 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1927 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1928 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1929 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1930 | show "fps_right_inverse f (g$0) = g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1931 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1932 | fix n show "fps_right_inverse f (g$0) $ n = g $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1933 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1934 | case (1 n) show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1935 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1936 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1937 |         hence "\<forall>i\<in>{1..Suc k}. fps_right_inverse f (g$0) $ (Suc k - i) = g $ (Suc k - i)"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1938 | using 1 by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1939 | hence | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1940 | "fps_right_inverse f (g$0) $ Suc k = 1 * g $ Suc k - g$0 * 1 $ Suc k" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 1941 | by (simp add: fps_mult_nth fg(1)[symmetric] algebra_simps fg(2)[symmetric] sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1942 | with Suc show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1943 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1944 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1945 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1946 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1947 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1948 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1949 | lemma fps_lr_inverse_unique_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1950 | fixes f g :: "'a ::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1951 | assumes fg: "f * g = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1952 | shows "fps_left_inverse g (f$0) = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1953 | and "fps_right_inverse f (g$0) = g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1954 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1955 | from fg have "f$0 * g$0 = 1" using fps_mult_nth_0[of f g] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1956 | hence "g$0 * f$0 = 1" using inverse_unique[of "f$0"] left_inverse[of "f$0"] by force | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1957 | thus "fps_left_inverse g (f$0) = f" "fps_right_inverse f (g$0) = g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1958 | using fg fps_lr_inverse_unique_ring1 by auto | 
| 29687 | 1959 | qed | 
| 1960 | ||
| 48757 | 1961 | lemma fps_inverse_unique: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1962 | fixes f g :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1963 | assumes fg: "f * g = 1" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 1964 | shows "inverse f = g" | 
| 52891 | 1965 | proof - | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1966 | from fg have if0: "inverse (f$0) = g$0" "f$0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1967 | using inverse_unique[of "f$0"] fps_mult_nth_0[of f g] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1968 | with fg have "fps_right_inverse f (g$0) = g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1969 | using left_inverse[of "f$0"] by (intro fps_lr_inverse_unique_ring1(2)) simp_all | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1970 | with if0(1) show ?thesis by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1971 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1972 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1973 | lemma inverse_fps_numeral: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1974 |   "inverse (numeral n :: ('a :: field_char_0) fps) = fps_const (inverse (numeral n))"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1975 | by (intro fps_inverse_unique fps_ext) (simp_all add: fps_numeral_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1976 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1977 | lemma inverse_fps_of_nat: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1978 |   "inverse (of_nat n :: 'a :: {semiring_1,times,uminus,inverse} fps) =
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1979 | fps_const (inverse (of_nat n))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1980 | by (simp add: fps_of_nat fps_const_inverse[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1981 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1982 | lemma fps_lr_inverse_mult_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1983 | fixes f g :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1984 | assumes x: "x * f$0 = 1" "f$0 * x = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1985 | and y: "y * g$0 = 1" "g$0 * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1986 | shows "fps_left_inverse (f * g) (y*x) = fps_left_inverse g y * fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1987 | and "fps_right_inverse (f * g) (y*x) = fps_right_inverse g y * fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1988 | proof - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1989 | define h where "h \<equiv> fps_left_inverse g y * fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1990 | hence h0: "h$0 = y*x" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1991 | have "fps_left_inverse (f*g) (h$0) = h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1992 | proof (intro fps_lr_inverse_unique_ring1(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1993 | from h_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1994 | have "h * (f * g) = fps_left_inverse g y * (fps_left_inverse f x * f) * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1995 | by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1996 | thus "h * (f * g) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1997 | using fps_left_inverse[OF x(1)] fps_left_inverse[OF y(1)] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1998 | from h_def have "(f*g)$0 * h$0 = f$0 * 1 * x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 1999 | by (simp add: mult.assoc y(2)[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2000 | with x(2) show "(f * g) $ 0 * h $ 0 = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2001 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2002 | with h_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2003 | show "fps_left_inverse (f * g) (y*x) = fps_left_inverse g y * fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2004 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2005 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2006 | define h where "h \<equiv> fps_right_inverse g y * fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2007 | hence h0: "h$0 = y*x" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2008 | have "fps_right_inverse (f*g) (h$0) = h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2009 | proof (intro fps_lr_inverse_unique_ring1(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2010 | from h_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2011 | have "f * g * h = f * (g * fps_right_inverse g y) * fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2012 | by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2013 | thus "f * g * h = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2014 | using fps_right_inverse[OF x(2)] fps_right_inverse[OF y(2)] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2015 | from h_def have "h$0 * (f*g)$0 = y * 1 * g$0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2016 | by (simp add: mult.assoc x(1)[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2017 | with y(1) show "h$0 * (f*g)$0 = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2018 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2019 | with h_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2020 | show "fps_right_inverse (f * g) (y*x) = fps_right_inverse g y * fps_right_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2021 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2022 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2023 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2024 | lemma fps_lr_inverse_mult_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2025 | fixes f g :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2026 | shows "fps_left_inverse (f * g) (inverse ((f*g)$0)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2027 | fps_left_inverse g (inverse (g$0)) * fps_left_inverse f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2028 | and "fps_right_inverse (f * g) (inverse ((f*g)$0)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2029 | fps_right_inverse g (inverse (g$0)) * fps_right_inverse f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2030 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2031 | show "fps_left_inverse (f * g) (inverse ((f*g)$0)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2032 | fps_left_inverse g (inverse (g$0)) * fps_left_inverse f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2033 | proof (cases "f$0 = 0 \<or> g$0 = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2034 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2035 | hence "fps_left_inverse (f * g) (inverse ((f*g)$0)) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2036 | by (simp add: fps_lr_inverse_eq_0_iff(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2037 | moreover from True have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2038 | "fps_left_inverse g (inverse (g$0)) * fps_left_inverse f (inverse (f$0)) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2039 | by (auto simp: fps_lr_inverse_eq_0_iff(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2040 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2041 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2042 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2043 | hence "fps_left_inverse (f * g) (inverse (g$0) * inverse (f$0)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2044 | fps_left_inverse g (inverse (g$0)) * fps_left_inverse f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2045 | by (intro fps_lr_inverse_mult_ring1(1)) simp_all | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2046 | with False show ?thesis by (simp add: nonzero_inverse_mult_distrib) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2047 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2048 | show "fps_right_inverse (f * g) (inverse ((f*g)$0)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2049 | fps_right_inverse g (inverse (g$0)) * fps_right_inverse f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2050 | proof (cases "f$0 = 0 \<or> g$0 = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2051 | case True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2052 | from True have "fps_right_inverse (f * g) (inverse ((f*g)$0)) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2053 | by (simp add: fps_lr_inverse_eq_0_iff(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2054 | moreover from True have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2055 | "fps_right_inverse g (inverse (g$0)) * fps_right_inverse f (inverse (f$0)) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2056 | by (auto simp: fps_lr_inverse_eq_0_iff(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2057 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2058 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2059 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2060 | hence "fps_right_inverse (f * g) (inverse (g$0) * inverse (f$0)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2061 | fps_right_inverse g (inverse (g$0)) * fps_right_inverse f (inverse (f$0))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2062 | by (intro fps_lr_inverse_mult_ring1(2)) simp_all | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2063 | with False show ?thesis by (simp add: nonzero_inverse_mult_distrib) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2064 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2065 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2066 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2067 | lemma fps_inverse_mult_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2068 | "inverse (f * g) = inverse g * inverse (f :: 'a::division_ring fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2069 | using fps_lr_inverse_mult_divring(2) by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2070 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2071 | lemma fps_inverse_mult: "inverse (f * g :: 'a::field fps) = inverse f * inverse g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2072 | by (simp add: fps_inverse_mult_divring) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2073 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2074 | lemma fps_lr_inverse_gp_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2075 | fixes ones ones_inv :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2076 | defines "ones \<equiv> Abs_fps (\<lambda>n. 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2077 | and "ones_inv \<equiv> Abs_fps (\<lambda>n. if n=0 then 1 else if n=1 then - 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2078 | shows "fps_left_inverse ones 1 = ones_inv" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2079 | and "fps_right_inverse ones 1 = ones_inv" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2080 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2081 | show "fps_left_inverse ones 1 = ones_inv" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2082 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2083 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2084 | show "fps_left_inverse ones 1 $ n = ones_inv $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2085 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2086 | case (1 n) show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2087 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2088 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2089 | have m: "n = Suc m" by fact | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2090 | moreover have "fps_left_inverse ones 1 $ Suc m = ones_inv $ Suc m" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2091 | proof (cases m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2092 | case (Suc k) thus ?thesis | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 2093 | using Suc m 1 by (simp add: ones_def ones_inv_def sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2094 | qed (simp add: ones_def ones_inv_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2095 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2096 | qed (simp add: ones_inv_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2097 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2098 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2099 | moreover have "fps_right_inverse ones 1 = fps_left_inverse ones 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2100 | by (auto intro: fps_left_inverse_eq_fps_right_inverse[symmetric] simp: ones_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2101 | ultimately show "fps_right_inverse ones 1 = ones_inv" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2102 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2103 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2104 | lemma fps_lr_inverse_gp_ring1': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2105 | fixes ones :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2106 | defines "ones \<equiv> Abs_fps (\<lambda>n. 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2107 | shows "fps_left_inverse ones 1 = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2108 | and "fps_right_inverse ones 1 = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2109 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2110 | define ones_inv :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2111 | where "ones_inv \<equiv> Abs_fps (\<lambda>n. if n=0 then 1 else if n=1 then - 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2112 | hence "fps_left_inverse ones 1 = ones_inv" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2113 | and "fps_right_inverse ones 1 = ones_inv" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2114 | using ones_def fps_lr_inverse_gp_ring1 by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2115 | thus "fps_left_inverse ones 1 = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2116 | and "fps_right_inverse ones 1 = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2117 | by (auto intro: fps_ext simp: ones_inv_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2118 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2119 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2120 | lemma fps_inverse_gp: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2121 | "inverse (Abs_fps(\<lambda>n. (1::'a::division_ring))) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2122 | Abs_fps (\<lambda>n. if n= 0 then 1 else if n=1 then - 1 else 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2123 | using fps_lr_inverse_gp_ring1(2) by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2124 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2125 | lemma fps_inverse_gp': "inverse (Abs_fps (\<lambda>n. 1::'a::division_ring)) = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2126 | by (simp add: fps_inverse_def fps_lr_inverse_gp_ring1'(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2127 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2128 | lemma fps_lr_inverse_one_minus_fps_X: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2129 | fixes ones :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2130 | defines "ones \<equiv> Abs_fps (\<lambda>n. 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2131 | shows "fps_left_inverse (1 - fps_X) 1 = ones" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2132 | and "fps_right_inverse (1 - fps_X) 1 = ones" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2133 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2134 | have "fps_left_inverse ones 1 = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2135 | using fps_lr_inverse_gp_ring1'(1) by (simp add: ones_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2136 | thus "fps_left_inverse (1 - fps_X) 1 = ones" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2137 | using fps_left_inverse_idempotent_ring1[of 1 ones 1] by (simp add: ones_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2138 | have "fps_right_inverse ones 1 = 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2139 | using fps_lr_inverse_gp_ring1'(2) by (simp add: ones_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2140 | thus "fps_right_inverse (1 - fps_X) 1 = ones" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2141 | using fps_right_inverse_idempotent_ring1[of ones 1 1] by (simp add: ones_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2142 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2143 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2144 | lemma fps_inverse_one_minus_fps_X: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2145 | fixes ones :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2146 | defines "ones \<equiv> Abs_fps (\<lambda>n. 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2147 | shows "inverse (1 - fps_X) = ones" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2148 | by (simp add: fps_inverse_def assms fps_lr_inverse_one_minus_fps_X(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2149 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2150 | lemma fps_lr_one_over_one_minus_fps_X_squared: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2151 | shows "fps_left_inverse ((1 - fps_X)^2) (1::'a::ring_1) = Abs_fps (\<lambda>n. of_nat (n+1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2152 | "fps_right_inverse ((1 - fps_X)^2) (1::'a) = Abs_fps (\<lambda>n. of_nat (n+1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2153 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2154 | define f invf2 :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2155 | where "f \<equiv> (1 - fps_X)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2156 | and "invf2 \<equiv> Abs_fps (\<lambda>n. of_nat (n+1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2157 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2158 | have f2_nth_simps: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2159 | "f^2 $ 1 = - of_nat 2" "f^2 $ 2 = 1" "\<And>n. n>2 \<Longrightarrow> f^2 $ n = 0" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 2160 | by (simp_all add: power2_eq_square f_def fps_mult_nth sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2161 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2162 | show "fps_left_inverse (f^2) 1 = invf2" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2163 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2164 | fix n show "fps_left_inverse (f^2) 1 $ n = invf2 $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2165 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2166 | case (1 t) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2167 | hence induct_assm: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2168 | "\<And>m. m < t \<Longrightarrow> fps_left_inverse (f\<^sup>2) 1 $ m = invf2 $ m" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2169 | by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2170 | show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2171 | proof (cases t) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2172 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2173 | have m: "t = Suc m" by fact | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2174 | moreover have "fps_left_inverse (f^2) 1 $ Suc m = invf2 $ Suc m" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2175 | proof (cases m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2176 | case 0 thus ?thesis using f2_nth_simps(1) by (simp add: invf2_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2177 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2178 | case (Suc l) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2179 | have l: "m = Suc l" by fact | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2180 | moreover have "fps_left_inverse (f^2) 1 $ Suc (Suc l) = invf2 $ Suc (Suc l)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2181 | proof (cases l) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2182 | case 0 thus ?thesis using f2_nth_simps(1,2) by (simp add: Suc_1[symmetric] invf2_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2183 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2184 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2185 | from Suc l m | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2186 | have A: "fps_left_inverse (f\<^sup>2) 1 $ Suc (Suc k) = invf2 $ Suc (Suc k)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2187 | and B: "fps_left_inverse (f\<^sup>2) 1 $ Suc k = invf2 $ Suc k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2188 | using induct_assm[of "Suc k"] induct_assm[of "Suc (Suc k)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2189 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2190 | have times2: "\<And>a::nat. 2*a = a + a" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2191 |             have "\<forall>i\<in>{0..k}. (f^2)$(Suc (Suc (Suc k)) - i) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2192 | using f2_nth_simps(3) by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2193 | hence | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2194 | "fps_left_inverse (f^2) 1 $ Suc (Suc (Suc k)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2195 | fps_left_inverse (f\<^sup>2) 1 $ Suc (Suc k) * of_nat 2 - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2196 | fps_left_inverse (f\<^sup>2) 1 $ Suc k" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 2197 | using sum.ub_add_nat f2_nth_simps(1,2) by simp | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2198 | also have "\<dots> = of_nat (2 * Suc (Suc (Suc k))) - of_nat (Suc (Suc k))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2199 | by (subst A, subst B) (simp add: invf2_def mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2200 | also have "\<dots> = of_nat (Suc (Suc (Suc k)) + 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2201 | by (subst times2[of "Suc (Suc (Suc k))"]) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2202 | finally have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2203 | "fps_left_inverse (f^2) 1 $ Suc (Suc (Suc k)) = invf2 $ Suc (Suc (Suc k))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2204 | by (simp add: invf2_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2205 | with Suc show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2206 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2207 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2208 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2209 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2210 | qed (simp add: invf2_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2211 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2212 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2213 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2214 | moreover have "fps_right_inverse (f^2) 1 = fps_left_inverse (f^2) 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2215 | by (auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2216 | intro: fps_left_inverse_eq_fps_right_inverse[symmetric] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2217 | simp: f_def power2_eq_square | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2218 | ) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2219 | ultimately show "fps_right_inverse (f^2) 1 = invf2" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2220 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2221 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2222 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2223 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2224 | lemma fps_one_over_one_minus_fps_X_squared': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2225 |   assumes "inverse (1::'a::{ring_1,inverse}) = 1"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2226 | shows "inverse ((1 - fps_X)^2 :: 'a fps) = Abs_fps (\<lambda>n. of_nat (n+1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2227 | using assms fps_lr_one_over_one_minus_fps_X_squared(2) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2228 | by (simp add: fps_inverse_def power2_eq_square) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2229 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2230 | lemma fps_one_over_one_minus_fps_X_squared: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2231 | "inverse ((1 - fps_X)^2 :: 'a :: division_ring fps) = Abs_fps (\<lambda>n. of_nat (n+1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2232 | by (rule fps_one_over_one_minus_fps_X_squared'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2233 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2234 | lemma fps_lr_inverse_fps_X_plus1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2235 | "fps_left_inverse (1 + fps_X) (1::'a::ring_1) = Abs_fps (\<lambda>n. (-1)^n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2236 | "fps_right_inverse (1 + fps_X) (1::'a) = Abs_fps (\<lambda>n. (-1)^n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2237 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2238 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2239 | show "fps_left_inverse (1 + fps_X) (1::'a) = Abs_fps (\<lambda>n. (-1)^n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2240 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2241 | fix n show "fps_left_inverse (1 + fps_X) (1::'a) $ n = Abs_fps (\<lambda>n. (-1)^n) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2242 | proof (induct n rule: nat_less_induct) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2243 | case (1 n) show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2244 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2245 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2246 | have m: "n = Suc m" by fact | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2247 | from Suc 1 have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2248 | A: "fps_left_inverse (1 + fps_X) (1::'a) $ n = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2249 | - (\<Sum>i=0..m. (- 1)^i * (1 + fps_X) $ (Suc m - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2250 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2251 | show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2252 | proof (cases m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2253 | case (Suc l) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2254 |           have "\<forall>i\<in>{0..l}. ((1::'a fps) + fps_X) $ (Suc (Suc l) - i) = 0" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2255 | with Suc A m show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2256 | qed (simp add: m A) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2257 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2258 | qed | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2259 | qed | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2260 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2261 | moreover have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2262 | "fps_right_inverse (1 + fps_X) (1::'a) = fps_left_inverse (1 + fps_X) 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2263 | by (intro fps_left_inverse_eq_fps_right_inverse[symmetric]) simp_all | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2264 | ultimately show "fps_right_inverse (1 + fps_X) (1::'a) = Abs_fps (\<lambda>n. (-1)^n)" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2265 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2266 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2267 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2268 | lemma fps_inverse_fps_X_plus1': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2269 |   assumes "inverse (1::'a::{ring_1,inverse}) = 1"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2270 | shows "inverse (1 + fps_X) = Abs_fps (\<lambda>n. (- (1::'a)) ^ n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2271 | using assms fps_lr_inverse_fps_X_plus1(2) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2272 | by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2273 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2274 | lemma fps_inverse_fps_X_plus1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2275 | "inverse (1 + fps_X) = Abs_fps (\<lambda>n. (- (1::'a::division_ring)) ^ n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2276 | by (rule fps_inverse_fps_X_plus1'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2277 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2278 | lemma subdegree_lr_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2279 |   fixes x :: "'a::{comm_monoid_add,mult_zero,uminus}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2280 |   and   y :: "'b::{ab_group_add,mult_zero}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2281 | shows "subdegree (fps_left_inverse f x) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2282 | and "subdegree (fps_right_inverse g y) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2283 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2284 | show "subdegree (fps_left_inverse f x) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2285 | using fps_lr_inverse_eq_0_iff(1) subdegree_eq_0_iff by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2286 | show "subdegree (fps_right_inverse g y) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2287 | using fps_lr_inverse_eq_0_iff(2) subdegree_eq_0_iff by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2288 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2289 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2290 | lemma subdegree_inverse [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2291 |   fixes f :: "'a::{ab_group_add,inverse,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2292 | shows "subdegree (inverse f) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2293 | using subdegree_lr_inverse(2) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2294 | by (simp add: fps_inverse_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2295 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2296 | lemma fps_div_zero [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2297 |   "0 div (g :: 'a :: {comm_monoid_add,inverse,mult_zero,uminus} fps) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2298 | by (simp add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2299 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2300 | lemma fps_div_by_zero': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2301 |   fixes   g :: "'a::{comm_monoid_add,inverse,mult_zero,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2302 | assumes "inverse (0::'a) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2303 | shows "g div 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2304 | by (simp add: fps_divide_def assms fps_inverse_zero') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2305 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2306 | lemma fps_div_by_zero [simp]: "(g::'a::division_ring fps) div 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2307 | by (rule fps_div_by_zero'[OF inverse_zero]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2308 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2309 | lemma fps_divide_unit': "subdegree g = 0 \<Longrightarrow> f div g = f * inverse g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2310 | by (simp add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2311 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2312 | lemma fps_divide_unit: "g$0 \<noteq> 0 \<Longrightarrow> f div g = f * inverse g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2313 | by (intro fps_divide_unit') (simp add: subdegree_eq_0_iff) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2314 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2315 | lemma fps_divide_nth_0': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2316 | "subdegree (g::'a::division_ring fps) = 0 \<Longrightarrow> (f div g) $ 0 = f $ 0 / (g $ 0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2317 | by (simp add: fps_divide_unit' divide_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2318 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2319 | lemma fps_divide_nth_0 [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2320 | "g $ 0 \<noteq> 0 \<Longrightarrow> (f div g) $ 0 = f $ 0 / (g $ 0 :: _ :: division_ring)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2321 | by (simp add: fps_divide_nth_0') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2322 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2323 | lemma fps_divide_nth_below: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2324 |   fixes f g :: "'a::{comm_monoid_add,uminus,mult_zero,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2325 | shows "n < subdegree f - subdegree g \<Longrightarrow> (f div g) $ n = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2326 | by (simp add: fps_divide_def fps_mult_nth_eq0) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2327 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2328 | lemma fps_divide_nth_base: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2329 | fixes f g :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2330 | assumes "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2331 | shows "(f div g) $ (subdegree f - subdegree g) = f $ subdegree f * inverse (g $ subdegree g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2332 | by (simp add: assms fps_divide_def fps_divide_unit') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2333 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2334 | lemma fps_divide_subdegree_ge: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2335 |   fixes   f g :: "'a::{comm_monoid_add,uminus,mult_zero,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2336 | assumes "f / g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2337 | shows "subdegree (f / g) \<ge> subdegree f - subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2338 | by (intro subdegree_geI) (simp_all add: assms fps_divide_nth_below) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2339 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2340 | lemma fps_divide_subdegree: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2341 | fixes f g :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2342 | assumes "f \<noteq> 0" "g \<noteq> 0" "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2343 | shows "subdegree (f / g) = subdegree f - subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2344 | proof (intro antisym) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2345 | from assms have 1: "(f div g) $ (subdegree f - subdegree g) \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2346 | using fps_divide_nth_base[of g f] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2347 | thus "subdegree (f / g) \<le> subdegree f - subdegree g" by (intro subdegree_leI) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2348 | from 1 have "f / g \<noteq> 0" by (auto intro: fps_nonzeroI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2349 | thus "subdegree f - subdegree g \<le> subdegree (f / g)" by (rule fps_divide_subdegree_ge) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2350 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2351 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2352 | lemma fps_divide_shift_numer: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2353 |   fixes   f g :: "'a::{inverse,comm_monoid_add,uminus,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2354 | assumes "n \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2355 | shows "fps_shift n f / g = fps_shift n (f/g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2356 | using assms fps_shift_mult_right_noncomm[of n f "inverse (unit_factor g)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2357 | fps_shift_fps_shift_reorder[of "subdegree g" n "f * inverse (unit_factor g)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2358 | by (simp add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2359 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2360 | lemma fps_divide_shift_denom: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2361 |   fixes   f g :: "'a::{inverse,comm_monoid_add,uminus,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2362 | assumes "n \<le> subdegree g" "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2363 | shows "f / fps_shift n g = Abs_fps (\<lambda>k. if k<n then 0 else (f/g) $ (k-n))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2364 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2365 | fix k | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2366 | from assms(1) have LHS: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2367 | "(f / fps_shift n g) $ k = (f * inverse (unit_factor g)) $ (k + (subdegree g - n))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2368 | using fps_unit_factor_shift[of n g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2369 | by (simp add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2370 | show "(f / fps_shift n g) $ k = Abs_fps (\<lambda>k. if k<n then 0 else (f/g) $ (k-n)) $ k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2371 | proof (cases "k<n") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2372 | case True with assms LHS show ?thesis using fps_mult_nth_eq0[of _ f] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2373 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2374 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2375 | hence "(f/g) $ (k-n) = (f * inverse (unit_factor g)) $ ((k-n) + subdegree g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2376 | by (simp add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2377 | with False LHS assms(1) show ?thesis by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2378 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2379 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2380 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2381 | lemma fps_divide_unit_factor_numer: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2382 |   fixes   f g :: "'a::{inverse,comm_monoid_add,uminus,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2383 | shows "unit_factor f / g = fps_shift (subdegree f) (f/g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2384 | by (simp add: fps_divide_shift_numer) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2385 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2386 | lemma fps_divide_unit_factor_denom: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2387 |   fixes   f g :: "'a::{inverse,comm_monoid_add,uminus,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2388 | assumes "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2389 | shows | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2390 | "f / unit_factor g = Abs_fps (\<lambda>k. if k<subdegree g then 0 else (f/g) $ (k-subdegree g))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2391 | by (simp add: assms fps_divide_shift_denom) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2392 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2393 | lemma fps_divide_unit_factor_both': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2394 |   fixes   f g :: "'a::{inverse,comm_monoid_add,uminus,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2395 | assumes "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2396 | shows "unit_factor f / unit_factor g = fps_shift (subdegree f - subdegree g) (f / g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2397 | using assms fps_divide_unit_factor_numer[of f "unit_factor g"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2398 | fps_divide_unit_factor_denom[of g f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2399 | fps_shift_rev_shift(1)[of "subdegree g" "subdegree f" "f/g"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2400 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2401 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2402 | lemma fps_divide_unit_factor_both: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2403 | fixes f g :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2404 | assumes "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2405 | shows "unit_factor f / unit_factor g = unit_factor (f / g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2406 | using assms fps_divide_unit_factor_both'[of g f] fps_divide_subdegree[of f g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2407 | by (cases "f=0 \<or> g=0") auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2408 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2409 | lemma fps_divide_self: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2410 | "(f::'a::division_ring fps) \<noteq> 0 \<Longrightarrow> f / f = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2411 | using fps_mult_right_inverse_unit_factor_divring[of f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2412 | by (simp add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2413 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2414 | lemma fps_divide_add: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2415 |   fixes f g h :: "'a::{semiring_0,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2416 | shows "(f + g) / h = f / h + g / h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2417 | by (simp add: fps_divide_def algebra_simps fps_shift_add) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2418 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2419 | lemma fps_divide_diff: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2420 |   fixes f g h :: "'a::{ring,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2421 | shows "(f - g) / h = f / h - g / h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2422 | by (simp add: fps_divide_def algebra_simps fps_shift_diff) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2423 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2424 | lemma fps_divide_uminus: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2425 |   fixes f g h :: "'a::{ring,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2426 | shows "(- f) / g = - (f / g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2427 | by (simp add: fps_divide_def algebra_simps fps_shift_uminus) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2428 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2429 | lemma fps_divide_uminus': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2430 | fixes f g h :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2431 | shows "f / (- g) = - (f / g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2432 | by (simp add: fps_divide_def fps_unit_factor_uminus fps_shift_uminus) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2433 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2434 | lemma fps_divide_times: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2435 |   fixes   f g h :: "'a::{semiring_0,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2436 | assumes "subdegree h \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2437 | shows "(f * g) / h = f * (g / h)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2438 | using assms fps_mult_subdegree_ge[of g "inverse (unit_factor h)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2439 | fps_shift_mult[of "subdegree h" "g * inverse (unit_factor h)" f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2440 | by (fastforce simp add: fps_divide_def mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2441 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2442 | lemma fps_divide_times2: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2443 |   fixes   f g h :: "'a::{comm_semiring_0,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2444 | assumes "subdegree h \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2445 | shows "(f * g) / h = (f / h) * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2446 | using assms fps_divide_times[of h f g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2447 | by (simp add: mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2448 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2449 | lemma fps_times_divide_eq: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2450 | fixes f g :: "'a::field fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2451 | assumes "g \<noteq> 0" and "subdegree f \<ge> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2452 | shows "f div g * g = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2453 | using assms fps_divide_times2[of g f g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2454 | by (simp add: fps_divide_times fps_divide_self) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2455 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2456 | lemma fps_divide_times_eq: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2457 | "(g :: 'a::division_ring fps) \<noteq> 0 \<Longrightarrow> (f * g) div g = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2458 | by (simp add: fps_divide_times fps_divide_self) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2459 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2460 | lemma fps_divide_by_mult': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2461 | fixes f g h :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2462 | assumes "subdegree h \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2463 | shows "f / (g * h) = f / h / g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2464 | proof (cases "f=0 \<or> g=0 \<or> h=0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2465 | case False with assms show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2466 | using fps_unit_factor_mult[of g h] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2467 | by (auto simp: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2468 | fps_divide_def fps_shift_fps_shift fps_inverse_mult_divring mult.assoc | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2469 | fps_shift_mult_right_noncomm | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2470 | ) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2471 | qed auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2472 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2473 | lemma fps_divide_by_mult: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2474 | fixes f g h :: "'a :: field fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2475 | assumes "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2476 | shows "f / (g * h) = f / g / h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2477 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2478 | have "f / (g * h) = f / (h * g)" by (simp add: mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2479 | also have "\<dots> = f / g / h" using fps_divide_by_mult'[OF assms] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2480 | finally show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2481 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2482 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2483 | lemma fps_divide_cancel: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2484 | fixes f g h :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2485 | shows "h \<noteq> 0 \<Longrightarrow> (f * h) div (g * h) = f div g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2486 | by (cases "f=0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2487 | (auto simp: fps_divide_by_mult' fps_divide_times_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2488 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2489 | lemma fps_divide_1': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2490 |   fixes   a :: "'a::{comm_monoid_add,inverse,mult_zero,uminus,zero_neq_one,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2491 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2492 | shows "a / 1 = a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2493 | using assms fps_inverse_one' fps_one_mult(2)[of a] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2494 | by (force simp: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2495 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2496 | lemma fps_divide_1 [simp]: "(a :: 'a::division_ring fps) / 1 = a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2497 | by (rule fps_divide_1'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2498 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2499 | lemma fps_divide_X': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2500 |   fixes   f :: "'a::{comm_monoid_add,inverse,mult_zero,uminus,zero_neq_one,monoid_mult} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2501 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2502 | shows "f / fps_X = fps_shift 1 f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2503 | using assms fps_one_mult(2)[of f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2504 | by (simp add: fps_divide_def fps_X_unit_factor fps_inverse_one') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2505 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2506 | lemma fps_divide_X [simp]: "a / fps_X = fps_shift 1 (a::'a::division_ring fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2507 | by (rule fps_divide_X'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2508 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2509 | lemma fps_divide_X_power': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2510 |   fixes   f :: "'a::{semiring_1,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2511 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2512 | shows "f / (fps_X ^ n) = fps_shift n f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2513 | using fps_inverse_one'[OF assms] fps_one_mult(2)[of f] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2514 | by (simp add: fps_divide_def fps_X_power_subdegree) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2515 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2516 | lemma fps_divide_X_power [simp]: "a / (fps_X ^ n) = fps_shift n (a::'a::division_ring fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2517 | by (rule fps_divide_X_power'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2518 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2519 | lemma fps_divide_shift_denom_conv_times_fps_X_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2520 |   fixes   f g :: "'a::{semiring_1,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2521 | assumes "n \<le> subdegree g" "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2522 | shows "f / fps_shift n g = f / g * fps_X ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2523 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2524 | by (intro fps_ext) (simp_all add: fps_divide_shift_denom fps_X_power_mult_right_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2525 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2526 | lemma fps_divide_unit_factor_denom_conv_times_fps_X_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2527 |   fixes   f g :: "'a::{semiring_1,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2528 | assumes "subdegree g \<le> subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2529 | shows "f / unit_factor g = f / g * fps_X ^ subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2530 | by (simp add: assms fps_divide_shift_denom_conv_times_fps_X_power) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2531 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2532 | lemma fps_shift_altdef': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2533 |   fixes   f :: "'a::{semiring_1,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2534 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2535 | shows "fps_shift n f = f div fps_X^n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2536 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2537 | by (simp add: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2538 | fps_divide_def fps_X_power_subdegree fps_X_power_unit_factor fps_inverse_one' | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2539 | ) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2540 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2541 | lemma fps_shift_altdef: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2542 | "fps_shift n f = (f :: 'a :: division_ring fps) div fps_X^n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2543 | by (rule fps_shift_altdef'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2544 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2545 | lemma fps_div_fps_X_power_nth': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2546 |   fixes   f :: "'a::{semiring_1,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2547 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2548 | shows "(f div fps_X^n) $ k = f $ (k + n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2549 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2550 | by (simp add: fps_shift_altdef' [symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2551 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2552 | lemma fps_div_fps_X_power_nth: "((f :: 'a :: division_ring fps) div fps_X^n) $ k = f $ (k + n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2553 | by (rule fps_div_fps_X_power_nth'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2554 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2555 | lemma fps_div_fps_X_nth': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2556 |   fixes   f :: "'a::{semiring_1,inverse,uminus} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2557 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2558 | shows "(f div fps_X) $ k = f $ Suc k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2559 | using assms fps_div_fps_X_power_nth'[of f 1] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2560 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2561 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2562 | lemma fps_div_fps_X_nth: "((f :: 'a :: division_ring fps) div fps_X) $ k = f $ Suc k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2563 | by (rule fps_div_fps_X_nth'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2564 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2565 | lemma divide_fps_const': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2566 |   fixes c :: "'a :: {inverse,comm_monoid_add,uminus,mult_zero}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2567 | shows "f / fps_const c = f * fps_const (inverse c)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2568 | by (simp add: fps_divide_def fps_const_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2569 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2570 | lemma divide_fps_const [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2571 |   fixes c :: "'a :: {comm_semiring_0,inverse,uminus}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2572 | shows "f / fps_const c = fps_const (inverse c) * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2573 | by (simp add: divide_fps_const' mult.commute) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2574 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2575 | lemma fps_const_divide: "fps_const (x :: _ :: division_ring) / fps_const y = fps_const (x / y)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2576 | by (simp add: fps_divide_def fps_const_inverse divide_inverse) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2577 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2578 | lemma fps_numeral_divide_divide: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2579 | "x / numeral b / numeral c = (x / numeral (b * c) :: 'a :: field fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2580 | by (simp add: fps_divide_by_mult[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2581 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2582 | lemma fps_numeral_mult_divide: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2583 | "numeral b * x / numeral c = (numeral b / numeral c * x :: 'a :: field fps)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2584 | by (simp add: fps_divide_times2) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2585 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2586 | lemmas fps_numeral_simps = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2587 | fps_numeral_divide_divide fps_numeral_mult_divide inverse_fps_numeral neg_numeral_fps_const | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2588 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2589 | lemma fps_is_left_unit_iff_zeroth_is_left_unit: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2590 | fixes f :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2591 | shows "(\<exists>g. 1 = f * g) \<longleftrightarrow> (\<exists>k. 1 = f$0 * k)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2592 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2593 | assume "\<exists>g. 1 = f * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2594 | then obtain g where "1 = f * g" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2595 | hence "1 = f$0 * g$0" using fps_mult_nth_0[of f g] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2596 | thus "\<exists>k. 1 = f$0 * k" by auto | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2597 | next | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2598 | assume "\<exists>k. 1 = f$0 * k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2599 | then obtain k where "1 = f$0 * k" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2600 | hence "1 = f * fps_right_inverse f k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2601 | using fps_right_inverse by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2602 | thus "\<exists>g. 1 = f * g" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2603 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2604 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2605 | lemma fps_is_right_unit_iff_zeroth_is_right_unit: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2606 | fixes f :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2607 | shows "(\<exists>g. 1 = g * f) \<longleftrightarrow> (\<exists>k. 1 = k * f$0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2608 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2609 | assume "\<exists>g. 1 = g * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2610 | then obtain g where "1 = g * f" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2611 | hence "1 = g$0 * f$0" using fps_mult_nth_0[of g f] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2612 | thus "\<exists>k. 1 = k * f$0" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2613 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2614 | assume "\<exists>k. 1 = k * f$0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2615 | then obtain k where "1 = k * f$0" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2616 | hence "1 = fps_left_inverse f k * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2617 | using fps_left_inverse by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2618 | thus "\<exists>g. 1 = g * f" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2619 | qed | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2620 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2621 | lemma fps_is_unit_iff [simp]: "(f :: 'a :: field fps) dvd 1 \<longleftrightarrow> f $ 0 \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2622 | proof | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2623 | assume "f dvd 1" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2624 | then obtain g where "1 = f * g" by (elim dvdE) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2625 | from this[symmetric] have "(f*g) $ 0 = 1" by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2626 | thus "f $ 0 \<noteq> 0" by auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2627 | next | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2628 | assume A: "f $ 0 \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2629 | thus "f dvd 1" by (simp add: inverse_mult_eq_1[OF A, symmetric]) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2630 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2631 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2632 | lemma subdegree_eq_0_left: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2633 |   fixes   f :: "'a::{comm_monoid_add,zero_neq_one,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2634 | assumes "\<exists>g. 1 = f * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2635 | shows "subdegree f = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2636 | proof (intro subdegree_eq_0) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2637 | from assms obtain g where "1 = f * g" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2638 | hence "f$0 * g$0 = 1" using fps_mult_nth_0[of f g] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2639 | thus "f$0 \<noteq> 0" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2640 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2641 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2642 | lemma subdegree_eq_0_right: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2643 |   fixes   f :: "'a::{comm_monoid_add,zero_neq_one,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2644 | assumes "\<exists>g. 1 = g * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2645 | shows "subdegree f = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2646 | proof (intro subdegree_eq_0) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2647 | from assms obtain g where "1 = g * f" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2648 | hence "g$0 * f$0 = 1" using fps_mult_nth_0[of g f] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2649 | thus "f$0 \<noteq> 0" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2650 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2651 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2652 | lemma subdegree_eq_0' [simp]: "(f :: 'a :: field fps) dvd 1 \<Longrightarrow> subdegree f = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2653 | by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2654 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2655 | lemma fps_dvd1_left_trivial_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2656 |   fixes   f :: "'a::{comm_monoid_add, zero_neq_one, mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2657 | assumes "\<exists>g. 1 = f * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2658 | shows "unit_factor f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2659 | using assms subdegree_eq_0_left | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2660 | by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2661 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2662 | lemma fps_dvd1_right_trivial_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2663 |   fixes   f :: "'a::{comm_monoid_add, zero_neq_one, mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2664 | assumes "\<exists>g. 1 = g * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2665 | shows "unit_factor f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2666 | using assms subdegree_eq_0_right | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2667 | by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2668 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2669 | lemma fps_dvd1_trivial_unit_factor: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2670 | "(f :: 'a::comm_semiring_1 fps) dvd 1 \<Longrightarrow> unit_factor f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2671 | unfolding dvd_def by (rule fps_dvd1_left_trivial_unit_factor) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2672 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2673 | lemma fps_unit_dvd_left: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2674 | fixes f :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2675 | assumes "f $ 0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2676 | shows "\<exists>g. 1 = f * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2677 | using assms fps_is_left_unit_iff_zeroth_is_left_unit right_inverse | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2678 | by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2679 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2680 | lemma fps_unit_dvd_right: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2681 | fixes f :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2682 | assumes "f $ 0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2683 | shows "\<exists>g. 1 = g * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2684 | using assms fps_is_right_unit_iff_zeroth_is_right_unit left_inverse | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2685 | by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2686 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2687 | lemma fps_unit_dvd [simp]: "(f $ 0 :: 'a :: field) \<noteq> 0 \<Longrightarrow> f dvd g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2688 | using fps_unit_dvd_left dvd_trans[of f 1] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2689 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2690 | lemma dvd_left_imp_subdegree_le: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2691 |   fixes   f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2692 | assumes "\<exists>k. g = f * k" "g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2693 | shows "subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2694 | using assms fps_mult_subdegree_ge | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2695 | by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2696 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2697 | lemma dvd_right_imp_subdegree_le: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2698 |   fixes   f g :: "'a::{comm_monoid_add,mult_zero} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2699 | assumes "\<exists>k. g = k * f" "g \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2700 | shows "subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2701 | using assms fps_mult_subdegree_ge | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2702 | by fastforce | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2703 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2704 | lemma dvd_imp_subdegree_le: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2705 | "f dvd g \<Longrightarrow> g \<noteq> 0 \<Longrightarrow> subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2706 | using dvd_left_imp_subdegree_le by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2707 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2708 | lemma subdegree_le_imp_dvd_left_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2709 | fixes f g :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2710 | assumes "\<exists>y. f $ subdegree f * y = 1" "subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2711 | shows "\<exists>k. g = f * k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2712 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2713 | define h :: "'a fps" where "h \<equiv> fps_X ^ (subdegree g - subdegree f)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2714 | from assms(1) obtain y where "f $ subdegree f * y = 1" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2715 | hence "unit_factor f $ 0 * y = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2716 | from this obtain k where "1 = unit_factor f * k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2717 | using fps_is_left_unit_iff_zeroth_is_left_unit[of "unit_factor f"] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2718 | hence "fps_X ^ subdegree f = fps_X ^ subdegree f * unit_factor f * k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2719 | by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2720 | moreover have "fps_X ^ subdegree f * unit_factor f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2721 | by (rule fps_unit_factor_decompose'[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2722 | ultimately have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2723 | "fps_X ^ (subdegree f + (subdegree g - subdegree f)) = f * k * h" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2724 | by (simp add: power_add h_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2725 | hence "g = f * (k * h * unit_factor g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2726 | using fps_unit_factor_decompose'[of g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2727 | by (simp add: assms(2) mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2728 | thus ?thesis by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2729 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2730 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2731 | lemma subdegree_le_imp_dvd_left_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2732 | fixes f g :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2733 | assumes "f \<noteq> 0" "subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2734 | shows "\<exists>k. g = f * k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2735 | proof (intro subdegree_le_imp_dvd_left_ring1) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2736 | from assms(1) have "f $ subdegree f \<noteq> 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2737 | thus "\<exists>y. f $ subdegree f * y = 1" using right_inverse by blast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2738 | qed (rule assms(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2739 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2740 | lemma subdegree_le_imp_dvd_right_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2741 | fixes f g :: "'a :: ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2742 | assumes "\<exists>x. x * f $ subdegree f = 1" "subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2743 | shows "\<exists>k. g = k * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2744 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2745 | define h :: "'a fps" where "h \<equiv> fps_X ^ (subdegree g - subdegree f)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2746 | from assms(1) obtain x where "x * f $ subdegree f = 1" by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2747 | hence "x * unit_factor f $ 0 = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2748 | from this obtain k where "1 = k * unit_factor f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2749 | using fps_is_right_unit_iff_zeroth_is_right_unit[of "unit_factor f"] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2750 | hence "fps_X ^ subdegree f = k * (unit_factor f * fps_X ^ subdegree f)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2751 | by (simp add: mult.assoc[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2752 | moreover have "unit_factor f * fps_X ^ subdegree f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2753 | by (rule fps_unit_factor_decompose[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2754 | ultimately have "fps_X ^ (subdegree g - subdegree f + subdegree f) = h * k * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2755 | by (simp add: power_add h_def mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2756 | hence "g = unit_factor g * h * k * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2757 | using fps_unit_factor_decompose[of g] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2758 | by (simp add: assms(2) mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2759 | thus ?thesis by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2760 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2761 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2762 | lemma subdegree_le_imp_dvd_right_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2763 | fixes f g :: "'a :: division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2764 | assumes "f \<noteq> 0" "subdegree f \<le> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2765 | shows "\<exists>k. g = k * f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2766 | proof (intro subdegree_le_imp_dvd_right_ring1) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2767 | from assms(1) have "f $ subdegree f \<noteq> 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2768 | thus "\<exists>x. x * f $ subdegree f = 1" using left_inverse by blast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2769 | qed (rule assms(2)) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2770 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2771 | lemma fps_dvd_iff: | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2772 | assumes "(f :: 'a :: field fps) \<noteq> 0" "g \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2773 | shows "f dvd g \<longleftrightarrow> subdegree f \<le> subdegree g" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2774 | proof | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2775 | assume "subdegree f \<le> subdegree g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2776 | with assms show "f dvd g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2777 | using subdegree_le_imp_dvd_left_divring | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2778 | by (auto intro: dvdI) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2779 | qed (simp add: assms dvd_imp_subdegree_le) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2780 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2781 | lemma subdegree_div': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2782 | fixes p q :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2783 | assumes "\<exists>k. p = k * q" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2784 | shows "subdegree (p div q) = subdegree p - subdegree q" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2785 | proof (cases "p = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2786 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2787 | from assms(1) obtain k where k: "p = k * q" by blast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2788 | with False have "subdegree (p div q) = subdegree k" by (simp add: fps_divide_times_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2789 | moreover have "k $ subdegree k * q $ subdegree q \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2790 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2791 | assume "k $ subdegree k * q $ subdegree q = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2792 | hence "k $ subdegree k * q $ subdegree q * inverse (q $ subdegree q) = 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2793 | with False k show False by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2794 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2795 | ultimately show ?thesis by (simp add: k subdegree_mult') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2796 | qed simp | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2797 | |
| 66550 
e5d82cf3c387
Some small lemmas about polynomials and FPSs
 eberlm <eberlm@in.tum.de> parents: 
66480diff
changeset | 2798 | lemma subdegree_div: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2799 | fixes p q :: "'a :: field fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2800 | assumes "q dvd p" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2801 | shows "subdegree (p div q) = subdegree p - subdegree q" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2802 | using assms | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2803 | unfolding dvd_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2804 | by (auto intro: subdegree_div') | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2805 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2806 | lemma subdegree_div_unit': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2807 |   fixes   p q :: "'a :: {ab_group_add,mult_zero,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2808 | assumes "q $ 0 \<noteq> 0" "p $ subdegree p * inverse (q $ 0) \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2809 | shows "subdegree (p div q) = subdegree p" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2810 | using assms subdegree_mult'[of p "inverse q"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2811 | by (auto simp add: fps_divide_unit) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2812 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2813 | lemma subdegree_div_unit'': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2814 |   fixes   p q :: "'a :: {ring_no_zero_divisors,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2815 | assumes "q $ 0 \<noteq> 0" "inverse (q $ 0) \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2816 | shows "subdegree (p div q) = subdegree p" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2817 | by (cases "p = 0") (auto intro: subdegree_div_unit' simp: assms) | 
| 66550 
e5d82cf3c387
Some small lemmas about polynomials and FPSs
 eberlm <eberlm@in.tum.de> parents: 
66480diff
changeset | 2818 | |
| 
e5d82cf3c387
Some small lemmas about polynomials and FPSs
 eberlm <eberlm@in.tum.de> parents: 
66480diff
changeset | 2819 | lemma subdegree_div_unit: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2820 | fixes p q :: "'a :: division_ring fps" | 
| 66550 
e5d82cf3c387
Some small lemmas about polynomials and FPSs
 eberlm <eberlm@in.tum.de> parents: 
66480diff
changeset | 2821 | assumes "q $ 0 \<noteq> 0" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2822 | shows "subdegree (p div q) = subdegree p" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2823 | by (intro subdegree_div_unit'') (simp_all add: assms) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2824 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2825 | instantiation fps :: ("{comm_semiring_1,inverse,uminus}") modulo
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2826 | begin | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2827 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2828 | definition fps_mod_def: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2829 | "f mod g = (if g = 0 then f else | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2830 | let h = unit_factor g in fps_cutoff (subdegree g) (f * inverse h) * h)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2831 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2832 | instance .. | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2833 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2834 | end | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2835 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2836 | lemma fps_mod_zero [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2837 |   "(f::'a::{comm_semiring_1,inverse,uminus} fps) mod 0 = f"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2838 | by (simp add: fps_mod_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2839 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2840 | lemma fps_mod_eq_zero: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2841 | assumes "g \<noteq> 0" and "subdegree f \<ge> subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2842 | shows "f mod g = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2843 | proof (cases "f * inverse (unit_factor g) = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2844 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2845 | have "fps_cutoff (subdegree g) (f * inverse (unit_factor g)) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2846 | using False assms(2) fps_mult_subdegree_ge fps_cutoff_zero_iff by force | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2847 | with assms(1) show ?thesis by (simp add: fps_mod_def Let_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2848 | qed (simp add: assms fps_mod_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2849 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2850 | lemma fps_mod_unit [simp]: "g$0 \<noteq> 0 \<Longrightarrow> f mod g = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2851 | by (intro fps_mod_eq_zero) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2852 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2853 | lemma subdegree_mod: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2854 | assumes "subdegree (f::'a::field fps) < subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2855 | shows "subdegree (f mod g) = subdegree f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2856 | proof (cases "f = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2857 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2858 | with assms show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2859 | by (intro subdegreeI) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2860 | (auto simp: inverse_mult_eq_1 fps_mod_def Let_def fps_cutoff_left_mult_nth mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2861 | qed (simp add: fps_mod_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2862 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2863 | instance fps :: (field) idom_modulo | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2864 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2865 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2866 | fix f g :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2867 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2868 | define n where "n = subdegree g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2869 | define h where "h = f * inverse (unit_factor g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2870 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2871 | show "f div g * g + f mod g = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2872 | proof (cases "g = 0") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2873 | case False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2874 | with n_def h_def have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2875 | "f div g * g + f mod g = (fps_shift n h * fps_X ^ n + fps_cutoff n h) * unit_factor g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2876 | by (simp add: fps_divide_def fps_mod_def Let_def subdegree_decompose algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2877 | with False show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2878 | by (simp add: fps_shift_cutoff h_def inverse_mult_eq_1) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2879 | qed auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2880 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2881 | qed (rule fps_divide_times_eq, simp_all add: fps_divide_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2882 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2883 | instantiation fps :: (field) normalization_semidom_multiplicative | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2884 | begin | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2885 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2886 | definition fps_normalize_def [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2887 | "normalize f = (if f = 0 then 0 else fps_X ^ subdegree f)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2888 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2889 | instance proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2890 | fix f g :: "'a fps" | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2891 | assume "is_unit f" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2892 | thus "unit_factor (f * g) = f * unit_factor g" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2893 | using fps_unit_factor_mult[of f g] by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2894 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2895 | fix f g :: "'a fps" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2896 | show "unit_factor f * normalize f = f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2897 | by (simp add: fps_shift_times_fps_X_power) | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2898 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2899 | fix f g :: "'a fps" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2900 | show "unit_factor (f * g) = unit_factor f * unit_factor g" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
70817diff
changeset | 2901 | using fps_unit_factor_mult[of f g] by simp | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2902 | qed (simp_all add: fps_divide_def Let_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2903 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2904 | end | 
| 66550 
e5d82cf3c387
Some small lemmas about polynomials and FPSs
 eberlm <eberlm@in.tum.de> parents: 
66480diff
changeset | 2905 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2906 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2907 | subsection \<open>Formal power series form a Euclidean ring\<close> | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2908 | |
| 64784 
5cb5e7ecb284
reshaped euclidean semiring into hierarchy of euclidean semirings culminating in uniquely determined euclidean divion
 haftmann parents: 
64592diff
changeset | 2909 | instantiation fps :: (field) euclidean_ring_cancel | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2910 | begin | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2911 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2912 | definition fps_euclidean_size_def: | 
| 62422 | 2913 | "euclidean_size f = (if f = 0 then 0 else 2 ^ subdegree f)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2914 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2915 | instance proof | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2916 | fix f g :: "'a fps" assume [simp]: "g \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2917 | show "euclidean_size f \<le> euclidean_size (f * g)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2918 | by (cases "f = 0") (simp_all add: fps_euclidean_size_def) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2919 | show "euclidean_size (f mod g) < euclidean_size g" | 
| 72686 | 2920 | proof (cases "f = 0") | 
| 2921 | case True | |
| 2922 | then show ?thesis | |
| 2923 | by (simp add: fps_euclidean_size_def) | |
| 2924 | next | |
| 2925 | case False | |
| 2926 | then show ?thesis | |
| 2927 | using le_less_linear[of "subdegree g" "subdegree f"] | |
| 2928 | by (force simp add: fps_mod_eq_zero fps_euclidean_size_def subdegree_mod) | |
| 2929 | qed | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2930 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2931 | fix f g h :: "'a fps" assume [simp]: "h \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2932 | show "(h * f) div (h * g) = f div g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2933 | by (simp add: fps_divide_cancel mult.commute) | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66804diff
changeset | 2934 | show "(f + g * h) div h = g + f div h" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2935 | by (simp add: fps_divide_add fps_divide_times_eq) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2936 | qed (simp add: fps_euclidean_size_def) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2937 | |
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66804diff
changeset | 2938 | end | 
| 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66804diff
changeset | 2939 | |
| 66817 | 2940 | instance fps :: (field) normalization_euclidean_semiring .. | 
| 2941 | ||
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2942 | instantiation fps :: (field) euclidean_ring_gcd | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2943 | begin | 
| 64786 
340db65fd2c1
reworked to provide auxiliary operations Euclidean_Algorithm.* to instantiate gcd etc. for euclidean rings
 haftmann parents: 
64784diff
changeset | 2944 | definition fps_gcd_def: "(gcd :: 'a fps \<Rightarrow> _) = Euclidean_Algorithm.gcd" | 
| 
340db65fd2c1
reworked to provide auxiliary operations Euclidean_Algorithm.* to instantiate gcd etc. for euclidean rings
 haftmann parents: 
64784diff
changeset | 2945 | definition fps_lcm_def: "(lcm :: 'a fps \<Rightarrow> _) = Euclidean_Algorithm.lcm" | 
| 
340db65fd2c1
reworked to provide auxiliary operations Euclidean_Algorithm.* to instantiate gcd etc. for euclidean rings
 haftmann parents: 
64784diff
changeset | 2946 | definition fps_Gcd_def: "(Gcd :: 'a fps set \<Rightarrow> _) = Euclidean_Algorithm.Gcd" | 
| 
340db65fd2c1
reworked to provide auxiliary operations Euclidean_Algorithm.* to instantiate gcd etc. for euclidean rings
 haftmann parents: 
64784diff
changeset | 2947 | definition fps_Lcm_def: "(Lcm :: 'a fps set \<Rightarrow> _) = Euclidean_Algorithm.Lcm" | 
| 62422 | 2948 | instance by standard (simp_all add: fps_gcd_def fps_lcm_def fps_Gcd_def fps_Lcm_def) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2949 | end | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2950 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2951 | lemma fps_gcd: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2952 | assumes [simp]: "f \<noteq> 0" "g \<noteq> 0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2953 | shows "gcd f g = fps_X ^ min (subdegree f) (subdegree g)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2954 | proof - | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2955 | let ?m = "min (subdegree f) (subdegree g)" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2956 | show "gcd f g = fps_X ^ ?m" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2957 | proof (rule sym, rule gcdI) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2958 | fix d assume "d dvd f" "d dvd g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2959 | thus "d dvd fps_X ^ ?m" by (cases "d = 0") (simp_all add: fps_dvd_iff) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2960 | qed (simp_all add: fps_dvd_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2961 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2962 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2963 | lemma fps_gcd_altdef: "gcd f g = | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2964 | (if f = 0 \<and> g = 0 then 0 else | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2965 | if f = 0 then fps_X ^ subdegree g else | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2966 | if g = 0 then fps_X ^ subdegree f else | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2967 | fps_X ^ min (subdegree f) (subdegree g))" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2968 | by (simp add: fps_gcd) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2969 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2970 | lemma fps_lcm: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2971 | assumes [simp]: "f \<noteq> 0" "g \<noteq> 0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2972 | shows "lcm f g = fps_X ^ max (subdegree f) (subdegree g)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2973 | proof - | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2974 | let ?m = "max (subdegree f) (subdegree g)" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2975 | show "lcm f g = fps_X ^ ?m" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2976 | proof (rule sym, rule lcmI) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2977 | fix d assume "f dvd d" "g dvd d" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2978 | thus "fps_X ^ ?m dvd d" by (cases "d = 0") (simp_all add: fps_dvd_iff) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2979 | qed (simp_all add: fps_dvd_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2980 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2981 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2982 | lemma fps_lcm_altdef: "lcm f g = | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 2983 | (if f = 0 \<or> g = 0 then 0 else fps_X ^ max (subdegree f) (subdegree g))" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2984 | by (simp add: fps_lcm) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2985 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2986 | lemma fps_Gcd: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2987 |   assumes "A - {0} \<noteq> {}"
 | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 2988 |   shows   "Gcd A = fps_X ^ (INF f\<in>A-{0}. subdegree f)"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2989 | proof (rule sym, rule GcdI) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2990 | fix f assume "f \<in> A" | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 2991 |   thus "fps_X ^ (INF f\<in>A - {0}. subdegree f) dvd f"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2992 | by (cases "f = 0") (auto simp: fps_dvd_iff intro!: cINF_lower) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2993 | next | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2994 | fix d assume d: "\<And>f. f \<in> A \<Longrightarrow> d dvd f" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2995 |   from assms obtain f where "f \<in> A - {0}" by auto
 | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 2996 | with d[of f] have [simp]: "d \<noteq> 0" by auto | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 2997 |   from d assms have "subdegree d \<le> (INF f\<in>A-{0}. subdegree f)"
 | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 2998 | by (intro cINF_greatest) (simp_all add: fps_dvd_iff[symmetric]) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 2999 |   with d assms show "d dvd fps_X ^ (INF f\<in>A-{0}. subdegree f)" by (simp add: fps_dvd_iff)
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3000 | qed simp_all | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3001 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3002 | lemma fps_Gcd_altdef: "Gcd A = | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 3003 |   (if A \<subseteq> {0} then 0 else fps_X ^ (INF f\<in>A-{0}. subdegree f))"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3004 | using fps_Gcd by auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3005 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3006 | lemma fps_Lcm: | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3007 |   assumes "A \<noteq> {}" "0 \<notin> A" "bdd_above (subdegree`A)"
 | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 3008 | shows "Lcm A = fps_X ^ (SUP f\<in>A. subdegree f)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3009 | proof (rule sym, rule LcmI) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3010 | fix f assume "f \<in> A" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3011 | moreover from assms(3) have "bdd_above (subdegree ` A)" by auto | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 3012 | ultimately show "f dvd fps_X ^ (SUP f\<in>A. subdegree f)" using assms(2) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3013 | by (cases "f = 0") (auto simp: fps_dvd_iff intro!: cSUP_upper) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3014 | next | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3015 | fix d assume d: "\<And>f. f \<in> A \<Longrightarrow> f dvd d" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3016 | from assms obtain f where f: "f \<in> A" "f \<noteq> 0" by auto | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 3017 | show "fps_X ^ (SUP f\<in>A. subdegree f) dvd d" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3018 | proof (cases "d = 0") | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3019 | assume "d \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3020 | moreover from d have "\<And>f. f \<in> A \<Longrightarrow> f \<noteq> 0 \<Longrightarrow> f dvd d" by blast | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 3021 | ultimately have "subdegree d \<ge> (SUP f\<in>A. subdegree f)" using assms | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3022 | by (intro cSUP_least) (auto simp: fps_dvd_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3023 | with \<open>d \<noteq> 0\<close> show ?thesis by (simp add: fps_dvd_iff) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3024 | qed simp_all | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3025 | qed simp_all | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3026 | |
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3027 | lemma fps_Lcm_altdef: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3028 | "Lcm A = | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3029 | (if 0 \<in> A \<or> \<not>bdd_above (subdegree`A) then 0 else | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69085diff
changeset | 3030 |       if A = {} then 1 else fps_X ^ (SUP f\<in>A. subdegree f))"
 | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3031 | proof (cases "bdd_above (subdegree`A)") | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3032 | assume unbounded: "\<not>bdd_above (subdegree`A)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3033 | have "Lcm A = 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3034 | proof (rule ccontr) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3035 | assume "Lcm A \<noteq> 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3036 | from unbounded obtain f where f: "f \<in> A" "subdegree (Lcm A) < subdegree f" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3037 | unfolding bdd_above_def by (auto simp: not_le) | 
| 63539 | 3038 | moreover from f and \<open>Lcm A \<noteq> 0\<close> have "subdegree f \<le> subdegree (Lcm A)" | 
| 62422 | 3039 | by (intro dvd_imp_subdegree_le dvd_Lcm) simp_all | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3040 | ultimately show False by simp | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3041 | qed | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3042 | with unbounded show ?thesis by simp | 
| 62422 | 3043 | qed (simp_all add: fps_Lcm Lcm_eq_0_I) | 
| 3044 | ||
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3045 | |
| 54681 | 3046 | |
| 60500 | 3047 | subsection \<open>Formal Derivatives, and the MacLaurin theorem around 0\<close> | 
| 29687 | 3048 | |
| 3049 | definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f $ (n + 1))" | |
| 3050 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3051 | lemma fps_deriv_nth[simp]: "fps_deriv f $ n = of_nat (n + 1) * f $ (n + 1)" | 
| 48757 | 3052 | by (simp add: fps_deriv_def) | 
| 3053 | ||
| 65398 | 3054 | lemma fps_0th_higher_deriv: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3055 | "(fps_deriv ^^ n) f $ 0 = fact n * f $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3056 | by (induction n arbitrary: f) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3057 | (simp_all add: funpow_Suc_right mult_of_nat_commute algebra_simps del: funpow.simps) | 
| 29687 | 3058 | |
| 30488 | 3059 | lemma fps_deriv_mult[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3060 | "fps_deriv (f * g) = f * fps_deriv g + fps_deriv f * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3061 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3062 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3063 | have LHS: "fps_deriv (f * g) $ n = (\<Sum>i=0..Suc n. of_nat (n+1) * f$i * g$(Suc n - i))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3064 | by (simp add: fps_mult_nth sum_distrib_left algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3065 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3066 |   have "\<forall>i\<in>{1..n}. n - (i - 1) = n - i + 1" by auto
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3067 | moreover have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3068 | "(\<Sum>i=0..n. of_nat (i+1) * f$(i+1) * g$(n - i)) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3069 | (\<Sum>i=1..Suc n. of_nat i * f$i * g$(n - (i - 1)))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3070 | by (intro sum.reindex_bij_witness[where i="\<lambda>x. x-1" and j="\<lambda>x. x+1"]) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3071 | ultimately have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3072 | "(f * fps_deriv g + fps_deriv f * g) $ n = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3073 | of_nat (Suc n) * f$0 * g$(Suc n) + | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3074 | (\<Sum>i=1..n. (of_nat (n - i + 1) + of_nat i) * f $ i * g $ (n - i + 1)) + | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3075 | of_nat (Suc n) * f$(Suc n) * g$0" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3076 | by (simp add: fps_mult_nth algebra_simps mult_of_nat_commute sum.atLeast_Suc_atMost sum.distrib) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3077 | moreover have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3078 |     "\<forall>i\<in>{1..n}.
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3079 | (of_nat (n - i + 1) + of_nat i) * f $ i * g $ (n - i + 1) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3080 | of_nat (n + 1) * f $ i * g $ (Suc n - i)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3081 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3082 |     fix i assume i: "i \<in> {1..n}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3083 | from i have "of_nat (n - i + 1) + (of_nat i :: 'a) = of_nat (n + 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3084 | using of_nat_add[of "n-i+1" i,symmetric] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3085 | moreover from i have "Suc n - i = n - i + 1" by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3086 | ultimately show "(of_nat (n - i + 1) + of_nat i) * f $ i * g $ (n - i + 1) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3087 | of_nat (n + 1) * f $ i * g $ (Suc n - i)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3088 | by simp | 
| 60558 | 3089 | qed | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3090 | ultimately have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3091 | "(f * fps_deriv g + fps_deriv f * g) $ n = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3092 | (\<Sum>i=0..Suc n. of_nat (Suc n) * f $ i * g $ (Suc n - i))" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3093 | by (simp add: sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3094 | with LHS show "fps_deriv (f * g) $ n = (f * fps_deriv g + fps_deriv f * g) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3095 | by simp | 
| 29687 | 3096 | qed | 
| 3097 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3098 | lemma fps_deriv_fps_X[simp]: "fps_deriv fps_X = 1" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3099 | by (simp add: fps_deriv_def fps_X_def fps_eq_iff) | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 3100 | |
| 54681 | 3101 | lemma fps_deriv_neg[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3102 | "fps_deriv (- (f:: 'a::ring_1 fps)) = - (fps_deriv f)" | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 3103 | by (simp add: fps_eq_iff fps_deriv_def) | 
| 52891 | 3104 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3105 | lemma fps_deriv_add[simp]: "fps_deriv (f + g) = fps_deriv f + fps_deriv g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3106 | by (auto intro: fps_ext simp: algebra_simps) | 
| 29687 | 3107 | |
| 54681 | 3108 | lemma fps_deriv_sub[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3109 | "fps_deriv ((f:: 'a::ring_1 fps) - g) = fps_deriv f - fps_deriv g" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53374diff
changeset | 3110 | using fps_deriv_add [of f "- g"] by simp | 
| 29687 | 3111 | |
| 3112 | lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 3113 | by (simp add: fps_ext fps_deriv_def fps_const_def) | 
| 29687 | 3114 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 3115 | lemma fps_deriv_of_nat [simp]: "fps_deriv (of_nat n) = 0" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 3116 | by (simp add: fps_of_nat [symmetric]) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 3117 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3118 | lemma fps_deriv_of_int [simp]: "fps_deriv (of_int n) = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3119 | by (simp add: fps_of_int [symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3120 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 3121 | lemma fps_deriv_numeral [simp]: "fps_deriv (numeral n) = 0" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 3122 | by (simp add: numeral_fps_const) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 3123 | |
| 48757 | 3124 | lemma fps_deriv_mult_const_left[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3125 | "fps_deriv (fps_const c * f) = fps_const c * fps_deriv f" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3126 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3127 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3128 | lemma fps_deriv_linear[simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3129 | "fps_deriv (fps_const a * f + fps_const b * g) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3130 | fps_const a * fps_deriv f + fps_const b * fps_deriv g" | 
| 29687 | 3131 | by simp | 
| 3132 | ||
| 3133 | lemma fps_deriv_0[simp]: "fps_deriv 0 = 0" | |
| 3134 | by (simp add: fps_deriv_def fps_eq_iff) | |
| 3135 | ||
| 3136 | lemma fps_deriv_1[simp]: "fps_deriv 1 = 0" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3137 | by (simp add: fps_deriv_def fps_eq_iff) | 
| 29687 | 3138 | |
| 48757 | 3139 | lemma fps_deriv_mult_const_right[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3140 | "fps_deriv (f * fps_const c) = fps_deriv f * fps_const c" | 
| 29687 | 3141 | by simp | 
| 3142 | ||
| 64267 | 3143 | lemma fps_deriv_sum: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3144 | "fps_deriv (sum f S) = sum (\<lambda>i. fps_deriv (f i)) S" | 
| 53195 | 3145 | proof (cases "finite S") | 
| 3146 | case False | |
| 3147 | then show ?thesis by simp | |
| 3148 | next | |
| 3149 | case True | |
| 3150 | show ?thesis by (induct rule: finite_induct [OF True]) simp_all | |
| 29687 | 3151 | qed | 
| 3152 | ||
| 52902 | 3153 | lemma fps_deriv_eq_0_iff [simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3154 |   "fps_deriv f = 0 \<longleftrightarrow> f = fps_const (f$0 :: 'a::{semiring_no_zero_divisors,semiring_char_0})"
 | 
| 60501 | 3155 | proof | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3156 | assume f: "fps_deriv f = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3157 | show "f = fps_const (f$0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3158 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3159 | fix n show "f $ n = fps_const (f$0) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3160 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3161 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3162 | have "(of_nat (Suc m) :: 'a) \<noteq> 0" by (rule of_nat_neq_0) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3163 | with f Suc show ?thesis using fps_deriv_nth[of f] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3164 | qed simp | 
| 60501 | 3165 | qed | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3166 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3167 | show "f = fps_const (f$0) \<Longrightarrow> fps_deriv f = 0" using fps_deriv_const[of "f$0"] by simp | 
| 29687 | 3168 | qed | 
| 3169 | ||
| 30488 | 3170 | lemma fps_deriv_eq_iff: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3171 |   fixes f g :: "'a::{ring_1_no_zero_divisors,semiring_char_0} fps"
 | 
| 29687 | 3172 | shows "fps_deriv f = fps_deriv g \<longleftrightarrow> (f = fps_const(f$0 - g$0) + g)" | 
| 52891 | 3173 | proof - | 
| 52903 | 3174 | have "fps_deriv f = fps_deriv g \<longleftrightarrow> fps_deriv (f - g) = 0" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3175 | using fps_deriv_sub[of f g] | 
| 52903 | 3176 | by simp | 
| 54681 | 3177 | also have "\<dots> \<longleftrightarrow> f - g = fps_const ((f - g) $ 0)" | 
| 52903 | 3178 | unfolding fps_deriv_eq_0_iff .. | 
| 60501 | 3179 | finally show ?thesis | 
| 3180 | by (simp add: field_simps) | |
| 29687 | 3181 | qed | 
| 3182 | ||
| 48757 | 3183 | lemma fps_deriv_eq_iff_ex: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3184 |   fixes f g :: "'a::{ring_1_no_zero_divisors,semiring_char_0} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3185 | shows "(fps_deriv f = fps_deriv g) \<longleftrightarrow> (\<exists>c. f = fps_const c + g)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3186 | by (auto simp: fps_deriv_eq_iff) | 
| 48757 | 3187 | |
| 3188 | ||
| 54681 | 3189 | fun fps_nth_deriv :: "nat \<Rightarrow> 'a::semiring_1 fps \<Rightarrow> 'a fps" | 
| 48757 | 3190 | where | 
| 29687 | 3191 | "fps_nth_deriv 0 f = f" | 
| 3192 | | "fps_nth_deriv (Suc n) f = fps_nth_deriv n (fps_deriv f)" | |
| 3193 | ||
| 3194 | lemma fps_nth_deriv_commute: "fps_nth_deriv (Suc n) f = fps_deriv (fps_nth_deriv n f)" | |
| 48757 | 3195 | by (induct n arbitrary: f) auto | 
| 3196 | ||
| 3197 | lemma fps_nth_deriv_linear[simp]: | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3198 | "fps_nth_deriv n (fps_const a * f + fps_const b * g) = | 
| 48757 | 3199 | fps_const a * fps_nth_deriv n f + fps_const b * fps_nth_deriv n g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3200 | by (induct n arbitrary: f g) auto | 
| 48757 | 3201 | |
| 3202 | lemma fps_nth_deriv_neg[simp]: | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3203 | "fps_nth_deriv n (- (f :: 'a::ring_1 fps)) = - (fps_nth_deriv n f)" | 
| 48757 | 3204 | by (induct n arbitrary: f) simp_all | 
| 3205 | ||
| 3206 | lemma fps_nth_deriv_add[simp]: | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3207 | "fps_nth_deriv n ((f :: 'a::ring_1 fps) + g) = fps_nth_deriv n f + fps_nth_deriv n g" | 
| 29687 | 3208 | using fps_nth_deriv_linear[of n 1 f 1 g] by simp | 
| 3209 | ||
| 48757 | 3210 | lemma fps_nth_deriv_sub[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3211 | "fps_nth_deriv n ((f :: 'a::ring_1 fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53374diff
changeset | 3212 | using fps_nth_deriv_add [of n f "- g"] by simp | 
| 29687 | 3213 | |
| 3214 | lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0" | |
| 48757 | 3215 | by (induct n) simp_all | 
| 29687 | 3216 | |
| 3217 | lemma fps_nth_deriv_1[simp]: "fps_nth_deriv n 1 = (if n = 0 then 1 else 0)" | |
| 48757 | 3218 | by (induct n) simp_all | 
| 3219 | ||
| 3220 | lemma fps_nth_deriv_const[simp]: | |
| 3221 | "fps_nth_deriv n (fps_const c) = (if n = 0 then fps_const c else 0)" | |
| 3222 | by (cases n) simp_all | |
| 3223 | ||
| 3224 | lemma fps_nth_deriv_mult_const_left[simp]: | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3225 | "fps_nth_deriv n (fps_const c * f) = fps_const c * fps_nth_deriv n f" | 
| 29687 | 3226 | using fps_nth_deriv_linear[of n "c" f 0 0 ] by simp | 
| 3227 | ||
| 48757 | 3228 | lemma fps_nth_deriv_mult_const_right[simp]: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3229 | "fps_nth_deriv n (f * fps_const c) = fps_nth_deriv n f * fps_const c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3230 | by (induct n arbitrary: f) auto | 
| 29687 | 3231 | |
| 64267 | 3232 | lemma fps_nth_deriv_sum: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3233 | "fps_nth_deriv n (sum f S) = sum (\<lambda>i. fps_nth_deriv n (f i :: 'a::ring_1 fps)) S" | 
| 52903 | 3234 | proof (cases "finite S") | 
| 3235 | case True | |
| 3236 | show ?thesis by (induct rule: finite_induct [OF True]) simp_all | |
| 3237 | next | |
| 3238 | case False | |
| 3239 | then show ?thesis by simp | |
| 29687 | 3240 | qed | 
| 3241 | ||
| 48757 | 3242 | lemma fps_deriv_maclauren_0: | 
| 54681 | 3243 | "(fps_nth_deriv k (f :: 'a::comm_semiring_1 fps)) $ 0 = of_nat (fact k) * f $ k" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3244 | by (induct k arbitrary: f) (simp_all add: field_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3245 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3246 | lemma fps_deriv_lr_inverse: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3247 | fixes x y :: "'a::ring_1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3248 | assumes "x * f$0 = 1" "f$0 * y = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3249 | \<comment> \<open>These assumptions imply x equals y, but no need to assume that.\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3250 | shows "fps_deriv (fps_left_inverse f x) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3251 | - fps_left_inverse f x * fps_deriv f * fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3252 | and "fps_deriv (fps_right_inverse f y) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3253 | - fps_right_inverse f y * fps_deriv f * fps_right_inverse f y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3254 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3255 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3256 | define L where "L \<equiv> fps_left_inverse f x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3257 | hence "fps_deriv (L * f) = 0" using fps_left_inverse[OF assms(1)] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3258 | with assms show "fps_deriv L = - L * fps_deriv f * L" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3259 | using fps_right_inverse'[OF assms] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3260 | by (simp add: minus_unique mult.assoc L_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3261 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3262 | define R where "R \<equiv> fps_right_inverse f y" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3263 | hence "fps_deriv (f * R) = 0" using fps_right_inverse[OF assms(2)] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3264 | hence 1: "f * fps_deriv R + fps_deriv f * R = 0" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3265 | have "R * f * fps_deriv R = - R * fps_deriv f * R" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3266 | using iffD2[OF eq_neg_iff_add_eq_0, OF 1] by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3267 | thus "fps_deriv R = - R * fps_deriv f * R" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3268 | using fps_left_inverse'[OF assms] by (simp add: R_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3269 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3270 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3271 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3272 | lemma fps_deriv_lr_inverse_comm: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3273 | fixes x :: "'a::comm_ring_1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3274 | assumes "x * f$0 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3275 | shows "fps_deriv (fps_left_inverse f x) = - fps_deriv f * (fps_left_inverse f x)\<^sup>2" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3276 | and "fps_deriv (fps_right_inverse f x) = - fps_deriv f * (fps_right_inverse f x)\<^sup>2" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3277 | using assms fps_deriv_lr_inverse[of x f x] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3278 | by (simp_all add: mult.commute power2_eq_square) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3279 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3280 | lemma fps_inverse_deriv_divring: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3281 | fixes a :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3282 | assumes "a$0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3283 | shows "fps_deriv (inverse a) = - inverse a * fps_deriv a * inverse a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3284 | using assms fps_deriv_lr_inverse(2)[of "inverse (a$0)" a "inverse (a$0)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3285 | by (simp add: fps_inverse_def) | 
| 29687 | 3286 | |
| 30488 | 3287 | lemma fps_inverse_deriv: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3288 | fixes a :: "'a::field fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3289 | assumes "a$0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3290 | shows "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3291 | using assms fps_deriv_lr_inverse_comm(2)[of "inverse (a$0)" a] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3292 | by (simp add: fps_inverse_def) | 
| 29687 | 3293 | |
| 30488 | 3294 | lemma fps_inverse_deriv': | 
| 54681 | 3295 | fixes a :: "'a::field fps" | 
| 60501 | 3296 | assumes a0: "a $ 0 \<noteq> 0" | 
| 53077 | 3297 | shows "fps_deriv (inverse a) = - fps_deriv a / a\<^sup>2" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3298 | using fps_inverse_deriv[OF a0] a0 | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3299 | by (simp add: fps_divide_unit power2_eq_square fps_inverse_mult) | 
| 29687 | 3300 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3301 | (* FIXME: The last part of this proof should go through by simp once we have a proper | 
| 61804 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3302 | theorem collection for simplifying division on rings *) | 
| 52902 | 3303 | lemma fps_divide_deriv: | 
| 61804 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3304 | assumes "b dvd (a :: 'a :: field fps)" | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3305 | shows "fps_deriv (a / b) = (fps_deriv a * b - a * fps_deriv b) / b^2" | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3306 | proof - | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3307 | have eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b div c" for a b c :: "'a :: field fps" | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3308 | by (drule sym) (simp add: mult.assoc) | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3309 | from assms have "a = a / b * b" by simp | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3310 | also have "fps_deriv (a / b * b) = fps_deriv (a / b) * b + a / b * fps_deriv b" by simp | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3311 | finally have "fps_deriv (a / b) * b^2 = fps_deriv a * b - a * fps_deriv b" using assms | 
| 
67381557cee8
Generalised derivative rule for division on formal power series
 eberlm parents: 
61799diff
changeset | 3312 | by (simp add: power2_eq_square algebra_simps) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3313 | thus ?thesis by (cases "b = 0") (simp_all add: eq_divide_imp) | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 3314 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 3315 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3316 | lemma fps_nth_deriv_fps_X[simp]: "fps_nth_deriv n fps_X = (if n = 0 then fps_X else if n=1 then 1 else 0)" | 
| 52902 | 3317 | by (cases n) simp_all | 
| 29687 | 3318 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3319 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3320 | subsection \<open>Powers\<close> | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3321 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3322 | lemma fps_power_zeroth: "(a^n) $ 0 = (a$0)^n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3323 | by (induct n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3324 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3325 | lemma fps_power_zeroth_eq_one: "a$0 = 1 \<Longrightarrow> a^n $ 0 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3326 | by (simp add: fps_power_zeroth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3327 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3328 | lemma fps_power_first: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3329 | fixes a :: "'a::comm_semiring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3330 | shows "(a^n) $ 1 = of_nat n * (a$0)^(n-1) * a$1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3331 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3332 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3333 | have "(a ^ Suc m) $ 1 = of_nat (Suc m) * (a$0)^(Suc m - 1) * a$1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3334 | proof (induct m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3335 | case (Suc k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3336 | hence "(a ^ Suc (Suc k)) $ 1 = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3337 | a$0 * of_nat (Suc k) * (a $ 0)^k * a$1 + a$1 * ((a$0)^(Suc k))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3338 | using fps_mult_nth_1[of a] by (simp add: fps_power_zeroth[symmetric] mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3339 | thus ?case by (simp add: algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3340 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3341 | with Suc show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3342 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3343 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3344 | lemma fps_power_first_eq: "a $ 0 = 1 \<Longrightarrow> a^n $ 1 = of_nat n * a$1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3345 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3346 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3347 | show ?case unfolding power_Suc fps_mult_nth | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3348 | using Suc.hyps[OF \<open>a$0 = 1\<close>] \<open>a$0 = 1\<close> fps_power_zeroth_eq_one[OF \<open>a$0=1\<close>] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3349 | by (simp add: algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3350 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3351 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3352 | lemma fps_power_first_eq': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3353 | assumes "a $ 1 = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3354 | shows "a^n $ 1 = of_nat n * (a$0)^(n-1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3355 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3356 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3357 | from assms have "(a ^ Suc m) $ 1 = of_nat (Suc m) * (a$0)^(Suc m - 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3358 | using fps_mult_nth_1[of a] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3359 | by (induct m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3360 | (simp_all add: algebra_simps mult_of_nat_commute fps_power_zeroth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3361 | with Suc show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3362 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3363 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3364 | lemmas startsby_one_power = fps_power_zeroth_eq_one | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3365 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3366 | lemma startsby_zero_power: "a $ 0 = 0 \<Longrightarrow> n > 0 \<Longrightarrow> a^n $0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3367 | by (simp add: fps_power_zeroth zero_power) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3368 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3369 | lemma startsby_power: "a $0 = v \<Longrightarrow> a^n $0 = v^n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3370 | by (simp add: fps_power_zeroth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3371 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3372 | lemma startsby_nonzero_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3373 | fixes a :: "'a::semiring_1_no_zero_divisors fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3374 | shows "a $ 0 \<noteq> 0 \<Longrightarrow> a^n $ 0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3375 | by (simp add: startsby_power) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3376 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3377 | lemma startsby_zero_power_iff[simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3378 | "a^n $0 = (0::'a::semiring_1_no_zero_divisors) \<longleftrightarrow> n \<noteq> 0 \<and> a$0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3379 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3380 | show "a ^ n $ 0 = 0 \<Longrightarrow> n \<noteq> 0 \<and> a $ 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3381 | proof | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3382 | assume a: "a^n $ 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3383 | thus "a $ 0 = 0" using startsby_nonzero_power by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3384 | have "n = 0 \<Longrightarrow> a^n $ 0 = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3385 | with a show "n \<noteq> 0" by fastforce | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3386 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3387 | show "n \<noteq> 0 \<and> a $ 0 = 0 \<Longrightarrow> a ^ n $ 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3388 | by (cases n) auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3389 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3390 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3391 | lemma startsby_zero_power_prefix: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3392 | assumes a0: "a $ 0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3393 | shows "\<forall>n < k. a ^ k $ n = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3394 | proof (induct k rule: nat_less_induct, clarify) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3395 | case (1 k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3396 | fix j :: nat assume j: "j < k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3397 | show "a ^ k $ j = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3398 | proof (cases k) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3399 | case 0 with j show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3400 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3401 | case (Suc i) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3402 |     with 1 j have "\<forall>m\<in>{0<..j}. a ^ i $ (j - m) = 0" by auto
 | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3403 | with Suc a0 show ?thesis by (simp add: fps_mult_nth sum.atLeast_Suc_atMost) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3404 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3405 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3406 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3407 | lemma startsby_zero_sum_depends: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3408 | assumes a0: "a $0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3409 | and kn: "n \<ge> k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3410 |   shows "sum (\<lambda>i. (a ^ i)$k) {0 .. n} = sum (\<lambda>i. (a ^ i)$k) {0 .. k}"
 | 
| 72686 | 3411 | proof (intro strip sum.mono_neutral_right) | 
| 3412 |   show "\<And>i. i \<in> {0..n} - {0..k} \<Longrightarrow> a ^ i $ k = 0"
 | |
| 3413 | by (simp add: a0 startsby_zero_power_prefix) | |
| 3414 | qed (use kn in auto) | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3415 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3416 | lemma startsby_zero_power_nth_same: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3417 | assumes a0: "a$0 = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3418 | shows "a^n $ n = (a$1) ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3419 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3420 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3421 |   have "\<forall>i\<in>{Suc 1..Suc n}. a ^ n $ (Suc n - i) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3422 | using a0 startsby_zero_power_prefix[of a n] by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3423 | thus ?case | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3424 | using a0 Suc sum.atLeast_Suc_atMost[of 0 "Suc n" "\<lambda>i. a $ i * a ^ n $ (Suc n - i)"] | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3425 | sum.atLeast_Suc_atMost[of 1 "Suc n" "\<lambda>i. a $ i * a ^ n $ (Suc n - i)"] | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3426 | by (simp add: fps_mult_nth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3427 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3428 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3429 | lemma fps_lr_inverse_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3430 | fixes a :: "'a::ring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3431 | assumes "x * a$0 = 1" "a$0 * x = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3432 | shows "fps_left_inverse (a^n) (x^n) = fps_left_inverse a x ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3433 | and "fps_right_inverse (a^n) (x^n) = fps_right_inverse a x ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3434 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3435 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3436 | from assms have xn: "\<And>n. x^n * (a^n $ 0) = 1" "\<And>n. (a^n $ 0) * x^n = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3437 | by (simp_all add: left_right_inverse_power fps_power_zeroth) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3438 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3439 | show "fps_left_inverse (a^n) (x^n) = fps_left_inverse a x ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3440 | proof (induct n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3441 | case 0 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3442 | then show ?case by (simp add: fps_lr_inverse_one_one(1)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3443 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3444 | case (Suc n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3445 | with assms show ?case | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3446 | using xn fps_lr_inverse_mult_ring1(1)[of x a "x^n" "a^n"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3447 | by (simp add: power_Suc2[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3448 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3449 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3450 | moreover have "fps_right_inverse (a^n) (x^n) = fps_left_inverse (a^n) (x^n)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3451 | using xn by (intro fps_left_inverse_eq_fps_right_inverse[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3452 | moreover have "fps_right_inverse a x = fps_left_inverse a x" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3453 | using assms by (intro fps_left_inverse_eq_fps_right_inverse[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3454 | ultimately show "fps_right_inverse (a^n) (x^n) = fps_right_inverse a x ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3455 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3456 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3457 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3458 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3459 | lemma fps_inverse_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3460 | fixes a :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3461 | shows "inverse (a^n) = inverse a ^ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3462 | proof (cases "n=0" "a$0 = 0" rule: case_split[case_product case_split]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3463 | case False_True | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3464 | hence LHS: "inverse (a^n) = 0" and RHS: "inverse a ^ n = 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3465 | by (simp_all add: startsby_zero_power) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3466 | show ?thesis using trans_sym[OF LHS RHS] by fast | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3467 | next | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3468 | case False_False | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3469 | from False_False(2) show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3470 | by (simp add: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3471 | fps_inverse_def fps_power_zeroth power_inverse fps_lr_inverse_power(2)[symmetric] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3472 | ) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3473 | qed auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3474 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3475 | lemma fps_deriv_power': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3476 | fixes a :: "'a::comm_semiring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3477 | shows "fps_deriv (a ^ n) = (of_nat n) * fps_deriv a * a ^ (n - 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3478 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3479 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3480 | moreover have "fps_deriv (a^Suc m) = of_nat (Suc m) * fps_deriv a * a^m" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3481 | by (induct m) (simp_all add: algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3482 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3483 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3484 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3485 | lemma fps_deriv_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3486 | fixes a :: "'a::comm_semiring_1 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3487 | shows "fps_deriv (a ^ n) = fps_const (of_nat n) * fps_deriv a * a ^ (n - 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3488 | by (simp add: fps_deriv_power' fps_of_nat) | 
| 29687 | 3489 | |
| 30488 | 3490 | |
| 60501 | 3491 | subsection \<open>Integration\<close> | 
| 31273 | 3492 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3493 | definition fps_integral :: "'a::{semiring_1,inverse} fps \<Rightarrow> 'a \<Rightarrow> 'a fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3494 | where "fps_integral a a0 = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3495 | Abs_fps (\<lambda>n. if n=0 then a0 else inverse (of_nat n) * a$(n - 1))" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3496 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3497 | abbreviation "fps_integral0 a \<equiv> fps_integral a 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3498 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3499 | lemma fps_integral_nth_0_Suc [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3500 |   fixes a :: "'a::{semiring_1,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3501 | shows "fps_integral a a0 $ 0 = a0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3502 | and "fps_integral a a0 $ Suc n = inverse (of_nat (Suc n)) * a $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3503 | by (auto simp: fps_integral_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3504 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3505 | lemma fps_integral_conv_plus_const: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3506 | "fps_integral a a0 = fps_integral a 0 + fps_const a0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3507 | unfolding fps_integral_def by (intro fps_ext) simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3508 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3509 | lemma fps_deriv_fps_integral: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3510 |   fixes a :: "'a::{division_ring,ring_char_0} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3511 | shows "fps_deriv (fps_integral a a0) = a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3512 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3513 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3514 | have "(of_nat (Suc n) :: 'a) \<noteq> 0" by (rule of_nat_neq_0) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3515 | hence "of_nat (Suc n) * inverse (of_nat (Suc n) :: 'a) = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3516 | moreover have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3517 | "fps_deriv (fps_integral a a0) $ n = of_nat (Suc n) * inverse (of_nat (Suc n)) * a $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3518 | by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3519 | ultimately show "fps_deriv (fps_integral a a0) $ n = a $ n" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3520 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3521 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3522 | lemma fps_integral0_deriv: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3523 |   fixes a :: "'a::{division_ring,ring_char_0} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3524 | shows "fps_integral0 (fps_deriv a) = a - fps_const (a$0)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3525 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3526 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3527 | show "fps_integral0 (fps_deriv a) $ n = (a - fps_const (a$0)) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3528 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3529 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3530 | have "(of_nat (Suc m) :: 'a) \<noteq> 0" by (rule of_nat_neq_0) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3531 | hence "inverse (of_nat (Suc m) :: 'a) * of_nat (Suc m) = 1" by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3532 | moreover have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3533 | "fps_integral0 (fps_deriv a) $ Suc m = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3534 | inverse (of_nat (Suc m)) * of_nat (Suc m) * a $ (Suc m)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3535 | by (simp add: mult.assoc) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3536 | ultimately show ?thesis using Suc by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3537 | qed simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3538 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3539 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3540 | lemma fps_integral_deriv: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3541 |   fixes a :: "'a::{division_ring,ring_char_0} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3542 | shows "fps_integral (fps_deriv a) (a$0) = a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3543 | using fps_integral_conv_plus_const[of "fps_deriv a" "a$0"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3544 | by (simp add: fps_integral0_deriv) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3545 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3546 | lemma fps_integral0_zero: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3547 |   "fps_integral0 (0::'a::{semiring_1,inverse} fps) = 0"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3548 | by (intro fps_ext) (simp add: fps_integral_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3549 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3550 | lemma fps_integral0_fps_const': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3551 |   fixes   c :: "'a::{semiring_1,inverse}"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3552 | assumes "inverse (1::'a) = 1" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3553 | shows "fps_integral0 (fps_const c) = fps_const c * fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3554 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3555 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3556 | show "fps_integral0 (fps_const c) $ n = (fps_const c * fps_X) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3557 | by (cases n) (simp_all add: assms mult_delta_right) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3558 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3559 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3560 | lemma fps_integral0_fps_const: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3561 | fixes c :: "'a::division_ring" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3562 | shows "fps_integral0 (fps_const c) = fps_const c * fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3563 | by (rule fps_integral0_fps_const'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3564 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3565 | lemma fps_integral0_one': | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3566 |   assumes "inverse (1::'a::{semiring_1,inverse}) = 1"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3567 | shows "fps_integral0 (1::'a fps) = fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3568 | using assms fps_integral0_fps_const'[of "1::'a"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3569 | by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3570 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3571 | lemma fps_integral0_one: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3572 | "fps_integral0 (1::'a::division_ring fps) = fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3573 | by (rule fps_integral0_one'[OF inverse_1]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3574 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3575 | lemma fps_integral0_fps_const_mult_left: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3576 | fixes a :: "'a::division_ring fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3577 | shows "fps_integral0 (fps_const c * a) = fps_const c * fps_integral0 a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3578 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3579 | fix n | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3580 | show "fps_integral0 (fps_const c * a) $ n = (fps_const c * fps_integral0 a) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3581 | using mult_inverse_of_nat_commute[of n c, symmetric] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3582 | mult.assoc[of "inverse (of_nat n)" c "a$(n-1)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3583 | mult.assoc[of c "inverse (of_nat n)" "a$(n-1)"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3584 | by (simp add: fps_integral_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3585 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3586 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3587 | lemma fps_integral0_fps_const_mult_right: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3588 |   fixes a :: "'a::{semiring_1,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3589 | shows "fps_integral0 (a * fps_const c) = fps_integral0 a * fps_const c" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3590 | by (intro fps_ext) (simp add: fps_integral_def algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3591 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3592 | lemma fps_integral0_neg: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3593 |   fixes a :: "'a::{ring_1,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3594 | shows "fps_integral0 (-a) = - fps_integral0 a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3595 | using fps_integral0_fps_const_mult_right[of a "-1"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3596 | by (simp add: fps_const_neg[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3597 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3598 | lemma fps_integral0_add: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3599 | "fps_integral0 (a+b) = fps_integral0 a + fps_integral0 b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3600 | by (intro fps_ext) (simp add: fps_integral_def algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3601 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3602 | lemma fps_integral0_linear: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3603 | fixes a b :: "'a::division_ring" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3604 | shows "fps_integral0 (fps_const a * f + fps_const b * g) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3605 | fps_const a * fps_integral0 f + fps_const b * fps_integral0 g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3606 | by (simp add: fps_integral0_add fps_integral0_fps_const_mult_left) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3607 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3608 | lemma fps_integral0_linear2: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3609 | "fps_integral0 (f * fps_const a + g * fps_const b) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3610 | fps_integral0 f * fps_const a + fps_integral0 g * fps_const b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3611 | by (simp add: fps_integral0_add fps_integral0_fps_const_mult_right) | 
| 29687 | 3612 | |
| 31273 | 3613 | lemma fps_integral_linear: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3614 | fixes a b a0 b0 :: "'a::division_ring" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3615 | shows | 
| 31273 | 3616 | "fps_integral (fps_const a * f + fps_const b * g) (a*a0 + b*b0) = | 
| 3617 | fps_const a * fps_integral f a0 + fps_const b * fps_integral g b0" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3618 | using fps_integral_conv_plus_const[of | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3619 | "fps_const a * f + fps_const b * g" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3620 | "a*a0 + b*b0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3621 | ] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3622 | fps_integral_conv_plus_const[of f a0] fps_integral_conv_plus_const[of g b0] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3623 | by (simp add: fps_integral0_linear algebra_simps) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3624 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3625 | lemma fps_integral0_sub: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3626 |   fixes a b :: "'a::{ring_1,inverse} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3627 | shows "fps_integral0 (a-b) = fps_integral0 a - fps_integral0 b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3628 | using fps_integral0_linear2[of a 1 b "-1"] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3629 | by (simp add: fps_const_neg[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3630 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3631 | lemma fps_integral0_of_nat: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3632 | "fps_integral0 (of_nat n :: 'a::division_ring fps) = of_nat n * fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3633 | using fps_integral0_fps_const[of "of_nat n :: 'a"] by (simp add: fps_of_nat) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3634 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3635 | lemma fps_integral0_sum: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3636 | "fps_integral0 (sum f S) = sum (\<lambda>i. fps_integral0 (f i)) S" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3637 | proof (cases "finite S") | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3638 | case True show ?thesis | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3639 | by (induct rule: finite_induct [OF True]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3640 | (simp_all add: fps_integral0_zero fps_integral0_add) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3641 | qed (simp add: fps_integral0_zero) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3642 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3643 | lemma fps_integral0_by_parts: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3644 |   fixes a b :: "'a::{division_ring,ring_char_0} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3645 | shows | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3646 | "fps_integral0 (a * b) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3647 | a * fps_integral0 b - fps_integral0 (fps_deriv a * fps_integral0 b)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3648 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3649 | have "fps_integral0 (fps_deriv (a * fps_integral0 b)) = a * fps_integral0 b" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3650 | using fps_integral0_deriv[of "(a * fps_integral0 b)"] by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3651 | moreover have | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3652 | "fps_integral0 (a * b) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3653 | fps_integral0 (fps_deriv (a * fps_integral0 b)) - | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3654 | fps_integral0 (fps_deriv a * fps_integral0 b)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3655 | by (auto simp: fps_deriv_fps_integral fps_integral0_sub[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3656 | ultimately show ?thesis by simp | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3657 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3658 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3659 | lemma fps_integral0_fps_X: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3660 |   "fps_integral0 (fps_X::'a::{semiring_1,inverse} fps) =
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3661 | fps_const (inverse (of_nat 2)) * fps_X\<^sup>2" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3662 | by (intro fps_ext) (auto simp: fps_integral_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3663 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3664 | lemma fps_integral0_fps_X_power: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3665 |   "fps_integral0 ((fps_X::'a::{semiring_1,inverse} fps) ^ n) =
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3666 | fps_const (inverse (of_nat (Suc n))) * fps_X ^ Suc n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3667 | proof (intro fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3668 | fix k show | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3669 | "fps_integral0 ((fps_X::'a fps) ^ n) $ k = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3670 | (fps_const (inverse (of_nat (Suc n))) * fps_X ^ Suc n) $ k" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3671 | by (cases k) simp_all | 
| 29687 | 3672 | qed | 
| 30488 | 3673 | |
| 53195 | 3674 | |
| 60500 | 3675 | subsection \<open>Composition of FPSs\<close> | 
| 53195 | 3676 | |
| 60501 | 3677 | definition fps_compose :: "'a::semiring_1 fps \<Rightarrow> 'a fps \<Rightarrow> 'a fps" (infixl "oo" 55) | 
| 64267 | 3678 |   where "a oo b = Abs_fps (\<lambda>n. sum (\<lambda>i. a$i * (b^i$n)) {0..n})"
 | 
| 3679 | ||
| 3680 | lemma fps_compose_nth: "(a oo b)$n = sum (\<lambda>i. a$i * (b^i$n)) {0..n}"
 | |
| 48757 | 3681 | by (simp add: fps_compose_def) | 
| 29687 | 3682 | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3683 | lemma fps_compose_nth_0 [simp]: "(f oo g) $ 0 = f $ 0" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3684 | by (simp add: fps_compose_nth) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 3685 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3686 | lemma fps_compose_fps_X[simp]: "a oo fps_X = (a :: 'a::comm_ring_1 fps)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3687 | by (simp add: fps_ext fps_compose_def mult_delta_right) | 
| 30488 | 3688 | |
| 60501 | 3689 | lemma fps_const_compose[simp]: "fps_const (a::'a::comm_ring_1) oo b = fps_const a" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3690 | by (simp add: fps_eq_iff fps_compose_nth mult_delta_left) | 
| 29687 | 3691 | |
| 54681 | 3692 | lemma numeral_compose[simp]: "(numeral k :: 'a::comm_ring_1 fps) oo b = numeral k" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46757diff
changeset | 3693 | unfolding numeral_fps_const by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46757diff
changeset | 3694 | |
| 54681 | 3695 | lemma neg_numeral_compose[simp]: "(- numeral k :: 'a::comm_ring_1 fps) oo b = - numeral k" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46757diff
changeset | 3696 | unfolding neg_numeral_fps_const by simp | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 3697 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3698 | lemma fps_X_fps_compose_startby0[simp]: "a$0 = 0 \<Longrightarrow> fps_X oo a = (a :: 'a::comm_ring_1 fps)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3699 | by (simp add: fps_eq_iff fps_compose_def mult_delta_left not_le) | 
| 29687 | 3700 | |
| 3701 | ||
| 60500 | 3702 | subsection \<open>Rules from Herbert Wilf's Generatingfunctionology\<close> | 
| 3703 | ||
| 3704 | subsubsection \<open>Rule 1\<close> | |
| 64267 | 3705 |   (* {a_{n+k}}_0^infty Corresponds to (f - sum (\<lambda>i. a_i * x^i))/x^h, for h>0*)
 | 
| 29687 | 3706 | |
| 30488 | 3707 | lemma fps_power_mult_eq_shift: | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3708 | "fps_X^Suc k * Abs_fps (\<lambda>n. a (n + Suc k)) = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3709 |     Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a::comm_ring_1) * fps_X^i) {0 .. k}"
 | 
| 52902 | 3710 | (is "?lhs = ?rhs") | 
| 3711 | proof - | |
| 60501 | 3712 | have "?lhs $ n = ?rhs $ n" for n :: nat | 
| 3713 | proof - | |
| 30488 | 3714 | have "?lhs $ n = (if n < Suc k then 0 else a n)" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3715 | unfolding fps_X_power_mult_nth by auto | 
| 29687 | 3716 | also have "\<dots> = ?rhs $ n" | 
| 52902 | 3717 | proof (induct k) | 
| 3718 | case 0 | |
| 60501 | 3719 | then show ?case | 
| 64267 | 3720 | by (simp add: fps_sum_nth) | 
| 29687 | 3721 | next | 
| 3722 | case (Suc k) | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3723 |       have "(Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a) * fps_X^i) {0 .. Suc k})$n =
 | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3724 |         (Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a) * fps_X^i) {0 .. k} -
 | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3725 | fps_const (a (Suc k)) * fps_X^ Suc k) $ n" | 
| 52902 | 3726 | by (simp add: field_simps) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3727 | also have "\<dots> = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * fps_X^ Suc k)$n" | 
| 60501 | 3728 | using Suc.hyps[symmetric] unfolding fps_sub_nth by simp | 
| 29687 | 3729 | also have "\<dots> = (if n < Suc (Suc k) then 0 else a n)" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3730 | unfolding fps_X_power_mult_right_nth | 
| 72686 | 3731 | by (simp add: not_less le_less_Suc_eq) | 
| 60501 | 3732 | finally show ?case | 
| 3733 | by simp | |
| 29687 | 3734 | qed | 
| 60501 | 3735 | finally show ?thesis . | 
| 3736 | qed | |
| 3737 | then show ?thesis | |
| 3738 | by (simp add: fps_eq_iff) | |
| 29687 | 3739 | qed | 
| 3740 | ||
| 53195 | 3741 | |
| 60500 | 3742 | subsubsection \<open>Rule 2\<close> | 
| 29687 | 3743 | |
| 3744 | (* We can not reach the form of Wilf, but still near to it using rewrite rules*) | |
| 30488 | 3745 |   (* If f reprents {a_n} and P is a polynomial, then
 | 
| 29687 | 3746 |         P(xD) f represents {P(n) a_n}*)
 | 
| 3747 | ||
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68975diff
changeset | 3748 | definition "fps_XD = (*) fps_X \<circ> fps_deriv" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3749 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3750 | lemma fps_XD_add[simp]:"fps_XD (a + b) = fps_XD a + fps_XD (b :: 'a::comm_ring_1 fps)" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3751 | by (simp add: fps_XD_def field_simps) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3752 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3753 | lemma fps_XD_mult_const[simp]:"fps_XD (fps_const (c::'a::comm_ring_1) * a) = fps_const c * fps_XD a" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3754 | by (simp add: fps_XD_def field_simps) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3755 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3756 | lemma fps_XD_linear[simp]: "fps_XD (fps_const c * a + fps_const d * b) = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3757 | fps_const c * fps_XD a + fps_const d * fps_XD (b :: 'a::comm_ring_1 fps)" | 
| 29687 | 3758 | by simp | 
| 3759 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3760 | lemma fps_XDN_linear: | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3761 | "(fps_XD ^^ n) (fps_const c * a + fps_const d * b) = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3762 | fps_const c * (fps_XD ^^ n) a + fps_const d * (fps_XD ^^ n) (b :: 'a::comm_ring_1 fps)" | 
| 48757 | 3763 | by (induct n) simp_all | 
| 29687 | 3764 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3765 | lemma fps_mult_fps_X_deriv_shift: "fps_X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a$n)" | 
| 52902 | 3766 | by (simp add: fps_eq_iff) | 
| 29687 | 3767 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3768 | lemma fps_mult_fps_XD_shift: | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3769 | "(fps_XD ^^ k) (a :: 'a::comm_ring_1 fps) = Abs_fps (\<lambda>n. (of_nat n ^ k) * a$n)" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3770 | by (induct k arbitrary: a) (simp_all add: fps_XD_def fps_eq_iff field_simps del: One_nat_def) | 
| 29687 | 3771 | |
| 53195 | 3772 | |
| 60501 | 3773 | subsubsection \<open>Rule 3\<close> | 
| 3774 | ||
| 61585 | 3775 | text \<open>Rule 3 is trivial and is given by \<open>fps_times_def\<close>.\<close> | 
| 60501 | 3776 | |
| 60500 | 3777 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3778 | subsubsection \<open>Rule 5 --- summation and "division" by (1 - fps_X)\<close> | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3779 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3780 | lemma fps_divide_fps_X_minus1_sum_lemma: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3781 |   "a = ((1::'a::ring_1 fps) - fps_X) * Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3782 | proof (rule fps_ext) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3783 | define f g :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3784 | where "f \<equiv> 1 - fps_X" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3785 |     and   "g \<equiv> Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3786 | fix n show "a $ n= (f * g) $ n" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3787 | proof (cases n) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3788 | case (Suc m) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3789 | hence "(f * g) $ n = g $ Suc m - g $ m" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3790 | using fps_mult_nth[of f g "Suc m"] | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3791 | sum.atLeast_Suc_atMost[of 0 "Suc m" "\<lambda>i. f $ i * g $ (Suc m - i)"] | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69791diff
changeset | 3792 | sum.atLeast_Suc_atMost[of 1 "Suc m" "\<lambda>i. f $ i * g $ (Suc m - i)"] | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3793 | by (simp add: f_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3794 | with Suc show ?thesis by (simp add: g_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3795 | qed (simp add: f_def g_def) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3796 | qed | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3797 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3798 | lemma fps_divide_fps_X_minus1_sum_ring1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3799 |   assumes "inverse 1 = (1::'a::{ring_1,inverse})"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3800 |   shows   "a /((1::'a fps) - fps_X) = Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3801 | proof- | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3802 | from assms have "a /((1::'a fps) - fps_X) = a * Abs_fps (\<lambda>n. 1)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3803 | by (simp add: fps_divide_def fps_inverse_def fps_lr_inverse_one_minus_fps_X(2)) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3804 | thus ?thesis by (auto intro: fps_ext simp: fps_mult_nth) | 
| 29687 | 3805 | qed | 
| 3806 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 3807 | lemma fps_divide_fps_X_minus1_sum: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3808 |   "a /((1::'a::division_ring fps) - fps_X) = Abs_fps (\<lambda>n. sum (\<lambda>i. a $ i) {0..n})"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3809 | using fps_divide_fps_X_minus1_sum_ring1[of a] by simp | 
| 29687 | 3810 | |
| 53195 | 3811 | |
| 60501 | 3812 | subsubsection \<open>Rule 4 in its more general form: generalizes Rule 3 for an arbitrary | 
| 60500 | 3813 | finite product of FPS, also the relvant instance of powers of a FPS\<close> | 
| 29687 | 3814 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3815 | definition "natpermute n k = {l :: nat list. length l = k \<and> sum_list l = n}"
 | 
| 29687 | 3816 | |
| 3817 | lemma natlist_trivial_1: "natpermute n 1 = {[n]}"
 | |
| 72686 | 3818 | proof - | 
| 3819 | have "\<lbrakk>length xs = 1; n = sum_list xs\<rbrakk> \<Longrightarrow> xs = [sum_list xs]" for xs | |
| 3820 | by (cases xs) auto | |
| 3821 | then show ?thesis | |
| 3822 | by (auto simp add: natpermute_def) | |
| 3823 | qed | |
| 3824 | ||
| 3825 | lemma natlist_trivial_Suc0 [simp]: "natpermute n (Suc 0) = {[n]}"
 | |
| 3826 | using natlist_trivial_1 by force | |
| 29687 | 3827 | |
| 3828 | lemma append_natpermute_less_eq: | |
| 54452 | 3829 | assumes "xs @ ys \<in> natpermute n k" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3830 | shows "sum_list xs \<le> n" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3831 | and "sum_list ys \<le> n" | 
| 52902 | 3832 | proof - | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3833 | from assms have "sum_list (xs @ ys) = n" | 
| 54452 | 3834 | by (simp add: natpermute_def) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3835 | then have "sum_list xs + sum_list ys = n" | 
| 54452 | 3836 | by simp | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3837 | then show "sum_list xs \<le> n" and "sum_list ys \<le> n" | 
| 54452 | 3838 | by simp_all | 
| 29687 | 3839 | qed | 
| 3840 | ||
| 3841 | lemma natpermute_split: | |
| 54452 | 3842 | assumes "h \<le> k" | 
| 52902 | 3843 | shows "natpermute n k = | 
| 3844 |     (\<Union>m \<in>{0..n}. {l1 @ l2 |l1 l2. l1 \<in> natpermute m h \<and> l2 \<in> natpermute (n - m) (k - h)})"
 | |
| 60558 | 3845 |   (is "?L = ?R" is "_ = (\<Union>m \<in>{0..n}. ?S m)")
 | 
| 3846 | proof | |
| 3847 | show "?R \<subseteq> ?L" | |
| 3848 | proof | |
| 52902 | 3849 | fix l | 
| 3850 | assume l: "l \<in> ?R" | |
| 3851 |     from l obtain m xs ys where h: "m \<in> {0..n}"
 | |
| 3852 | and xs: "xs \<in> natpermute m h" | |
| 3853 | and ys: "ys \<in> natpermute (n - m) (k - h)" | |
| 3854 | and leq: "l = xs@ys" by blast | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3855 | from xs have xs': "sum_list xs = m" | 
| 52902 | 3856 | by (simp add: natpermute_def) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3857 | from ys have ys': "sum_list ys = n - m" | 
| 52902 | 3858 | by (simp add: natpermute_def) | 
| 60558 | 3859 | show "l \<in> ?L" using leq xs ys h | 
| 72686 | 3860 | using assms by (force simp add: natpermute_def) | 
| 60558 | 3861 | qed | 
| 3862 | show "?L \<subseteq> ?R" | |
| 3863 | proof | |
| 52902 | 3864 | fix l | 
| 3865 | assume l: "l \<in> natpermute n k" | |
| 29687 | 3866 | let ?xs = "take h l" | 
| 3867 | let ?ys = "drop h l" | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3868 | let ?m = "sum_list ?xs" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3869 | from l have ls: "sum_list (?xs @ ?ys) = n" | 
| 52902 | 3870 | by (simp add: natpermute_def) | 
| 54452 | 3871 | have xs: "?xs \<in> natpermute ?m h" using l assms | 
| 52902 | 3872 | by (simp add: natpermute_def) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 3873 | have l_take_drop: "sum_list l = sum_list (take h l @ drop h l)" | 
| 52902 | 3874 | by simp | 
| 3875 | then have ys: "?ys \<in> natpermute (n - ?m) (k - h)" | |
| 54452 | 3876 | using l assms ls by (auto simp add: natpermute_def simp del: append_take_drop_id) | 
| 52902 | 3877 |     from ls have m: "?m \<in> {0..n}"
 | 
| 3878 | by (simp add: l_take_drop del: append_take_drop_id) | |
| 72686 | 3879 | have "sum_list (take h l) \<le> sum_list l" | 
| 3880 | using l_take_drop ls m by presburger | |
| 3881 | with xs ys ls l show "l \<in> ?R" | |
| 3882 | by simp (metis append_take_drop_id m) | |
| 60558 | 3883 | qed | 
| 29687 | 3884 | qed | 
| 3885 | ||
| 3886 | lemma natpermute_0: "natpermute n 0 = (if n = 0 then {[]} else {})"
 | |
| 3887 | by (auto simp add: natpermute_def) | |
| 52902 | 3888 | |
| 29687 | 3889 | lemma natpermute_0'[simp]: "natpermute 0 k = (if k = 0 then {[]} else {replicate k 0})"
 | 
| 72686 | 3890 | by (auto simp add: set_replicate_conv_if natpermute_def replicate_length_same) | 
| 29687 | 3891 | |
| 3892 | lemma natpermute_finite: "finite (natpermute n k)" | |
| 52902 | 3893 | proof (induct k arbitrary: n) | 
| 3894 | case 0 | |
| 3895 | then show ?case | |
| 72686 | 3896 | by (simp add: natpermute_0) | 
| 29687 | 3897 | next | 
| 3898 | case (Suc k) | |
| 72686 | 3899 | then show ?case | 
| 3900 | using natpermute_split [of k "Suc k"] finite_UN_I by simp | |
| 29687 | 3901 | qed | 
| 3902 | ||
| 3903 | lemma natpermute_contain_maximal: | |
| 60558 | 3904 |   "{xs \<in> natpermute n (k + 1). n \<in> set xs} = (\<Union>i\<in>{0 .. k}. {(replicate (k + 1) 0) [i:=n]})"
 | 
| 29687 | 3905 | (is "?A = ?B") | 
| 60558 | 3906 | proof | 
| 3907 | show "?A \<subseteq> ?B" | |
| 3908 | proof | |
| 52902 | 3909 | fix xs | 
| 60558 | 3910 | assume "xs \<in> ?A" | 
| 3911 | then have H: "xs \<in> natpermute n (k + 1)" and n: "n \<in> set xs" | |
| 3912 | by blast+ | |
| 3913 |     then obtain i where i: "i \<in> {0.. k}" "xs!i = n"
 | |
| 30488 | 3914 | unfolding in_set_conv_nth by (auto simp add: less_Suc_eq_le natpermute_def) | 
| 52902 | 3915 |     have eqs: "({0..k} - {i}) \<union> {i} = {0..k}"
 | 
| 3916 | using i by auto | |
| 3917 |     have f: "finite({0..k} - {i})" "finite {i}"
 | |
| 3918 | by auto | |
| 3919 |     have d: "({0..k} - {i}) \<inter> {i} = {}"
 | |
| 3920 | using i by auto | |
| 64267 | 3921 |     from H have "n = sum (nth xs) {0..k}"
 | 
| 72686 | 3922 | by (auto simp add: natpermute_def atLeastLessThanSuc_atLeastAtMost sum_list_sum_nth) | 
| 64267 | 3923 |     also have "\<dots> = n + sum (nth xs) ({0..k} - {i})"
 | 
| 3924 | unfolding sum.union_disjoint[OF f d, unfolded eqs] using i by simp | |
| 52902 | 3925 |     finally have zxs: "\<forall> j\<in> {0..k} - {i}. xs!j = 0"
 | 
| 3926 | by auto | |
| 3927 | from H have xsl: "length xs = k+1" | |
| 3928 | by (simp add: natpermute_def) | |
| 29687 | 3929 | from i have i': "i < length (replicate (k+1) 0)" "i < k+1" | 
| 52902 | 3930 | unfolding length_replicate by presburger+ | 
| 69085 | 3931 | have "xs = (replicate (k+1) 0) [i := n]" | 
| 68975 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3932 | proof (rule nth_equalityI) | 
| 69085 | 3933 | show "length xs = length ((replicate (k + 1) 0)[i := n])" | 
| 68975 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3934 | by (metis length_list_update length_replicate xsl) | 
| 69085 | 3935 | show "xs ! j = (replicate (k + 1) 0)[i := n] ! j" if "j < length xs" for j | 
| 68975 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3936 | proof (cases "j = i") | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3937 | case True | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3938 | then show ?thesis | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3939 | by (metis i'(1) i(2) nth_list_update) | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3940 | next | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3941 | case False | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3942 | with that show ?thesis | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3943 | by (simp add: xsl zxs del: replicate.simps split: nat.split) | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3944 | qed | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68442diff
changeset | 3945 | qed | 
| 60558 | 3946 | then show "xs \<in> ?B" using i by blast | 
| 3947 | qed | |
| 3948 | show "?B \<subseteq> ?A" | |
| 3949 | proof | |
| 3950 | fix xs | |
| 3951 | assume "xs \<in> ?B" | |
| 69085 | 3952 |     then obtain i where i: "i \<in> {0..k}" and xs: "xs = (replicate (k + 1) 0) [i:=n]"
 | 
| 60558 | 3953 | by auto | 
| 3954 | have nxs: "n \<in> set xs" | |
| 72686 | 3955 | unfolding xs using set_update_memI i | 
| 3956 | by (metis Suc_eq_plus1 atLeast0AtMost atMost_iff le_simps(2) length_replicate) | |
| 60558 | 3957 | have xsl: "length xs = k + 1" | 
| 3958 | by (simp only: xs length_replicate length_list_update) | |
| 64267 | 3959 |     have "sum_list xs = sum (nth xs) {0..<k+1}"
 | 
| 3960 | unfolding sum_list_sum_nth xsl .. | |
| 3961 |     also have "\<dots> = sum (\<lambda>j. if j = i then n else 0) {0..< k+1}"
 | |
| 3962 | by (rule sum.cong) (simp_all add: xs del: replicate.simps) | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 3963 | also have "\<dots> = n" using i by simp | 
| 60558 | 3964 | finally have "xs \<in> natpermute n (k + 1)" | 
| 52902 | 3965 | using xsl unfolding natpermute_def mem_Collect_eq by blast | 
| 60558 | 3966 | then show "xs \<in> ?A" | 
| 3967 | using nxs by blast | |
| 3968 | qed | |
| 29687 | 3969 | qed | 
| 3970 | ||
| 60558 | 3971 | text \<open>The general form.\<close> | 
| 64272 | 3972 | lemma fps_prod_nth: | 
| 52902 | 3973 | fixes m :: nat | 
| 54681 | 3974 | and a :: "nat \<Rightarrow> 'a::comm_ring_1 fps" | 
| 64272 | 3975 |   shows "(prod a {0 .. m}) $ n =
 | 
| 3976 |     sum (\<lambda>v. prod (\<lambda>j. (a j) $ (v!j)) {0..m}) (natpermute n (m+1))"
 | |
| 29687 | 3977 | (is "?P m n") | 
| 52902 | 3978 | proof (induct m arbitrary: n rule: nat_less_induct) | 
| 29687 | 3979 | fix m n assume H: "\<forall>m' < m. \<forall>n. ?P m' n" | 
| 53196 | 3980 | show "?P m n" | 
| 3981 | proof (cases m) | |
| 3982 | case 0 | |
| 3983 | then show ?thesis | |
| 72686 | 3984 | by simp | 
| 53196 | 3985 | next | 
| 3986 | case (Suc k) | |
| 3987 | then have km: "k < m" by arith | |
| 52902 | 3988 |     have u0: "{0 .. k} \<union> {m} = {0..m}"
 | 
| 54452 | 3989 | using Suc by (simp add: set_eq_iff) presburger | 
| 29687 | 3990 |     have f0: "finite {0 .. k}" "finite {m}" by auto
 | 
| 53196 | 3991 |     have d0: "{0 .. k} \<inter> {m} = {}" using Suc by auto
 | 
| 64272 | 3992 |     have "(prod a {0 .. m}) $ n = (prod a {0 .. k} * a m) $ n"
 | 
| 3993 | unfolding prod.union_disjoint[OF f0 d0, unfolded u0] by simp | |
| 72686 | 3994 | also have "\<dots> = (\<Sum>i = 0..n. (\<Sum>v\<in>natpermute i (k + 1). | 
| 3995 | (\<Prod>j = 0..k. a j $ v ! j) * a m $ (n - i)))" | |
| 3996 | unfolding fps_mult_nth H[rule_format, OF km] sum_distrib_right .. | |
| 3997 | also have "... = (\<Sum>i = 0..n. | |
| 3998 | \<Sum>v\<in>(\<lambda>l1. l1 @ [n - i]) ` natpermute i (Suc k). | |
| 3999 | (\<Prod>j = 0..k. a j $ v ! j) * a (Suc k) $ v ! Suc k)" | |
| 4000 | by (intro sum.cong [OF refl sym] sum.reindex_cong) (auto simp: inj_on_def natpermute_def nth_append Suc) | |
| 4001 |     also have "... = (\<Sum>v\<in>(\<Union>x\<in>{0..n}. {l1 @ [n - x] |l1. l1 \<in> natpermute x (Suc k)}).
 | |
| 4002 | (\<Prod>j = 0..k. a j $ v ! j) * a (Suc k) $ v ! Suc k)" | |
| 4003 | by (subst sum.UNION_disjoint) (auto simp add: natpermute_finite setcompr_eq_image) | |
| 29687 | 4004 |     also have "\<dots> = (\<Sum>v\<in>natpermute n (m + 1). \<Prod>j\<in>{0..m}. a j $ v ! j)"
 | 
| 72686 | 4005 | using natpermute_split[of m "m + 1"] by (simp add: Suc) | 
| 53196 | 4006 | finally show ?thesis . | 
| 4007 | qed | |
| 29687 | 4008 | qed | 
| 4009 | ||
| 60558 | 4010 | text \<open>The special form for powers.\<close> | 
| 29687 | 4011 | lemma fps_power_nth_Suc: | 
| 52903 | 4012 | fixes m :: nat | 
| 54681 | 4013 | and a :: "'a::comm_ring_1 fps" | 
| 64272 | 4014 |   shows "(a ^ Suc m)$n = sum (\<lambda>v. prod (\<lambda>j. a $ (v!j)) {0..m}) (natpermute n (m+1))"
 | 
| 52902 | 4015 | proof - | 
| 64272 | 4016 |   have th0: "a^Suc m = prod (\<lambda>i. a) {0..m}"
 | 
| 4017 | by (simp add: prod_constant) | |
| 4018 | show ?thesis unfolding th0 fps_prod_nth .. | |
| 29687 | 4019 | qed | 
| 52902 | 4020 | |
| 29687 | 4021 | lemma fps_power_nth: | 
| 54452 | 4022 | fixes m :: nat | 
| 54681 | 4023 | and a :: "'a::comm_ring_1 fps" | 
| 53196 | 4024 | shows "(a ^m)$n = | 
| 64272 | 4025 |     (if m=0 then 1$n else sum (\<lambda>v. prod (\<lambda>j. a $ (v!j)) {0..m - 1}) (natpermute n m))"
 | 
| 52902 | 4026 | by (cases m) (simp_all add: fps_power_nth_Suc del: power_Suc) | 
| 29687 | 4027 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4028 | lemmas fps_nth_power_0 = fps_power_zeroth | 
| 29687 | 4029 | |
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4030 | lemma natpermute_max_card: | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4031 | assumes n0: "n \<noteq> 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4032 |   shows "card {xs \<in> natpermute n (k + 1). n \<in> set xs} = k + 1"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4033 | unfolding natpermute_contain_maximal | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4034 | proof - | 
| 69085 | 4035 |   let ?A = "\<lambda>i. {(replicate (k + 1) 0)[i := n]}"
 | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4036 |   let ?K = "{0 ..k}"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4037 | have fK: "finite ?K" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4038 | by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4039 | have fAK: "\<forall>i\<in>?K. finite (?A i)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4040 | by auto | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4041 | have d: "\<forall>i\<in> ?K. \<forall>j\<in> ?K. i \<noteq> j \<longrightarrow> | 
| 69085 | 4042 |     {(replicate (k + 1) 0)[i := n]} \<inter> {(replicate (k + 1) 0)[j := n]} = {}"
 | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4043 | proof clarify | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4044 | fix i j | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4045 | assume i: "i \<in> ?K" and j: "j \<in> ?K" and ij: "i \<noteq> j" | 
| 69085 | 4046 | have False if eq: "(replicate (k+1) 0)[i:=n] = (replicate (k+1) 0)[j:= n]" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4047 | proof - | 
| 69085 | 4048 | have "(replicate (k+1) 0) [i:=n] ! i = n" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4049 | using i by (simp del: replicate.simps) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4050 | moreover | 
| 69085 | 4051 | have "(replicate (k+1) 0) [j:=n] ! i = 0" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4052 | using i ij by (simp del: replicate.simps) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4053 | ultimately show ?thesis | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4054 | using eq n0 by (simp del: replicate.simps) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4055 | qed | 
| 69085 | 4056 |     then show "{(replicate (k + 1) 0)[i := n]} \<inter> {(replicate (k + 1) 0)[j := n]} = {}"
 | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4057 | by auto | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4058 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4059 | from card_UN_disjoint[OF fK fAK d] | 
| 69085 | 4060 |   show "card (\<Union>i\<in>{0..k}. {(replicate (k + 1) 0)[i := n]}) = k + 1"
 | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4061 | by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4062 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4063 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4064 | lemma fps_power_Suc_nth: | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4065 | fixes f :: "'a :: comm_ring_1 fps" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4066 | assumes k: "k > 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4067 | shows "(f ^ Suc m) $ k = | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4068 | of_nat (Suc m) * (f $ k * (f $ 0) ^ m) + | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4069 |            (\<Sum>v\<in>{v\<in>natpermute k (m+1). k \<notin> set v}. \<Prod>j = 0..m. f $ v ! j)"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4070 | proof - | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4071 | define A B | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4072 |     where "A = {v\<in>natpermute k (m+1). k \<in> set v}" 
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4073 |       and  "B = {v\<in>natpermute k (m+1). k \<notin> set v}"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4074 |   have [simp]: "finite A" "finite B" "A \<inter> B = {}" by (auto simp: A_def B_def natpermute_finite)
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4075 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4076 | from natpermute_max_card[of k m] k have card_A: "card A = m + 1" by (simp add: A_def) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4077 |   {
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4078 | fix v assume v: "v \<in> A" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4079 | from v have [simp]: "length v = Suc m" by (simp add: A_def natpermute_def) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4080 | from v have "\<exists>j. j \<le> m \<and> v ! j = k" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4081 | by (auto simp: set_conv_nth A_def natpermute_def less_Suc_eq_le) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4082 | then guess j by (elim exE conjE) note j = this | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4083 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 4084 | from v have "k = sum_list v" by (simp add: A_def natpermute_def) | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4085 | also have "\<dots> = (\<Sum>i=0..m. v ! i)" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 4086 | by (simp add: sum_list_sum_nth atLeastLessThanSuc_atLeastAtMost del: sum.op_ivl_Suc) | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4087 |     also from j have "{0..m} = insert j ({0..m}-{j})" by auto
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4088 |     also from j have "(\<Sum>i\<in>\<dots>. v ! i) = k + (\<Sum>i\<in>{0..m}-{j}. v ! i)"
 | 
| 64267 | 4089 | by (subst sum.insert) simp_all | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4090 |     finally have "(\<Sum>i\<in>{0..m}-{j}. v ! i) = 0" by simp
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4091 |     hence zero: "v ! i = 0" if "i \<in> {0..m}-{j}" for i using that
 | 
| 64267 | 4092 | by (subst (asm) sum_eq_0_iff) auto | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4093 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4094 |     from j have "{0..m} = insert j ({0..m} - {j})" by auto
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4095 |     also from j have "(\<Prod>i\<in>\<dots>. f $ (v ! i)) = f $ k * (\<Prod>i\<in>{0..m} - {j}. f $ (v ! i))"
 | 
| 64272 | 4096 | by (subst prod.insert) auto | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4097 |     also have "(\<Prod>i\<in>{0..m} - {j}. f $ (v ! i)) = (\<Prod>i\<in>{0..m} - {j}. f $ 0)"
 | 
| 64272 | 4098 | by (intro prod.cong) (simp_all add: zero) | 
| 4099 | also from j have "\<dots> = (f $ 0) ^ m" by (subst prod_constant) simp_all | |
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4100 | finally have "(\<Prod>j = 0..m. f $ (v ! j)) = f $ k * (f $ 0) ^ m" . | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4101 | } note A = this | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4102 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4103 | have "(f ^ Suc m) $ k = (\<Sum>v\<in>natpermute k (m + 1). \<Prod>j = 0..m. f $ v ! j)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4104 | by (rule fps_power_nth_Suc) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4105 | also have "natpermute k (m+1) = A \<union> B" unfolding A_def B_def by blast | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4106 | also have "(\<Sum>v\<in>\<dots>. \<Prod>j = 0..m. f $ (v ! j)) = | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4107 | (\<Sum>v\<in>A. \<Prod>j = 0..m. f $ (v ! j)) + (\<Sum>v\<in>B. \<Prod>j = 0..m. f $ (v ! j))" | 
| 64267 | 4108 | by (intro sum.union_disjoint) simp_all | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4109 | also have "(\<Sum>v\<in>A. \<Prod>j = 0..m. f $ (v ! j)) = of_nat (Suc m) * (f $ k * (f $ 0) ^ m)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4110 | by (simp add: A card_A) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4111 | finally show ?thesis by (simp add: B_def) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4112 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4113 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4114 | lemma fps_power_Suc_eqD: | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4115 |   fixes f g :: "'a :: {idom,semiring_char_0} fps"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4116 | assumes "f ^ Suc m = g ^ Suc m" "f $ 0 = g $ 0" "f $ 0 \<noteq> 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4117 | shows "f = g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4118 | proof (rule fps_ext) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4119 | fix k :: nat | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4120 | show "f $ k = g $ k" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4121 | proof (induction k rule: less_induct) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4122 | case (less k) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4123 | show ?case | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4124 | proof (cases "k = 0") | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4125 | case False | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4126 | let ?h = "\<lambda>f. (\<Sum>v | v \<in> natpermute k (m + 1) \<and> k \<notin> set v. \<Prod>j = 0..m. f $ v ! j)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4127 | from False fps_power_Suc_nth[of k f m] fps_power_Suc_nth[of k g m] | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4128 | have "f $ k * (of_nat (Suc m) * (f $ 0) ^ m) + ?h f = | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4129 | g $ k * (of_nat (Suc m) * (f $ 0) ^ m) + ?h g" using assms | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4130 | by (simp add: mult_ac del: power_Suc of_nat_Suc) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4131 |       also have "v ! i < k" if "v \<in> {v\<in>natpermute k (m+1). k \<notin> set v}" "i \<le> m" for v i
 | 
| 66311 | 4132 | using that elem_le_sum_list[of i v] unfolding natpermute_def | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4133 | by (auto simp: set_conv_nth dest!: spec[of _ i]) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4134 | hence "?h f = ?h g" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4135 | by (intro sum.cong refl prod.cong less lessI) (simp add: natpermute_def) | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4136 | finally have "f $ k * (of_nat (Suc m) * (f $ 0) ^ m) = g $ k * (of_nat (Suc m) * (f $ 0) ^ m)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4137 | by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4138 | with assms show "f $ k = g $ k" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4139 | by (subst (asm) mult_right_cancel) (auto simp del: of_nat_Suc) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4140 | qed (simp_all add: assms) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4141 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4142 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4143 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4144 | lemma fps_power_Suc_eqD': | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4145 |   fixes f g :: "'a :: {idom,semiring_char_0} fps"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4146 | assumes "f ^ Suc m = g ^ Suc m" "f $ subdegree f = g $ subdegree g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4147 | shows "f = g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4148 | proof (cases "f = 0") | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4149 | case False | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4150 | have "Suc m * subdegree f = subdegree (f ^ Suc m)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4151 | by (rule subdegree_power [symmetric]) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4152 | also have "f ^ Suc m = g ^ Suc m" by fact | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4153 | also have "subdegree \<dots> = Suc m * subdegree g" by (rule subdegree_power) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4154 | finally have [simp]: "subdegree f = subdegree g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4155 | by (subst (asm) Suc_mult_cancel1) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4156 | have "fps_shift (subdegree f) f * fps_X ^ subdegree f = f" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4157 | by (rule subdegree_decompose [symmetric]) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4158 | also have "\<dots> ^ Suc m = g ^ Suc m" by fact | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4159 | also have "g = fps_shift (subdegree g) g * fps_X ^ subdegree g" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4160 | by (rule subdegree_decompose) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4161 | also have "subdegree f = subdegree g" by fact | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4162 | finally have "fps_shift (subdegree g) f ^ Suc m = fps_shift (subdegree g) g ^ Suc m" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4163 | by (simp add: algebra_simps power_mult_distrib del: power_Suc) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4164 | hence "fps_shift (subdegree g) f = fps_shift (subdegree g) g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4165 | by (rule fps_power_Suc_eqD) (insert assms False, auto) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4166 | with subdegree_decompose[of f] subdegree_decompose[of g] show ?thesis by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4167 | qed (insert assms, simp_all) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4168 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4169 | lemma fps_power_eqD': | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4170 |   fixes f g :: "'a :: {idom,semiring_char_0} fps"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4171 | assumes "f ^ m = g ^ m" "f $ subdegree f = g $ subdegree g" "m > 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4172 | shows "f = g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4173 | using fps_power_Suc_eqD'[of f "m-1" g] assms by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4174 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4175 | lemma fps_power_eqD: | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4176 |   fixes f g :: "'a :: {idom,semiring_char_0} fps"
 | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4177 | assumes "f ^ m = g ^ m" "f $ 0 = g $ 0" "f $ 0 \<noteq> 0" "m > 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4178 | shows "f = g" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4179 | by (rule fps_power_eqD'[of f m g]) (insert assms, simp_all) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4180 | |
| 30488 | 4181 | lemma fps_compose_inj_right: | 
| 54681 | 4182 | assumes a0: "a$0 = (0::'a::idom)" | 
| 52902 | 4183 | and a1: "a$1 \<noteq> 0" | 
| 54681 | 4184 | shows "(b oo a = c oo a) \<longleftrightarrow> b = c" | 
| 4185 | (is "?lhs \<longleftrightarrow>?rhs") | |
| 53196 | 4186 | proof | 
| 60501 | 4187 | show ?lhs if ?rhs using that by simp | 
| 4188 | show ?rhs if ?lhs | |
| 4189 | proof - | |
| 4190 | have "b$n = c$n" for n | |
| 53196 | 4191 | proof (induct n rule: nat_less_induct) | 
| 4192 | fix n | |
| 4193 | assume H: "\<forall>m<n. b$m = c$m" | |
| 60501 | 4194 | show "b$n = c$n" | 
| 4195 | proof (cases n) | |
| 4196 | case 0 | |
| 4197 | from \<open>?lhs\<close> have "(b oo a)$n = (c oo a)$n" | |
| 4198 | by simp | |
| 4199 | then show ?thesis | |
| 4200 | using 0 by (simp add: fps_compose_nth) | |
| 4201 | next | |
| 4202 | case (Suc n1) | |
| 53196 | 4203 |         have f: "finite {0 .. n1}" "finite {n}" by simp_all
 | 
| 60501 | 4204 |         have eq: "{0 .. n1} \<union> {n} = {0 .. n}" using Suc by auto
 | 
| 4205 |         have d: "{0 .. n1} \<inter> {n} = {}" using Suc by auto
 | |
| 53196 | 4206 | have seq: "(\<Sum>i = 0..n1. b $ i * a ^ i $ n) = (\<Sum>i = 0..n1. c $ i * a ^ i $ n)" | 
| 72686 | 4207 | using H Suc by auto | 
| 53196 | 4208 | have th0: "(b oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + b$n * (a$1)^n" | 
| 64267 | 4209 | unfolding fps_compose_nth sum.union_disjoint[OF f d, unfolded eq] seq | 
| 53196 | 4210 | using startsby_zero_power_nth_same[OF a0] | 
| 4211 | by simp | |
| 4212 | have th1: "(c oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + c$n * (a$1)^n" | |
| 64267 | 4213 | unfolding fps_compose_nth sum.union_disjoint[OF f d, unfolded eq] | 
| 53196 | 4214 | using startsby_zero_power_nth_same[OF a0] | 
| 4215 | by simp | |
| 60501 | 4216 | from \<open>?lhs\<close>[unfolded fps_eq_iff, rule_format, of n] th0 th1 a1 | 
| 4217 | show ?thesis by auto | |
| 4218 | qed | |
| 4219 | qed | |
| 4220 | then show ?rhs by (simp add: fps_eq_iff) | |
| 4221 | qed | |
| 29687 | 4222 | qed | 
| 4223 | ||
| 4224 | ||
| 60500 | 4225 | subsection \<open>Radicals\<close> | 
| 29687 | 4226 | |
| 64272 | 4227 | declare prod.cong [fundef_cong] | 
| 52903 | 4228 | |
| 54681 | 4229 | function radical :: "(nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a::field fps \<Rightarrow> nat \<Rightarrow> 'a" | 
| 52902 | 4230 | where | 
| 29687 | 4231 | "radical r 0 a 0 = 1" | 
| 4232 | | "radical r 0 a (Suc n) = 0" | |
| 4233 | | "radical r (Suc k) a 0 = r (Suc k) (a$0)" | |
| 48757 | 4234 | | "radical r (Suc k) a (Suc n) = | 
| 64272 | 4235 |     (a$ Suc n - sum (\<lambda>xs. prod (\<lambda>j. radical r (Suc k) a (xs ! j)) {0..k})
 | 
| 48757 | 4236 |       {xs. xs \<in> natpermute (Suc n) (Suc k) \<and> Suc n \<notin> set xs}) /
 | 
| 4237 | (of_nat (Suc k) * (radical r (Suc k) a 0)^k)" | |
| 52902 | 4238 | by pat_completeness auto | 
| 29687 | 4239 | |
| 4240 | termination radical | |
| 4241 | proof | |
| 4242 | let ?R = "measure (\<lambda>(r, k, a, n). n)" | |
| 4243 |   {
 | |
| 52902 | 4244 | show "wf ?R" by auto | 
| 4245 | next | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4246 | fix r :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4247 | and a :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4248 | and k n xs i | 
| 29687 | 4249 |     assume xs: "xs \<in> {xs \<in> natpermute (Suc n) (Suc k). Suc n \<notin> set xs}" and i: "i \<in> {0..k}"
 | 
| 60558 | 4250 | have False if c: "Suc n \<le> xs ! i" | 
| 4251 | proof - | |
| 52902 | 4252 | from xs i have "xs !i \<noteq> Suc n" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4253 | by (simp add: in_set_conv_nth natpermute_def) | 
| 29687 | 4254 | with c have c': "Suc n < xs!i" by arith | 
| 52902 | 4255 |       have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
 | 
| 4256 | by simp_all | |
| 4257 |       have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
 | |
| 4258 | by auto | |
| 4259 |       have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
 | |
| 4260 | using i by auto | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 4261 | from xs have "Suc n = sum_list xs" | 
| 52902 | 4262 | by (simp add: natpermute_def) | 
| 64267 | 4263 |       also have "\<dots> = sum (nth xs) {0..<Suc k}" using xs
 | 
| 4264 | by (simp add: natpermute_def sum_list_sum_nth) | |
| 4265 |       also have "\<dots> = xs!i + sum (nth xs) {0..<i} + sum (nth xs) {i+1..<Suc k}"
 | |
| 4266 | unfolding eqs sum.union_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)] | |
| 4267 | unfolding sum.union_disjoint[OF fths(2) fths(3) d(2)] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4268 | by simp | 
| 60558 | 4269 | finally show ?thesis using c' by simp | 
| 4270 | qed | |
| 52902 | 4271 | then show "((r, Suc k, a, xs!i), r, Suc k, a, Suc n) \<in> ?R" | 
| 72686 | 4272 | using not_less by auto | 
| 52902 | 4273 | next | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4274 | fix r :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4275 | and a :: "'a fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4276 | and k n | 
| 52902 | 4277 | show "((r, Suc k, a, 0), r, Suc k, a, Suc n) \<in> ?R" by simp | 
| 4278 | } | |
| 29687 | 4279 | qed | 
| 4280 | ||
| 4281 | definition "fps_radical r n a = Abs_fps (radical r n a)" | |
| 4282 | ||
| 72686 | 4283 | lemma radical_0 [simp]: "\<And>n. 0 < n \<Longrightarrow> radical r 0 a n = 0" | 
| 4284 | using radical.elims by blast | |
| 4285 | ||
| 29687 | 4286 | lemma fps_radical0[simp]: "fps_radical r 0 a = 1" | 
| 72686 | 4287 | by (auto simp add: fps_eq_iff fps_radical_def) | 
| 29687 | 4288 | |
| 60501 | 4289 | lemma fps_radical_nth_0[simp]: "fps_radical r n a $ 0 = (if n = 0 then 1 else r n (a$0))" | 
| 52902 | 4290 | by (cases n) (simp_all add: fps_radical_def) | 
| 29687 | 4291 | |
| 30488 | 4292 | lemma fps_radical_power_nth[simp]: | 
| 29687 | 4293 | assumes r: "(r k (a$0)) ^ k = a$0" | 
| 4294 | shows "fps_radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0)" | |
| 53196 | 4295 | proof (cases k) | 
| 4296 | case 0 | |
| 4297 | then show ?thesis by simp | |
| 4298 | next | |
| 4299 | case (Suc h) | |
| 4300 |   have eq1: "fps_radical r k a ^ k $ 0 = (\<Prod>j\<in>{0..h}. fps_radical r k a $ (replicate k 0) ! j)"
 | |
| 4301 | unfolding fps_power_nth Suc by simp | |
| 4302 |   also have "\<dots> = (\<Prod>j\<in>{0..h}. r k (a$0))"
 | |
| 72686 | 4303 | proof (rule prod.cong [OF refl]) | 
| 4304 |     show "fps_radical r k a $ replicate k 0 ! j = r k (a $ 0)" if "j \<in> {0..h}" for j
 | |
| 4305 | proof - | |
| 4306 | have "j < Suc h" | |
| 4307 | using that by presburger | |
| 4308 | then show ?thesis | |
| 4309 | by (metis Suc fps_radical_nth_0 nth_replicate old.nat.distinct(2)) | |
| 4310 | qed | |
| 4311 | qed | |
| 60501 | 4312 | also have "\<dots> = a$0" | 
| 72686 | 4313 | using r Suc by simp | 
| 60501 | 4314 | finally show ?thesis | 
| 4315 | using Suc by simp | |
| 30488 | 4316 | qed | 
| 29687 | 4317 | |
| 30488 | 4318 | lemma power_radical: | 
| 31273 | 4319 | fixes a:: "'a::field_char_0 fps" | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4320 | assumes a0: "a$0 \<noteq> 0" | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4321 | shows "(r (Suc k) (a$0)) ^ Suc k = a$0 \<longleftrightarrow> (fps_radical r (Suc k) a) ^ (Suc k) = a" | 
| 60558 | 4322 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 4323 | proof | |
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4324 | let ?r = "fps_radical r (Suc k) a" | 
| 60558 | 4325 | show ?rhs if r0: ?lhs | 
| 4326 | proof - | |
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4327 | from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto | 
| 60501 | 4328 | have "?r ^ Suc k $ z = a$z" for z | 
| 4329 | proof (induct z rule: nat_less_induct) | |
| 4330 | fix n | |
| 4331 | assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m" | |
| 4332 | show "?r ^ Suc k $ n = a $n" | |
| 4333 | proof (cases n) | |
| 4334 | case 0 | |
| 4335 | then show ?thesis | |
| 4336 | using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp | |
| 4337 | next | |
| 4338 | case (Suc n1) | |
| 4339 | then have "n \<noteq> 0" by simp | |
| 4340 | let ?Pnk = "natpermute n (k + 1)" | |
| 4341 |         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
 | |
| 4342 |         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
 | |
| 4343 | have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast | |
| 4344 |         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
 | |
| 4345 | have f: "finite ?Pnkn" "finite ?Pnknn" | |
| 4346 | using finite_Un[of ?Pnkn ?Pnknn, unfolded eq] | |
| 4347 | by (metis natpermute_finite)+ | |
| 4348 |         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
 | |
| 64267 | 4349 | have "sum ?f ?Pnkn = sum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn" | 
| 4350 | proof (rule sum.cong) | |
| 60501 | 4351 |           fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
 | 
| 4352 |           let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) =
 | |
| 4353 | fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k" | |
| 69085 | 4354 |           from v obtain i where i: "i \<in> {0..k}" "v = (replicate (k+1) 0) [i:= n]"
 | 
| 60501 | 4355 | unfolding natpermute_contain_maximal by auto | 
| 4356 |           have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) =
 | |
| 72686 | 4357 |                 (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
 | 
| 4358 | using i r0 by (auto simp del: replicate.simps intro: prod.cong) | |
| 60501 | 4359 | also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k" | 
| 64272 | 4360 | using i r0 by (simp add: prod_gen_delta) | 
| 60501 | 4361 | finally show ?ths . | 
| 4362 | qed rule | |
| 64267 | 4363 | then have "sum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k" | 
| 60501 | 4364 | by (simp add: natpermute_max_card[OF \<open>n \<noteq> 0\<close>, simplified]) | 
| 64267 | 4365 | also have "\<dots> = a$n - sum ?f ?Pnknn" | 
| 60501 | 4366 | unfolding Suc using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc) | 
| 64267 | 4367 | finally have fn: "sum ?f ?Pnkn = a$n - sum ?f ?Pnknn" . | 
| 4368 | have "(?r ^ Suc k)$n = sum ?f ?Pnkn + sum ?f ?Pnknn" | |
| 4369 | unfolding fps_power_nth_Suc sum.union_disjoint[OF f d, unfolded eq] .. | |
| 60501 | 4370 | also have "\<dots> = a$n" unfolding fn by simp | 
| 4371 | finally show ?thesis . | |
| 52903 | 4372 | qed | 
| 60501 | 4373 | qed | 
| 60558 | 4374 | then show ?thesis using r0 by (simp add: fps_eq_iff) | 
| 4375 | qed | |
| 4376 | show ?lhs if ?rhs | |
| 4377 | proof - | |
| 4378 | from that have "((fps_radical r (Suc k) a) ^ (Suc k))$0 = a$0" | |
| 4379 | by simp | |
| 4380 | then show ?thesis | |
| 52903 | 4381 | unfolding fps_power_nth_Suc | 
| 64272 | 4382 | by (simp add: prod_constant del: replicate.simps) | 
| 60558 | 4383 | qed | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4384 | qed | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4385 | |
| 30488 | 4386 | lemma radical_unique: | 
| 4387 | assumes r0: "(r (Suc k) (b$0)) ^ Suc k = b$0" | |
| 52903 | 4388 | and a0: "r (Suc k) (b$0 ::'a::field_char_0) = a$0" | 
| 4389 | and b0: "b$0 \<noteq> 0" | |
| 29687 | 4390 | shows "a^(Suc k) = b \<longleftrightarrow> a = fps_radical r (Suc k) b" | 
| 60501 | 4391 | (is "?lhs \<longleftrightarrow> ?rhs" is "_ \<longleftrightarrow> a = ?r") | 
| 4392 | proof | |
| 4393 | show ?lhs if ?rhs | |
| 4394 | using that using power_radical[OF b0, of r k, unfolded r0] by simp | |
| 4395 | show ?rhs if ?lhs | |
| 4396 | proof - | |
| 4397 | have r00: "r (Suc k) (b$0) \<noteq> 0" using b0 r0 by auto | |
| 29687 | 4398 |     have ceq: "card {0..k} = Suc k" by simp
 | 
| 4399 | from a0 have a0r0: "a$0 = ?r$0" by simp | |
| 60501 | 4400 | have "a $ n = ?r $ n" for n | 
| 4401 | proof (induct n rule: nat_less_induct) | |
| 52903 | 4402 | fix n | 
| 60501 | 4403 | assume h: "\<forall>m<n. a$m = ?r $m" | 
| 4404 | show "a$n = ?r $ n" | |
| 4405 | proof (cases n) | |
| 4406 | case 0 | |
| 4407 | then show ?thesis using a0 by simp | |
| 4408 | next | |
| 4409 | case (Suc n1) | |
| 4410 |         have fK: "finite {0..k}" by simp
 | |
| 4411 | have nz: "n \<noteq> 0" using Suc by simp | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4412 | let ?Pnk = "natpermute n (Suc k)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4413 |         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4414 |         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4415 | have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4416 |         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4417 | have f: "finite ?Pnkn" "finite ?Pnknn" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4418 | using finite_Un[of ?Pnkn ?Pnknn, unfolded eq] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4419 | by (metis natpermute_finite)+ | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4420 |         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4421 |         let ?g = "\<lambda>v. \<Prod>j\<in>{0..k}. a $ v ! j"
 | 
| 64267 | 4422 | have "sum ?g ?Pnkn = sum (\<lambda>v. a $ n * (?r$0)^k) ?Pnkn" | 
| 4423 | proof (rule sum.cong) | |
| 52903 | 4424 | fix v | 
| 4425 |           assume v: "v \<in> {xs \<in> natpermute n (Suc k). n \<in> set xs}"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4426 |           let ?ths = "(\<Prod>j\<in>{0..k}. a $ v ! j) = a $ n * (?r$0)^k"
 | 
| 69085 | 4427 |           from v obtain i where i: "i \<in> {0..k}" "v = (replicate (k+1) 0) [i:= n]"
 | 
| 52903 | 4428 | unfolding Suc_eq_plus1 natpermute_contain_maximal | 
| 4429 | by (auto simp del: replicate.simps) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4430 |           have "(\<Prod>j\<in>{0..k}. a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then a $ n else r (Suc k) (b$0))"
 | 
| 72686 | 4431 | using i a0 by (auto simp del: replicate.simps intro: prod.cong) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4432 | also have "\<dots> = a $ n * (?r $ 0)^k" | 
| 64272 | 4433 | using i by (simp add: prod_gen_delta) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4434 | finally show ?ths . | 
| 57418 | 4435 | qed rule | 
| 64267 | 4436 | then have th0: "sum ?g ?Pnkn = of_nat (k+1) * a $ n * (?r $ 0)^k" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4437 | by (simp add: natpermute_max_card[OF nz, simplified]) | 
| 64267 | 4438 | have th1: "sum ?g ?Pnknn = sum ?f ?Pnknn" | 
| 64272 | 4439 | proof (rule sum.cong, rule refl, rule prod.cong, simp) | 
| 52903 | 4440 | fix xs i | 
| 4441 |           assume xs: "xs \<in> ?Pnknn" and i: "i \<in> {0..k}"
 | |
| 60501 | 4442 | have False if c: "n \<le> xs ! i" | 
| 4443 | proof - | |
| 4444 | from xs i have "xs ! i \<noteq> n" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4445 | by (simp add: in_set_conv_nth natpermute_def) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4446 | with c have c': "n < xs!i" by arith | 
| 52903 | 4447 |             have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
 | 
| 4448 | by simp_all | |
| 4449 |             have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
 | |
| 4450 | by auto | |
| 4451 |             have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
 | |
| 4452 | using i by auto | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63589diff
changeset | 4453 | from xs have "n = sum_list xs" | 
| 52903 | 4454 | by (simp add: natpermute_def) | 
| 64267 | 4455 |             also have "\<dots> = sum (nth xs) {0..<Suc k}"
 | 
| 4456 | using xs by (simp add: natpermute_def sum_list_sum_nth) | |
| 4457 |             also have "\<dots> = xs!i + sum (nth xs) {0..<i} + sum (nth xs) {i+1..<Suc k}"
 | |
| 4458 | unfolding eqs sum.union_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)] | |
| 4459 | unfolding sum.union_disjoint[OF fths(2) fths(3) d(2)] | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4460 | by simp | 
| 60501 | 4461 | finally show ?thesis using c' by simp | 
| 4462 | qed | |
| 52902 | 4463 | then have thn: "xs!i < n" by presburger | 
| 52903 | 4464 | from h[rule_format, OF thn] show "a$(xs !i) = ?r$(xs!i)" . | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4465 | qed | 
| 54681 | 4466 | have th00: "\<And>x::'a. of_nat (Suc k) * (x * inverse (of_nat (Suc k))) = x" | 
| 36350 | 4467 | by (simp add: field_simps del: of_nat_Suc) | 
| 60501 | 4468 | from \<open>?lhs\<close> have "b$n = a^Suc k $ n" | 
| 52903 | 4469 | by (simp add: fps_eq_iff) | 
| 64267 | 4470 | also have "a ^ Suc k$n = sum ?g ?Pnkn + sum ?g ?Pnknn" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4471 | unfolding fps_power_nth_Suc | 
| 64267 | 4472 | using sum.union_disjoint[OF f d, unfolded Suc_eq_plus1[symmetric], | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 4473 | unfolded eq, of ?g] by simp | 
| 64267 | 4474 | also have "\<dots> = of_nat (k+1) * a $ n * (?r $ 0)^k + sum ?f ?Pnknn" | 
| 52903 | 4475 | unfolding th0 th1 .. | 
| 72686 | 4476 | finally have \<section>: "of_nat (k+1) * a $ n * (?r $ 0)^k = b$n - sum ?f ?Pnknn" | 
| 52903 | 4477 | by simp | 
| 72686 | 4478 | have "a$n = (b$n - sum ?f ?Pnknn) / (of_nat (k+1) * (?r $ 0)^k)" | 
| 4479 | apply (rule eq_divide_imp) | |
| 4480 | using r00 \<section> by (simp_all add: ac_simps del: of_nat_Suc) | |
| 60501 | 4481 | then show ?thesis | 
| 4482 | unfolding fps_radical_def Suc | |
| 72686 | 4483 | by (simp del: of_nat_Suc) | 
| 52903 | 4484 | qed | 
| 60501 | 4485 | qed | 
| 4486 | then show ?rhs by (simp add: fps_eq_iff) | |
| 4487 | qed | |
| 29687 | 4488 | qed | 
| 4489 | ||
| 4490 | ||
| 30488 | 4491 | lemma radical_power: | 
| 4492 | assumes r0: "r (Suc k) ((a$0) ^ Suc k) = a$0" | |
| 54681 | 4493 | and a0: "(a$0 :: 'a::field_char_0) \<noteq> 0" | 
| 29687 | 4494 | shows "(fps_radical r (Suc k) (a ^ Suc k)) = a" | 
| 52903 | 4495 | proof - | 
| 29687 | 4496 | let ?ak = "a^ Suc k" | 
| 52903 | 4497 | have ak0: "?ak $ 0 = (a$0) ^ Suc k" | 
| 4498 | by (simp add: fps_nth_power_0 del: power_Suc) | |
| 4499 | from r0 have th0: "r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0" | |
| 4500 | using ak0 by auto | |
| 4501 | from r0 ak0 have th1: "r (Suc k) (a ^ Suc k $ 0) = a $ 0" | |
| 4502 | by auto | |
| 4503 | from ak0 a0 have ak00: "?ak $ 0 \<noteq>0 " | |
| 4504 | by auto | |
| 4505 | from radical_unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis | |
| 4506 | by metis | |
| 29687 | 4507 | qed | 
| 4508 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4509 | lemma fps_deriv_radical': | 
| 54681 | 4510 | fixes a :: "'a::field_char_0 fps" | 
| 52903 | 4511 | assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" | 
| 4512 | and a0: "a$0 \<noteq> 0" | |
| 53196 | 4513 | shows "fps_deriv (fps_radical r (Suc k) a) = | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4514 | fps_deriv a / ((of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)" | 
| 52903 | 4515 | proof - | 
| 4516 | let ?r = "fps_radical r (Suc k) a" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4517 | let ?w = "(of_nat (Suc k)) * ?r ^ k" | 
| 52903 | 4518 | from a0 r0 have r0': "r (Suc k) (a$0) \<noteq> 0" | 
| 4519 | by auto | |
| 4520 | from r0' have w0: "?w $ 0 \<noteq> 0" | |
| 4521 | by (simp del: of_nat_Suc) | |
| 29687 | 4522 | note th0 = inverse_mult_eq_1[OF w0] | 
| 4523 | let ?iw = "inverse ?w" | |
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4524 | from iffD1[OF power_radical[of a r], OF a0 r0] | 
| 52903 | 4525 | have "fps_deriv (?r ^ Suc k) = fps_deriv a" | 
| 4526 | by simp | |
| 54452 | 4527 | then have "fps_deriv ?r * ?w = fps_deriv a" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4528 | by (simp add: fps_deriv_power' ac_simps del: power_Suc) | 
| 54452 | 4529 | then have "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a" | 
| 52903 | 4530 | by simp | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4531 | with a0 r0 have "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4532 | by (subst fps_divide_unit) (auto simp del: of_nat_Suc) | 
| 30488 | 4533 | then show ?thesis unfolding th0 by simp | 
| 29687 | 4534 | qed | 
| 4535 | ||
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4536 | lemma fps_deriv_radical: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4537 | fixes a :: "'a::field_char_0 fps" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4538 | assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4539 | and a0: "a$0 \<noteq> 0" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4540 | shows "fps_deriv (fps_radical r (Suc k) a) = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4541 | fps_deriv a / (fps_const (of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4542 | using fps_deriv_radical'[of r k a, OF r0 a0] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4543 | by (simp add: fps_of_nat[symmetric]) | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4544 | |
| 30488 | 4545 | lemma radical_mult_distrib: | 
| 54681 | 4546 | fixes a :: "'a::field_char_0 fps" | 
| 48757 | 4547 | assumes k: "k > 0" | 
| 4548 | and ra0: "r k (a $ 0) ^ k = a $ 0" | |
| 4549 | and rb0: "r k (b $ 0) ^ k = b $ 0" | |
| 60558 | 4550 | and a0: "a $ 0 \<noteq> 0" | 
| 4551 | and b0: "b $ 0 \<noteq> 0" | |
| 48757 | 4552 | shows "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0) \<longleftrightarrow> | 
| 60558 | 4553 | fps_radical r k (a * b) = fps_radical r k a * fps_radical r k b" | 
| 4554 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 4555 | proof | |
| 4556 | show ?rhs if r0': ?lhs | |
| 4557 | proof - | |
| 4558 | from r0' have r0: "(r k ((a * b) $ 0)) ^ k = (a * b) $ 0" | |
| 52903 | 4559 | by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib) | 
| 60558 | 4560 | show ?thesis | 
| 60501 | 4561 | proof (cases k) | 
| 4562 | case 0 | |
| 4563 | then show ?thesis using r0' by simp | |
| 4564 | next | |
| 4565 | case (Suc h) | |
| 52903 | 4566 | let ?ra = "fps_radical r (Suc h) a" | 
| 4567 | let ?rb = "fps_radical r (Suc h) b" | |
| 4568 | have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0" | |
| 60501 | 4569 | using r0' Suc by (simp add: fps_mult_nth) | 
| 52903 | 4570 | have ab0: "(a*b) $ 0 \<noteq> 0" | 
| 4571 | using a0 b0 by (simp add: fps_mult_nth) | |
| 60501 | 4572 | from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded Suc] th0 ab0, symmetric] | 
| 4573 | iffD1[OF power_radical[of _ r], OF a0 ra0[unfolded Suc]] iffD1[OF power_radical[of _ r], OF b0 rb0[unfolded Suc]] Suc r0' | |
| 4574 | show ?thesis | |
| 4575 | by (auto simp add: power_mult_distrib simp del: power_Suc) | |
| 4576 | qed | |
| 60558 | 4577 | qed | 
| 4578 | show ?lhs if ?rhs | |
| 4579 | proof - | |
| 4580 | from that have "(fps_radical r k (a * b)) $ 0 = (fps_radical r k a * fps_radical r k b) $ 0" | |
| 52903 | 4581 | by simp | 
| 60558 | 4582 | then show ?thesis | 
| 52903 | 4583 | using k by (simp add: fps_mult_nth) | 
| 60558 | 4584 | qed | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4585 | qed | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4586 | |
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4587 | (* | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4588 | lemma radical_mult_distrib: | 
| 31273 | 4589 | fixes a:: "'a::field_char_0 fps" | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4590 | assumes | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4591 | ra0: "r k (a $ 0) ^ k = a $ 0" | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4592 | and rb0: "r k (b $ 0) ^ k = b $ 0" | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4593 | and r0': "r k ((a * b) $ 0) = r k (a $ 0) * r k (b $ 0)" | 
| 29687 | 4594 | and a0: "a$0 \<noteq> 0" | 
| 4595 | and b0: "b$0 \<noteq> 0" | |
| 4596 | shows "fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)" | |
| 4597 | proof- | |
| 4598 | from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0" | |
| 4599 | by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib) | |
| 54452 | 4600 |   {assume "k=0" then have ?thesis by simp}
 | 
| 29687 | 4601 | moreover | 
| 4602 |   {fix h assume k: "k = Suc h"
 | |
| 4603 | let ?ra = "fps_radical r (Suc h) a" | |
| 4604 | let ?rb = "fps_radical r (Suc h) b" | |
| 30488 | 4605 | have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0" | 
| 29687 | 4606 | using r0' k by (simp add: fps_mult_nth) | 
| 4607 | have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth) | |
| 30488 | 4608 | from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric] | 
| 29687 | 4609 | power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
29915diff
changeset | 4610 | have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)} | 
| 29687 | 4611 | ultimately show ?thesis by (cases k, auto) | 
| 4612 | qed | |
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4613 | *) | 
| 29687 | 4614 | |
| 4615 | lemma radical_divide: | |
| 31273 | 4616 | fixes a :: "'a::field_char_0 fps" | 
| 52903 | 4617 | assumes kp: "k > 0" | 
| 4618 | and ra0: "(r k (a $ 0)) ^ k = a $ 0" | |
| 4619 | and rb0: "(r k (b $ 0)) ^ k = b $ 0" | |
| 4620 | and a0: "a$0 \<noteq> 0" | |
| 4621 | and b0: "b$0 \<noteq> 0" | |
| 4622 | shows "r k ((a $ 0) / (b$0)) = r k (a$0) / r k (b $ 0) \<longleftrightarrow> | |
| 4623 | fps_radical r k (a/b) = fps_radical r k a / fps_radical r k b" | |
| 4624 | (is "?lhs = ?rhs") | |
| 60501 | 4625 | proof | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4626 | let ?r = "fps_radical r k" | 
| 60558 | 4627 | from kp obtain h where k: "k = Suc h" | 
| 4628 | by (cases k) auto | |
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4629 | have ra0': "r k (a$0) \<noteq> 0" using a0 ra0 k by auto | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4630 | have rb0': "r k (b$0) \<noteq> 0" using b0 rb0 k by auto | 
| 30488 | 4631 | |
| 60501 | 4632 | show ?lhs if ?rhs | 
| 4633 | proof - | |
| 4634 | from that have "?r (a/b) $ 0 = (?r a / ?r b)$0" | |
| 4635 | by simp | |
| 4636 | then show ?thesis | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4637 | using k a0 b0 rb0' by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def divide_inverse) | 
| 60501 | 4638 | qed | 
| 4639 | show ?rhs if ?lhs | |
| 4640 | proof - | |
| 52891 | 4641 | from a0 b0 have ab0[simp]: "(a/b)$0 = a$0 / b$0" | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4642 | by (simp add: fps_divide_def fps_mult_nth divide_inverse fps_inverse_def) | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4643 | have th0: "r k ((a/b)$0) ^ k = (a/b)$0" | 
| 60867 | 4644 | by (simp add: \<open>?lhs\<close> power_divide ra0 rb0) | 
| 60501 | 4645 | from a0 b0 ra0' rb0' kp \<open>?lhs\<close> | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4646 | have th1: "r k ((a / b) $ 0) = (fps_radical r k a / fps_radical r k b) $ 0" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4647 | by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def divide_inverse) | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4648 | from a0 b0 ra0' rb0' kp have ab0': "(a / b) $ 0 \<noteq> 0" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4649 | by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def nonzero_imp_inverse_nonzero) | 
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4650 | note tha[simp] = iffD1[OF power_radical[where r=r and k=h], OF a0 ra0[unfolded k], unfolded k[symmetric]] | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4651 | note thb[simp] = iffD1[OF power_radical[where r=r and k=h], OF b0 rb0[unfolded k], unfolded k[symmetric]] | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4652 | from b0 rb0' have th2: "(?r a / ?r b)^k = a/b" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4653 | by (simp add: fps_divide_unit power_mult_distrib fps_inverse_power[symmetric]) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 4654 | |
| 52902 | 4655 | from iffD1[OF radical_unique[where r=r and a="?r a / ?r b" and b="a/b" and k=h], symmetric, unfolded k[symmetric], OF th0 th1 ab0' th2] | 
| 60501 | 4656 | show ?thesis . | 
| 4657 | qed | |
| 29687 | 4658 | qed | 
| 4659 | ||
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4660 | lemma radical_inverse: | 
| 31273 | 4661 | fixes a :: "'a::field_char_0 fps" | 
| 52903 | 4662 | assumes k: "k > 0" | 
| 4663 | and ra0: "r k (a $ 0) ^ k = a $ 0" | |
| 4664 | and r1: "(r k 1)^k = 1" | |
| 4665 | and a0: "a$0 \<noteq> 0" | |
| 53196 | 4666 | shows "r k (inverse (a $ 0)) = r k 1 / (r k (a $ 0)) \<longleftrightarrow> | 
| 4667 | fps_radical r k (inverse a) = fps_radical r k 1 / fps_radical r k a" | |
| 31073 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4668 | using radical_divide[where k=k and r=r and a=1 and b=a, OF k ] ra0 r1 a0 | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4669 | by (simp add: divide_inverse fps_divide_def) | 
| 
4b44c4d08aa6
Generalized distributivity theorems of radicals over multiplication, division and inverses
 chaieb parents: 
31021diff
changeset | 4670 | |
| 60501 | 4671 | |
| 4672 | subsection \<open>Derivative of composition\<close> | |
| 29687 | 4673 | |
| 30488 | 4674 | lemma fps_compose_deriv: | 
| 54681 | 4675 | fixes a :: "'a::idom fps" | 
| 29687 | 4676 | assumes b0: "b$0 = 0" | 
| 54681 | 4677 | shows "fps_deriv (a oo b) = ((fps_deriv a) oo b) * fps_deriv b" | 
| 52903 | 4678 | proof - | 
| 60501 | 4679 | have "(fps_deriv (a oo b))$n = (((fps_deriv a) oo b) * (fps_deriv b)) $n" for n | 
| 4680 | proof - | |
| 64267 | 4681 |     have "(fps_deriv (a oo b))$n = sum (\<lambda>i. a $ i * (fps_deriv (b^i))$n) {0.. Suc n}"
 | 
| 4682 | by (simp add: fps_compose_def field_simps sum_distrib_left del: of_nat_Suc) | |
| 4683 |     also have "\<dots> = sum (\<lambda>i. a$i * ((fps_const (of_nat i)) * (fps_deriv b * (b^(i - 1))))$n) {0.. Suc n}"
 | |
| 36350 | 4684 | by (simp add: field_simps fps_deriv_power del: fps_mult_left_const_nth of_nat_Suc) | 
| 64267 | 4685 |     also have "\<dots> = sum (\<lambda>i. of_nat i * a$i * (((b^(i - 1)) * fps_deriv b))$n) {0.. Suc n}"
 | 
| 52903 | 4686 | unfolding fps_mult_left_const_nth by (simp add: field_simps) | 
| 64267 | 4687 |     also have "\<dots> = sum (\<lambda>i. of_nat i * a$i * (sum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {0.. Suc n}"
 | 
| 52903 | 4688 | unfolding fps_mult_nth .. | 
| 64267 | 4689 |     also have "\<dots> = sum (\<lambda>i. of_nat i * a$i * (sum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {1.. Suc n}"
 | 
| 72686 | 4690 | by (intro sum.mono_neutral_right) (auto simp add: mult_delta_left not_le) | 
| 64267 | 4691 |     also have "\<dots> = sum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (sum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
 | 
| 52903 | 4692 | unfolding fps_deriv_nth | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4693 | by (rule sum.reindex_cong [of Suc]) (simp_all add: mult.assoc) | 
| 52903 | 4694 | finally have th0: "(fps_deriv (a oo b))$n = | 
| 64267 | 4695 |       sum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (sum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}" .
 | 
| 4696 | ||
| 4697 |     have "(((fps_deriv a) oo b) * (fps_deriv b))$n = sum (\<lambda>i. (fps_deriv b)$ (n - i) * ((fps_deriv a) oo b)$i) {0..n}"
 | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 4698 | unfolding fps_mult_nth by (simp add: ac_simps) | 
| 64267 | 4699 |     also have "\<dots> = sum (\<lambda>i. sum (\<lambda>j. of_nat (n - i +1) * b$(n - i + 1) * of_nat (j + 1) * a$(j+1) * (b^j)$i) {0..n}) {0..n}"
 | 
| 4700 | unfolding fps_deriv_nth fps_compose_nth sum_distrib_left mult.assoc | |
| 72686 | 4701 | by (auto simp: subset_eq b0 startsby_zero_power_prefix sum.mono_neutral_left intro: sum.cong) | 
| 64267 | 4702 |     also have "\<dots> = sum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (sum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
 | 
| 4703 | unfolding sum_distrib_left | |
| 72686 | 4704 | by (subst sum.swap) (force intro: sum.cong) | 
| 60501 | 4705 | finally show ?thesis | 
| 52903 | 4706 | unfolding th0 by simp | 
| 60501 | 4707 | qed | 
| 52903 | 4708 | then show ?thesis by (simp add: fps_eq_iff) | 
| 29687 | 4709 | qed | 
| 4710 | ||
| 54681 | 4711 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4712 | subsection \<open>Finite FPS (i.e. polynomials) and fps_X\<close> | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4713 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4714 | lemma fps_poly_sum_fps_X: | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4715 | assumes "\<forall>i > n. a$i = 0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4716 |   shows "a = sum (\<lambda>i. fps_const (a$i) * fps_X^i) {0..n}" (is "a = ?r")
 | 
| 52903 | 4717 | proof - | 
| 60501 | 4718 | have "a$i = ?r$i" for i | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4719 | unfolding fps_sum_nth fps_mult_left_const_nth fps_X_power_nth | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4720 | by (simp add: mult_delta_right assms) | 
| 60501 | 4721 | then show ?thesis | 
| 4722 | unfolding fps_eq_iff by blast | |
| 29687 | 4723 | qed | 
| 4724 | ||
| 52903 | 4725 | |
| 60501 | 4726 | subsection \<open>Compositional inverses\<close> | 
| 29687 | 4727 | |
| 54681 | 4728 | fun compinv :: "'a fps \<Rightarrow> nat \<Rightarrow> 'a::field" | 
| 52903 | 4729 | where | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4730 | "compinv a 0 = fps_X$0" | 
| 52903 | 4731 | | "compinv a (Suc n) = | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4732 |     (fps_X$ Suc n - sum (\<lambda>i. (compinv a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
 | 
| 29687 | 4733 | |
| 4734 | definition "fps_inv a = Abs_fps (compinv a)" | |
| 4735 | ||
| 52903 | 4736 | lemma fps_inv: | 
| 4737 | assumes a0: "a$0 = 0" | |
| 4738 | and a1: "a$1 \<noteq> 0" | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4739 | shows "fps_inv a oo a = fps_X" | 
| 52903 | 4740 | proof - | 
| 29687 | 4741 | let ?i = "fps_inv a oo a" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4742 | have "?i $n = fps_X$n" for n | 
| 60501 | 4743 | proof (induct n rule: nat_less_induct) | 
| 52903 | 4744 | fix n | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4745 | assume h: "\<forall>m<n. ?i$m = fps_X$m" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4746 | show "?i $ n = fps_X$n" | 
| 60501 | 4747 | proof (cases n) | 
| 4748 | case 0 | |
| 4749 | then show ?thesis using a0 | |
| 4750 | by (simp add: fps_compose_nth fps_inv_def) | |
| 4751 | next | |
| 4752 | case (Suc n1) | |
| 64267 | 4753 |       have "?i $ n = sum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + fps_inv a $ Suc n1 * (a $ 1)^ Suc n1"
 | 
| 60501 | 4754 | by (simp only: fps_compose_nth) (simp add: Suc startsby_zero_power_nth_same [OF a0] del: power_Suc) | 
| 64267 | 4755 |       also have "\<dots> = sum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} +
 | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4756 |         (fps_X$ Suc n1 - sum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1})"
 | 
| 60501 | 4757 | using a0 a1 Suc by (simp add: fps_inv_def) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4758 | also have "\<dots> = fps_X$n" using Suc by simp | 
| 60501 | 4759 | finally show ?thesis . | 
| 52903 | 4760 | qed | 
| 60501 | 4761 | qed | 
| 4762 | then show ?thesis | |
| 4763 | by (simp add: fps_eq_iff) | |
| 29687 | 4764 | qed | 
| 4765 | ||
| 4766 | ||
| 54681 | 4767 | fun gcompinv :: "'a fps \<Rightarrow> 'a fps \<Rightarrow> nat \<Rightarrow> 'a::field" | 
| 52903 | 4768 | where | 
| 29687 | 4769 | "gcompinv b a 0 = b$0" | 
| 52903 | 4770 | | "gcompinv b a (Suc n) = | 
| 64267 | 4771 |     (b$ Suc n - sum (\<lambda>i. (gcompinv b a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
 | 
| 29687 | 4772 | |
| 4773 | definition "fps_ginv b a = Abs_fps (gcompinv b a)" | |
| 4774 | ||
| 52903 | 4775 | lemma fps_ginv: | 
| 4776 | assumes a0: "a$0 = 0" | |
| 4777 | and a1: "a$1 \<noteq> 0" | |
| 29687 | 4778 | shows "fps_ginv b a oo a = b" | 
| 52903 | 4779 | proof - | 
| 29687 | 4780 | let ?i = "fps_ginv b a oo a" | 
| 60501 | 4781 | have "?i $n = b$n" for n | 
| 4782 | proof (induct n rule: nat_less_induct) | |
| 52903 | 4783 | fix n | 
| 60501 | 4784 | assume h: "\<forall>m<n. ?i$m = b$m" | 
| 4785 | show "?i $ n = b$n" | |
| 4786 | proof (cases n) | |
| 4787 | case 0 | |
| 4788 | then show ?thesis using a0 | |
| 4789 | by (simp add: fps_compose_nth fps_ginv_def) | |
| 4790 | next | |
| 4791 | case (Suc n1) | |
| 64267 | 4792 |       have "?i $ n = sum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + fps_ginv b a $ Suc n1 * (a $ 1)^ Suc n1"
 | 
| 60501 | 4793 | by (simp only: fps_compose_nth) (simp add: Suc startsby_zero_power_nth_same [OF a0] del: power_Suc) | 
| 64267 | 4794 |       also have "\<dots> = sum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} +
 | 
| 4795 |         (b$ Suc n1 - sum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1})"
 | |
| 60501 | 4796 | using a0 a1 Suc by (simp add: fps_ginv_def) | 
| 4797 | also have "\<dots> = b$n" using Suc by simp | |
| 4798 | finally show ?thesis . | |
| 52903 | 4799 | qed | 
| 60501 | 4800 | qed | 
| 4801 | then show ?thesis | |
| 4802 | by (simp add: fps_eq_iff) | |
| 29687 | 4803 | qed | 
| 4804 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4805 | lemma fps_inv_ginv: "fps_inv = fps_ginv fps_X" | 
| 72686 | 4806 | proof - | 
| 4807 | have "compinv x n = gcompinv fps_X x n" for n and x :: "'a fps" | |
| 4808 | proof (induction n rule: nat_less_induct) | |
| 4809 | case (1 n) | |
| 4810 | then show ?case | |
| 4811 | by (cases n) auto | |
| 4812 | qed | |
| 4813 | then show ?thesis | |
| 4814 | by (auto simp add: fun_eq_iff fps_eq_iff fps_inv_def fps_ginv_def) | |
| 4815 | qed | |
| 29687 | 4816 | |
| 4817 | lemma fps_compose_1[simp]: "1 oo a = 1" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4818 | by (simp add: fps_eq_iff fps_compose_nth mult_delta_left) | 
| 29687 | 4819 | |
| 4820 | lemma fps_compose_0[simp]: "0 oo a = 0" | |
| 29913 | 4821 | by (simp add: fps_eq_iff fps_compose_nth) | 
| 29687 | 4822 | |
| 60867 | 4823 | lemma fps_compose_0_right[simp]: "a oo 0 = fps_const (a $ 0)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4824 | by (simp add: fps_eq_iff fps_compose_nth power_0_left sum.neutral) | 
| 29687 | 4825 | |
| 4826 | lemma fps_compose_add_distrib: "(a + b) oo c = (a oo c) + (b oo c)" | |
| 64267 | 4827 | by (simp add: fps_eq_iff fps_compose_nth field_simps sum.distrib) | 
| 4828 | ||
| 4829 | lemma fps_compose_sum_distrib: "(sum f S) oo a = sum (\<lambda>i. f i oo a) S" | |
| 52903 | 4830 | proof (cases "finite S") | 
| 4831 | case True | |
| 4832 | show ?thesis | |
| 4833 | proof (rule finite_induct[OF True]) | |
| 64267 | 4834 |     show "sum f {} oo a = (\<Sum>i\<in>{}. f i oo a)"
 | 
| 60501 | 4835 | by simp | 
| 52903 | 4836 | next | 
| 4837 | fix x F | |
| 4838 | assume fF: "finite F" | |
| 4839 | and xF: "x \<notin> F" | |
| 64267 | 4840 | and h: "sum f F oo a = sum (\<lambda>i. f i oo a) F" | 
| 4841 | show "sum f (insert x F) oo a = sum (\<lambda>i. f i oo a) (insert x F)" | |
| 52903 | 4842 | using fF xF h by (simp add: fps_compose_add_distrib) | 
| 4843 | qed | |
| 4844 | next | |
| 4845 | case False | |
| 4846 | then show ?thesis by simp | |
| 29687 | 4847 | qed | 
| 4848 | ||
| 30488 | 4849 | lemma convolution_eq: | 
| 64267 | 4850 |   "sum (\<lambda>i. a (i :: nat) * b (n - i)) {0 .. n} =
 | 
| 4851 |     sum (\<lambda>(i,j). a i * b j) {(i,j). i \<le> n \<and> j \<le> n \<and> i + j = n}"
 | |
| 4852 | by (rule sum.reindex_bij_witness[where i=fst and j="\<lambda>i. (i, n - i)"]) auto | |
| 29687 | 4853 | |
| 4854 | lemma product_composition_lemma: | |
| 52903 | 4855 | assumes c0: "c$0 = (0::'a::idom)" | 
| 4856 | and d0: "d$0 = 0" | |
| 4857 | shows "((a oo c) * (b oo d))$n = | |
| 64267 | 4858 |     sum (\<lambda>(k,m). a$k * b$m * (c^k * d^m) $ n) {(k,m). k + m \<le> n}"  (is "?l = ?r")
 | 
| 52903 | 4859 | proof - | 
| 54681 | 4860 |   let ?S = "{(k::nat, m::nat). k + m \<le> n}"
 | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4861 |   have s: "?S \<subseteq> {0..n} \<times> {0..n}" by (simp add: subset_eq)
 | 
| 54681 | 4862 |   have f: "finite {(k::nat, m::nat). k + m \<le> n}"
 | 
| 72686 | 4863 | by (auto intro: finite_subset[OF s]) | 
| 4864 |   have "?r = (\<Sum>(k, m) \<in> {(k, m). k + m \<le> n}. \<Sum>j = 0..n. a $ k * b $ m * (c ^ k $ j * d ^ m $ (n - j)))"
 | |
| 4865 | by (simp add: fps_mult_nth sum_distrib_left) | |
| 4866 |   also have "\<dots> = (\<Sum>i = 0..n. \<Sum>(k,m)\<in>{(k,m). k+m \<le> n}. a $ k * c ^ k $ i * b $ m * d ^ m $ (n-i))"
 | |
| 4867 |     unfolding sum.swap [where A = "{0..n}"] by (auto simp add: field_simps intro: sum.cong)
 | |
| 4868 | also have "... = (\<Sum>i = 0..n. | |
| 4869 | \<Sum>q = 0..i. \<Sum>j = 0..n - i. a $ q * c ^ q $ i * (b $ j * d ^ j $ (n - i)))" | |
| 4870 | apply (rule sum.cong [OF refl]) | |
| 64267 | 4871 | apply (simp add: sum.cartesian_product mult.assoc) | 
| 72686 | 4872 | apply (rule sum.mono_neutral_right[OF f], force) | 
| 4873 | by clarsimp (meson c0 d0 leI startsby_zero_power_prefix) | |
| 4874 | also have "\<dots> = ?l" | |
| 4875 | by (simp add: fps_mult_nth fps_compose_nth sum_product) | |
| 29687 | 4876 | finally show ?thesis by simp | 
| 4877 | qed | |
| 4878 | ||
| 64267 | 4879 | lemma sum_pair_less_iff: | 
| 4880 |   "sum (\<lambda>((k::nat),m). a k * b m * c (k + m)) {(k,m). k + m \<le> n} =
 | |
| 4881 |     sum (\<lambda>s. sum (\<lambda>i. a i * b (s - i) * c s) {0..s}) {0..n}"
 | |
| 52903 | 4882 | (is "?l = ?r") | 
| 4883 | proof - | |
| 72686 | 4884 |   have th0: "{(k, m). k + m \<le> n} = (\<Union>s\<in>{0..n}. \<Union>i\<in>{0..s}. {(i, s - i)})"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62102diff
changeset | 4885 | by auto | 
| 72686 | 4886 | show "?l = ?r" | 
| 29687 | 4887 | unfolding th0 | 
| 72686 | 4888 | by (simp add: sum.UNION_disjoint eq_diff_iff disjoint_iff) | 
| 29687 | 4889 | qed | 
| 4890 | ||
| 4891 | lemma fps_compose_mult_distrib_lemma: | |
| 4892 | assumes c0: "c$0 = (0::'a::idom)" | |
| 64267 | 4893 |   shows "((a oo c) * (b oo c))$n = sum (\<lambda>s. sum (\<lambda>i. a$i * b$(s - i) * (c^s) $ n) {0..s}) {0..n}"
 | 
| 29687 | 4894 | unfolding product_composition_lemma[OF c0 c0] power_add[symmetric] | 
| 64267 | 4895 | unfolding sum_pair_less_iff[where a = "\<lambda>k. a$k" and b="\<lambda>m. b$m" and c="\<lambda>s. (c ^ s)$n" and n = n] .. | 
| 29687 | 4896 | |
| 30488 | 4897 | lemma fps_compose_mult_distrib: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54452diff
changeset | 4898 | assumes c0: "c $ 0 = (0::'a::idom)" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54452diff
changeset | 4899 | shows "(a * b) oo c = (a oo c) * (b oo c)" | 
| 72686 | 4900 | proof (clarsimp simp add: fps_eq_iff fps_compose_mult_distrib_lemma [OF c0]) | 
| 4901 | show "(a * b oo c) $ n = (\<Sum>s = 0..n. \<Sum>i = 0..s. a $ i * b $ (s - i) * c ^ s $ n)" for n | |
| 4902 | by (simp add: fps_compose_nth fps_mult_nth sum_distrib_right) | |
| 4903 | qed | |
| 4904 | ||
| 52903 | 4905 | |
| 64272 | 4906 | lemma fps_compose_prod_distrib: | 
| 29687 | 4907 | assumes c0: "c$0 = (0::'a::idom)" | 
| 64272 | 4908 | shows "prod a S oo c = prod (\<lambda>k. a k oo c) S" | 
| 72686 | 4909 | proof (induct S rule: infinite_finite_induct) | 
| 4910 | next | |
| 4911 | case (insert) | |
| 4912 | then show ?case | |
| 4913 | by (simp add: fps_compose_mult_distrib[OF c0]) | |
| 4914 | qed auto | |
| 29687 | 4915 | |
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4916 | lemma fps_compose_divide: | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4917 | assumes [simp]: "g dvd f" "h $ 0 = 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4918 | shows "fps_compose f h = fps_compose (f / g :: 'a :: field fps) h * fps_compose g h" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4919 | proof - | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4920 | have "f = (f / g) * g" by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4921 | also have "fps_compose \<dots> h = fps_compose (f / g) h * fps_compose g h" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4922 | by (subst fps_compose_mult_distrib) simp_all | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4923 | finally show ?thesis . | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4924 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4925 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4926 | lemma fps_compose_divide_distrib: | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4927 | assumes "g dvd f" "h $ 0 = 0" "fps_compose g h \<noteq> 0" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4928 | shows "fps_compose (f / g :: 'a :: field fps) h = fps_compose f h / fps_compose g h" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4929 | using fps_compose_divide[OF assms(1,2)] assms(3) by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 4930 | |
| 53195 | 4931 | lemma fps_compose_power: | 
| 4932 | assumes c0: "c$0 = (0::'a::idom)" | |
| 4933 | shows "(a oo c)^n = a^n oo c" | |
| 52903 | 4934 | proof (cases n) | 
| 4935 | case 0 | |
| 4936 | then show ?thesis by simp | |
| 4937 | next | |
| 4938 | case (Suc m) | |
| 67970 | 4939 | have "(\<Prod>n = 0..m. a) oo c = (\<Prod>n = 0..m. a oo c)" | 
| 4940 | using c0 fps_compose_prod_distrib by blast | |
| 4941 |   moreover have th0: "a^n = prod (\<lambda>k. a) {0..m}" "(a oo c) ^ n = prod (\<lambda>k. a oo c) {0..m}"
 | |
| 64272 | 4942 | by (simp_all add: prod_constant Suc) | 
| 67970 | 4943 | ultimately show ?thesis | 
| 4944 | by presburger | |
| 29687 | 4945 | qed | 
| 4946 | ||
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4947 | lemma fps_compose_uminus: "- (a::'a::ring_1 fps) oo c = - (a oo c)" | 
| 64267 | 4948 | by (simp add: fps_eq_iff fps_compose_nth field_simps sum_negf[symmetric]) | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 4949 | |
| 52903 | 4950 | lemma fps_compose_sub_distrib: "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53374diff
changeset | 4951 | using fps_compose_add_distrib [of a "- b" c] by (simp add: fps_compose_uminus) | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4952 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4953 | lemma fps_X_fps_compose: "fps_X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a$n)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 4954 | by (simp add: fps_eq_iff fps_compose_nth mult_delta_left) | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4955 | |
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4956 | lemma fps_inverse_compose: | 
| 52903 | 4957 | assumes b0: "(b$0 :: 'a::field) = 0" | 
| 4958 | and a0: "a$0 \<noteq> 0" | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4959 | shows "inverse a oo b = inverse (a oo b)" | 
| 52903 | 4960 | proof - | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4961 | let ?ia = "inverse a" | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4962 | let ?ab = "a oo b" | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4963 | let ?iab = "inverse ?ab" | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4964 | |
| 52903 | 4965 | from a0 have ia0: "?ia $ 0 \<noteq> 0" by simp | 
| 4966 | from a0 have ab0: "?ab $ 0 \<noteq> 0" by (simp add: fps_compose_def) | |
| 4967 | have "(?ia oo b) * (a oo b) = 1" | |
| 4968 | unfolding fps_compose_mult_distrib[OF b0, symmetric] | |
| 4969 | unfolding inverse_mult_eq_1[OF a0] | |
| 4970 | fps_compose_1 .. | |
| 54452 | 4971 | |
| 52903 | 4972 | then have "(?ia oo b) * (a oo b) * ?iab = 1 * ?iab" by simp | 
| 4973 | then have "(?ia oo b) * (?iab * (a oo b)) = ?iab" by simp | |
| 4974 | then show ?thesis unfolding inverse_mult_eq_1[OF ab0] by simp | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4975 | qed | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4976 | |
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4977 | lemma fps_divide_compose: | 
| 52903 | 4978 | assumes c0: "(c$0 :: 'a::field) = 0" | 
| 4979 | and b0: "b$0 \<noteq> 0" | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4980 | shows "(a/b) oo c = (a oo c) / (b oo c)" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 4981 | using b0 c0 by (simp add: fps_divide_unit fps_inverse_compose fps_compose_mult_distrib) | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4982 | |
| 52903 | 4983 | lemma gp: | 
| 4984 | assumes a0: "a$0 = (0::'a::field)" | |
| 4985 | shows "(Abs_fps (\<lambda>n. 1)) oo a = 1/(1 - a)" | |
| 4986 | (is "?one oo a = _") | |
| 4987 | proof - | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4988 | have o0: "?one $ 0 \<noteq> 0" by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4989 | have th0: "(1 - fps_X) $ 0 \<noteq> (0::'a)" by simp | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4990 | from fps_inverse_gp[where ?'a = 'a] | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4991 | have "inverse ?one = 1 - fps_X" by (simp add: fps_eq_iff) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4992 | then have "inverse (inverse ?one) = inverse (1 - fps_X)" by simp | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4993 | then have th: "?one = 1/(1 - fps_X)" unfolding fps_inverse_idempotent[OF o0] | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4994 | by (simp add: fps_divide_def) | 
| 52903 | 4995 | show ?thesis | 
| 4996 | unfolding th | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4997 | unfolding fps_divide_compose[OF a0 th0] | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 4998 | fps_compose_1 fps_compose_sub_distrib fps_X_fps_compose_startby0[OF a0] .. | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 4999 | qed | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5000 | |
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5001 | lemma fps_compose_radical: | 
| 31273 | 5002 | assumes b0: "b$0 = (0::'a::field_char_0)" | 
| 52903 | 5003 | and ra0: "r (Suc k) (a$0) ^ Suc k = a$0" | 
| 5004 | and a0: "a$0 \<noteq> 0" | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5005 | shows "fps_radical r (Suc k) a oo b = fps_radical r (Suc k) (a oo b)" | 
| 52903 | 5006 | proof - | 
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5007 | let ?r = "fps_radical r (Suc k)" | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5008 | let ?ab = "a oo b" | 
| 52903 | 5009 | have ab0: "?ab $ 0 = a$0" | 
| 5010 | by (simp add: fps_compose_def) | |
| 5011 | from ab0 a0 ra0 have rab0: "?ab $ 0 \<noteq> 0" "r (Suc k) (?ab $ 0) ^ Suc k = ?ab $ 0" | |
| 5012 | by simp_all | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5013 | have th00: "r (Suc k) ((a oo b) $ 0) = (fps_radical r (Suc k) a oo b) $ 0" | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5014 | by (simp add: ab0 fps_compose_def) | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5015 | have th0: "(?r a oo b) ^ (Suc k) = a oo b" | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5016 | unfolding fps_compose_power[OF b0] | 
| 52891 | 5017 | unfolding iffD1[OF power_radical[of a r k], OF a0 ra0] .. | 
| 52903 | 5018 | from iffD1[OF radical_unique[where r=r and k=k and b= ?ab and a = "?r a oo b", OF rab0(2) th00 rab0(1)], OF th0] | 
| 5019 | show ?thesis . | |
| 31199 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5020 | qed | 
| 
10d413b08fa7
FPS composition distributes over inverses, division and arbitrary nth roots. General geometric series theorem
 chaieb parents: 
31148diff
changeset | 5021 | |
| 52903 | 5022 | lemma fps_const_mult_apply_left: "fps_const c * (a oo b) = (fps_const c * a) oo b" | 
| 64267 | 5023 | by (simp add: fps_eq_iff fps_compose_nth sum_distrib_left mult.assoc) | 
| 29687 | 5024 | |
| 5025 | lemma fps_const_mult_apply_right: | |
| 5026 | "(a oo b) * fps_const (c::'a::comm_semiring_1) = (fps_const c * a) oo b" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5027 | by (simp add: fps_const_mult_apply_left mult.commute) | 
| 29687 | 5028 | |
| 30488 | 5029 | lemma fps_compose_assoc: | 
| 52903 | 5030 | assumes c0: "c$0 = (0::'a::idom)" | 
| 5031 | and b0: "b$0 = 0" | |
| 29687 | 5032 | shows "a oo (b oo c) = a oo b oo c" (is "?l = ?r") | 
| 52903 | 5033 | proof - | 
| 60501 | 5034 | have "?l$n = ?r$n" for n | 
| 5035 | proof - | |
| 64267 | 5036 |     have "?l$n = (sum (\<lambda>i. (fps_const (a$i) * b^i) oo c) {0..n})$n"
 | 
| 52903 | 5037 | by (simp add: fps_compose_nth fps_compose_power[OF c0] fps_const_mult_apply_left | 
| 64267 | 5038 | sum_distrib_left mult.assoc fps_sum_nth) | 
| 5039 |     also have "\<dots> = ((sum (\<lambda>i. fps_const (a$i) * b^i) {0..n}) oo c)$n"
 | |
| 5040 | by (simp add: fps_compose_sum_distrib) | |
| 72686 | 5041 | also have "... = (\<Sum>i = 0..n. \<Sum>j = 0..n. a $ j * (b ^ j $ i * c ^ i $ n))" | 
| 5042 | by (simp add: fps_compose_nth fps_sum_nth sum_distrib_right mult.assoc) | |
| 5043 | also have "... = (\<Sum>i = 0..n. \<Sum>j = 0..i. a $ j * (b ^ j $ i * c ^ i $ n))" | |
| 5044 | by (intro sum.cong [OF refl] sum.mono_neutral_right; simp add: b0 startsby_zero_power_prefix) | |
| 29687 | 5045 | also have "\<dots> = ?r$n" | 
| 72686 | 5046 | by (simp add: fps_compose_nth sum_distrib_right mult.assoc) | 
| 60501 | 5047 | finally show ?thesis . | 
| 5048 | qed | |
| 5049 | then show ?thesis | |
| 5050 | by (simp add: fps_eq_iff) | |
| 29687 | 5051 | qed | 
| 5052 | ||
| 5053 | ||
| 5054 | lemma fps_X_power_compose: | |
| 52903 | 5055 | assumes a0: "a$0=0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5056 | shows "fps_X^k oo a = (a::'a::idom fps)^k" | 
| 54681 | 5057 | (is "?l = ?r") | 
| 52903 | 5058 | proof (cases k) | 
| 5059 | case 0 | |
| 5060 | then show ?thesis by simp | |
| 5061 | next | |
| 53196 | 5062 | case (Suc h) | 
| 60501 | 5063 | have "?l $ n = ?r $n" for n | 
| 5064 | proof - | |
| 5065 | consider "k > n" | "k \<le> n" by arith | |
| 5066 | then show ?thesis | |
| 5067 | proof cases | |
| 5068 | case 1 | |
| 5069 | then show ?thesis | |
| 5070 | using a0 startsby_zero_power_prefix[OF a0] Suc | |
| 52903 | 5071 | by (simp add: fps_compose_nth del: power_Suc) | 
| 60501 | 5072 | next | 
| 5073 | case 2 | |
| 5074 | then show ?thesis | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5075 | by (simp add: fps_compose_nth mult_delta_left) | 
| 60501 | 5076 | qed | 
| 5077 | qed | |
| 5078 | then show ?thesis | |
| 5079 | unfolding fps_eq_iff by blast | |
| 29687 | 5080 | qed | 
| 5081 | ||
| 52903 | 5082 | lemma fps_inv_right: | 
| 5083 | assumes a0: "a$0 = 0" | |
| 5084 | and a1: "a$1 \<noteq> 0" | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5085 | shows "a oo fps_inv a = fps_X" | 
| 52903 | 5086 | proof - | 
| 29687 | 5087 | let ?ia = "fps_inv a" | 
| 5088 | let ?iaa = "a oo fps_inv a" | |
| 60501 | 5089 | have th0: "?ia $ 0 = 0" | 
| 5090 | by (simp add: fps_inv_def) | |
| 5091 | have th1: "?iaa $ 0 = 0" | |
| 5092 | using a0 a1 by (simp add: fps_inv_def fps_compose_nth) | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5093 | have th2: "fps_X$0 = 0" | 
| 60501 | 5094 | by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5095 | from fps_inv[OF a0 a1] have "a oo (fps_inv a oo a) = a oo fps_X" | 
| 60501 | 5096 | by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5097 | then have "(a oo fps_inv a) oo a = fps_X oo a" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5098 | by (simp add: fps_compose_assoc[OF a0 th0] fps_X_fps_compose_startby0[OF a0]) | 
| 60501 | 5099 | with fps_compose_inj_right[OF a0 a1] show ?thesis | 
| 5100 | by simp | |
| 29687 | 5101 | qed | 
| 5102 | ||
| 5103 | lemma fps_inv_deriv: | |
| 60501 | 5104 | assumes a0: "a$0 = (0::'a::field)" | 
| 52903 | 5105 | and a1: "a$1 \<noteq> 0" | 
| 29687 | 5106 | shows "fps_deriv (fps_inv a) = inverse (fps_deriv a oo fps_inv a)" | 
| 52903 | 5107 | proof - | 
| 29687 | 5108 | let ?ia = "fps_inv a" | 
| 5109 | let ?d = "fps_deriv a oo ?ia" | |
| 5110 | let ?dia = "fps_deriv ?ia" | |
| 60501 | 5111 | have ia0: "?ia$0 = 0" | 
| 5112 | by (simp add: fps_inv_def) | |
| 5113 | have th0: "?d$0 \<noteq> 0" | |
| 5114 | using a1 by (simp add: fps_compose_nth) | |
| 29687 | 5115 | from fps_inv_right[OF a0 a1] have "?d * ?dia = 1" | 
| 5116 | by (simp add: fps_compose_deriv[OF ia0, of a, symmetric] ) | |
| 60501 | 5117 | then have "inverse ?d * ?d * ?dia = inverse ?d * 1" | 
| 5118 | by simp | |
| 5119 | with inverse_mult_eq_1 [OF th0] show "?dia = inverse ?d" | |
| 5120 | by simp | |
| 29687 | 5121 | qed | 
| 5122 | ||
| 52891 | 5123 | lemma fps_inv_idempotent: | 
| 52903 | 5124 | assumes a0: "a$0 = 0" | 
| 5125 | and a1: "a$1 \<noteq> 0" | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5126 | shows "fps_inv (fps_inv a) = a" | 
| 52903 | 5127 | proof - | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5128 | let ?r = "fps_inv" | 
| 60501 | 5129 | have ra0: "?r a $ 0 = 0" | 
| 5130 | by (simp add: fps_inv_def) | |
| 5131 | from a1 have ra1: "?r a $ 1 \<noteq> 0" | |
| 5132 | by (simp add: fps_inv_def field_simps) | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5133 | have fps_X0: "fps_X$0 = 0" | 
| 60501 | 5134 | by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5135 | from fps_inv[OF ra0 ra1] have "?r (?r a) oo ?r a = fps_X" . | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5136 | then have "?r (?r a) oo ?r a oo a = fps_X oo a" | 
| 60501 | 5137 | by simp | 
| 52891 | 5138 | then have "?r (?r a) oo (?r a oo a) = a" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5139 | unfolding fps_X_fps_compose_startby0[OF a0] | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5140 | unfolding fps_compose_assoc[OF a0 ra0, symmetric] . | 
| 60501 | 5141 | then show ?thesis | 
| 5142 | unfolding fps_inv[OF a0 a1] by simp | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5143 | qed | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5144 | |
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5145 | lemma fps_ginv_ginv: | 
| 52903 | 5146 | assumes a0: "a$0 = 0" | 
| 5147 | and a1: "a$1 \<noteq> 0" | |
| 5148 | and c0: "c$0 = 0" | |
| 5149 | and c1: "c$1 \<noteq> 0" | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5150 | shows "fps_ginv b (fps_ginv c a) = b oo a oo fps_inv c" | 
| 52903 | 5151 | proof - | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5152 | let ?r = "fps_ginv" | 
| 60501 | 5153 | from c0 have rca0: "?r c a $0 = 0" | 
| 5154 | by (simp add: fps_ginv_def) | |
| 5155 | from a1 c1 have rca1: "?r c a $ 1 \<noteq> 0" | |
| 5156 | by (simp add: fps_ginv_def field_simps) | |
| 52891 | 5157 | from fps_ginv[OF rca0 rca1] | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5158 | have "?r b (?r c a) oo ?r c a = b" . | 
| 60501 | 5159 | then have "?r b (?r c a) oo ?r c a oo a = b oo a" | 
| 5160 | by simp | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5161 | then have "?r b (?r c a) oo (?r c a oo a) = b oo a" | 
| 72686 | 5162 | by (simp add: a0 fps_compose_assoc rca0) | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5163 | then have "?r b (?r c a) oo c = b oo a" | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5164 | unfolding fps_ginv[OF a0 a1] . | 
| 60501 | 5165 | then have "?r b (?r c a) oo c oo fps_inv c= b oo a oo fps_inv c" | 
| 5166 | by simp | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5167 | then have "?r b (?r c a) oo (c oo fps_inv c) = b oo a oo fps_inv c" | 
| 72686 | 5168 | by (metis c0 c1 fps_compose_assoc fps_compose_nth_0 fps_inv fps_inv_right) | 
| 60501 | 5169 | then show ?thesis | 
| 5170 | unfolding fps_inv_right[OF c0 c1] by simp | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5171 | qed | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5172 | |
| 32410 | 5173 | lemma fps_ginv_deriv: | 
| 54681 | 5174 | assumes a0:"a$0 = (0::'a::field)" | 
| 52903 | 5175 | and a1: "a$1 \<noteq> 0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5176 | shows "fps_deriv (fps_ginv b a) = (fps_deriv b / fps_deriv a) oo fps_ginv fps_X a" | 
| 52903 | 5177 | proof - | 
| 32410 | 5178 | let ?ia = "fps_ginv b a" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5179 | let ?ifps_Xa = "fps_ginv fps_X a" | 
| 32410 | 5180 | let ?d = "fps_deriv" | 
| 5181 | let ?dia = "?d ?ia" | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5182 | have ifps_Xa0: "?ifps_Xa $ 0 = 0" | 
| 60501 | 5183 | by (simp add: fps_ginv_def) | 
| 5184 | have da0: "?d a $ 0 \<noteq> 0" | |
| 5185 | using a1 by simp | |
| 5186 | from fps_ginv[OF a0 a1, of b] have "?d (?ia oo a) = fps_deriv b" | |
| 5187 | by simp | |
| 5188 | then have "(?d ?ia oo a) * ?d a = ?d b" | |
| 5189 | unfolding fps_compose_deriv[OF a0] . | |
| 5190 | then have "(?d ?ia oo a) * ?d a * inverse (?d a) = ?d b * inverse (?d a)" | |
| 5191 | by simp | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5192 | with a1 have "(?d ?ia oo a) * (inverse (?d a) * ?d a) = ?d b / ?d a" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5193 | by (simp add: fps_divide_unit) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5194 | then have "(?d ?ia oo a) oo ?ifps_Xa = (?d b / ?d a) oo ?ifps_Xa" | 
| 32410 | 5195 | unfolding inverse_mult_eq_1[OF da0] by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5196 | then have "?d ?ia oo (a oo ?ifps_Xa) = (?d b / ?d a) oo ?ifps_Xa" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5197 | unfolding fps_compose_assoc[OF ifps_Xa0 a0] . | 
| 32410 | 5198 | then show ?thesis unfolding fps_inv_ginv[symmetric] | 
| 5199 | unfolding fps_inv_right[OF a0 a1] by simp | |
| 5200 | qed | |
| 5201 | ||
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5202 | lemma fps_compose_linear: | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5203 | "fps_compose (f :: 'a :: comm_ring_1 fps) (fps_const c * fps_X) = Abs_fps (\<lambda>n. c^n * f $ n)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5204 | by (simp add: fps_eq_iff fps_compose_def power_mult_distrib | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5205 | if_distrib cong: if_cong) | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5206 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5207 | lemma fps_compose_uminus': | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5208 | "fps_compose f (-fps_X :: 'a :: comm_ring_1 fps) = Abs_fps (\<lambda>n. (-1)^n * f $ n)" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5209 | using fps_compose_linear[of f "-1"] | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5210 | by (simp only: fps_const_neg [symmetric] fps_const_1_eq_1) simp | 
| 60501 | 5211 | |
| 5212 | subsection \<open>Elementary series\<close> | |
| 5213 | ||
| 5214 | subsubsection \<open>Exponential series\<close> | |
| 53195 | 5215 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5216 | definition "fps_exp x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5217 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5218 | lemma fps_exp_deriv[simp]: "fps_deriv (fps_exp a) = fps_const (a::'a::field_char_0) * fps_exp a" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5219 | (is "?l = ?r") | 
| 52903 | 5220 | proof - | 
| 60501 | 5221 | have "?l$n = ?r $ n" for n | 
| 72686 | 5222 | using of_nat_neq_0 by (auto simp add: fps_exp_def divide_simps) | 
| 60501 | 5223 | then show ?thesis | 
| 5224 | by (simp add: fps_eq_iff) | |
| 29687 | 5225 | qed | 
| 5226 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5227 | lemma fps_exp_unique_ODE: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5228 | "fps_deriv a = fps_const c * a \<longleftrightarrow> a = fps_const (a$0) * fps_exp (c::'a::field_char_0)" | 
| 29687 | 5229 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 52903 | 5230 | proof | 
| 60501 | 5231 | show ?rhs if ?lhs | 
| 5232 | proof - | |
| 5233 | from that have th: "\<And>n. a $ Suc n = c * a$n / of_nat (Suc n)" | |
| 5234 | by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc) | |
| 5235 | have th': "a$n = a$0 * c ^ n/ (fact n)" for n | |
| 5236 | proof (induct n) | |
| 5237 | case 0 | |
| 5238 | then show ?case by simp | |
| 5239 | next | |
| 5240 | case Suc | |
| 5241 | then show ?case | |
| 72686 | 5242 | by (simp add: th divide_simps) | 
| 60501 | 5243 | qed | 
| 5244 | show ?thesis | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5245 | by (auto simp add: fps_eq_iff fps_const_mult_left fps_exp_def intro: th') | 
| 60501 | 5246 | qed | 
| 5247 | show ?lhs if ?rhs | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5248 | using that by (metis fps_exp_deriv fps_deriv_mult_const_left mult.left_commute) | 
| 29687 | 5249 | qed | 
| 5250 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5251 | lemma fps_exp_add_mult: "fps_exp (a + b) = fps_exp (a::'a::field_char_0) * fps_exp b" (is "?l = ?r") | 
| 52903 | 5252 | proof - | 
| 60501 | 5253 | have "fps_deriv ?r = fps_const (a + b) * ?r" | 
| 36350 | 5254 | by (simp add: fps_const_add[symmetric] field_simps del: fps_const_add) | 
| 60501 | 5255 | then have "?r = ?l" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5256 | by (simp only: fps_exp_unique_ODE) (simp add: fps_mult_nth fps_exp_def) | 
| 29687 | 5257 | then show ?thesis .. | 
| 5258 | qed | |
| 5259 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5260 | lemma fps_exp_nth[simp]: "fps_exp a $ n = a^n / of_nat (fact n)" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5261 | by (simp add: fps_exp_def) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5262 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5263 | lemma fps_exp_0[simp]: "fps_exp (0::'a::field) = 1" | 
| 29687 | 5264 | by (simp add: fps_eq_iff power_0_left) | 
| 5265 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5266 | lemma fps_exp_neg: "fps_exp (- a) = inverse (fps_exp (a::'a::field_char_0))" | 
| 52903 | 5267 | proof - | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5268 | from fps_exp_add_mult[of a "- a"] have th0: "fps_exp a * fps_exp (- a) = 1" by simp | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5269 | from fps_inverse_unique[OF th0] show ?thesis by simp | 
| 29687 | 5270 | qed | 
| 5271 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5272 | lemma fps_exp_nth_deriv[simp]: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5273 | "fps_nth_deriv n (fps_exp (a::'a::field_char_0)) = (fps_const a)^n * (fps_exp a)" | 
| 52902 | 5274 | by (induct n) auto | 
| 29687 | 5275 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5276 | lemma fps_X_compose_fps_exp[simp]: "fps_X oo fps_exp (a::'a::field) = fps_exp a - 1" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5277 | by (simp add: fps_eq_iff fps_X_fps_compose) | 
| 29687 | 5278 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5279 | lemma fps_inv_fps_exp_compose: | 
| 60501 | 5280 | assumes a: "a \<noteq> 0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5281 | shows "fps_inv (fps_exp a - 1) oo (fps_exp a - 1) = fps_X" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5282 | and "(fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_X" | 
| 53195 | 5283 | proof - | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5284 | let ?b = "fps_exp a - 1" | 
| 60501 | 5285 | have b0: "?b $ 0 = 0" | 
| 5286 | by simp | |
| 5287 | have b1: "?b $ 1 \<noteq> 0" | |
| 5288 | by (simp add: a) | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5289 | from fps_inv[OF b0 b1] show "fps_inv (fps_exp a - 1) oo (fps_exp a - 1) = fps_X" . | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5290 | from fps_inv_right[OF b0 b1] show "(fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_X" . | 
| 29687 | 5291 | qed | 
| 5292 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5293 | lemma fps_exp_power_mult: "(fps_exp (c::'a::field_char_0))^n = fps_exp (of_nat n * c)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5294 | by (induct n) (simp_all add: field_simps fps_exp_add_mult) | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5295 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5296 | lemma radical_fps_exp: | 
| 52891 | 5297 | assumes r: "r (Suc k) 1 = 1" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5298 | shows "fps_radical r (Suc k) (fps_exp (c::'a::field_char_0)) = fps_exp (c / of_nat (Suc k))" | 
| 52903 | 5299 | proof - | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5300 | let ?ck = "(c / of_nat (Suc k))" | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5301 | let ?r = "fps_radical r (Suc k)" | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5302 | have eq0[simp]: "?ck * of_nat (Suc k) = c" "of_nat (Suc k) * ?ck = c" | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5303 | by (simp_all del: of_nat_Suc) | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5304 | have th0: "fps_exp ?ck ^ (Suc k) = fps_exp c" unfolding fps_exp_power_mult eq0 .. | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5305 | have th: "r (Suc k) (fps_exp c $0) ^ Suc k = fps_exp c $ 0" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5306 | "r (Suc k) (fps_exp c $ 0) = fps_exp ?ck $ 0" "fps_exp c $ 0 \<noteq> 0" using r by simp_all | 
| 60501 | 5307 | from th0 radical_unique[where r=r and k=k, OF th] show ?thesis | 
| 5308 | by auto | |
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5309 | qed | 
| 29687 | 5310 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5311 | lemma fps_exp_compose_linear [simp]: | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5312 | "fps_exp (d::'a::field_char_0) oo (fps_const c * fps_X) = fps_exp (c * d)" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5313 | by (simp add: fps_compose_linear fps_exp_def fps_eq_iff power_mult_distrib) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5314 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5315 | lemma fps_fps_exp_compose_minus [simp]: | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5316 | "fps_compose (fps_exp c) (-fps_X) = fps_exp (-c :: 'a :: field_char_0)" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5317 | using fps_exp_compose_linear[of c "-1 :: 'a"] | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5318 | unfolding fps_const_neg [symmetric] fps_const_1_eq_1 by simp | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5319 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5320 | lemma fps_exp_eq_iff [simp]: "fps_exp c = fps_exp d \<longleftrightarrow> c = (d :: 'a :: field_char_0)" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5321 | proof | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5322 | assume "fps_exp c = fps_exp d" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5323 | from arg_cong[of _ _ "\<lambda>F. F $ 1", OF this] show "c = d" by simp | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5324 | qed simp_all | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5325 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5326 | lemma fps_exp_eq_fps_const_iff [simp]: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5327 | "fps_exp (c :: 'a :: field_char_0) = fps_const c' \<longleftrightarrow> c = 0 \<and> c' = 1" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5328 | proof | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5329 | assume "c = 0 \<and> c' = 1" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5330 | thus "fps_exp c = fps_const c'" by (simp add: fps_eq_iff) | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5331 | next | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5332 | assume "fps_exp c = fps_const c'" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5333 | from arg_cong[of _ _ "\<lambda>F. F $ 1", OF this] arg_cong[of _ _ "\<lambda>F. F $ 0", OF this] | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5334 | show "c = 0 \<and> c' = 1" by simp_all | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5335 | qed | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5336 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5337 | lemma fps_exp_neq_0 [simp]: "\<not>fps_exp (c :: 'a :: field_char_0) = 0" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5338 | unfolding fps_const_0_eq_0 [symmetric] fps_exp_eq_fps_const_iff by simp | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5339 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5340 | lemma fps_exp_eq_1_iff [simp]: "fps_exp (c :: 'a :: field_char_0) = 1 \<longleftrightarrow> c = 0" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5341 | unfolding fps_const_1_eq_1 [symmetric] fps_exp_eq_fps_const_iff by simp | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5342 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5343 | lemma fps_exp_neq_numeral_iff [simp]: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5344 | "fps_exp (c :: 'a :: field_char_0) = numeral n \<longleftrightarrow> c = 0 \<and> n = Num.One" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5345 | unfolding numeral_fps_const fps_exp_eq_fps_const_iff by simp | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5346 | |
| 53195 | 5347 | |
| 60501 | 5348 | subsubsection \<open>Logarithmic series\<close> | 
| 29687 | 5349 | |
| 52891 | 5350 | lemma Abs_fps_if_0: | 
| 60501 | 5351 | "Abs_fps (\<lambda>n. if n = 0 then (v::'a::ring_1) else f n) = | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5352 | fps_const v + fps_X * Abs_fps (\<lambda>n. f (Suc n))" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5353 | by (simp add: fps_eq_iff) | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5354 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5355 | definition fps_ln :: "'a::field_char_0 \<Rightarrow> 'a fps" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5356 | where "fps_ln c = fps_const (1/c) * Abs_fps (\<lambda>n. if n = 0 then 0 else (- 1) ^ (n - 1) / of_nat n)" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5357 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5358 | lemma fps_ln_deriv: "fps_deriv (fps_ln c) = fps_const (1/c) * inverse (1 + fps_X)" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5359 | unfolding fps_inverse_fps_X_plus1 | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5360 | by (simp add: fps_ln_def fps_eq_iff del: of_nat_Suc) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5361 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5362 | lemma fps_ln_nth: "fps_ln c $ n = (if n = 0 then 0 else 1/c * ((- 1) ^ (n - 1) / of_nat n))" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5363 | by (simp add: fps_ln_def field_simps) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5364 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5365 | lemma fps_ln_0 [simp]: "fps_ln c $ 0 = 0" by (simp add: fps_ln_def) | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5366 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5367 | lemma fps_ln_fps_exp_inv: | 
| 54452 | 5368 | fixes a :: "'a::field_char_0" | 
| 5369 | assumes a: "a \<noteq> 0" | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5370 | shows "fps_ln a = fps_inv (fps_exp a - 1)" (is "?l = ?r") | 
| 52903 | 5371 | proof - | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5372 | let ?b = "fps_exp a - 1" | 
| 29687 | 5373 | have b0: "?b $ 0 = 0" by simp | 
| 5374 | have b1: "?b $ 1 \<noteq> 0" by (simp add: a) | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5375 | have "fps_deriv (fps_exp a - 1) oo fps_inv (fps_exp a - 1) = | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5376 | (fps_const a * (fps_exp a - 1) + fps_const a) oo fps_inv (fps_exp a - 1)" | 
| 36350 | 5377 | by (simp add: field_simps) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5378 | also have "\<dots> = fps_const a * (fps_X + 1)" | 
| 72686 | 5379 | by (simp add: fps_compose_add_distrib fps_inv_right[OF b0 b1] distrib_left flip: fps_const_mult_apply_left) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5380 | finally have eq: "fps_deriv (fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_const a * (fps_X + 1)" . | 
| 29687 | 5381 | from fps_inv_deriv[OF b0 b1, unfolded eq] | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5382 | have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (fps_X + 1)" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5383 | using a by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult) | 
| 54452 | 5384 | then have "fps_deriv ?l = fps_deriv ?r" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5385 | by (simp add: fps_ln_deriv add.commute fps_divide_def divide_inverse) | 
| 29687 | 5386 | then show ?thesis unfolding fps_deriv_eq_iff | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5387 | by (simp add: fps_ln_nth fps_inv_def) | 
| 29687 | 5388 | qed | 
| 5389 | ||
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5390 | lemma fps_ln_mult_add: | 
| 52903 | 5391 | assumes c0: "c\<noteq>0" | 
| 5392 | and d0: "d\<noteq>0" | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5393 | shows "fps_ln c + fps_ln d = fps_const (c+d) * fps_ln (c*d)" | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5394 | (is "?r = ?l") | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5395 | proof- | 
| 36350 | 5396 | from c0 d0 have eq: "1/c + 1/d = (c+d)/(c*d)" by (simp add: field_simps) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5397 | have "fps_deriv ?r = fps_const (1/c + 1/d) * inverse (1 + fps_X)" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5398 | by (simp add: fps_ln_deriv fps_const_add[symmetric] algebra_simps del: fps_const_add) | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5399 | also have "\<dots> = fps_deriv ?l" | 
| 72686 | 5400 | by (simp add: eq fps_ln_deriv) | 
| 31369 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5401 | finally show ?thesis | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5402 | unfolding fps_deriv_eq_iff by simp | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5403 | qed | 
| 
8b460fd12100
Reverses idempotent; radical of E; generalized logarithm;
 chaieb parents: 
31199diff
changeset | 5404 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5405 | lemma fps_X_dvd_fps_ln [simp]: "fps_X dvd fps_ln c" | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5406 | proof - | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5407 | have "fps_ln c = fps_X * Abs_fps (\<lambda>n. (-1) ^ n / (of_nat (Suc n) * c))" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5408 | by (intro fps_ext) (simp add: fps_ln_def of_nat_diff) | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5409 | thus ?thesis by simp | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5410 | qed | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5411 | |
| 53196 | 5412 | |
| 60501 | 5413 | subsubsection \<open>Binomial series\<close> | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5414 | |
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5415 | definition "fps_binomial a = Abs_fps (\<lambda>n. a gchoose n)" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5416 | |
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5417 | lemma fps_binomial_nth[simp]: "fps_binomial a $ n = a gchoose n" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5418 | by (simp add: fps_binomial_def) | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5419 | |
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5420 | lemma fps_binomial_ODE_unique: | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5421 | fixes c :: "'a::field_char_0" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5422 | shows "fps_deriv a = (fps_const c * a) / (1 + fps_X) \<longleftrightarrow> a = fps_const (a$0) * fps_binomial c" | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5423 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60501 | 5424 | proof | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5425 | let ?da = "fps_deriv a" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5426 | let ?x1 = "(1 + fps_X):: 'a fps" | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5427 | let ?l = "?x1 * ?da" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5428 | let ?r = "fps_const c * a" | 
| 60501 | 5429 | |
| 5430 | have eq: "?l = ?r \<longleftrightarrow> ?lhs" | |
| 5431 | proof - | |
| 5432 | have x10: "?x1 $ 0 \<noteq> 0" by simp | |
| 5433 | have "?l = ?r \<longleftrightarrow> inverse ?x1 * ?l = inverse ?x1 * ?r" by simp | |
| 5434 | also have "\<dots> \<longleftrightarrow> ?da = (fps_const c * a) / ?x1" | |
| 72686 | 5435 | unfolding fps_divide_def mult.assoc[symmetric] inverse_mult_eq_1[OF x10] | 
| 5436 | by (simp add: field_simps) | |
| 60501 | 5437 | finally show ?thesis . | 
| 5438 | qed | |
| 5439 | ||
| 5440 | show ?rhs if ?lhs | |
| 5441 | proof - | |
| 5442 | from eq that have h: "?l = ?r" .. | |
| 5443 | have th0: "a$ Suc n = ((c - of_nat n) / of_nat (Suc n)) * a $n" for n | |
| 5444 | proof - | |
| 5445 | from h have "?l $ n = ?r $ n" by simp | |
| 5446 | then show ?thesis | |
| 72686 | 5447 | by (simp add: field_simps del: of_nat_Suc split: if_split_asm) | 
| 60501 | 5448 | qed | 
| 5449 | have th1: "a $ n = (c gchoose n) * a $ 0" for n | |
| 5450 | proof (induct n) | |
| 5451 | case 0 | |
| 5452 | then show ?case by simp | |
| 5453 | next | |
| 5454 | case (Suc m) | |
| 72686 | 5455 | have "(c - of_nat m) * (c gchoose m) = (c gchoose Suc m) * of_nat (Suc m)" | 
| 5456 | by (metis gbinomial_absorb_comp gbinomial_absorption mult.commute) | |
| 5457 | with Suc show ?case | |
| 60501 | 5458 | unfolding th0 | 
| 72686 | 5459 | by (simp add: divide_simps del: of_nat_Suc) | 
| 60501 | 5460 | qed | 
| 5461 | show ?thesis | |
| 72686 | 5462 | by (metis expand_fps_eq fps_binomial_nth fps_mult_right_const_nth mult.commute th1) | 
| 60501 | 5463 | qed | 
| 5464 | ||
| 5465 | show ?lhs if ?rhs | |
| 5466 | proof - | |
| 5467 | have th00: "x * (a $ 0 * y) = a $ 0 * (x * y)" for x y | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 5468 | by (simp add: mult.commute) | 
| 72686 | 5469 | have "?l = (1 + fps_X) * fps_deriv (fps_const (a $ 0) * fps_binomial c)" | 
| 5470 | using that by auto | |
| 5471 | also have "... = fps_const c * (fps_const (a $ 0) * fps_binomial c)" | |
| 5472 | proof (clarsimp simp add: fps_eq_iff algebra_simps) | |
| 5473 | show "a $ 0 * (c gchoose Suc n) + (of_nat n * ((c gchoose n) * a $ 0) + of_nat n * (a $ 0 * (c gchoose Suc n))) | |
| 5474 | = c * ((c gchoose n) * a $ 0)" for n | |
| 5475 | unfolding mult.assoc[symmetric] | |
| 5476 | by (simp add: field_simps gbinomial_mult_1) | |
| 5477 | qed | |
| 5478 | also have "... = ?r" | |
| 5479 | using that by auto | |
| 5480 | finally have "?l = ?r" . | |
| 60501 | 5481 | with eq show ?thesis .. | 
| 5482 | qed | |
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5483 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5484 | |
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5485 | lemma fps_binomial_ODE_unique': | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5486 | "(fps_deriv a = fps_const c * a / (1 + fps_X) \<and> a $ 0 = 1) \<longleftrightarrow> (a = fps_binomial c)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5487 | by (subst fps_binomial_ODE_unique) auto | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5488 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5489 | lemma fps_binomial_deriv: "fps_deriv (fps_binomial c) = fps_const c * fps_binomial c / (1 + fps_X)" | 
| 53196 | 5490 | proof - | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5491 | let ?a = "fps_binomial c" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5492 | have th0: "?a = fps_const (?a$0) * ?a" by (simp) | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5493 | from iffD2[OF fps_binomial_ODE_unique, OF th0] show ?thesis . | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5494 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5495 | |
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5496 | lemma fps_binomial_add_mult: "fps_binomial (c+d) = fps_binomial c * fps_binomial d" (is "?l = ?r") | 
| 53196 | 5497 | proof - | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5498 | let ?P = "?r - ?l" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5499 | let ?b = "fps_binomial" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5500 | let ?db = "\<lambda>x. fps_deriv (?b x)" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5501 | have "fps_deriv ?P = ?db c * ?b d + ?b c * ?db d - ?db (c + d)" by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5502 | also have "\<dots> = inverse (1 + fps_X) * | 
| 53196 | 5503 | (fps_const c * ?b c * ?b d + fps_const d * ?b c * ?b d - fps_const (c+d) * ?b (c + d))" | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5504 | unfolding fps_binomial_deriv | 
| 36350 | 5505 | by (simp add: fps_divide_def field_simps) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5506 | also have "\<dots> = (fps_const (c + d)/ (1 + fps_X)) * ?P" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5507 | by (simp add: field_simps fps_divide_unit fps_const_add[symmetric] del: fps_const_add) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5508 | finally have th0: "fps_deriv ?P = fps_const (c+d) * ?P / (1 + fps_X)" | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5509 | by (simp add: fps_divide_def) | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5510 | have "?P = fps_const (?P$0) * ?b (c + d)" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5511 | unfolding fps_binomial_ODE_unique[symmetric] | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5512 | using th0 by simp | 
| 54452 | 5513 | then have "?P = 0" by (simp add: fps_mult_nth) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5514 | then show ?thesis by simp | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5515 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5516 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5517 | lemma fps_binomial_minus_one: "fps_binomial (- 1) = inverse (1 + fps_X)" | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5518 | (is "?l = inverse ?r") | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5519 | proof- | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5520 | have th: "?r$0 \<noteq> 0" by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5521 | have th': "fps_deriv (inverse ?r) = fps_const (- 1) * inverse ?r / (1 + fps_X)" | 
| 53196 | 5522 | by (simp add: fps_inverse_deriv[OF th] fps_divide_def | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 5523 | power2_eq_square mult.commute fps_const_neg[symmetric] del: fps_const_neg) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5524 | have eq: "inverse ?r $ 0 = 1" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5525 | by (simp add: fps_inverse_def) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5526 | from iffD1[OF fps_binomial_ODE_unique[of "inverse (1 + fps_X)" "- 1"] th'] eq | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5527 | show ?thesis by (simp add: fps_inverse_def) | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5528 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5529 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5530 | lemma fps_binomial_of_nat: "fps_binomial (of_nat n) = (1 + fps_X :: 'a :: field_char_0 fps) ^ n" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5531 | proof (cases "n = 0") | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5532 | case [simp]: True | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5533 | have "fps_deriv ((1 + fps_X) ^ n :: 'a fps) = 0" by simp | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5534 | also have "\<dots> = fps_const (of_nat n) * (1 + fps_X) ^ n / (1 + fps_X)" by (simp add: fps_binomial_def) | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5535 | finally show ?thesis by (subst sym, subst fps_binomial_ODE_unique' [symmetric]) simp_all | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5536 | next | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5537 | case False | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5538 | have "fps_deriv ((1 + fps_X) ^ n :: 'a fps) = fps_const (of_nat n) * (1 + fps_X) ^ (n - 1)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5539 | by (simp add: fps_deriv_power) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5540 | also have "(1 + fps_X :: 'a fps) $ 0 \<noteq> 0" by simp | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5541 | hence "(1 + fps_X :: 'a fps) \<noteq> 0" by (intro notI) (simp only: , simp) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5542 | with False have "(1 + fps_X :: 'a fps) ^ (n - 1) = (1 + fps_X) ^ n / (1 + fps_X)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5543 | by (cases n) (simp_all ) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5544 | also have "fps_const (of_nat n :: 'a) * ((1 + fps_X) ^ n / (1 + fps_X)) = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5545 | fps_const (of_nat n) * (1 + fps_X) ^ n / (1 + fps_X)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5546 | by (simp add: unit_div_mult_swap) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5547 | finally show ?thesis | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5548 | by (subst sym, subst fps_binomial_ODE_unique' [symmetric]) (simp_all add: fps_power_nth) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5549 | qed | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5550 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5551 | lemma fps_binomial_0 [simp]: "fps_binomial 0 = 1" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5552 | using fps_binomial_of_nat[of 0] by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5553 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5554 | lemma fps_binomial_power: "fps_binomial a ^ n = fps_binomial (of_nat n * a)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5555 | by (induction n) (simp_all add: fps_binomial_add_mult ring_distribs) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5556 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5557 | lemma fps_binomial_1: "fps_binomial 1 = 1 + fps_X" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5558 | using fps_binomial_of_nat[of 1] by simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5559 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5560 | lemma fps_binomial_minus_of_nat: | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5561 | "fps_binomial (- of_nat n) = inverse ((1 + fps_X :: 'a :: field_char_0 fps) ^ n)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5562 | by (rule sym, rule fps_inverse_unique) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5563 | (simp add: fps_binomial_of_nat [symmetric] fps_binomial_add_mult [symmetric]) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5564 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5565 | lemma one_minus_const_fps_X_power: | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5566 | "c \<noteq> 0 \<Longrightarrow> (1 - fps_const c * fps_X) ^ n = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5567 | fps_compose (fps_binomial (of_nat n)) (-fps_const c * fps_X)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5568 | by (subst fps_binomial_of_nat) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5569 | (simp add: fps_compose_power [symmetric] fps_compose_add_distrib fps_const_neg [symmetric] | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5570 | del: fps_const_neg) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5571 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5572 | lemma one_minus_fps_X_const_neg_power: | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5573 | "inverse ((1 - fps_const c * fps_X) ^ n) = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5574 | fps_compose (fps_binomial (-of_nat n)) (-fps_const c * fps_X)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5575 | proof (cases "c = 0") | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5576 | case False | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5577 | thus ?thesis | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5578 | by (subst fps_binomial_minus_of_nat) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5579 | (simp add: fps_compose_power [symmetric] fps_inverse_compose fps_compose_add_distrib | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5580 | fps_const_neg [symmetric] del: fps_const_neg) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5581 | qed simp | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5582 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5583 | lemma fps_X_plus_const_power: | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5584 | "c \<noteq> 0 \<Longrightarrow> (fps_X + fps_const c) ^ n = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5585 | fps_const (c^n) * fps_compose (fps_binomial (of_nat n)) (fps_const (inverse c) * fps_X)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5586 | by (subst fps_binomial_of_nat) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5587 | (simp add: fps_compose_power [symmetric] fps_binomial_of_nat fps_compose_add_distrib | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5588 | fps_const_power [symmetric] power_mult_distrib [symmetric] | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5589 | algebra_simps inverse_mult_eq_1' del: fps_const_power) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5590 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5591 | lemma fps_X_plus_const_neg_power: | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5592 | "c \<noteq> 0 \<Longrightarrow> inverse ((fps_X + fps_const c) ^ n) = | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5593 | fps_const (inverse c^n) * fps_compose (fps_binomial (-of_nat n)) (fps_const (inverse c) * fps_X)" | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5594 | by (subst fps_binomial_minus_of_nat) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5595 | (simp add: fps_compose_power [symmetric] fps_binomial_of_nat fps_compose_add_distrib | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5596 | fps_const_power [symmetric] power_mult_distrib [symmetric] fps_inverse_compose | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5597 | algebra_simps fps_const_inverse [symmetric] fps_inverse_mult [symmetric] | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5598 | fps_inverse_power [symmetric] inverse_mult_eq_1' | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5599 | del: fps_const_power) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5600 | |
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5601 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 5602 | lemma one_minus_const_fps_X_neg_power': | 
| 72686 | 5603 | fixes c :: "'a :: field_char_0" | 
| 5604 | assumes "n > 0" | |
| 5605 | shows "inverse ((1 - fps_const c * fps_X) ^ n) = Abs_fps (\<lambda>k. of_nat ((n + k - 1) choose k) * c^k)" | |
| 5606 | proof - | |
| 5607 | have \<section>: "\<And>j. Abs_fps (\<lambda>na. (- c) ^ na * fps_binomial (- of_nat n) $ na) $ j = | |
| 5608 | Abs_fps (\<lambda>k. of_nat (n + k - 1 choose k) * c ^ k) $ j" | |
| 5609 | using assms | |
| 5610 | by (simp add: gbinomial_minus binomial_gbinomial of_nat_diff flip: power_mult_distrib mult.assoc) | |
| 5611 | show ?thesis | |
| 5612 | apply (rule fps_ext) | |
| 5613 | using \<section> | |
| 5614 | by (metis (no_types, lifting) one_minus_fps_X_const_neg_power fps_const_neg fps_compose_linear fps_nth_Abs_fps) | |
| 5615 | qed | |
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63040diff
changeset | 5616 | |
| 60558 | 5617 | text \<open>Vandermonde's Identity as a consequence.\<close> | 
| 53196 | 5618 | lemma gbinomial_Vandermonde: | 
| 64267 | 5619 |   "sum (\<lambda>k. (a gchoose k) * (b gchoose (n - k))) {0..n} = (a + b) gchoose n"
 | 
| 53196 | 5620 | proof - | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5621 | let ?ba = "fps_binomial a" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5622 | let ?bb = "fps_binomial b" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5623 | let ?bab = "fps_binomial (a + b)" | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5624 | from fps_binomial_add_mult[of a b] have "?bab $ n = (?ba * ?bb)$n" by simp | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5625 | then show ?thesis by (simp add: fps_mult_nth) | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5626 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5627 | |
| 53196 | 5628 | lemma binomial_Vandermonde: | 
| 64267 | 5629 |   "sum (\<lambda>k. (a choose k) * (b choose (n - k))) {0..n} = (a + b) choose n"
 | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5630 | using gbinomial_Vandermonde[of "(of_nat a)" "of_nat b" n] | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61610diff
changeset | 5631 | by (simp only: binomial_gbinomial[symmetric] of_nat_mult[symmetric] | 
| 64267 | 5632 | of_nat_sum[symmetric] of_nat_add[symmetric] of_nat_eq_iff) | 
| 5633 | ||
| 5634 | lemma binomial_Vandermonde_same: "sum (\<lambda>k. (n choose k)\<^sup>2) {0..n} = (2 * n) choose n"
 | |
| 60501 | 5635 | using binomial_Vandermonde[of n n n, symmetric] | 
| 53195 | 5636 | unfolding mult_2 | 
| 72686 | 5637 | by (metis atMost_atLeast0 choose_square_sum mult_2) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5638 | |
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5639 | lemma Vandermonde_pochhammer_lemma: | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5640 | fixes a :: "'a::field_char_0" | 
| 72686 | 5641 | assumes b: "\<And>j. j<n \<Longrightarrow> b \<noteq> of_nat j" | 
| 64267 | 5642 | shows "sum (\<lambda>k. (pochhammer (- a) k * pochhammer (- (of_nat n)) k) / | 
| 53196 | 5643 |       (of_nat (fact k) * pochhammer (b - of_nat n + 1) k)) {0..n} =
 | 
| 54452 | 5644 | pochhammer (- (a + b)) n / pochhammer (- b) n" | 
| 53196 | 5645 | (is "?l = ?r") | 
| 5646 | proof - | |
| 54452 | 5647 | let ?m1 = "\<lambda>m. (- 1 :: 'a) ^ m" | 
| 5648 | let ?f = "\<lambda>m. of_nat (fact m)" | |
| 5649 | let ?p = "\<lambda>(x::'a). pochhammer (- x)" | |
| 60501 | 5650 | from b have bn0: "?p b n \<noteq> 0" | 
| 5651 | unfolding pochhammer_eq_0_iff by simp | |
| 60558 | 5652 | have th00: | 
| 5653 | "b gchoose (n - k) = | |
| 5654 | (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)" | |
| 5655 | (is ?gchoose) | |
| 5656 | "pochhammer (1 + b - of_nat n) k \<noteq> 0" | |
| 5657 | (is ?pochhammer) | |
| 5658 |     if kn: "k \<in> {0..n}" for k
 | |
| 5659 | proof - | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63367diff
changeset | 5660 | from kn have "k \<le> n" by simp | 
| 60501 | 5661 | have nz: "pochhammer (1 + b - of_nat n) n \<noteq> 0" | 
| 5662 | proof | |
| 5663 | assume "pochhammer (1 + b - of_nat n) n = 0" | |
| 5664 | then have c: "pochhammer (b - of_nat n + 1) n = 0" | |
| 5665 | by (simp add: algebra_simps) | |
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5666 | then obtain j where j: "j < n" "b - of_nat n + 1 = - of_nat j" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5667 | unfolding pochhammer_eq_0_iff by blast | 
| 52891 | 5668 | from j have "b = of_nat n - of_nat j - of_nat 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5669 | by (simp add: algebra_simps) | 
| 52891 | 5670 | then have "b = of_nat (n - j - 1)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5671 | using j kn by (simp add: of_nat_diff) | 
| 72686 | 5672 | then show False | 
| 5673 | using \<open>j < n\<close> j b by auto | |
| 60501 | 5674 | qed | 
| 52891 | 5675 | |
| 5676 | from nz kn [simplified] have nz': "pochhammer (1 + b - of_nat n) k \<noteq> 0" | |
| 35175 | 5677 | by (rule pochhammer_neq_0_mono) | 
| 60504 | 5678 | |
| 60567 | 5679 | consider "k = 0 \<or> n = 0" | "k \<noteq> 0" "n \<noteq> 0" | 
| 5680 | by blast | |
| 60504 | 5681 | then have "b gchoose (n - k) = | 
| 5682 | (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)" | |
| 5683 | proof cases | |
| 5684 | case 1 | |
| 5685 | then show ?thesis | |
| 5686 | using kn by (cases "k = 0") (simp_all add: gbinomial_pochhammer) | |
| 5687 | next | |
| 60567 | 5688 | case neq: 2 | 
| 60501 | 5689 | then obtain m where m: "n = Suc m" | 
| 5690 | by (cases n) auto | |
| 60567 | 5691 | from neq(1) obtain h where h: "k = Suc h" | 
| 60501 | 5692 | by (cases k) auto | 
| 60504 | 5693 | show ?thesis | 
| 60501 | 5694 | proof (cases "k = n") | 
| 5695 | case True | |
| 72686 | 5696 | with pochhammer_minus'[where k=k and b=b] bn0 show ?thesis | 
| 5697 | by (simp add: pochhammer_same) | |
| 60501 | 5698 | next | 
| 5699 | case False | |
| 5700 | with kn have kn': "k < n" | |
| 5701 | by simp | |
| 72686 | 5702 | have "h \<le> m" | 
| 5703 | using \<open>k \<le> n\<close> h m by blast | |
| 64272 | 5704 |         have m1nk: "?m1 n = prod (\<lambda>i. - 1) {..m}" "?m1 k = prod (\<lambda>i. - 1) {0..h}"
 | 
| 72686 | 5705 | by (simp_all add: m h) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5706 | have bnz0: "pochhammer (b - of_nat n + 1) k \<noteq> 0" | 
| 52891 | 5707 | using bn0 kn | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5708 | unfolding pochhammer_eq_0_iff | 
| 72686 | 5709 | by (metis add.commute add_diff_eq nz' pochhammer_eq_0_iff) | 
| 64272 | 5710 |         have eq1: "prod (\<lambda>k. (1::'a) + of_nat m - of_nat k) {..h} =
 | 
| 5711 |           prod of_nat {Suc (m - h) .. Suc m}"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5712 | using kn' h m | 
| 64272 | 5713 | by (intro prod.reindex_bij_witness[where i="\<lambda>k. Suc m - k" and j="\<lambda>k. Suc m - k"]) | 
| 57129 
7edb7550663e
introduce more powerful reindexing rules for big operators
 hoelzl parents: 
56480diff
changeset | 5714 | (auto simp: of_nat_diff) | 
| 72686 | 5715 | have "(\<Prod>i = 0..<k. 1 + of_nat n - of_nat k + of_nat i) = (\<Prod>x = n - k..<n. (1::'a) + of_nat x)" | 
| 5716 | using \<open>k \<le> n\<close> | |
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 5717 | using prod.atLeastLessThan_shift_bounds [where ?'a = 'a, of "\<lambda>i. 1 + of_nat i" 0 "n - k" k] | 
| 72686 | 5718 | by (auto simp add: of_nat_diff field_simps) | 
| 5719 | then have "fact (n - k) * pochhammer ((1::'a) + of_nat n - of_nat k) k = fact n" | |
| 5720 | using \<open>k \<le> n\<close> | |
| 5721 | by (auto simp add: fact_split [of k n] pochhammer_prod field_simps) | |
| 5722 | then have th1: "(?m1 k * ?p (of_nat n) k) / ?f n = 1 / of_nat(fact (n - k))" | |
| 5723 | by (simp add: pochhammer_minus field_simps) | |
| 5724 | have "?m1 n * ?p b n = pochhammer (b - of_nat m) (Suc m)" | |
| 5725 | by (simp add: pochhammer_minus field_simps m) | |
| 5726 | also have "... = (\<Prod>i = 0..m. b - of_nat i)" | |
| 5727 | by (auto simp add: pochhammer_prod_rev of_nat_diff prod.atLeast_Suc_atMost_Suc_shift simp del: prod.cl_ivl_Suc) | |
| 5728 |         finally have th20: "?m1 n * ?p b n = prod (\<lambda>i. b - of_nat i) {0..m}" .
 | |
| 5729 | have "(\<Prod>x = 0..h. b - of_nat m + of_nat (h - x)) = (\<Prod>i = m - h..m. b - of_nat i)" | |
| 5730 | using \<open>h \<le> m\<close> prod.atLeastAtMost_shift_0 [of "m - h" m, where ?'a = 'a] | |
| 5731 | by (auto simp add: of_nat_diff field_simps) | |
| 5732 |         then have th21:"pochhammer (b - of_nat n + 1) k = prod (\<lambda>i. b - of_nat i) {n - k .. n - 1}"
 | |
| 5733 | using kn by (simp add: pochhammer_prod_rev m h prod.atLeast_Suc_atMost_Suc_shift del: prod.op_ivl_Suc del: prod.cl_ivl_Suc) | |
| 53196 | 5734 | have "?m1 n * ?p b n = | 
| 64272 | 5735 |           prod (\<lambda>i. b - of_nat i) {0.. n - k - 1} * pochhammer (b - of_nat n + 1) k"
 | 
| 72686 | 5736 | using kn' m h unfolding th20 th21 | 
| 5737 | by (auto simp flip: prod.union_disjoint intro: prod.cong) | |
| 53196 | 5738 | then have th2: "(?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k = | 
| 64272 | 5739 |           prod (\<lambda>i. b - of_nat i) {0.. n - k - 1}"
 | 
| 36350 | 5740 | using nz' by (simp add: field_simps) | 
| 53196 | 5741 | have "(?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k) = | 
| 5742 | ((?m1 k * ?p (of_nat n) k) / ?f n) * ((?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5743 | using bnz0 | 
| 36350 | 5744 | by (simp add: field_simps) | 
| 52891 | 5745 | also have "\<dots> = b gchoose (n - k)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 5746 | unfolding th1 th2 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63367diff
changeset | 5747 | using kn' m h | 
| 72686 | 5748 | by (auto simp: field_simps gbinomial_mult_fact intro: prod.cong) | 
| 60501 | 5749 | finally show ?thesis by simp | 
| 5750 | qed | |
| 60504 | 5751 | qed | 
| 60558 | 5752 | then show ?gchoose and ?pochhammer | 
| 72686 | 5753 | using nz' by force+ | 
| 60558 | 5754 | qed | 
| 60504 | 5755 | have "?r = ((a + b) gchoose n) * (of_nat (fact n) / (?m1 n * pochhammer (- b) n))" | 
| 52891 | 5756 | unfolding gbinomial_pochhammer | 
| 36350 | 5757 | using bn0 by (auto simp add: field_simps) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5758 | also have "\<dots> = ?l" | 
| 72686 | 5759 | using bn0 | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5760 | unfolding gbinomial_Vandermonde[symmetric] | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5761 | apply (simp add: th00) | 
| 72686 | 5762 | by (simp add: gbinomial_pochhammer sum_distrib_right sum_distrib_left field_simps) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5763 | finally show ?thesis by simp | 
| 52891 | 5764 | qed | 
| 5765 | ||
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5766 | lemma Vandermonde_pochhammer: | 
| 53195 | 5767 | fixes a :: "'a::field_char_0" | 
| 54452 | 5768 |   assumes c: "\<forall>i \<in> {0..< n}. c \<noteq> - of_nat i"
 | 
| 64267 | 5769 | shows "sum (\<lambda>k. (pochhammer a k * pochhammer (- (of_nat n)) k) / | 
| 53195 | 5770 |     (of_nat (fact k) * pochhammer c k)) {0..n} = pochhammer (c - a) n / pochhammer c n"
 | 
| 5771 | proof - | |
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5772 | let ?a = "- a" | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5773 | let ?b = "c + of_nat n - 1" | 
| 72686 | 5774 | have h: "?b \<noteq> of_nat j" if "j < n" for j | 
| 5775 | proof - | |
| 5776 | have "c \<noteq> - of_nat (n - j - 1)" | |
| 5777 | using c that by auto | |
| 5778 | with that show ?thesis | |
| 5779 | by (auto simp add: algebra_simps of_nat_diff) | |
| 5780 | qed | |
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5781 | have th0: "pochhammer (- (?a + ?b)) n = (- 1)^n * pochhammer (c - a) n" | 
| 59862 | 5782 | unfolding pochhammer_minus | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5783 | by (simp add: algebra_simps) | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5784 | have th1: "pochhammer (- ?b) n = (- 1)^n * pochhammer c n" | 
| 59862 | 5785 | unfolding pochhammer_minus | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5786 | by simp | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5787 | have nz: "pochhammer c n \<noteq> 0" using c | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5788 | by (simp add: pochhammer_eq_0_iff) | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5789 | from Vandermonde_pochhammer_lemma[where a = "?a" and b="?b" and n=n, OF h, unfolded th0 th1] | 
| 60501 | 5790 | show ?thesis | 
| 64267 | 5791 | using nz by (simp add: field_simps sum_distrib_left) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 5792 | qed | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5793 | |
| 53195 | 5794 | |
| 60501 | 5795 | subsubsection \<open>Formal trigonometric functions\<close> | 
| 29687 | 5796 | |
| 31273 | 5797 | definition "fps_sin (c::'a::field_char_0) = | 
| 29687 | 5798 | Abs_fps (\<lambda>n. if even n then 0 else (- 1) ^((n - 1) div 2) * c^n /(of_nat (fact n)))" | 
| 5799 | ||
| 31273 | 5800 | definition "fps_cos (c::'a::field_char_0) = | 
| 5801 | Abs_fps (\<lambda>n. if even n then (- 1) ^ (n div 2) * c^n / (of_nat (fact n)) else 0)" | |
| 29687 | 5802 | |
| 66466 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5803 | lemma fps_sin_0 [simp]: "fps_sin 0 = 0" | 
| 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5804 | by (intro fps_ext) (auto simp: fps_sin_def elim!: oddE) | 
| 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5805 | |
| 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5806 | lemma fps_cos_0 [simp]: "fps_cos 0 = 1" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5807 | by (intro fps_ext) (simp add: fps_cos_def) | 
| 66466 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5808 | |
| 30488 | 5809 | lemma fps_sin_deriv: | 
| 29687 | 5810 | "fps_deriv (fps_sin c) = fps_const c * fps_cos c" | 
| 5811 | (is "?lhs = ?rhs") | |
| 31273 | 5812 | proof (rule fps_ext) | 
| 53195 | 5813 | fix n :: nat | 
| 60501 | 5814 | show "?lhs $ n = ?rhs $ n" | 
| 5815 | proof (cases "even n") | |
| 5816 | case True | |
| 52902 | 5817 | have "?lhs$n = of_nat (n+1) * (fps_sin c $ (n+1))" by simp | 
| 5818 | also have "\<dots> = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))" | |
| 60501 | 5819 | using True by (simp add: fps_sin_def) | 
| 52902 | 5820 | also have "\<dots> = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))" | 
| 5821 | unfolding fact_Suc of_nat_mult | |
| 5822 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5823 | also have "\<dots> = (- 1)^(n div 2) * c^Suc n / of_nat (fact n)" | 
| 52902 | 5824 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | 
| 60501 | 5825 | finally show ?thesis | 
| 5826 | using True by (simp add: fps_cos_def field_simps) | |
| 5827 | next | |
| 5828 | case False | |
| 5829 | then show ?thesis | |
| 5830 | by (simp_all add: fps_deriv_def fps_sin_def fps_cos_def) | |
| 5831 | qed | |
| 29687 | 5832 | qed | 
| 5833 | ||
| 52902 | 5834 | lemma fps_cos_deriv: "fps_deriv (fps_cos c) = fps_const (- c)* (fps_sin c)" | 
| 29687 | 5835 | (is "?lhs = ?rhs") | 
| 31273 | 5836 | proof (rule fps_ext) | 
| 60501 | 5837 | have th0: "- ((- 1::'a) ^ n) = (- 1)^Suc n" for n | 
| 5838 | by simp | |
| 5839 | show "?lhs $ n = ?rhs $ n" for n | |
| 5840 | proof (cases "even n") | |
| 5841 | case False | |
| 5842 | then have n0: "n \<noteq> 0" by presburger | |
| 5843 | from False have th1: "Suc ((n - 1) div 2) = Suc n div 2" | |
| 5844 | by (cases n) simp_all | |
| 52902 | 5845 | have "?lhs$n = of_nat (n+1) * (fps_cos c $ (n+1))" by simp | 
| 5846 | also have "\<dots> = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))" | |
| 60501 | 5847 | using False by (simp add: fps_cos_def) | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5848 | also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))" | 
| 52902 | 5849 | unfolding fact_Suc of_nat_mult | 
| 5850 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 5851 | also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)" | |
| 5852 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 5853 | also have "\<dots> = (- ((- 1)^((n - 1) div 2))) * c^Suc n / of_nat (fact n)" | |
| 60501 | 5854 | unfolding th0 unfolding th1 by simp | 
| 5855 | finally show ?thesis | |
| 5856 | using False by (simp add: fps_sin_def field_simps) | |
| 5857 | next | |
| 5858 | case True | |
| 5859 | then show ?thesis | |
| 5860 | by (simp_all add: fps_deriv_def fps_sin_def fps_cos_def) | |
| 5861 | qed | |
| 29687 | 5862 | qed | 
| 5863 | ||
| 60501 | 5864 | lemma fps_sin_cos_sum_of_squares: "(fps_cos c)\<^sup>2 + (fps_sin c)\<^sup>2 = 1" | 
| 5865 | (is "?lhs = _") | |
| 53077 | 5866 | proof - | 
| 29687 | 5867 | have "fps_deriv ?lhs = 0" | 
| 72686 | 5868 | by (simp add: fps_deriv_power fps_sin_deriv fps_cos_deriv field_simps flip: fps_const_neg) | 
| 29687 | 5869 | then have "?lhs = fps_const (?lhs $ 0)" | 
| 5870 | unfolding fps_deriv_eq_0_iff . | |
| 5871 | also have "\<dots> = 1" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5872 | by (simp add: fps_eq_iff numeral_2_eq_2 fps_mult_nth fps_cos_def fps_sin_def) | 
| 29687 | 5873 | finally show ?thesis . | 
| 5874 | qed | |
| 5875 | ||
| 31274 | 5876 | lemma fps_sin_nth_0 [simp]: "fps_sin c $ 0 = 0" | 
| 53195 | 5877 | unfolding fps_sin_def by simp | 
| 31274 | 5878 | |
| 72686 | 5879 | lemma fps_sin_nth_1 [simp]: "fps_sin c $ Suc 0 = c" | 
| 53195 | 5880 | unfolding fps_sin_def by simp | 
| 31274 | 5881 | |
| 5882 | lemma fps_sin_nth_add_2: | |
| 60501 | 5883 | "fps_sin c $ (n + 2) = - (c * c * fps_sin c $ n / (of_nat (n + 1) * of_nat (n + 2)))" | 
| 72686 | 5884 | proof (cases n) | 
| 5885 | case (Suc n') | |
| 5886 | then show ?thesis | |
| 5887 | unfolding fps_sin_def by (simp add: field_simps) | |
| 5888 | qed (auto simp: fps_sin_def) | |
| 5889 | ||
| 31274 | 5890 | |
| 5891 | lemma fps_cos_nth_0 [simp]: "fps_cos c $ 0 = 1" | |
| 53195 | 5892 | unfolding fps_cos_def by simp | 
| 31274 | 5893 | |
| 72686 | 5894 | lemma fps_cos_nth_1 [simp]: "fps_cos c $ Suc 0 = 0" | 
| 53195 | 5895 | unfolding fps_cos_def by simp | 
| 31274 | 5896 | |
| 5897 | lemma fps_cos_nth_add_2: | |
| 60501 | 5898 | "fps_cos c $ (n + 2) = - (c * c * fps_cos c $ n / (of_nat (n + 1) * of_nat (n + 2)))" | 
| 72686 | 5899 | proof (cases n) | 
| 5900 | case (Suc n') | |
| 5901 | then show ?thesis | |
| 5902 | unfolding fps_cos_def by (simp add: field_simps) | |
| 5903 | qed (auto simp: fps_cos_def) | |
| 52902 | 5904 | |
| 31274 | 5905 | lemma nat_add_1_add_1: "(n::nat) + 1 + 1 = n + 2" | 
| 52902 | 5906 | by simp | 
| 31274 | 5907 | |
| 5908 | lemma eq_fps_sin: | |
| 72686 | 5909 | assumes a0: "a $ 0 = 0" | 
| 5910 | and a1: "a $ 1 = c" | |
| 5911 | and a2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)" | |
| 5912 | shows "fps_sin c = a" | |
| 5913 | proof (rule fps_ext) | |
| 5914 | fix n | |
| 5915 | show "fps_sin c $ n = a $ n" | |
| 5916 | proof (induction n rule: nat_induct2) | |
| 5917 | case (step n) | |
| 5918 | then have "of_nat (n + 1) * (of_nat (n + 2) * a $ (n + 2)) = | |
| 5919 | - (c * c * fps_sin c $ n)" | |
| 5920 | using a2 | |
| 5921 | by (metis fps_const_mult fps_deriv_nth fps_mult_left_const_nth fps_neg_nth nat_add_1_add_1) | |
| 5922 | with step show ?case | |
| 5923 | by (metis (no_types, lifting) a0 add.commute add.inverse_inverse fps_sin_nth_0 fps_sin_nth_add_2 mult_divide_mult_cancel_left_if mult_minus_right nonzero_mult_div_cancel_left not_less_zero of_nat_eq_0_iff plus_1_eq_Suc zero_less_Suc) | |
| 5924 | qed (use assms in auto) | |
| 5925 | qed | |
| 31274 | 5926 | |
| 5927 | lemma eq_fps_cos: | |
| 72686 | 5928 | assumes a0: "a $ 0 = 1" | 
| 5929 | and a1: "a $ 1 = 0" | |
| 5930 | and a2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)" | |
| 5931 | shows "fps_cos c = a" | |
| 5932 | proof (rule fps_ext) | |
| 5933 | fix n | |
| 5934 | show "fps_cos c $ n = a $ n" | |
| 5935 | proof (induction n rule: nat_induct2) | |
| 5936 | case (step n) | |
| 5937 | then have "of_nat (n + 1) * (of_nat (n + 2) * a $ (n + 2)) = | |
| 5938 | - (c * c * fps_cos c $ n)" | |
| 5939 | using a2 | |
| 5940 | by (metis fps_const_mult fps_deriv_nth fps_mult_left_const_nth fps_neg_nth nat_add_1_add_1) | |
| 5941 | with step show ?case | |
| 5942 | by (metis (no_types, lifting) a0 add.commute add.inverse_inverse fps_cos_nth_0 fps_cos_nth_add_2 mult_divide_mult_cancel_left_if mult_minus_right nonzero_mult_div_cancel_left not_less_zero of_nat_eq_0_iff plus_1_eq_Suc zero_less_Suc) | |
| 5943 | qed (use assms in auto) | |
| 5944 | qed | |
| 31274 | 5945 | |
| 52902 | 5946 | lemma fps_sin_add: "fps_sin (a + b) = fps_sin a * fps_cos b + fps_cos a * fps_sin b" | 
| 72686 | 5947 | proof - | 
| 5948 | have "fps_deriv (fps_deriv (fps_sin a * fps_cos b + fps_cos a * fps_sin b)) = | |
| 5949 | - (fps_const (a + b) * fps_const (a + b) * (fps_sin a * fps_cos b + fps_cos a * fps_sin b))" | |
| 5950 | by (simp flip: fps_const_neg fps_const_add fps_const_mult | |
| 5951 | add: fps_sin_deriv fps_cos_deriv algebra_simps) | |
| 5952 | then show ?thesis | |
| 5953 | by (auto intro: eq_fps_sin) | |
| 5954 | qed | |
| 5955 | ||
| 52902 | 5956 | |
| 5957 | lemma fps_cos_add: "fps_cos (a + b) = fps_cos a * fps_cos b - fps_sin a * fps_sin b" | |
| 72686 | 5958 | proof - | 
| 5959 | have "fps_deriv | |
| 5960 | (fps_deriv (fps_cos a * fps_cos b - fps_sin a * fps_sin b)) = | |
| 5961 | - (fps_const (a + b) * fps_const (a + b) * | |
| 5962 | (fps_cos a * fps_cos b - fps_sin a * fps_sin b))" | |
| 5963 | by (simp flip: fps_const_neg fps_const_add fps_const_mult | |
| 5964 | add: fps_sin_deriv fps_cos_deriv algebra_simps) | |
| 5965 | then show ?thesis | |
| 5966 | by (auto intro: eq_fps_cos) | |
| 5967 | qed | |
| 31274 | 5968 | |
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 5969 | lemma fps_sin_even: "fps_sin (- c) = - fps_sin c" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5970 | by (simp add: fps_eq_iff fps_sin_def) | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 5971 | |
| 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 5972 | lemma fps_cos_odd: "fps_cos (- c) = fps_cos c" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5973 | by (simp add: fps_eq_iff fps_cos_def) | 
| 31968 
0314441a53a6
FPS form a metric space, which justifies the infinte sum notation
 chaieb parents: 
31790diff
changeset | 5974 | |
| 29687 | 5975 | definition "fps_tan c = fps_sin c / fps_cos c" | 
| 5976 | ||
| 66466 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5977 | lemma fps_tan_0 [simp]: "fps_tan 0 = 0" | 
| 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5978 | by (simp add: fps_tan_def) | 
| 
aec5d9c88d69
More lemmas for HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
66373diff
changeset | 5979 | |
| 53077 | 5980 | lemma fps_tan_deriv: "fps_deriv (fps_tan c) = fps_const c / (fps_cos c)\<^sup>2" | 
| 52902 | 5981 | proof - | 
| 29687 | 5982 | have th0: "fps_cos c $ 0 \<noteq> 0" by (simp add: fps_cos_def) | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5983 | from this have "fps_cos c \<noteq> 0" by (intro notI) simp | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 5984 | hence "fps_deriv (fps_tan c) = | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5985 | fps_const c * (fps_cos c^2 + fps_sin c^2) / (fps_cos c^2)" | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 5986 | by (simp add: fps_tan_def fps_divide_deriv power2_eq_square algebra_simps | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5987 | fps_sin_deriv fps_cos_deriv fps_const_neg[symmetric] div_mult_swap | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5988 | del: fps_const_neg) | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5989 | also note fps_sin_cos_sum_of_squares | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 5990 | finally show ?thesis by simp | 
| 29687 | 5991 | qed | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 5992 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 5993 | text \<open>Connection to @{const "fps_exp"} over the complex numbers --- Euler and de Moivre.\<close>
 | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5994 | |
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 5995 | lemma fps_exp_ii_sin_cos: "fps_exp (\<i> * c) = fps_cos c + fps_const \<i> * fps_sin c" | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 5996 | (is "?l = ?r") | 
| 52902 | 5997 | proof - | 
| 60501 | 5998 | have "?l $ n = ?r $ n" for n | 
| 5999 | proof (cases "even n") | |
| 6000 | case True | |
| 6001 | then obtain m where m: "n = 2 * m" .. | |
| 6002 | show ?thesis | |
| 6003 | by (simp add: m fps_sin_def fps_cos_def power_mult_distrib power_mult power_minus [of "c ^ 2"]) | |
| 6004 | next | |
| 6005 | case False | |
| 6006 | then obtain m where m: "n = 2 * m + 1" .. | |
| 6007 | show ?thesis | |
| 6008 | by (simp add: m fps_sin_def fps_cos_def power_mult_distrib | |
| 6009 | power_mult power_minus [of "c ^ 2"]) | |
| 6010 | qed | |
| 6011 | then show ?thesis | |
| 6012 | by (simp add: fps_eq_iff) | |
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6013 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6014 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6015 | lemma fps_exp_minus_ii_sin_cos: "fps_exp (- (\<i> * c)) = fps_cos c - fps_const \<i> * fps_sin c" | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6016 | unfolding minus_mult_right fps_exp_ii_sin_cos by (simp add: fps_sin_even fps_cos_odd) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6017 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6018 | lemma fps_cos_fps_exp_ii: "fps_cos c = (fps_exp (\<i> * c) + fps_exp (- \<i> * c)) / fps_const 2" | 
| 52902 | 6019 | proof - | 
| 52891 | 6020 | have th: "fps_cos c + fps_cos c = fps_cos c * fps_const 2" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46757diff
changeset | 6021 | by (simp add: numeral_fps_const) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6022 | show ?thesis | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6023 | unfolding fps_exp_ii_sin_cos minus_mult_commute | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6024 | by (simp add: fps_sin_even fps_cos_odd numeral_fps_const fps_divide_unit fps_const_inverse th) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6025 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6026 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6027 | lemma fps_sin_fps_exp_ii: "fps_sin c = (fps_exp (\<i> * c) - fps_exp (- \<i> * c)) / fps_const (2*\<i>)" | 
| 52902 | 6028 | proof - | 
| 63589 | 6029 | have th: "fps_const \<i> * fps_sin c + fps_const \<i> * fps_sin c = fps_sin c * fps_const (2 * \<i>)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46757diff
changeset | 6030 | by (simp add: fps_eq_iff numeral_fps_const) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6031 | show ?thesis | 
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6032 | unfolding fps_exp_ii_sin_cos minus_mult_commute | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6033 | by (simp add: fps_sin_even fps_cos_odd fps_divide_unit fps_const_inverse th) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6034 | qed | 
| 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6035 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6036 | lemma fps_tan_fps_exp_ii: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6037 | "fps_tan c = (fps_exp (\<i> * c) - fps_exp (- \<i> * c)) / | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6038 | (fps_const \<i> * (fps_exp (\<i> * c) + fps_exp (- \<i> * c)))" | 
| 72686 | 6039 | unfolding fps_tan_def fps_sin_fps_exp_ii fps_cos_fps_exp_ii | 
| 6040 | by (simp add: fps_divide_unit fps_inverse_mult fps_const_inverse) | |
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6041 | |
| 60501 | 6042 | lemma fps_demoivre: | 
| 63589 | 6043 | "(fps_cos a + fps_const \<i> * fps_sin a)^n = | 
| 6044 | fps_cos (of_nat n * a) + fps_const \<i> * fps_sin (of_nat n * a)" | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6045 | unfolding fps_exp_ii_sin_cos[symmetric] fps_exp_power_mult | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 6046 | by (simp add: ac_simps) | 
| 32157 
adea7a729c7a
Moved important theorems from FPS_Examples to FPS --- they are not
 chaieb parents: 
31968diff
changeset | 6047 | |
| 52902 | 6048 | |
| 60500 | 6049 | subsection \<open>Hypergeometric series\<close> | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6050 | |
| 68442 | 6051 | definition "fps_hypergeo as bs (c::'a::field_char_0) = | 
| 54452 | 6052 | Abs_fps (\<lambda>n. (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) / | 
| 6053 | (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n)))" | |
| 52902 | 6054 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6055 | lemma fps_hypergeo_nth[simp]: "fps_hypergeo as bs c $ n = | 
| 52902 | 6056 | (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) / | 
| 6057 | (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n))" | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6058 | by (simp add: fps_hypergeo_def) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6059 | |
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6060 | lemma foldl_mult_start: | 
| 54452 | 6061 | fixes v :: "'a::comm_ring_1" | 
| 6062 | shows "foldl (\<lambda>r x. r * f x) v as * x = foldl (\<lambda>r x. r * f x) (v * x) as " | |
| 48757 | 6063 | by (induct as arbitrary: x v) (auto simp add: algebra_simps) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6064 | |
| 53196 | 6065 | lemma foldr_mult_foldl: | 
| 54452 | 6066 | fixes v :: "'a::comm_ring_1" | 
| 6067 | shows "foldr (\<lambda>x r. r * f x) as v = foldl (\<lambda>r x. r * f x) v as" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6068 | by (induct as arbitrary: v) (simp_all add: foldl_mult_start) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6069 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6070 | lemma fps_hypergeo_nth_alt: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6071 | "fps_hypergeo as bs c $ n = foldr (\<lambda>a r. r * pochhammer a n) as (c ^ n) / | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6072 | foldr (\<lambda>b r. r * pochhammer b n) bs (of_nat (fact n))" | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6073 | by (simp add: foldl_mult_start foldr_mult_foldl) | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6074 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6075 | lemma fps_hypergeo_fps_exp[simp]: "fps_hypergeo [] [] c = fps_exp c" | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6076 | by (simp add: fps_eq_iff) | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6077 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6078 | lemma fps_hypergeo_1_0[simp]: "fps_hypergeo [1] [] c = 1/(1 - fps_const c * fps_X)" | 
| 52902 | 6079 | proof - | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6080 | let ?a = "(Abs_fps (\<lambda>n. 1)) oo (fps_const c * fps_X)" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6081 | have th0: "(fps_const c * fps_X) $ 0 = 0" by simp | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6082 | show ?thesis unfolding gp[OF th0, symmetric] | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6083 | by (simp add: fps_eq_iff pochhammer_fact[symmetric] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6084 | fps_compose_nth power_mult_distrib if_distrib cong del: if_weak_cong) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6085 | qed | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6086 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6087 | lemma fps_hypergeo_B[simp]: "fps_hypergeo [-a] [] (- 1) = fps_binomial a" | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6088 | by (simp add: fps_eq_iff gbinomial_pochhammer algebra_simps) | 
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6089 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6090 | lemma fps_hypergeo_0[simp]: "fps_hypergeo as bs c $ 0 = 1" | 
| 72686 | 6091 | proof - | 
| 6092 | have "foldl (\<lambda>(r::'a) (a::'a). r) 1 as = 1" for as | |
| 6093 | by (induction as) auto | |
| 6094 | then show ?thesis | |
| 6095 | by auto | |
| 6096 | qed | |
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6097 | |
| 53196 | 6098 | lemma foldl_prod_prod: | 
| 54452 | 6099 | "foldl (\<lambda>(r::'b::comm_ring_1) (x::'a::comm_ring_1). r * f x) v as * foldl (\<lambda>r x. r * g x) w as = | 
| 6100 | foldl (\<lambda>r x. r * f x * g x) (v * w) as" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6101 | by (induct as arbitrary: v w) (simp_all add: algebra_simps) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6102 | |
| 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6103 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6104 | lemma fps_hypergeo_rec: | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6105 | "fps_hypergeo as bs c $ Suc n = ((foldl (\<lambda>r a. r* (a + of_nat n)) c as) / | 
| 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6106 | (foldl (\<lambda>r b. r * (b + of_nat n)) (of_nat (Suc n)) bs )) * fps_hypergeo as bs c $ n" | 
| 72686 | 6107 | apply (simp add: foldl_mult_start del: of_nat_Suc of_nat_add fact_Suc) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6108 | unfolding foldl_prod_prod[unfolded foldl_mult_start] pochhammer_Suc | 
| 72686 | 6109 | by (simp add: algebra_simps) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6110 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6111 | lemma fps_XD_nth[simp]: "fps_XD a $ n = of_nat n * a$n" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6112 | by (simp add: fps_XD_def) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6113 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6114 | lemma fps_XD_0th[simp]: "fps_XD a $ 0 = 0" | 
| 60501 | 6115 | by simp | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6116 | lemma fps_XD_Suc[simp]:" fps_XD a $ Suc n = of_nat (Suc n) * a $ Suc n" | 
| 60501 | 6117 | by simp | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6118 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6119 | definition "fps_XDp c a = fps_XD a + fps_const c * a" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6120 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6121 | lemma fps_XDp_nth[simp]: "fps_XDp c a $ n = (c + of_nat n) * a$n" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6122 | by (simp add: fps_XDp_def algebra_simps) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6123 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6124 | lemma fps_XDp_commute: "fps_XDp b \<circ> fps_XDp (c::'a::comm_ring_1) = fps_XDp c \<circ> fps_XDp b" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6125 | by (simp add: fps_XDp_def fun_eq_iff fps_eq_iff algebra_simps) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6126 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6127 | lemma fps_XDp0 [simp]: "fps_XDp 0 = fps_XD" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 6128 | by (simp add: fun_eq_iff fps_eq_iff) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6129 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6130 | lemma fps_XDp_fps_integral [simp]: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6131 |   fixes  a :: "'a::{division_ring,ring_char_0} fps"
 | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6132 | shows "fps_XDp 0 (fps_integral a c) = fps_X * a" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6133 | using fps_deriv_fps_integral[of a c] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6134 | by (simp add: fps_XD_def) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6135 | |
| 65396 
b42167902f57
moved AFP material to Formal_Power_Series; renamed E/L/F in Formal_Power_Series
 eberlm <eberlm@in.tum.de> parents: 
64786diff
changeset | 6136 | lemma fps_hypergeo_minus_nat: | 
| 68442 | 6137 | "fps_hypergeo [- of_nat n] [- of_nat (n + m)] (c::'a::field_char_0) $ k = | 
| 54452 | 6138 | (if k \<le> n then | 
| 52902 | 6139 | pochhammer (- of_nat n) k * c ^ k / (pochhammer (- of_nat (n + m)) k * of_nat (fact k)) | 
| 6140 | else 0)" | |
| 68442 | 6141 | "fps_hypergeo [- of_nat m] [- of_nat (m + n)] (c::'a::field_char_0) $ k = | 
| 54452 | 6142 | (if k \<le> m then | 
| 52902 | 6143 | pochhammer (- of_nat m) k * c ^ k / (pochhammer (- of_nat (m + n)) k * of_nat (fact k)) | 
| 6144 | else 0)" | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6145 | by (simp_all add: pochhammer_eq_0_iff) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6146 | |
| 52902 | 6147 | lemma pochhammer_rec_if: "pochhammer a n = (if n = 0 then 1 else a * pochhammer (a + 1) (n - 1))" | 
| 6148 | by (cases n) (simp_all add: pochhammer_rec) | |
| 6149 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6150 | lemma fps_XDp_foldr_nth [simp]: "foldr (\<lambda>c r. fps_XDp c \<circ> r) cs (\<lambda>c. fps_XDp c a) c0 $ n = | 
| 54452 | 6151 | foldr (\<lambda>c r. (c + of_nat n) * r) cs (c0 + of_nat n) * a$n" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6152 | by (induct cs arbitrary: c0) (simp_all add: algebra_simps) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6153 | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6154 | lemma genric_fps_XDp_foldr_nth: | 
| 54452 | 6155 | assumes f: "\<forall>n c a. f c a $ n = (of_nat n + k c) * a$n" | 
| 54681 | 6156 | shows "foldr (\<lambda>c r. f c \<circ> r) cs (\<lambda>c. g c a) c0 $ n = | 
| 54452 | 6157 | foldr (\<lambda>c r. (k c + of_nat n) * r) cs (g c0 a $ n)" | 
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69597diff
changeset | 6158 | by (induct cs arbitrary: c0) (simp_all add: algebra_simps f) | 
| 32160 
63686057cbe8
Vandermonde vs Pochhammer; Hypergeometric series - very basic facts
 chaieb parents: 
32157diff
changeset | 6159 | |
| 51107 | 6160 | lemma dist_less_imp_nth_equal: | 
| 6161 | assumes "dist f g < inverse (2 ^ i)" | |
| 52902 | 6162 | and"j \<le> i" | 
| 51107 | 6163 | shows "f $ j = g $ j" | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 6164 | proof (rule ccontr) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 6165 | assume "f $ j \<noteq> g $ j" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6166 | hence "f \<noteq> g" by auto | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6167 | with assms have "i < subdegree (f - g)" | 
| 62390 | 6168 | by (simp add: if_split_asm dist_fps_def) | 
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 6169 | also have "\<dots> \<le> j" | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6170 | using \<open>f $ j \<noteq> g $ j\<close> by (intro subdegree_leI) simp_all | 
| 60500 | 6171 | finally show False using \<open>j \<le> i\<close> by simp | 
| 52902 | 6172 | qed | 
| 51107 | 6173 | |
| 6174 | lemma nth_equal_imp_dist_less: | |
| 6175 | assumes "\<And>j. j \<le> i \<Longrightarrow> f $ j = g $ j" | |
| 6176 | shows "dist f g < inverse (2 ^ i)" | |
| 52902 | 6177 | proof (cases "f = g") | 
| 60501 | 6178 | case True | 
| 6179 | then show ?thesis by simp | |
| 6180 | next | |
| 52902 | 6181 | case False | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6182 | with assms have "dist f g = inverse (2 ^ subdegree (f - g))" | 
| 62390 | 6183 | by (simp add: if_split_asm dist_fps_def) | 
| 51107 | 6184 | moreover | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6185 | from assms and False have "i < subdegree (f - g)" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6186 | by (intro subdegree_greaterI) simp_all | 
| 51107 | 6187 | ultimately show ?thesis by simp | 
| 60501 | 6188 | qed | 
| 52902 | 6189 | |
| 6190 | lemma dist_less_eq_nth_equal: "dist f g < inverse (2 ^ i) \<longleftrightarrow> (\<forall>j \<le> i. f $ j = g $ j)" | |
| 51107 | 6191 | using dist_less_imp_nth_equal nth_equal_imp_dist_less by blast | 
| 6192 | ||
| 6193 | instance fps :: (comm_ring_1) complete_space | |
| 6194 | proof | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6195 | fix fps_X :: "nat \<Rightarrow> 'a fps" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6196 | assume "Cauchy fps_X" | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6197 | obtain M where M: "\<forall>i. \<forall>m \<ge> M i. \<forall>j \<le> i. fps_X (M i) $ j = fps_X m $ j" | 
| 60501 | 6198 | proof - | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6199 | have "\<exists>M. \<forall>m \<ge> M. \<forall>j\<le>i. fps_X M $ j = fps_X m $ j" for i | 
| 60501 | 6200 | proof - | 
| 6201 | have "0 < inverse ((2::real)^i)" by simp | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6202 | from metric_CauchyD[OF \<open>Cauchy fps_X\<close> this] dist_less_imp_nth_equal | 
| 60501 | 6203 | show ?thesis by blast | 
| 6204 | qed | |
| 6205 | then show ?thesis using that by metis | |
| 6206 | qed | |
| 6207 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6208 | show "convergent fps_X" | 
| 51107 | 6209 | proof (rule convergentI) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6210 | show "fps_X \<longlonglongrightarrow> Abs_fps (\<lambda>i. fps_X (M i) $ i)" | 
| 51107 | 6211 | unfolding tendsto_iff | 
| 6212 | proof safe | |
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6213 | fix e::real assume e: "0 < e" | 
| 61969 | 6214 | have "(\<lambda>n. inverse (2 ^ n) :: real) \<longlonglongrightarrow> 0" by (rule LIMSEQ_inverse_realpow_zero) simp_all | 
| 61608 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6215 | from this and e have "eventually (\<lambda>i. inverse (2 ^ i) < e) sequentially" | 
| 
a0487caabb4a
subdegree/shift/cutoff and Euclidean ring instance for formal power series
 eberlm parents: 
61585diff
changeset | 6216 | by (rule order_tendstoD) | 
| 60501 | 6217 | then obtain i where "inverse (2 ^ i) < e" | 
| 6218 | by (auto simp: eventually_sequentially) | |
| 6219 | have "eventually (\<lambda>x. M i \<le> x) sequentially" | |
| 6220 | by (auto simp: eventually_sequentially) | |
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6221 | then show "eventually (\<lambda>x. dist (fps_X x) (Abs_fps (\<lambda>i. fps_X (M i) $ i)) < e) sequentially" | 
| 51107 | 6222 | proof eventually_elim | 
| 52902 | 6223 | fix x | 
| 60501 | 6224 | assume x: "M i \<le> x" | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6225 | have "fps_X (M i) $ j = fps_X (M j) $ j" if "j \<le> i" for j | 
| 60501 | 6226 | using M that by (metis nat_le_linear) | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6227 | with x have "dist (fps_X x) (Abs_fps (\<lambda>j. fps_X (M j) $ j)) < inverse (2 ^ i)" | 
| 51107 | 6228 | using M by (force simp: dist_less_eq_nth_equal) | 
| 60500 | 6229 | also note \<open>inverse (2 ^ i) < e\<close> | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6230 | finally show "dist (fps_X x) (Abs_fps (\<lambda>j. fps_X (M j) $ j)) < e" . | 
| 51107 | 6231 | qed | 
| 6232 | qed | |
| 6233 | qed | |
| 6234 | qed | |
| 6235 | ||
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6236 | (* TODO: Figure out better notation for this thing *) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6237 | no_notation fps_nth (infixl "$" 75) | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6238 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6239 | bundle fps_notation | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6240 | begin | 
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6241 | notation fps_nth (infixl "$" 75) | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 6242 | end | 
| 66480 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6243 | |
| 
4b8d1df8933b
HOL-Analysis: Convergent FPS and infinite sums
 Manuel Eberl <eberlm@in.tum.de> parents: 
66466diff
changeset | 6244 | end |