| author | wenzelm | 
| Sun, 24 Jan 2021 17:39:29 +0100 | |
| changeset 73182 | a8a8bc42d552 | 
| parent 72607 | feebdaa346e5 | 
| child 73655 | 26a1d66b9077 | 
| permissions | -rw-r--r-- | 
| 47615 | 1  | 
(* Title: HOL/Library/Float.thy  | 
2  | 
Author: Johannes Hölzl, Fabian Immler  | 
|
3  | 
Copyright 2012 TU München  | 
|
4  | 
*)  | 
|
5  | 
||
| 60500 | 6  | 
section \<open>Floating-Point Numbers\<close>  | 
| 29988 | 7  | 
|
| 20485 | 8  | 
theory Float  | 
| 
63663
 
28d1deca302e
Extracted floorlog and bitlen to separate theory Log_Nat
 
nipkow 
parents: 
63599 
diff
changeset
 | 
9  | 
imports Log_Nat Lattice_Algebras  | 
| 20485 | 10  | 
begin  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
11  | 
|
| 
49812
 
e3945ddcb9aa
eliminated some remaining uses of typedef with implicit set definition;
 
wenzelm 
parents: 
47937 
diff
changeset
 | 
12  | 
definition "float = {m * 2 powr e | (m :: int) (e :: int). True}"
 | 
| 
 
e3945ddcb9aa
eliminated some remaining uses of typedef with implicit set definition;
 
wenzelm 
parents: 
47937 
diff
changeset
 | 
13  | 
|
| 49834 | 14  | 
typedef float = float  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
15  | 
morphisms real_of_float float_of  | 
| 
49812
 
e3945ddcb9aa
eliminated some remaining uses of typedef with implicit set definition;
 
wenzelm 
parents: 
47937 
diff
changeset
 | 
16  | 
unfolding float_def by auto  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
17  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
18  | 
setup_lifting type_definition_float  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
19  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
20  | 
declare real_of_float [code_unfold]  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
21  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
22  | 
lemmas float_of_inject[simp]  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
23  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
24  | 
declare [[coercion "real_of_float :: float \<Rightarrow> real"]]  | 
| 47600 | 25  | 
|
| 63356 | 26  | 
lemma real_of_float_eq: "f1 = f2 \<longleftrightarrow> real_of_float f1 = real_of_float f2" for f1 f2 :: float  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
27  | 
unfolding real_of_float_inject ..  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
28  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
29  | 
declare real_of_float_inverse[simp] float_of_inverse [simp]  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
30  | 
declare real_of_float [simp]  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
31  | 
|
| 63356 | 32  | 
|
| 60500 | 33  | 
subsection \<open>Real operations preserving the representation as floating point number\<close>  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
34  | 
|
| 63356 | 35  | 
lemma floatI: "m * 2 powr e = x \<Longrightarrow> x \<in> float" for m e :: int  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
36  | 
by (auto simp: float_def)  | 
| 19765 | 37  | 
|
| 60698 | 38  | 
lemma zero_float[simp]: "0 \<in> float"  | 
39  | 
by (auto simp: float_def)  | 
|
| 63356 | 40  | 
|
| 60698 | 41  | 
lemma one_float[simp]: "1 \<in> float"  | 
42  | 
by (intro floatI[of 1 0]) simp  | 
|
| 63356 | 43  | 
|
| 60698 | 44  | 
lemma numeral_float[simp]: "numeral i \<in> float"  | 
45  | 
by (intro floatI[of "numeral i" 0]) simp  | 
|
| 63356 | 46  | 
|
| 60698 | 47  | 
lemma neg_numeral_float[simp]: "- numeral i \<in> float"  | 
48  | 
by (intro floatI[of "- numeral i" 0]) simp  | 
|
| 63356 | 49  | 
|
50  | 
lemma real_of_int_float[simp]: "real_of_int x \<in> float" for x :: int  | 
|
| 60698 | 51  | 
by (intro floatI[of x 0]) simp  | 
| 63356 | 52  | 
|
53  | 
lemma real_of_nat_float[simp]: "real x \<in> float" for x :: nat  | 
|
| 60698 | 54  | 
by (intro floatI[of x 0]) simp  | 
| 63356 | 55  | 
|
56  | 
lemma two_powr_int_float[simp]: "2 powr (real_of_int i) \<in> float" for i :: int  | 
|
| 60698 | 57  | 
by (intro floatI[of 1 i]) simp  | 
| 63356 | 58  | 
|
59  | 
lemma two_powr_nat_float[simp]: "2 powr (real i) \<in> float" for i :: nat  | 
|
| 60698 | 60  | 
by (intro floatI[of 1 i]) simp  | 
| 63356 | 61  | 
|
62  | 
lemma two_powr_minus_int_float[simp]: "2 powr - (real_of_int i) \<in> float" for i :: int  | 
|
| 60698 | 63  | 
by (intro floatI[of 1 "-i"]) simp  | 
| 63356 | 64  | 
|
65  | 
lemma two_powr_minus_nat_float[simp]: "2 powr - (real i) \<in> float" for i :: nat  | 
|
| 60698 | 66  | 
by (intro floatI[of 1 "-i"]) simp  | 
| 63356 | 67  | 
|
| 60698 | 68  | 
lemma two_powr_numeral_float[simp]: "2 powr numeral i \<in> float"  | 
69  | 
by (intro floatI[of 1 "numeral i"]) simp  | 
|
| 63356 | 70  | 
|
| 60698 | 71  | 
lemma two_powr_neg_numeral_float[simp]: "2 powr - numeral i \<in> float"  | 
72  | 
by (intro floatI[of 1 "- numeral i"]) simp  | 
|
| 63356 | 73  | 
|
| 60698 | 74  | 
lemma two_pow_float[simp]: "2 ^ n \<in> float"  | 
| 63356 | 75  | 
by (intro floatI[of 1 n]) (simp add: powr_realpow)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
76  | 
|
| 
45495
 
c55a07526dbe
cleaned up float theories; removed duplicate definitions and theorems
 
hoelzl 
parents: 
44766 
diff
changeset
 | 
77  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
78  | 
lemma plus_float[simp]: "r \<in> float \<Longrightarrow> p \<in> float \<Longrightarrow> r + p \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
79  | 
unfolding float_def  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
80  | 
proof (safe, simp)  | 
| 60698 | 81  | 
have *: "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"  | 
82  | 
if "e1 \<le> e2" for e1 m1 e2 m2 :: int  | 
|
83  | 
proof -  | 
|
84  | 
from that have "m1 * 2 powr e1 + m2 * 2 powr e2 = (m1 + m2 * 2 ^ nat (e2 - e1)) * 2 powr e1"  | 
|
| 68406 | 85  | 
by (simp add: powr_diff field_simps flip: powr_realpow)  | 
| 60698 | 86  | 
then show ?thesis  | 
87  | 
by blast  | 
|
88  | 
qed  | 
|
89  | 
fix e1 m1 e2 m2 :: int  | 
|
90  | 
consider "e2 \<le> e1" | "e1 \<le> e2" by (rule linorder_le_cases)  | 
|
91  | 
then show "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"  | 
|
92  | 
proof cases  | 
|
93  | 
case 1  | 
|
94  | 
from *[OF this, of m2 m1] show ?thesis  | 
|
95  | 
by (simp add: ac_simps)  | 
|
96  | 
next  | 
|
97  | 
case 2  | 
|
98  | 
then show ?thesis by (rule *)  | 
|
99  | 
qed  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
100  | 
qed  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
101  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
102  | 
lemma uminus_float[simp]: "x \<in> float \<Longrightarrow> -x \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
103  | 
apply (auto simp: float_def)  | 
| 
57492
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
56777 
diff
changeset
 | 
104  | 
apply hypsubst_thin  | 
| 
60017
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
105  | 
apply (rename_tac m e)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
106  | 
apply (rule_tac x="-m" in exI)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
107  | 
apply (rule_tac x="e" in exI)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
108  | 
apply (simp add: field_simps)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
109  | 
done  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
110  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
111  | 
lemma times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x * y \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
112  | 
apply (auto simp: float_def)  | 
| 
57492
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
56777 
diff
changeset
 | 
113  | 
apply hypsubst_thin  | 
| 
60017
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
114  | 
apply (rename_tac mx my ex ey)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
115  | 
apply (rule_tac x="mx * my" in exI)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
116  | 
apply (rule_tac x="ex + ey" in exI)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
117  | 
apply (simp add: powr_add)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
118  | 
done  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
119  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
120  | 
lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float"  | 
| 
54230
 
b1d955791529
more simplification rules on unary and binary minus
 
haftmann 
parents: 
53381 
diff
changeset
 | 
121  | 
using plus_float [of x "- y"] by simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
122  | 
|
| 61945 | 123  | 
lemma abs_float[simp]: "x \<in> float \<Longrightarrow> \<bar>x\<bar> \<in> float"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
124  | 
by (cases x rule: linorder_cases[of 0]) auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
125  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
126  | 
lemma sgn_of_float[simp]: "x \<in> float \<Longrightarrow> sgn x \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
127  | 
by (cases x rule: linorder_cases[of 0]) (auto intro!: uminus_float)  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21256 
diff
changeset
 | 
128  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
129  | 
lemma div_power_2_float[simp]: "x \<in> float \<Longrightarrow> x / 2^d \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
130  | 
apply (auto simp add: float_def)  | 
| 
57492
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
56777 
diff
changeset
 | 
131  | 
apply hypsubst_thin  | 
| 
60017
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
132  | 
apply (rename_tac m e)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
133  | 
apply (rule_tac x="m" in exI)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
134  | 
apply (rule_tac x="e - d" in exI)  | 
| 68406 | 135  | 
apply (simp flip: powr_realpow powr_add add: field_simps)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
136  | 
done  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
137  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
138  | 
lemma div_power_2_int_float[simp]: "x \<in> float \<Longrightarrow> x / (2::int)^d \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
139  | 
apply (auto simp add: float_def)  | 
| 
57492
 
74bf65a1910a
Hypsubst preserves equality hypotheses
 
Thomas Sewell <thomas.sewell@nicta.com.au> 
parents: 
56777 
diff
changeset
 | 
140  | 
apply hypsubst_thin  | 
| 
60017
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
141  | 
apply (rename_tac m e)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
142  | 
apply (rule_tac x="m" in exI)  | 
| 
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
143  | 
apply (rule_tac x="e - d" in exI)  | 
| 68406 | 144  | 
apply (simp flip: powr_realpow powr_add add: field_simps)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
145  | 
done  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
146  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
147  | 
lemma div_numeral_Bit0_float[simp]:  | 
| 63356 | 148  | 
assumes "x / numeral n \<in> float"  | 
| 60698 | 149  | 
shows "x / (numeral (Num.Bit0 n)) \<in> float"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
150  | 
proof -  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
151  | 
have "(x / numeral n) / 2^1 \<in> float"  | 
| 63356 | 152  | 
by (intro assms div_power_2_float)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
153  | 
also have "(x / numeral n) / 2^1 = x / (numeral (Num.Bit0 n))"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
154  | 
by (induct n) auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
155  | 
finally show ?thesis .  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
156  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
157  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
158  | 
lemma div_neg_numeral_Bit0_float[simp]:  | 
| 63356 | 159  | 
assumes "x / numeral n \<in> float"  | 
| 60698 | 160  | 
shows "x / (- numeral (Num.Bit0 n)) \<in> float"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
161  | 
proof -  | 
| 60698 | 162  | 
have "- (x / numeral (Num.Bit0 n)) \<in> float"  | 
| 63356 | 163  | 
using assms by simp  | 
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54230 
diff
changeset
 | 
164  | 
also have "- (x / numeral (Num.Bit0 n)) = x / - numeral (Num.Bit0 n)"  | 
| 
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54230 
diff
changeset
 | 
165  | 
by simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
166  | 
finally show ?thesis .  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
167  | 
qed  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
168  | 
|
| 60698 | 169  | 
lemma power_float[simp]:  | 
170  | 
assumes "a \<in> float"  | 
|
171  | 
shows "a ^ b \<in> float"  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
172  | 
proof -  | 
| 60698 | 173  | 
from assms obtain m e :: int where "a = m * 2 powr e"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
174  | 
by (auto simp: float_def)  | 
| 60698 | 175  | 
then show ?thesis  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
176  | 
by (auto intro!: floatI[where m="m^b" and e = "e*b"]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
177  | 
simp: power_mult_distrib powr_realpow[symmetric] powr_powr)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
178  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
179  | 
|
| 60698 | 180  | 
lift_definition Float :: "int \<Rightarrow> int \<Rightarrow> float" is "\<lambda>(m::int) (e::int). m * 2 powr e"  | 
181  | 
by simp  | 
|
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
182  | 
declare Float.rep_eq[simp]  | 
| 
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
183  | 
|
| 
62419
 
c7d6f4dded19
compute_real_of_float has not been used as code equation
 
immler 
parents: 
62390 
diff
changeset
 | 
184  | 
code_datatype Float  | 
| 
 
c7d6f4dded19
compute_real_of_float has not been used as code equation
 
immler 
parents: 
62390 
diff
changeset
 | 
185  | 
|
| 47780 | 186  | 
lemma compute_real_of_float[code]:  | 
187  | 
"real_of_float (Float m e) = (if e \<ge> 0 then m * 2 ^ nat e else m / 2 ^ (nat (-e)))"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
188  | 
by (simp add: powr_int)  | 
| 47780 | 189  | 
|
| 60698 | 190  | 
|
| 60500 | 191  | 
subsection \<open>Arithmetic operations on floating point numbers\<close>  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
192  | 
|
| 63356 | 193  | 
instantiation float :: "{ring_1,linorder,linordered_ring,linordered_idom,numeral,equal}"
 | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
194  | 
begin  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
195  | 
|
| 47600 | 196  | 
lift_definition zero_float :: float is 0 by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
197  | 
declare zero_float.rep_eq[simp]  | 
| 63356 | 198  | 
|
| 47600 | 199  | 
lift_definition one_float :: float is 1 by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
200  | 
declare one_float.rep_eq[simp]  | 
| 63356 | 201  | 
|
| 67399 | 202  | 
lift_definition plus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "(+)" by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
203  | 
declare plus_float.rep_eq[simp]  | 
| 63356 | 204  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
68406 
diff
changeset
 | 
205  | 
lift_definition times_float :: "float \<Rightarrow> float \<Rightarrow> float" is "(*)" by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
206  | 
declare times_float.rep_eq[simp]  | 
| 63356 | 207  | 
|
| 67399 | 208  | 
lift_definition minus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "(-)" by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
209  | 
declare minus_float.rep_eq[simp]  | 
| 63356 | 210  | 
|
| 47600 | 211  | 
lift_definition uminus_float :: "float \<Rightarrow> float" is "uminus" by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
212  | 
declare uminus_float.rep_eq[simp]  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
213  | 
|
| 47600 | 214  | 
lift_definition abs_float :: "float \<Rightarrow> float" is abs by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
215  | 
declare abs_float.rep_eq[simp]  | 
| 63356 | 216  | 
|
| 47600 | 217  | 
lift_definition sgn_float :: "float \<Rightarrow> float" is sgn by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
218  | 
declare sgn_float.rep_eq[simp]  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
219  | 
|
| 67399 | 220  | 
lift_definition equal_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "(=) :: real \<Rightarrow> real \<Rightarrow> bool" .  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
221  | 
|
| 67399 | 222  | 
lift_definition less_eq_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "(\<le>)" .  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
223  | 
declare less_eq_float.rep_eq[simp]  | 
| 63356 | 224  | 
|
| 67399 | 225  | 
lift_definition less_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "(<)" .  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
226  | 
declare less_float.rep_eq[simp]  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
227  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
228  | 
instance  | 
| 63356 | 229  | 
by standard (transfer; fastforce simp add: field_simps intro: mult_left_mono mult_right_mono)+  | 
| 60698 | 230  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
231  | 
end  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
232  | 
|
| 
61639
 
6ef461bee3fa
new conversion theorems for int, nat to float
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
233  | 
lemma real_of_float [simp]: "real_of_float (of_nat n) = of_nat n"  | 
| 63356 | 234  | 
by (induct n) simp_all  | 
| 
61639
 
6ef461bee3fa
new conversion theorems for int, nat to float
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
235  | 
|
| 
 
6ef461bee3fa
new conversion theorems for int, nat to float
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
236  | 
lemma real_of_float_of_int_eq [simp]: "real_of_float (of_int z) = of_int z"  | 
| 
 
6ef461bee3fa
new conversion theorems for int, nat to float
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
237  | 
by (cases z rule: int_diff_cases) (simp_all add: of_rat_diff)  | 
| 
 
6ef461bee3fa
new conversion theorems for int, nat to float
 
paulson <lp15@cam.ac.uk> 
parents: 
61609 
diff
changeset
 | 
238  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
239  | 
lemma Float_0_eq_0[simp]: "Float 0 e = 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
240  | 
by transfer simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
241  | 
|
| 63356 | 242  | 
lemma real_of_float_power[simp]: "real_of_float (f^n) = real_of_float f^n" for f :: float  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
243  | 
by (induct n) simp_all  | 
| 
45495
 
c55a07526dbe
cleaned up float theories; removed duplicate definitions and theorems
 
hoelzl 
parents: 
44766 
diff
changeset
 | 
244  | 
|
| 63356 | 245  | 
lemma real_of_float_min: "real_of_float (min x y) = min (real_of_float x) (real_of_float y)"  | 
246  | 
and real_of_float_max: "real_of_float (max x y) = max (real_of_float x) (real_of_float y)"  | 
|
247  | 
for x y :: float  | 
|
| 47600 | 248  | 
by (simp_all add: min_def max_def)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
249  | 
|
| 
53215
 
5e47c31c6f7c
renamed typeclass dense_linorder to unbounded_dense_linorder
 
hoelzl 
parents: 
51542 
diff
changeset
 | 
250  | 
instance float :: unbounded_dense_linorder  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
251  | 
proof  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
252  | 
fix a b :: float  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
253  | 
show "\<exists>c. a < c"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
254  | 
apply (intro exI[of _ "a + 1"])  | 
| 47600 | 255  | 
apply transfer  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
256  | 
apply simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
257  | 
done  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
258  | 
show "\<exists>c. c < a"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
259  | 
apply (intro exI[of _ "a - 1"])  | 
| 47600 | 260  | 
apply transfer  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
261  | 
apply simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
262  | 
done  | 
| 60698 | 263  | 
show "\<exists>c. a < c \<and> c < b" if "a < b"  | 
264  | 
apply (rule exI[of _ "(a + b) * Float 1 (- 1)"])  | 
|
265  | 
using that  | 
|
| 47600 | 266  | 
apply transfer  | 
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54230 
diff
changeset
 | 
267  | 
apply (simp add: powr_minus)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
268  | 
done  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
269  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
270  | 
|
| 47600 | 271  | 
instantiation float :: lattice_ab_group_add  | 
| 46573 | 272  | 
begin  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
273  | 
|
| 60698 | 274  | 
definition inf_float :: "float \<Rightarrow> float \<Rightarrow> float"  | 
275  | 
where "inf_float a b = min a b"  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
276  | 
|
| 60698 | 277  | 
definition sup_float :: "float \<Rightarrow> float \<Rightarrow> float"  | 
278  | 
where "sup_float a b = max a b"  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
279  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
280  | 
instance  | 
| 63356 | 281  | 
by standard (transfer; simp add: inf_float_def sup_float_def real_of_float_min real_of_float_max)+  | 
| 60679 | 282  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
283  | 
end  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
284  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
285  | 
lemma float_numeral[simp]: "real_of_float (numeral x :: float) = numeral x"  | 
| 47600 | 286  | 
apply (induct x)  | 
287  | 
apply simp  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
288  | 
apply (simp_all only: numeral_Bit0 numeral_Bit1 real_of_float_eq float_of_inverse  | 
| 63356 | 289  | 
plus_float.rep_eq one_float.rep_eq plus_float numeral_float one_float)  | 
| 47600 | 290  | 
done  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
291  | 
|
| 53381 | 292  | 
lemma transfer_numeral [transfer_rule]:  | 
| 67399 | 293  | 
"rel_fun (=) pcr_float (numeral :: _ \<Rightarrow> real) (numeral :: _ \<Rightarrow> float)"  | 
| 60698 | 294  | 
by (simp add: rel_fun_def float.pcr_cr_eq cr_float_def)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
295  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
296  | 
lemma float_neg_numeral[simp]: "real_of_float (- numeral x :: float) = - numeral x"  | 
| 
54489
 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 
haftmann 
parents: 
54230 
diff
changeset
 | 
297  | 
by simp  | 
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
46670 
diff
changeset
 | 
298  | 
|
| 53381 | 299  | 
lemma transfer_neg_numeral [transfer_rule]:  | 
| 67399 | 300  | 
"rel_fun (=) pcr_float (- numeral :: _ \<Rightarrow> real) (- numeral :: _ \<Rightarrow> float)"  | 
| 60698 | 301  | 
by (simp add: rel_fun_def float.pcr_cr_eq cr_float_def)  | 
| 47600 | 302  | 
|
| 67573 | 303  | 
lemma float_of_numeral: "numeral k = float_of (numeral k)"  | 
304  | 
and float_of_neg_numeral: "- numeral k = float_of (- numeral k)"  | 
|
| 47600 | 305  | 
unfolding real_of_float_eq by simp_all  | 
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
46670 
diff
changeset
 | 
306  | 
|
| 60698 | 307  | 
|
| 60500 | 308  | 
subsection \<open>Quickcheck\<close>  | 
| 
58987
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
309  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
310  | 
instantiation float :: exhaustive  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
311  | 
begin  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
312  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
313  | 
definition exhaustive_float where  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
314  | 
"exhaustive_float f d =  | 
| 63356 | 315  | 
Quickcheck_Exhaustive.exhaustive (\<lambda>x. Quickcheck_Exhaustive.exhaustive (\<lambda>y. f (Float x y)) d) d"  | 
| 
58987
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
316  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
317  | 
instance ..  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
318  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
319  | 
end  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
320  | 
|
| 72607 | 321  | 
context  | 
322  | 
includes term_syntax  | 
|
323  | 
begin  | 
|
324  | 
||
325  | 
definition [code_unfold]:  | 
|
| 
58987
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
326  | 
  "valtermify_float x y = Code_Evaluation.valtermify Float {\<cdot>} x {\<cdot>} y"
 | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
327  | 
|
| 72607 | 328  | 
end  | 
329  | 
||
| 
58987
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
330  | 
instantiation float :: full_exhaustive  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
331  | 
begin  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
332  | 
|
| 63356 | 333  | 
definition  | 
| 
58987
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
334  | 
"full_exhaustive_float f d =  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
335  | 
Quickcheck_Exhaustive.full_exhaustive  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
336  | 
(\<lambda>x. Quickcheck_Exhaustive.full_exhaustive (\<lambda>y. f (valtermify_float x y)) d) d"  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
337  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
338  | 
instance ..  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
339  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
340  | 
end  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
341  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
342  | 
instantiation float :: random  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
343  | 
begin  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
344  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
345  | 
definition "Quickcheck_Random.random i =  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
346  | 
scomp (Quickcheck_Random.random (2 ^ nat_of_natural i))  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
347  | 
(\<lambda>man. scomp (Quickcheck_Random.random i) (\<lambda>exp. Pair (valtermify_float man exp)))"  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
348  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
349  | 
instance ..  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
350  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
351  | 
end  | 
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
352  | 
|
| 
 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 
immler 
parents: 
58985 
diff
changeset
 | 
353  | 
|
| 60500 | 354  | 
subsection \<open>Represent floats as unique mantissa and exponent\<close>  | 
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
46670 
diff
changeset
 | 
355  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
356  | 
lemma int_induct_abs[case_names less]:  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
357  | 
fixes j :: int  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
358  | 
assumes H: "\<And>n. (\<And>i. \<bar>i\<bar> < \<bar>n\<bar> \<Longrightarrow> P i) \<Longrightarrow> P n"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
359  | 
shows "P j"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
360  | 
proof (induct "nat \<bar>j\<bar>" arbitrary: j rule: less_induct)  | 
| 60698 | 361  | 
case less  | 
362  | 
show ?case by (rule H[OF less]) simp  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
363  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
364  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
365  | 
lemma int_cancel_factors:  | 
| 60698 | 366  | 
fixes n :: int  | 
367  | 
assumes "1 < r"  | 
|
368  | 
shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
369  | 
proof (induct n rule: int_induct_abs)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
370  | 
case (less n)  | 
| 60698 | 371  | 
have "\<exists>k i. n = k * r ^ Suc i \<and> \<not> r dvd k" if "n \<noteq> 0" "n = m * r" for m  | 
372  | 
proof -  | 
|
373  | 
from that have "\<bar>m \<bar> < \<bar>n\<bar>"  | 
|
| 60500 | 374  | 
using \<open>1 < r\<close> by (simp add: abs_mult)  | 
| 60698 | 375  | 
from less[OF this] that show ?thesis by auto  | 
376  | 
qed  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
377  | 
then show ?case  | 
| 
59554
 
4044f53326c9
inlined rules to free user-space from technical names
 
haftmann 
parents: 
59487 
diff
changeset
 | 
378  | 
by (metis dvd_def monoid_mult_class.mult.right_neutral mult.commute power_0)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
379  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
380  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
381  | 
lemma mult_powr_eq_mult_powr_iff_asym:  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
382  | 
fixes m1 m2 e1 e2 :: int  | 
| 60698 | 383  | 
assumes m1: "\<not> 2 dvd m1"  | 
384  | 
and "e1 \<le> e2"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
385  | 
shows "m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"  | 
| 60698 | 386  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
387  | 
proof  | 
| 60698 | 388  | 
show ?rhs if eq: ?lhs  | 
389  | 
proof -  | 
|
390  | 
have "m1 \<noteq> 0"  | 
|
391  | 
using m1 unfolding dvd_def by auto  | 
|
392  | 
from \<open>e1 \<le> e2\<close> eq have "m1 = m2 * 2 powr nat (e2 - e1)"  | 
|
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
393  | 
by (simp add: powr_diff field_simps)  | 
| 60698 | 394  | 
also have "\<dots> = m2 * 2^nat (e2 - e1)"  | 
395  | 
by (simp add: powr_realpow)  | 
|
396  | 
finally have m1_eq: "m1 = m2 * 2^nat (e2 - e1)"  | 
|
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61639 
diff
changeset
 | 
397  | 
by linarith  | 
| 60698 | 398  | 
with m1 have "m1 = m2"  | 
399  | 
by (cases "nat (e2 - e1)") (auto simp add: dvd_def)  | 
|
400  | 
then show ?thesis  | 
|
401  | 
using eq \<open>m1 \<noteq> 0\<close> by (simp add: powr_inj)  | 
|
402  | 
qed  | 
|
403  | 
show ?lhs if ?rhs  | 
|
404  | 
using that by simp  | 
|
405  | 
qed  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
406  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
407  | 
lemma mult_powr_eq_mult_powr_iff:  | 
| 63356 | 408  | 
"\<not> 2 dvd m1 \<Longrightarrow> \<not> 2 dvd m2 \<Longrightarrow> m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"  | 
409  | 
for m1 m2 e1 e2 :: int  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
410  | 
using mult_powr_eq_mult_powr_iff_asym[of m1 e1 e2 m2]  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
411  | 
using mult_powr_eq_mult_powr_iff_asym[of m2 e2 e1 m1]  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
412  | 
by (cases e1 e2 rule: linorder_le_cases) auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
413  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
414  | 
lemma floatE_normed:  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
415  | 
assumes x: "x \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
416  | 
obtains (zero) "x = 0"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
417  | 
| (powr) m e :: int where "x = m * 2 powr e" "\<not> 2 dvd m" "x \<noteq> 0"  | 
| 60698 | 418  | 
proof -  | 
| 63356 | 419  | 
have "\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m" if "x \<noteq> 0"  | 
420  | 
proof -  | 
|
| 60698 | 421  | 
from x obtain m e :: int where x: "x = m * 2 powr e"  | 
422  | 
by (auto simp: float_def)  | 
|
| 60500 | 423  | 
with \<open>x \<noteq> 0\<close> int_cancel_factors[of 2 m] obtain k i where "m = k * 2 ^ i" "\<not> 2 dvd k"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
424  | 
by auto  | 
| 63356 | 425  | 
with \<open>\<not> 2 dvd k\<close> x show ?thesis  | 
426  | 
apply (rule_tac exI[of _ "k"])  | 
|
427  | 
apply (rule_tac exI[of _ "e + int i"])  | 
|
428  | 
apply (simp add: powr_add powr_realpow)  | 
|
429  | 
done  | 
|
430  | 
qed  | 
|
| 60698 | 431  | 
with that show thesis by blast  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
432  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
433  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
434  | 
lemma float_normed_cases:  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
435  | 
fixes f :: float  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
436  | 
obtains (zero) "f = 0"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
437  | 
| (powr) m e :: int where "real_of_float f = m * 2 powr e" "\<not> 2 dvd m" "f \<noteq> 0"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
438  | 
proof (atomize_elim, induct f)  | 
| 60698 | 439  | 
case (float_of y)  | 
440  | 
then show ?case  | 
|
| 47600 | 441  | 
by (cases rule: floatE_normed) (auto simp: zero_float_def)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
442  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
443  | 
|
| 63356 | 444  | 
definition mantissa :: "float \<Rightarrow> int"  | 
445  | 
where "mantissa f =  | 
|
446  | 
fst (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0) \<or>  | 
|
447  | 
(f \<noteq> 0 \<and> real_of_float f = real_of_int (fst p) * 2 powr real_of_int (snd p) \<and> \<not> 2 dvd fst p))"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
448  | 
|
| 63356 | 449  | 
definition exponent :: "float \<Rightarrow> int"  | 
450  | 
where "exponent f =  | 
|
451  | 
snd (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0) \<or>  | 
|
452  | 
(f \<noteq> 0 \<and> real_of_float f = real_of_int (fst p) * 2 powr real_of_int (snd p) \<and> \<not> 2 dvd fst p))"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
453  | 
|
| 67573 | 454  | 
lemma exponent_0[simp]: "exponent 0 = 0" (is ?E)  | 
455  | 
and mantissa_0[simp]: "mantissa 0 = 0" (is ?M)  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
456  | 
proof -  | 
| 60698 | 457  | 
have "\<And>p::int \<times> int. fst p = 0 \<and> snd p = 0 \<longleftrightarrow> p = (0, 0)"  | 
458  | 
by auto  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
459  | 
then show ?E ?M  | 
| 47600 | 460  | 
by (auto simp add: mantissa_def exponent_def zero_float_def)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
461  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
462  | 
|
| 63356 | 463  | 
lemma mantissa_exponent: "real_of_float f = mantissa f * 2 powr exponent f" (is ?E)  | 
| 67573 | 464  | 
and mantissa_not_dvd: "f \<noteq> 0 \<Longrightarrow> \<not> 2 dvd mantissa f" (is "_ \<Longrightarrow> ?D")  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
465  | 
proof cases  | 
| 67573 | 466  | 
assume [simp]: "f \<noteq> 0"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
467  | 
have "f = mantissa f * 2 powr exponent f \<and> \<not> 2 dvd mantissa f"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
468  | 
proof (cases f rule: float_normed_cases)  | 
| 60698 | 469  | 
case zero  | 
| 67573 | 470  | 
then show ?thesis by simp  | 
| 60698 | 471  | 
next  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
472  | 
case (powr m e)  | 
| 60698 | 473  | 
then have "\<exists>p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0) \<or>  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
474  | 
(f \<noteq> 0 \<and> real_of_float f = real_of_int (fst p) * 2 powr real_of_int (snd p) \<and> \<not> 2 dvd fst p)"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
475  | 
by auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
476  | 
then show ?thesis  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
477  | 
unfolding exponent_def mantissa_def  | 
| 67573 | 478  | 
by (rule someI2_ex) simp  | 
| 60698 | 479  | 
qed  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
480  | 
then show ?E ?D by auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
481  | 
qed simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
482  | 
|
| 67573 | 483  | 
lemma mantissa_noteq_0: "f \<noteq> 0 \<Longrightarrow> mantissa f \<noteq> 0"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
484  | 
using mantissa_not_dvd[of f] by auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
485  | 
|
| 67573 | 486  | 
lemma mantissa_eq_zero_iff: "mantissa x = 0 \<longleftrightarrow> x = 0"  | 
487  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
|
488  | 
proof  | 
|
489  | 
show ?rhs if ?lhs  | 
|
490  | 
proof -  | 
|
491  | 
from that have z: "0 = real_of_float x"  | 
|
492  | 
using mantissa_exponent by simp  | 
|
493  | 
show ?thesis  | 
|
494  | 
by (simp add: zero_float_def z)  | 
|
495  | 
qed  | 
|
496  | 
show ?lhs if ?rhs  | 
|
497  | 
using that by simp  | 
|
498  | 
qed  | 
|
499  | 
||
500  | 
lemma mantissa_pos_iff: "0 < mantissa x \<longleftrightarrow> 0 < x"  | 
|
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
70355 
diff
changeset
 | 
501  | 
by (auto simp: mantissa_exponent algebra_split_simps)  | 
| 67573 | 502  | 
|
503  | 
lemma mantissa_nonneg_iff: "0 \<le> mantissa x \<longleftrightarrow> 0 \<le> x"  | 
|
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
70355 
diff
changeset
 | 
504  | 
by (auto simp: mantissa_exponent algebra_split_simps)  | 
| 67573 | 505  | 
|
506  | 
lemma mantissa_neg_iff: "0 > mantissa x \<longleftrightarrow> 0 > x"  | 
|
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
70355 
diff
changeset
 | 
507  | 
by (auto simp: mantissa_exponent algebra_split_simps)  | 
| 67573 | 508  | 
|
| 53381 | 509  | 
lemma  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
510  | 
fixes m e :: int  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
511  | 
defines "f \<equiv> float_of (m * 2 powr e)"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
512  | 
assumes dvd: "\<not> 2 dvd m"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
513  | 
shows mantissa_float: "mantissa f = m" (is "?M")  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
514  | 
and exponent_float: "m \<noteq> 0 \<Longrightarrow> exponent f = e" (is "_ \<Longrightarrow> ?E")  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
515  | 
proof cases  | 
| 60698 | 516  | 
assume "m = 0"  | 
517  | 
with dvd show "mantissa f = m" by auto  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
518  | 
next  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
519  | 
assume "m \<noteq> 0"  | 
| 67573 | 520  | 
then have f_not_0: "f \<noteq> 0" by (simp add: f_def zero_float_def)  | 
| 60698 | 521  | 
from mantissa_exponent[of f] have "m * 2 powr e = mantissa f * 2 powr exponent f"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
522  | 
by (auto simp add: f_def)  | 
| 63356 | 523  | 
then show ?M ?E  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
524  | 
using mantissa_not_dvd[OF f_not_0] dvd  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
525  | 
by (auto simp: mult_powr_eq_mult_powr_iff)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
526  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
527  | 
|
| 60698 | 528  | 
|
| 60500 | 529  | 
subsection \<open>Compute arithmetic operations\<close>  | 
| 47600 | 530  | 
|
531  | 
lemma Float_mantissa_exponent: "Float (mantissa f) (exponent f) = f"  | 
|
532  | 
unfolding real_of_float_eq mantissa_exponent[of f] by simp  | 
|
533  | 
||
| 60698 | 534  | 
lemma Float_cases [cases type: float]:  | 
| 47600 | 535  | 
fixes f :: float  | 
536  | 
obtains (Float) m e :: int where "f = Float m e"  | 
|
537  | 
using Float_mantissa_exponent[symmetric]  | 
|
538  | 
by (atomize_elim) auto  | 
|
539  | 
||
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
540  | 
lemma denormalize_shift:  | 
| 67573 | 541  | 
assumes f_def: "f = Float m e"  | 
542  | 
and not_0: "f \<noteq> 0"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
543  | 
obtains i where "m = mantissa f * 2 ^ i" "e = exponent f - i"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
544  | 
proof  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
545  | 
from mantissa_exponent[of f] f_def  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
546  | 
have "m * 2 powr e = mantissa f * 2 powr exponent f"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
547  | 
by simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
548  | 
then have eq: "m = mantissa f * 2 powr (exponent f - e)"  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
549  | 
by (simp add: powr_diff field_simps)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
550  | 
moreover  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
551  | 
have "e \<le> exponent f"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
552  | 
proof (rule ccontr)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
553  | 
assume "\<not> e \<le> exponent f"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
554  | 
then have pos: "exponent f < e" by simp  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
555  | 
then have "2 powr (exponent f - e) = 2 powr - real_of_int (e - exponent f)"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
556  | 
by simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
557  | 
also have "\<dots> = 1 / 2^nat (e - exponent f)"  | 
| 68406 | 558  | 
using pos by (simp flip: powr_realpow add: powr_diff)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
559  | 
finally have "m * 2^nat (e - exponent f) = real_of_int (mantissa f)"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
560  | 
using eq by simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
561  | 
then have "mantissa f = m * 2^nat (e - exponent f)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
562  | 
by linarith  | 
| 60500 | 563  | 
with \<open>exponent f < e\<close> have "2 dvd mantissa f"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
564  | 
apply (intro dvdI[where k="m * 2^(nat (e-exponent f)) div 2"])  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
565  | 
apply (cases "nat (e - exponent f)")  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
566  | 
apply auto  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
567  | 
done  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
568  | 
then show False using mantissa_not_dvd[OF not_0] by simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
569  | 
qed  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
570  | 
ultimately have "real_of_int m = mantissa f * 2^nat (exponent f - e)"  | 
| 68406 | 571  | 
by (simp flip: powr_realpow)  | 
| 60500 | 572  | 
with \<open>e \<le> exponent f\<close>  | 
| 63356 | 573  | 
show "m = mantissa f * 2 ^ nat (exponent f - e)"  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61639 
diff
changeset
 | 
574  | 
by linarith  | 
| 
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61639 
diff
changeset
 | 
575  | 
show "e = exponent f - nat (exponent f - e)"  | 
| 61799 | 576  | 
using \<open>e \<le> exponent f\<close> by auto  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
577  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
578  | 
|
| 60698 | 579  | 
context  | 
580  | 
begin  | 
|
| 47600 | 581  | 
|
| 60698 | 582  | 
qualified lemma compute_float_zero[code_unfold, code]: "0 = Float 0 0"  | 
| 47600 | 583  | 
by transfer simp  | 
| 60698 | 584  | 
|
585  | 
qualified lemma compute_float_one[code_unfold, code]: "1 = Float 1 0"  | 
|
586  | 
by transfer simp  | 
|
| 47600 | 587  | 
|
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
588  | 
lift_definition normfloat :: "float \<Rightarrow> float" is "\<lambda>x. x" .  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
589  | 
lemma normloat_id[simp]: "normfloat x = x" by transfer rule  | 
| 47600 | 590  | 
|
| 63356 | 591  | 
qualified lemma compute_normfloat[code]:  | 
592  | 
"normfloat (Float m e) =  | 
|
593  | 
(if m mod 2 = 0 \<and> m \<noteq> 0 then normfloat (Float (m div 2) (e + 1))  | 
|
594  | 
else if m = 0 then 0 else Float m e)"  | 
|
| 47600 | 595  | 
by transfer (auto simp add: powr_add zmod_eq_0_iff)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
596  | 
|
| 60698 | 597  | 
qualified lemma compute_float_numeral[code_abbrev]: "Float (numeral k) 0 = numeral k"  | 
| 47600 | 598  | 
by transfer simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
599  | 
|
| 60698 | 600  | 
qualified lemma compute_float_neg_numeral[code_abbrev]: "Float (- numeral k) 0 = - numeral k"  | 
| 47600 | 601  | 
by transfer simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
602  | 
|
| 60698 | 603  | 
qualified lemma compute_float_uminus[code]: "- Float m1 e1 = Float (- m1) e1"  | 
| 47600 | 604  | 
by transfer simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
605  | 
|
| 60698 | 606  | 
qualified lemma compute_float_times[code]: "Float m1 e1 * Float m2 e2 = Float (m1 * m2) (e1 + e2)"  | 
| 47600 | 607  | 
by transfer (simp add: field_simps powr_add)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
608  | 
|
| 63356 | 609  | 
qualified lemma compute_float_plus[code]:  | 
610  | 
"Float m1 e1 + Float m2 e2 =  | 
|
611  | 
(if m1 = 0 then Float m2 e2  | 
|
612  | 
else if m2 = 0 then Float m1 e1  | 
|
613  | 
else if e1 \<le> e2 then Float (m1 + m2 * 2^nat (e2 - e1)) e1  | 
|
614  | 
else Float (m2 + m1 * 2^nat (e1 - e2)) e2)"  | 
|
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
615  | 
by transfer (simp add: field_simps powr_realpow[symmetric] powr_diff)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
616  | 
|
| 63356 | 617  | 
qualified lemma compute_float_minus[code]: "f - g = f + (-g)" for f g :: float  | 
| 47600 | 618  | 
by simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
619  | 
|
| 63356 | 620  | 
qualified lemma compute_float_sgn[code]:  | 
621  | 
"sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then -1 else 0)"  | 
|
| 64240 | 622  | 
by transfer (simp add: sgn_mult)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
623  | 
|
| 67399 | 624  | 
lift_definition is_float_pos :: "float \<Rightarrow> bool" is "(<) 0 :: real \<Rightarrow> bool" .  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
625  | 
|
| 60698 | 626  | 
qualified lemma compute_is_float_pos[code]: "is_float_pos (Float m e) \<longleftrightarrow> 0 < m"  | 
| 47600 | 627  | 
by transfer (auto simp add: zero_less_mult_iff not_le[symmetric, of _ 0])  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
628  | 
|
| 67399 | 629  | 
lift_definition is_float_nonneg :: "float \<Rightarrow> bool" is "(\<le>) 0 :: real \<Rightarrow> bool" .  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
630  | 
|
| 60698 | 631  | 
qualified lemma compute_is_float_nonneg[code]: "is_float_nonneg (Float m e) \<longleftrightarrow> 0 \<le> m"  | 
| 47600 | 632  | 
by transfer (auto simp add: zero_le_mult_iff not_less[symmetric, of _ 0])  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
633  | 
|
| 67399 | 634  | 
lift_definition is_float_zero :: "float \<Rightarrow> bool" is "(=) 0 :: real \<Rightarrow> bool" .  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
635  | 
|
| 60698 | 636  | 
qualified lemma compute_is_float_zero[code]: "is_float_zero (Float m e) \<longleftrightarrow> 0 = m"  | 
| 47600 | 637  | 
by transfer (auto simp add: is_float_zero_def)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
638  | 
|
| 61945 | 639  | 
qualified lemma compute_float_abs[code]: "\<bar>Float m e\<bar> = Float \<bar>m\<bar> e"  | 
| 47600 | 640  | 
by transfer (simp add: abs_mult)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
641  | 
|
| 60698 | 642  | 
qualified lemma compute_float_eq[code]: "equal_class.equal f g = is_float_zero (f - g)"  | 
| 47600 | 643  | 
by transfer simp  | 
| 60698 | 644  | 
|
645  | 
end  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
646  | 
|
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
647  | 
|
| 69593 | 648  | 
subsection \<open>Lemmas for types \<^typ>\<open>real\<close>, \<^typ>\<open>nat\<close>, \<^typ>\<open>int\<close>\<close>  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
649  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
650  | 
lemmas real_of_ints =  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
651  | 
of_int_add  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
652  | 
of_int_minus  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
653  | 
of_int_diff  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
654  | 
of_int_mult  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
655  | 
of_int_power  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
656  | 
of_int_numeral of_int_neg_numeral  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
657  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
658  | 
lemmas int_of_reals = real_of_ints[symmetric]  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
659  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
660  | 
|
| 60500 | 661  | 
subsection \<open>Rounding Real Numbers\<close>  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
662  | 
|
| 60698 | 663  | 
definition round_down :: "int \<Rightarrow> real \<Rightarrow> real"  | 
| 61942 | 664  | 
where "round_down prec x = \<lfloor>x * 2 powr prec\<rfloor> * 2 powr -prec"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
665  | 
|
| 60698 | 666  | 
definition round_up :: "int \<Rightarrow> real \<Rightarrow> real"  | 
| 61942 | 667  | 
where "round_up prec x = \<lceil>x * 2 powr prec\<rceil> * 2 powr -prec"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
668  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
669  | 
lemma round_down_float[simp]: "round_down prec x \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
670  | 
unfolding round_down_def  | 
| 68406 | 671  | 
by (auto intro!: times_float simp flip: of_int_minus)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
672  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
673  | 
lemma round_up_float[simp]: "round_up prec x \<in> float"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
674  | 
unfolding round_up_def  | 
| 68406 | 675  | 
by (auto intro!: times_float simp flip: of_int_minus)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
676  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
677  | 
lemma round_up: "x \<le> round_up prec x"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
678  | 
by (simp add: powr_minus_divide le_divide_eq round_up_def ceiling_correct)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
679  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
680  | 
lemma round_down: "round_down prec x \<le> x"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
681  | 
by (simp add: powr_minus_divide divide_le_eq round_down_def)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
682  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
683  | 
lemma round_up_0[simp]: "round_up p 0 = 0"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
684  | 
unfolding round_up_def by simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
685  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
686  | 
lemma round_down_0[simp]: "round_down p 0 = 0"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
687  | 
unfolding round_down_def by simp  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
688  | 
|
| 63356 | 689  | 
lemma round_up_diff_round_down: "round_up prec x - round_down prec x \<le> 2 powr -prec"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
690  | 
proof -  | 
| 63356 | 691  | 
have "round_up prec x - round_down prec x = (\<lceil>x * 2 powr prec\<rceil> - \<lfloor>x * 2 powr prec\<rfloor>) * 2 powr -prec"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
692  | 
by (simp add: round_up_def round_down_def field_simps)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
693  | 
also have "\<dots> \<le> 1 * 2 powr -prec"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
694  | 
by (rule mult_mono)  | 
| 68406 | 695  | 
(auto simp flip: of_int_diff simp: ceiling_diff_floor_le_1)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
696  | 
finally show ?thesis by simp  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
697  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
698  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
699  | 
lemma round_down_shift: "round_down p (x * 2 powr k) = 2 powr k * round_down (p + k) x"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
700  | 
unfolding round_down_def  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
701  | 
by (simp add: powr_add powr_mult field_simps powr_diff)  | 
| 68406 | 702  | 
(simp flip: powr_add)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
703  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
704  | 
lemma round_up_shift: "round_up p (x * 2 powr k) = 2 powr k * round_up (p + k) x"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
705  | 
unfolding round_up_def  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
706  | 
by (simp add: powr_add powr_mult field_simps powr_diff)  | 
| 68406 | 707  | 
(simp flip: powr_add)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
708  | 
|
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
709  | 
lemma round_up_uminus_eq: "round_up p (-x) = - round_down p x"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
710  | 
and round_down_uminus_eq: "round_down p (-x) = - round_up p x"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
711  | 
by (auto simp: round_up_def round_down_def ceiling_def)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
712  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
713  | 
lemma round_up_mono: "x \<le> y \<Longrightarrow> round_up p x \<le> round_up p y"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
714  | 
by (auto intro!: ceiling_mono simp: round_up_def)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
715  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
716  | 
lemma round_up_le1:  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
717  | 
assumes "x \<le> 1" "prec \<ge> 0"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
718  | 
shows "round_up prec x \<le> 1"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
719  | 
proof -  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
720  | 
have "real_of_int \<lceil>x * 2 powr prec\<rceil> \<le> real_of_int \<lceil>2 powr real_of_int prec\<rceil>"  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
721  | 
using assms by (auto intro!: ceiling_mono)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
722  | 
also have "\<dots> = 2 powr prec" using assms by (auto simp: powr_int intro!: exI[where x="2^nat prec"])  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
723  | 
finally show ?thesis  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
724  | 
by (simp add: round_up_def) (simp add: powr_minus inverse_eq_divide)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
725  | 
qed  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
726  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
727  | 
lemma round_up_less1:  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
728  | 
assumes "x < 1 / 2" "p > 0"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
729  | 
shows "round_up p x < 1"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
730  | 
proof -  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
731  | 
have "x * 2 powr p < 1 / 2 * 2 powr p"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
732  | 
using assms by simp  | 
| 60500 | 733  | 
also have "\<dots> \<le> 2 powr p - 1" using \<open>p > 0\<close>  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
734  | 
by (auto simp: powr_diff powr_int field_simps self_le_power)  | 
| 60500 | 735  | 
finally show ?thesis using \<open>p > 0\<close>  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
736  | 
by (simp add: round_up_def field_simps powr_minus powr_int ceiling_less_iff)  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
737  | 
qed  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
738  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
739  | 
lemma round_down_ge1:  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
740  | 
assumes x: "x \<ge> 1"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
741  | 
assumes prec: "p \<ge> - log 2 x"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
742  | 
shows "1 \<le> round_down p x"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
743  | 
proof cases  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
744  | 
assume nonneg: "0 \<le> p"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
745  | 
have "2 powr p = real_of_int \<lfloor>2 powr real_of_int p\<rfloor>"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
746  | 
using nonneg by (auto simp: powr_int)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
747  | 
also have "\<dots> \<le> real_of_int \<lfloor>x * 2 powr p\<rfloor>"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
748  | 
using assms by (auto intro!: floor_mono)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
749  | 
finally show ?thesis  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
750  | 
by (simp add: round_down_def) (simp add: powr_minus inverse_eq_divide)  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
751  | 
next  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
752  | 
assume neg: "\<not> 0 \<le> p"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
753  | 
have "x = 2 powr (log 2 x)"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
754  | 
using x by simp  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
755  | 
also have "2 powr (log 2 x) \<ge> 2 powr - p"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
756  | 
using prec by auto  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
757  | 
finally have x_le: "x \<ge> 2 powr -p" .  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
758  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
759  | 
from neg have "2 powr real_of_int p \<le> 2 powr 0"  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
760  | 
by (intro powr_mono) auto  | 
| 
60017
 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 
paulson <lp15@cam.ac.uk> 
parents: 
59984 
diff
changeset
 | 
761  | 
also have "\<dots> \<le> \<lfloor>2 powr 0::real\<rfloor>" by simp  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
762  | 
also have "\<dots> \<le> \<lfloor>x * 2 powr (real_of_int p)\<rfloor>"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
763  | 
unfolding of_int_le_iff  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
764  | 
using x x_le by (intro floor_mono) (simp add: powr_minus_divide field_simps)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
765  | 
finally show ?thesis  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
766  | 
using prec x  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
767  | 
by (simp add: round_down_def powr_minus_divide pos_le_divide_eq)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
768  | 
qed  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
769  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
770  | 
lemma round_up_le0: "x \<le> 0 \<Longrightarrow> round_up p x \<le> 0"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
771  | 
unfolding round_up_def  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
772  | 
by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff)  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
773  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
774  | 
|
| 60500 | 775  | 
subsection \<open>Rounding Floats\<close>  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
776  | 
|
| 60698 | 777  | 
definition div_twopow :: "int \<Rightarrow> nat \<Rightarrow> int"  | 
778  | 
where [simp]: "div_twopow x n = x div (2 ^ n)"  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
779  | 
|
| 60698 | 780  | 
definition mod_twopow :: "int \<Rightarrow> nat \<Rightarrow> int"  | 
781  | 
where [simp]: "mod_twopow x n = x mod (2 ^ n)"  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
782  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
783  | 
lemma compute_div_twopow[code]:  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
784  | 
"div_twopow x n = (if x = 0 \<or> x = -1 \<or> n = 0 then x else div_twopow (x div 2) (n - 1))"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
785  | 
by (cases n) (auto simp: zdiv_zmult2_eq div_eq_minus1)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
786  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
787  | 
lemma compute_mod_twopow[code]:  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
788  | 
"mod_twopow x n = (if n = 0 then 0 else x mod 2 + 2 * mod_twopow (x div 2) (n - 1))"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
789  | 
by (cases n) (auto simp: zmod_zmult2_eq)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
790  | 
|
| 47600 | 791  | 
lift_definition float_up :: "int \<Rightarrow> float \<Rightarrow> float" is round_up by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
792  | 
declare float_up.rep_eq[simp]  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
793  | 
|
| 60698 | 794  | 
lemma round_up_correct: "round_up e f - f \<in> {0..2 powr -e}"
 | 
795  | 
unfolding atLeastAtMost_iff  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
796  | 
proof  | 
| 60698 | 797  | 
have "round_up e f - f \<le> round_up e f - round_down e f"  | 
798  | 
using round_down by simp  | 
|
799  | 
also have "\<dots> \<le> 2 powr -e"  | 
|
800  | 
using round_up_diff_round_down by simp  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
801  | 
finally show "round_up e f - f \<le> 2 powr - (real_of_int e)"  | 
| 47600 | 802  | 
by simp  | 
803  | 
qed (simp add: algebra_simps round_up)  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
804  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
805  | 
lemma float_up_correct: "real_of_float (float_up e f) - real_of_float f \<in> {0..2 powr -e}"
 | 
| 54782 | 806  | 
by transfer (rule round_up_correct)  | 
807  | 
||
| 47600 | 808  | 
lift_definition float_down :: "int \<Rightarrow> float \<Rightarrow> float" is round_down by simp  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
809  | 
declare float_down.rep_eq[simp]  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
810  | 
|
| 60698 | 811  | 
lemma round_down_correct: "f - (round_down e f) \<in> {0..2 powr -e}"
 | 
812  | 
unfolding atLeastAtMost_iff  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
813  | 
proof  | 
| 60698 | 814  | 
have "f - round_down e f \<le> round_up e f - round_down e f"  | 
815  | 
using round_up by simp  | 
|
816  | 
also have "\<dots> \<le> 2 powr -e"  | 
|
817  | 
using round_up_diff_round_down by simp  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
818  | 
finally show "f - round_down e f \<le> 2 powr - (real_of_int e)"  | 
| 47600 | 819  | 
by simp  | 
820  | 
qed (simp add: algebra_simps round_down)  | 
|
| 24301 | 821  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
822  | 
lemma float_down_correct: "real_of_float f - real_of_float (float_down e f) \<in> {0..2 powr -e}"
 | 
| 54782 | 823  | 
by transfer (rule round_down_correct)  | 
824  | 
||
| 60698 | 825  | 
context  | 
826  | 
begin  | 
|
827  | 
||
828  | 
qualified lemma compute_float_down[code]:  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
829  | 
"float_down p (Float m e) =  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
830  | 
(if p + e < 0 then Float (div_twopow m (nat (-(p + e)))) (-p) else Float m e)"  | 
| 60698 | 831  | 
proof (cases "p + e < 0")  | 
832  | 
case True  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
833  | 
then have "real_of_int ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
834  | 
using powr_realpow[of 2 "nat (-(p + e))"] by simp  | 
| 60698 | 835  | 
also have "\<dots> = 1 / 2 powr p / 2 powr e"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
836  | 
unfolding powr_minus_divide of_int_minus by (simp add: powr_add)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
837  | 
finally show ?thesis  | 
| 60500 | 838  | 
using \<open>p + e < 0\<close>  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
839  | 
apply transfer  | 
| 70355 | 840  | 
apply (simp add: round_down_def field_simps flip: floor_divide_of_int_eq)  | 
841  | 
apply (metis (no_types, hide_lams) Float.rep_eq  | 
|
842  | 
add.inverse_inverse compute_real_of_float diff_minus_eq_add  | 
|
843  | 
floor_divide_of_int_eq int_of_reals(1) linorder_not_le  | 
|
844  | 
minus_add_distrib of_int_eq_numeral_power_cancel_iff powr_add)  | 
|
845  | 
done  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
846  | 
next  | 
| 60698 | 847  | 
case False  | 
| 63356 | 848  | 
then have r: "real_of_int e + real_of_int p = real (nat (e + p))"  | 
849  | 
by simp  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
850  | 
have r: "\<lfloor>(m * 2 powr e) * 2 powr real_of_int p\<rfloor> = (m * 2 powr e) * 2 powr real_of_int p"  | 
| 47600 | 851  | 
by (auto intro: exI[where x="m*2^nat (e+p)"]  | 
| 63356 | 852  | 
simp add: ac_simps powr_add[symmetric] r powr_realpow)  | 
| 60500 | 853  | 
with \<open>\<not> p + e < 0\<close> show ?thesis  | 
| 57862 | 854  | 
by transfer (auto simp add: round_down_def field_simps powr_add powr_minus)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
855  | 
qed  | 
| 24301 | 856  | 
|
| 54782 | 857  | 
lemma abs_round_down_le: "\<bar>f - (round_down e f)\<bar> \<le> 2 powr -e"  | 
858  | 
using round_down_correct[of f e] by simp  | 
|
859  | 
||
860  | 
lemma abs_round_up_le: "\<bar>f - (round_up e f)\<bar> \<le> 2 powr -e"  | 
|
861  | 
using round_up_correct[of e f] by simp  | 
|
862  | 
||
863  | 
lemma round_down_nonneg: "0 \<le> s \<Longrightarrow> 0 \<le> round_down p s"  | 
|
| 56536 | 864  | 
by (auto simp: round_down_def)  | 
| 54782 | 865  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
866  | 
lemma ceil_divide_floor_conv:  | 
| 60698 | 867  | 
assumes "b \<noteq> 0"  | 
| 63356 | 868  | 
shows "\<lceil>real_of_int a / real_of_int b\<rceil> =  | 
869  | 
(if b dvd a then a div b else \<lfloor>real_of_int a / real_of_int b\<rfloor> + 1)"  | 
|
| 60698 | 870  | 
proof (cases "b dvd a")  | 
871  | 
case True  | 
|
872  | 
then show ?thesis  | 
|
| 68406 | 873  | 
by (simp add: ceiling_def floor_divide_of_int_eq dvd_neg_div  | 
874  | 
flip: of_int_minus divide_minus_left)  | 
|
| 60698 | 875  | 
next  | 
876  | 
case False  | 
|
877  | 
then have "a mod b \<noteq> 0"  | 
|
878  | 
by auto  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
879  | 
then have ne: "real_of_int (a mod b) / real_of_int b \<noteq> 0"  | 
| 60698 | 880  | 
using \<open>b \<noteq> 0\<close> by auto  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
881  | 
have "\<lceil>real_of_int a / real_of_int b\<rceil> = \<lfloor>real_of_int a / real_of_int b\<rfloor> + 1"  | 
| 60698 | 882  | 
apply (rule ceiling_eq)  | 
| 68406 | 883  | 
apply (auto simp flip: floor_divide_of_int_eq)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
884  | 
proof -  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
885  | 
have "real_of_int \<lfloor>real_of_int a / real_of_int b\<rfloor> \<le> real_of_int a / real_of_int b"  | 
| 60698 | 886  | 
by simp  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
887  | 
moreover have "real_of_int \<lfloor>real_of_int a / real_of_int b\<rfloor> \<noteq> real_of_int a / real_of_int b"  | 
| 60698 | 888  | 
apply (subst (2) real_of_int_div_aux)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
889  | 
unfolding floor_divide_of_int_eq  | 
| 60698 | 890  | 
using ne \<open>b \<noteq> 0\<close> apply auto  | 
891  | 
done  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
892  | 
ultimately show "real_of_int \<lfloor>real_of_int a / real_of_int b\<rfloor> < real_of_int a / real_of_int b" by arith  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
893  | 
qed  | 
| 60698 | 894  | 
then show ?thesis  | 
895  | 
using \<open>\<not> b dvd a\<close> by simp  | 
|
896  | 
qed  | 
|
| 19765 | 897  | 
|
| 60698 | 898  | 
qualified lemma compute_float_up[code]: "float_up p x = - float_down p (-x)"  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
899  | 
by transfer (simp add: round_down_uminus_eq)  | 
| 60698 | 900  | 
|
901  | 
end  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
902  | 
|
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
903  | 
|
| 63664 | 904  | 
lemma bitlen_Float:  | 
905  | 
fixes m e  | 
|
| 67573 | 906  | 
defines [THEN meta_eq_to_obj_eq]: "f \<equiv> Float m e"  | 
| 63664 | 907  | 
shows "bitlen \<bar>mantissa f\<bar> + exponent f = (if m = 0 then 0 else bitlen \<bar>m\<bar> + e)"  | 
908  | 
proof (cases "m = 0")  | 
|
909  | 
case True  | 
|
| 67573 | 910  | 
then show ?thesis by (simp add: f_def bitlen_alt_def)  | 
| 63664 | 911  | 
next  | 
912  | 
case False  | 
|
| 67573 | 913  | 
then have "f \<noteq> 0"  | 
| 63664 | 914  | 
unfolding real_of_float_eq by (simp add: f_def)  | 
915  | 
then have "mantissa f \<noteq> 0"  | 
|
| 67573 | 916  | 
by (simp add: mantissa_eq_zero_iff)  | 
| 63664 | 917  | 
moreover  | 
918  | 
obtain i where "m = mantissa f * 2 ^ i" "e = exponent f - int i"  | 
|
| 67573 | 919  | 
by (rule f_def[THEN denormalize_shift, OF \<open>f \<noteq> 0\<close>])  | 
| 63664 | 920  | 
ultimately show ?thesis by (simp add: abs_mult)  | 
921  | 
qed  | 
|
922  | 
||
| 63356 | 923  | 
lemma float_gt1_scale:  | 
924  | 
assumes "1 \<le> Float m e"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
925  | 
shows "0 \<le> e + (bitlen m - 1)"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
926  | 
proof -  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
927  | 
have "0 < Float m e" using assms by auto  | 
| 60698 | 928  | 
then have "0 < m" using powr_gt_zero[of 2 e]  | 
| 67573 | 929  | 
by (auto simp: zero_less_mult_iff)  | 
| 60698 | 930  | 
then have "m \<noteq> 0" by auto  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
931  | 
show ?thesis  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
932  | 
proof (cases "0 \<le> e")  | 
| 60698 | 933  | 
case True  | 
934  | 
then show ?thesis  | 
|
| 63248 | 935  | 
using \<open>0 < m\<close> by (simp add: bitlen_alt_def)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
936  | 
next  | 
| 60698 | 937  | 
case False  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
938  | 
have "(1::int) < 2" by simp  | 
| 60698 | 939  | 
let ?S = "2^(nat (-e))"  | 
940  | 
have "inverse (2 ^ nat (- e)) = 2 powr e"  | 
|
941  | 
using assms False powr_realpow[of 2 "nat (-e)"]  | 
|
| 57862 | 942  | 
by (auto simp: powr_minus field_simps)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
943  | 
then have "1 \<le> real_of_int m * inverse ?S"  | 
| 60698 | 944  | 
using assms False powr_realpow[of 2 "nat (-e)"]  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
945  | 
by (auto simp: powr_minus)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
946  | 
then have "1 * ?S \<le> real_of_int m * inverse ?S * ?S"  | 
| 60698 | 947  | 
by (rule mult_right_mono) auto  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
948  | 
then have "?S \<le> real_of_int m"  | 
| 60698 | 949  | 
unfolding mult.assoc by auto  | 
950  | 
then have "?S \<le> m"  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
951  | 
unfolding of_int_le_iff[symmetric] by auto  | 
| 60500 | 952  | 
from this bitlen_bounds[OF \<open>0 < m\<close>, THEN conjunct2]  | 
| 60698 | 953  | 
have "nat (-e) < (nat (bitlen m))"  | 
954  | 
unfolding power_strict_increasing_iff[OF \<open>1 < 2\<close>, symmetric]  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
955  | 
by (rule order_le_less_trans)  | 
| 60698 | 956  | 
then have "-e < bitlen m"  | 
957  | 
using False by auto  | 
|
958  | 
then show ?thesis  | 
|
959  | 
by auto  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
960  | 
qed  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
961  | 
qed  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
962  | 
|
| 60698 | 963  | 
|
| 60500 | 964  | 
subsection \<open>Truncating Real Numbers\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
965  | 
|
| 60698 | 966  | 
definition truncate_down::"nat \<Rightarrow> real \<Rightarrow> real"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
967  | 
where "truncate_down prec x = round_down (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor>) x"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
968  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
969  | 
lemma truncate_down: "truncate_down prec x \<le> x"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
970  | 
using round_down by (simp add: truncate_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
971  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
972  | 
lemma truncate_down_le: "x \<le> y \<Longrightarrow> truncate_down prec x \<le> y"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
973  | 
by (rule order_trans[OF truncate_down])  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
974  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
975  | 
lemma truncate_down_zero[simp]: "truncate_down prec 0 = 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
976  | 
by (simp add: truncate_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
977  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
978  | 
lemma truncate_down_float[simp]: "truncate_down p x \<in> float"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
979  | 
by (auto simp: truncate_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
980  | 
|
| 60698 | 981  | 
definition truncate_up::"nat \<Rightarrow> real \<Rightarrow> real"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
982  | 
where "truncate_up prec x = round_up (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor>) x"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
983  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
984  | 
lemma truncate_up: "x \<le> truncate_up prec x"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
985  | 
using round_up by (simp add: truncate_up_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
986  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
987  | 
lemma truncate_up_le: "x \<le> y \<Longrightarrow> x \<le> truncate_up prec y"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
988  | 
by (rule order_trans[OF _ truncate_up])  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
989  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
990  | 
lemma truncate_up_zero[simp]: "truncate_up prec 0 = 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
991  | 
by (simp add: truncate_up_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
992  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
993  | 
lemma truncate_up_uminus_eq: "truncate_up prec (-x) = - truncate_down prec x"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
994  | 
and truncate_down_uminus_eq: "truncate_down prec (-x) = - truncate_up prec x"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
995  | 
by (auto simp: truncate_up_def round_up_def truncate_down_def round_down_def ceiling_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
996  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
997  | 
lemma truncate_up_float[simp]: "truncate_up p x \<in> float"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
998  | 
by (auto simp: truncate_up_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
999  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1000  | 
lemma mult_powr_eq: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> x * b powr y = b powr (y + log b x)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1001  | 
by (simp_all add: powr_add)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1002  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1003  | 
lemma truncate_down_pos:  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1004  | 
assumes "x > 0"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1005  | 
shows "truncate_down p x > 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1006  | 
proof -  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1007  | 
have "0 \<le> log 2 x - real_of_int \<lfloor>log 2 x\<rfloor>"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1008  | 
by (simp add: algebra_simps)  | 
| 
61762
 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 
paulson <lp15@cam.ac.uk> 
parents: 
61649 
diff
changeset
 | 
1009  | 
with assms  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1010  | 
show ?thesis  | 
| 63356 | 1011  | 
apply (auto simp: truncate_down_def round_down_def mult_powr_eq  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1012  | 
intro!: ge_one_powr_ge_zero mult_pos_pos)  | 
| 
61762
 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 
paulson <lp15@cam.ac.uk> 
parents: 
61649 
diff
changeset
 | 
1013  | 
by linarith  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1014  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1015  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1016  | 
lemma truncate_down_nonneg: "0 \<le> y \<Longrightarrow> 0 \<le> truncate_down prec y"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1017  | 
by (auto simp: truncate_down_def round_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1018  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1019  | 
lemma truncate_down_ge1: "1 \<le> x \<Longrightarrow> 1 \<le> truncate_down p x"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1020  | 
apply (auto simp: truncate_down_def algebra_simps intro!: round_down_ge1)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1021  | 
apply linarith  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1022  | 
done  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1023  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1024  | 
lemma truncate_up_nonpos: "x \<le> 0 \<Longrightarrow> truncate_up prec x \<le> 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1025  | 
by (auto simp: truncate_up_def round_up_def intro!: mult_nonpos_nonneg)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1026  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1027  | 
lemma truncate_up_le1:  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1028  | 
assumes "x \<le> 1"  | 
| 60698 | 1029  | 
shows "truncate_up p x \<le> 1"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1030  | 
proof -  | 
| 60698 | 1031  | 
consider "x \<le> 0" | "x > 0"  | 
1032  | 
by arith  | 
|
1033  | 
then show ?thesis  | 
|
1034  | 
proof cases  | 
|
1035  | 
case 1  | 
|
1036  | 
with truncate_up_nonpos[OF this, of p] show ?thesis  | 
|
1037  | 
by simp  | 
|
1038  | 
next  | 
|
1039  | 
case 2  | 
|
1040  | 
then have le: "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<le> 0"  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1041  | 
using assms by (auto simp: log_less_iff)  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1042  | 
from assms have "0 \<le> int p" by simp  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1043  | 
from add_mono[OF this le]  | 
| 60698 | 1044  | 
show ?thesis  | 
1045  | 
using assms by (simp add: truncate_up_def round_up_le1 add_mono)  | 
|
1046  | 
qed  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1047  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1048  | 
|
| 63356 | 1049  | 
lemma truncate_down_shift_int:  | 
1050  | 
"truncate_down p (x * 2 powr real_of_int k) = truncate_down p x * 2 powr k"  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1051  | 
by (cases "x = 0")  | 
| 63356 | 1052  | 
(simp_all add: algebra_simps abs_mult log_mult truncate_down_def  | 
1053  | 
round_down_shift[of _ _ k, simplified])  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1054  | 
|
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1055  | 
lemma truncate_down_shift_nat: "truncate_down p (x * 2 powr real k) = truncate_down p x * 2 powr k"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1056  | 
by (metis of_int_of_nat_eq truncate_down_shift_int)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1057  | 
|
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1058  | 
lemma truncate_up_shift_int: "truncate_up p (x * 2 powr real_of_int k) = truncate_up p x * 2 powr k"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1059  | 
by (cases "x = 0")  | 
| 63356 | 1060  | 
(simp_all add: algebra_simps abs_mult log_mult truncate_up_def  | 
1061  | 
round_up_shift[of _ _ k, simplified])  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1062  | 
|
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1063  | 
lemma truncate_up_shift_nat: "truncate_up p (x * 2 powr real k) = truncate_up p x * 2 powr k"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1064  | 
by (metis of_int_of_nat_eq truncate_up_shift_int)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1065  | 
|
| 60698 | 1066  | 
|
| 60500 | 1067  | 
subsection \<open>Truncating Floats\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1068  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1069  | 
lift_definition float_round_up :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_up  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1070  | 
by (simp add: truncate_up_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1071  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1072  | 
lemma float_round_up: "real_of_float x \<le> real_of_float (float_round_up prec x)"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1073  | 
using truncate_up by transfer simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1074  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1075  | 
lemma float_round_up_zero[simp]: "float_round_up prec 0 = 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1076  | 
by transfer simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1077  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1078  | 
lift_definition float_round_down :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_down  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1079  | 
by (simp add: truncate_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1080  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1081  | 
lemma float_round_down: "real_of_float (float_round_down prec x) \<le> real_of_float x"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1082  | 
using truncate_down by transfer simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1083  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1084  | 
lemma float_round_down_zero[simp]: "float_round_down prec 0 = 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1085  | 
by transfer simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1086  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1087  | 
lemmas float_round_up_le = order_trans[OF _ float_round_up]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1088  | 
and float_round_down_le = order_trans[OF float_round_down]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1089  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1090  | 
lemma minus_float_round_up_eq: "- float_round_up prec x = float_round_down prec (- x)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1091  | 
and minus_float_round_down_eq: "- float_round_down prec x = float_round_up prec (- x)"  | 
| 63356 | 1092  | 
by (transfer; simp add: truncate_down_uminus_eq truncate_up_uminus_eq)+  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1093  | 
|
| 60698 | 1094  | 
context  | 
1095  | 
begin  | 
|
1096  | 
||
1097  | 
qualified lemma compute_float_round_down[code]:  | 
|
| 63356 | 1098  | 
"float_round_down prec (Float m e) =  | 
1099  | 
(let d = bitlen \<bar>m\<bar> - int prec - 1 in  | 
|
1100  | 
if 0 < d then Float (div_twopow m (nat d)) (e + d)  | 
|
1101  | 
else Float m e)"  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1102  | 
using Float.compute_float_down[of "Suc prec - bitlen \<bar>m\<bar> - e" m e, symmetric]  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1103  | 
by transfer  | 
| 63248 | 1104  | 
(simp add: field_simps abs_mult log_mult bitlen_alt_def truncate_down_def  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1105  | 
cong del: if_weak_cong)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1106  | 
|
| 60698 | 1107  | 
qualified lemma compute_float_round_up[code]:  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1108  | 
"float_round_up prec x = - float_round_down prec (-x)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1109  | 
by transfer (simp add: truncate_down_uminus_eq)  | 
| 60698 | 1110  | 
|
1111  | 
end  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1112  | 
|
| 71036 | 1113  | 
lemma truncate_up_nonneg_mono:  | 
1114  | 
assumes "0 \<le> x" "x \<le> y"  | 
|
1115  | 
shows "truncate_up prec x \<le> truncate_up prec y"  | 
|
1116  | 
proof -  | 
|
1117  | 
consider "\<lfloor>log 2 x\<rfloor> = \<lfloor>log 2 y\<rfloor>" | "\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>" "0 < x" | "x \<le> 0"  | 
|
1118  | 
by arith  | 
|
1119  | 
then show ?thesis  | 
|
1120  | 
proof cases  | 
|
1121  | 
case 1  | 
|
1122  | 
then show ?thesis  | 
|
1123  | 
using assms  | 
|
1124  | 
by (auto simp: truncate_up_def round_up_def intro!: ceiling_mono)  | 
|
1125  | 
next  | 
|
1126  | 
case 2  | 
|
1127  | 
from assms \<open>0 < x\<close> have "log 2 x \<le> log 2 y"  | 
|
1128  | 
by auto  | 
|
1129  | 
with \<open>\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>\<close>  | 
|
1130  | 
have logless: "log 2 x < log 2 y"  | 
|
1131  | 
by linarith  | 
|
1132  | 
have flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"  | 
|
1133  | 
using \<open>\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>\<close> \<open>log 2 x \<le> log 2 y\<close> by linarith  | 
|
1134  | 
have "truncate_up prec x =  | 
|
1135  | 
real_of_int \<lceil>x * 2 powr real_of_int (int prec - \<lfloor>log 2 x\<rfloor> )\<rceil> * 2 powr - real_of_int (int prec - \<lfloor>log 2 x\<rfloor>)"  | 
|
1136  | 
using assms by (simp add: truncate_up_def round_up_def)  | 
|
1137  | 
also have "\<lceil>x * 2 powr real_of_int (int prec - \<lfloor>log 2 x\<rfloor>)\<rceil> \<le> (2 ^ (Suc prec))"  | 
|
1138  | 
proof (simp only: ceiling_le_iff)  | 
|
1139  | 
have "x * 2 powr real_of_int (int prec - \<lfloor>log 2 x\<rfloor>) \<le>  | 
|
1140  | 
x * (2 powr real (Suc prec) / (2 powr log 2 x))"  | 
|
1141  | 
using real_of_int_floor_add_one_ge[of "log 2 x"] assms  | 
|
1142  | 
by (auto simp: algebra_simps simp flip: powr_diff intro!: mult_left_mono)  | 
|
1143  | 
then show "x * 2 powr real_of_int (int prec - \<lfloor>log 2 x\<rfloor>) \<le> real_of_int ((2::int) ^ (Suc prec))"  | 
|
1144  | 
using \<open>0 < x\<close> by (simp add: powr_realpow powr_add)  | 
|
1145  | 
qed  | 
|
1146  | 
then have "real_of_int \<lceil>x * 2 powr real_of_int (int prec - \<lfloor>log 2 x\<rfloor>)\<rceil> \<le> 2 powr int (Suc prec)"  | 
|
1147  | 
by (auto simp: powr_realpow powr_add)  | 
|
1148  | 
(metis power_Suc of_int_le_numeral_power_cancel_iff)  | 
|
1149  | 
also  | 
|
1150  | 
have "2 powr - real_of_int (int prec - \<lfloor>log 2 x\<rfloor>) \<le> 2 powr - real_of_int (int prec - \<lfloor>log 2 y\<rfloor> + 1)"  | 
|
1151  | 
using logless flogless by (auto intro!: floor_mono)  | 
|
1152  | 
also have "2 powr real_of_int (int (Suc prec)) \<le>  | 
|
1153  | 
2 powr (log 2 y + real_of_int (int prec - \<lfloor>log 2 y\<rfloor> + 1))"  | 
|
1154  | 
using assms \<open>0 < x\<close>  | 
|
1155  | 
by (auto simp: algebra_simps)  | 
|
1156  | 
finally have "truncate_up prec x \<le>  | 
|
1157  | 
2 powr (log 2 y + real_of_int (int prec - \<lfloor>log 2 y\<rfloor> + 1)) * 2 powr - real_of_int (int prec - \<lfloor>log 2 y\<rfloor> + 1)"  | 
|
1158  | 
by simp  | 
|
1159  | 
also have "\<dots> = 2 powr (log 2 y + real_of_int (int prec - \<lfloor>log 2 y\<rfloor>) - real_of_int (int prec - \<lfloor>log 2 y\<rfloor>))"  | 
|
1160  | 
by (subst powr_add[symmetric]) simp  | 
|
1161  | 
also have "\<dots> = y"  | 
|
1162  | 
using \<open>0 < x\<close> assms  | 
|
1163  | 
by (simp add: powr_add)  | 
|
1164  | 
also have "\<dots> \<le> truncate_up prec y"  | 
|
1165  | 
by (rule truncate_up)  | 
|
1166  | 
finally show ?thesis .  | 
|
1167  | 
next  | 
|
1168  | 
case 3  | 
|
1169  | 
then show ?thesis  | 
|
1170  | 
using assms  | 
|
1171  | 
by (auto intro!: truncate_up_le)  | 
|
1172  | 
qed  | 
|
1173  | 
qed  | 
|
1174  | 
||
1175  | 
lemma truncate_up_switch_sign_mono:  | 
|
1176  | 
assumes "x \<le> 0" "0 \<le> y"  | 
|
1177  | 
shows "truncate_up prec x \<le> truncate_up prec y"  | 
|
1178  | 
proof -  | 
|
1179  | 
note truncate_up_nonpos[OF \<open>x \<le> 0\<close>]  | 
|
1180  | 
also note truncate_up_le[OF \<open>0 \<le> y\<close>]  | 
|
1181  | 
finally show ?thesis .  | 
|
1182  | 
qed  | 
|
1183  | 
||
1184  | 
lemma truncate_down_switch_sign_mono:  | 
|
1185  | 
assumes "x \<le> 0"  | 
|
1186  | 
and "0 \<le> y"  | 
|
1187  | 
and "x \<le> y"  | 
|
1188  | 
shows "truncate_down prec x \<le> truncate_down prec y"  | 
|
1189  | 
proof -  | 
|
1190  | 
note truncate_down_le[OF \<open>x \<le> 0\<close>]  | 
|
1191  | 
also note truncate_down_nonneg[OF \<open>0 \<le> y\<close>]  | 
|
1192  | 
finally show ?thesis .  | 
|
1193  | 
qed  | 
|
1194  | 
||
1195  | 
lemma truncate_down_nonneg_mono:  | 
|
1196  | 
assumes "0 \<le> x" "x \<le> y"  | 
|
1197  | 
shows "truncate_down prec x \<le> truncate_down prec y"  | 
|
1198  | 
proof -  | 
|
1199  | 
consider "x \<le> 0" | "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>" |  | 
|
1200  | 
"0 < x" "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<noteq> \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"  | 
|
1201  | 
by arith  | 
|
1202  | 
then show ?thesis  | 
|
1203  | 
proof cases  | 
|
1204  | 
case 1  | 
|
1205  | 
with assms have "x = 0" "0 \<le> y" by simp_all  | 
|
1206  | 
then show ?thesis  | 
|
1207  | 
by (auto intro!: truncate_down_nonneg)  | 
|
1208  | 
next  | 
|
1209  | 
case 2  | 
|
1210  | 
then show ?thesis  | 
|
1211  | 
using assms  | 
|
1212  | 
by (auto simp: truncate_down_def round_down_def intro!: floor_mono)  | 
|
1213  | 
next  | 
|
1214  | 
case 3  | 
|
1215  | 
from \<open>0 < x\<close> have "log 2 x \<le> log 2 y" "0 < y" "0 \<le> y"  | 
|
1216  | 
using assms by auto  | 
|
1217  | 
with \<open>\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<noteq> \<lfloor>log 2 \<bar>y\<bar>\<rfloor>\<close>  | 
|
1218  | 
have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"  | 
|
1219  | 
unfolding atomize_conj abs_of_pos[OF \<open>0 < x\<close>] abs_of_pos[OF \<open>0 < y\<close>]  | 
|
1220  | 
by (metis floor_less_cancel linorder_cases not_le)  | 
|
1221  | 
have "2 powr prec \<le> y * 2 powr real prec / (2 powr log 2 y)"  | 
|
1222  | 
using \<open>0 < y\<close> by simp  | 
|
1223  | 
also have "\<dots> \<le> y * 2 powr real (Suc prec) / (2 powr (real_of_int \<lfloor>log 2 y\<rfloor> + 1))"  | 
|
1224  | 
using \<open>0 \<le> y\<close> \<open>0 \<le> x\<close> assms(2)  | 
|
1225  | 
by (auto intro!: powr_mono divide_left_mono  | 
|
1226  | 
simp: of_nat_diff powr_add powr_diff)  | 
|
1227  | 
also have "\<dots> = y * 2 powr real (Suc prec) / (2 powr real_of_int \<lfloor>log 2 y\<rfloor> * 2)"  | 
|
1228  | 
by (auto simp: powr_add)  | 
|
1229  | 
finally have "(2 ^ prec) \<le> \<lfloor>y * 2 powr real_of_int (int (Suc prec) - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)\<rfloor>"  | 
|
1230  | 
using \<open>0 \<le> y\<close>  | 
|
1231  | 
by (auto simp: powr_diff le_floor_iff powr_realpow powr_add)  | 
|
1232  | 
then have "(2 ^ (prec)) * 2 powr - real_of_int (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor>) \<le> truncate_down prec y"  | 
|
1233  | 
by (auto simp: truncate_down_def round_down_def)  | 
|
1234  | 
moreover have "x \<le> (2 ^ prec) * 2 powr - real_of_int (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor>)"  | 
|
1235  | 
proof -  | 
|
1236  | 
have "x = 2 powr (log 2 \<bar>x\<bar>)" using \<open>0 < x\<close> by simp  | 
|
1237  | 
also have "\<dots> \<le> (2 ^ (Suc prec )) * 2 powr - real_of_int (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor>)"  | 
|
1238  | 
using real_of_int_floor_add_one_ge[of "log 2 \<bar>x\<bar>"] \<open>0 < x\<close>  | 
|
1239  | 
by (auto simp flip: powr_realpow powr_add simp: algebra_simps powr_mult_base le_powr_iff)  | 
|
1240  | 
also  | 
|
1241  | 
have "2 powr - real_of_int (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor>) \<le> 2 powr - real_of_int (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> + 1)"  | 
|
1242  | 
using logless flogless \<open>x > 0\<close> \<open>y > 0\<close>  | 
|
1243  | 
by (auto intro!: floor_mono)  | 
|
1244  | 
finally show ?thesis  | 
|
1245  | 
by (auto simp flip: powr_realpow simp: powr_diff assms of_nat_diff)  | 
|
1246  | 
qed  | 
|
1247  | 
ultimately show ?thesis  | 
|
1248  | 
by (metis dual_order.trans truncate_down)  | 
|
1249  | 
qed  | 
|
1250  | 
qed  | 
|
1251  | 
||
1252  | 
lemma truncate_down_eq_truncate_up: "truncate_down p x = - truncate_up p (-x)"  | 
|
1253  | 
and truncate_up_eq_truncate_down: "truncate_up p x = - truncate_down p (-x)"  | 
|
1254  | 
by (auto simp: truncate_up_uminus_eq truncate_down_uminus_eq)  | 
|
1255  | 
||
1256  | 
lemma truncate_down_mono: "x \<le> y \<Longrightarrow> truncate_down p x \<le> truncate_down p y"  | 
|
1257  | 
apply (cases "0 \<le> x")  | 
|
1258  | 
apply (rule truncate_down_nonneg_mono, assumption+)  | 
|
1259  | 
apply (simp add: truncate_down_eq_truncate_up)  | 
|
1260  | 
apply (cases "0 \<le> y")  | 
|
1261  | 
apply (auto intro: truncate_up_nonneg_mono truncate_up_switch_sign_mono)  | 
|
1262  | 
done  | 
|
1263  | 
||
1264  | 
lemma truncate_up_mono: "x \<le> y \<Longrightarrow> truncate_up p x \<le> truncate_up p y"  | 
|
1265  | 
by (simp add: truncate_up_eq_truncate_down truncate_down_mono)  | 
|
1266  | 
||
1267  | 
lemma truncate_up_nonneg: "0 \<le> truncate_up p x" if "0 \<le> x"  | 
|
1268  | 
by (simp add: that truncate_up_le)  | 
|
1269  | 
||
1270  | 
lemma truncate_up_pos: "0 < truncate_up p x" if "0 < x"  | 
|
1271  | 
by (meson less_le_trans that truncate_up)  | 
|
1272  | 
||
1273  | 
lemma truncate_up_less_zero_iff[simp]: "truncate_up p x < 0 \<longleftrightarrow> x < 0"  | 
|
1274  | 
proof -  | 
|
1275  | 
have f1: "\<forall>n r. truncate_up n r + truncate_down n (- 1 * r) = 0"  | 
|
1276  | 
by (simp add: truncate_down_uminus_eq)  | 
|
1277  | 
have f2: "(\<forall>v0 v1. truncate_up v0 v1 + truncate_down v0 (- 1 * v1) = 0) = (\<forall>v0 v1. truncate_up v0 v1 = - 1 * truncate_down v0 (- 1 * v1))"  | 
|
1278  | 
by (auto simp: truncate_up_eq_truncate_down)  | 
|
1279  | 
have f3: "\<forall>x1. ((0::real) < x1) = (\<not> x1 \<le> 0)"  | 
|
1280  | 
by fastforce  | 
|
1281  | 
have "(- 1 * x \<le> 0) = (0 \<le> x)"  | 
|
1282  | 
by force  | 
|
1283  | 
then have "0 \<le> x \<or> \<not> truncate_down p (- 1 * x) \<le> 0"  | 
|
1284  | 
using f3 by (meson truncate_down_pos)  | 
|
1285  | 
then have "(0 \<le> truncate_up p x) \<noteq> (\<not> 0 \<le> x)"  | 
|
1286  | 
using f2 f1 truncate_up_nonneg by force  | 
|
1287  | 
then show ?thesis  | 
|
1288  | 
by linarith  | 
|
1289  | 
qed  | 
|
1290  | 
||
1291  | 
lemma truncate_up_nonneg_iff[simp]: "truncate_up p x \<ge> 0 \<longleftrightarrow> x \<ge> 0"  | 
|
1292  | 
using truncate_up_less_zero_iff[of p x] truncate_up_nonneg[of x]  | 
|
1293  | 
by linarith  | 
|
1294  | 
||
1295  | 
lemma truncate_down_less_zero_iff[simp]: "truncate_down p x < 0 \<longleftrightarrow> x < 0"  | 
|
1296  | 
by (metis le_less_trans not_less_iff_gr_or_eq truncate_down truncate_down_pos truncate_down_zero)  | 
|
1297  | 
||
1298  | 
lemma truncate_down_nonneg_iff[simp]: "truncate_down p x \<ge> 0 \<longleftrightarrow> x \<ge> 0"  | 
|
1299  | 
using truncate_down_less_zero_iff[of p x] truncate_down_nonneg[of x p]  | 
|
1300  | 
by linarith  | 
|
1301  | 
||
1302  | 
lemma truncate_down_eq_zero_iff[simp]: "truncate_down prec x = 0 \<longleftrightarrow> x = 0"  | 
|
1303  | 
by (metis not_less_iff_gr_or_eq truncate_down_less_zero_iff truncate_down_pos truncate_down_zero)  | 
|
1304  | 
||
1305  | 
lemma truncate_up_eq_zero_iff[simp]: "truncate_up prec x = 0 \<longleftrightarrow> x = 0"  | 
|
1306  | 
by (metis not_less_iff_gr_or_eq truncate_up_less_zero_iff truncate_up_pos truncate_up_zero)  | 
|
1307  | 
||
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1308  | 
|
| 60500 | 1309  | 
subsection \<open>Approximation of positive rationals\<close>  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1310  | 
|
| 63356 | 1311  | 
lemma div_mult_twopow_eq: "a div ((2::nat) ^ n) div b = a div (b * 2 ^ n)" for a b :: nat  | 
| 60698 | 1312  | 
by (cases "b = 0") (simp_all add: div_mult2_eq[symmetric] ac_simps)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1313  | 
|
| 63356 | 1314  | 
lemma real_div_nat_eq_floor_of_divide: "a div b = real_of_int \<lfloor>a / b\<rfloor>" for a b :: nat  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1315  | 
by (simp add: floor_divide_of_nat_eq [of a b])  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1316  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1317  | 
definition "rat_precision prec x y =  | 
| 63356 | 1318  | 
(let d = bitlen x - bitlen y  | 
1319  | 
in int prec - d + (if Float (abs x) 0 < Float (abs y) d then 1 else 0))"  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1320  | 
|
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1321  | 
lemma floor_log_divide_eq:  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1322  | 
assumes "i > 0" "j > 0" "p > 1"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1323  | 
shows "\<lfloor>log p (i / j)\<rfloor> = floor (log p i) - floor (log p j) -  | 
| 63356 | 1324  | 
(if i \<ge> j * p powr (floor (log p i) - floor (log p j)) then 0 else 1)"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1325  | 
proof -  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1326  | 
let ?l = "log p"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1327  | 
let ?fl = "\<lambda>x. floor (?l x)"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1328  | 
have "\<lfloor>?l (i / j)\<rfloor> = \<lfloor>?l i - ?l j\<rfloor>" using assms  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1329  | 
by (auto simp: log_divide)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1330  | 
also have "\<dots> = floor (real_of_int (?fl i - ?fl j) + (?l i - ?fl i - (?l j - ?fl j)))"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1331  | 
(is "_ = floor (_ + ?r)")  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1332  | 
by (simp add: algebra_simps)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1333  | 
also note floor_add2  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1334  | 
also note \<open>p > 1\<close>  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1335  | 
note powr = powr_le_cancel_iff[symmetric, OF \<open>1 < p\<close>, THEN iffD2]  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1336  | 
note powr_strict = powr_less_cancel_iff[symmetric, OF \<open>1 < p\<close>, THEN iffD2]  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1337  | 
have "floor ?r = (if i \<ge> j * p powr (?fl i - ?fl j) then 0 else -1)" (is "_ = ?if")  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1338  | 
using assms  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1339  | 
by (linarith |  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1340  | 
auto  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1341  | 
intro!: floor_eq2  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1342  | 
intro: powr_strict powr  | 
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
70355 
diff
changeset
 | 
1343  | 
simp: powr_diff powr_add field_split_simps algebra_simps)+  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1344  | 
finally  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1345  | 
show ?thesis by simp  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1346  | 
qed  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1347  | 
|
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1348  | 
lemma truncate_down_rat_precision:  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1349  | 
"truncate_down prec (real x / real y) = round_down (rat_precision prec x y) (real x / real y)"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1350  | 
and truncate_up_rat_precision:  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1351  | 
"truncate_up prec (real x / real y) = round_up (rat_precision prec x y) (real x / real y)"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1352  | 
unfolding truncate_down_def truncate_up_def rat_precision_def  | 
| 63248 | 1353  | 
by (cases x; cases y) (auto simp: floor_log_divide_eq algebra_simps bitlen_alt_def)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1354  | 
|
| 47600 | 1355  | 
lift_definition lapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1356  | 
is "\<lambda>prec (x::nat) (y::nat). truncate_down prec (x / y)"  | 
| 60698 | 1357  | 
by simp  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
1358  | 
|
| 60698 | 1359  | 
context  | 
1360  | 
begin  | 
|
1361  | 
||
1362  | 
qualified lemma compute_lapprox_posrat[code]:  | 
|
| 63356 | 1363  | 
"lapprox_posrat prec x y =  | 
| 53381 | 1364  | 
(let  | 
| 60698 | 1365  | 
l = rat_precision prec x y;  | 
1366  | 
d = if 0 \<le> l then x * 2^nat l div y else x div 2^nat (- l) div y  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1367  | 
in normfloat (Float d (- l)))"  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1368  | 
unfolding div_mult_twopow_eq  | 
| 47600 | 1369  | 
by transfer  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1370  | 
(simp add: round_down_def powr_int real_div_nat_eq_floor_of_divide field_simps Let_def  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1371  | 
truncate_down_rat_precision del: two_powr_minus_int_float)  | 
| 60698 | 1372  | 
|
1373  | 
end  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1374  | 
|
| 47600 | 1375  | 
lift_definition rapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1376  | 
is "\<lambda>prec (x::nat) (y::nat). truncate_up prec (x / y)"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1377  | 
by simp  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1378  | 
|
| 60376 | 1379  | 
context  | 
1380  | 
begin  | 
|
1381  | 
||
1382  | 
qualified lemma compute_rapprox_posrat[code]:  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1383  | 
fixes prec x y  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1384  | 
defines "l \<equiv> rat_precision prec x y"  | 
| 63356 | 1385  | 
shows "rapprox_posrat prec x y =  | 
1386  | 
(let  | 
|
1387  | 
l = l;  | 
|
1388  | 
(r, s) = if 0 \<le> l then (x * 2^nat l, y) else (x, y * 2^nat(-l));  | 
|
1389  | 
d = r div s;  | 
|
1390  | 
m = r mod s  | 
|
1391  | 
in normfloat (Float (d + (if m = 0 \<or> y = 0 then 0 else 1)) (- l)))"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1392  | 
proof (cases "y = 0")  | 
| 60698 | 1393  | 
assume "y = 0"  | 
1394  | 
then show ?thesis by transfer simp  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1395  | 
next  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1396  | 
assume "y \<noteq> 0"  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1397  | 
show ?thesis  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1398  | 
proof (cases "0 \<le> l")  | 
| 60698 | 1399  | 
case True  | 
| 63040 | 1400  | 
define x' where "x' = x * 2 ^ nat l"  | 
| 60698 | 1401  | 
have "int x * 2 ^ nat l = x'"  | 
| 63356 | 1402  | 
by (simp add: x'_def)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1403  | 
moreover have "real x * 2 powr l = real x'"  | 
| 68406 | 1404  | 
by (simp flip: powr_realpow add: \<open>0 \<le> l\<close> x'_def)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1405  | 
ultimately show ?thesis  | 
| 60500 | 1406  | 
using ceil_divide_floor_conv[of y x'] powr_realpow[of 2 "nat l"] \<open>0 \<le> l\<close> \<open>y \<noteq> 0\<close>  | 
| 47600 | 1407  | 
l_def[symmetric, THEN meta_eq_to_obj_eq]  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1408  | 
apply transfer  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1409  | 
apply (auto simp add: round_up_def truncate_up_rat_precision)  | 
| 67118 | 1410  | 
apply (metis dvd_triv_left of_nat_dvd_iff)  | 
| 63356 | 1411  | 
apply (metis floor_divide_of_int_eq of_int_of_nat_eq)  | 
1412  | 
done  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1413  | 
next  | 
| 60698 | 1414  | 
case False  | 
| 63040 | 1415  | 
define y' where "y' = y * 2 ^ nat (- l)"  | 
| 60500 | 1416  | 
from \<open>y \<noteq> 0\<close> have "y' \<noteq> 0" by (simp add: y'_def)  | 
| 63356 | 1417  | 
have "int y * 2 ^ nat (- l) = y'"  | 
1418  | 
by (simp add: y'_def)  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1419  | 
moreover have "real x * real_of_int (2::int) powr real_of_int l / real y = x / real y'"  | 
| 68406 | 1420  | 
using \<open>\<not> 0 \<le> l\<close> by (simp flip: powr_realpow add: powr_minus y'_def field_simps)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1421  | 
ultimately show ?thesis  | 
| 60500 | 1422  | 
using ceil_divide_floor_conv[of y' x] \<open>\<not> 0 \<le> l\<close> \<open>y' \<noteq> 0\<close> \<open>y \<noteq> 0\<close>  | 
| 47600 | 1423  | 
l_def[symmetric, THEN meta_eq_to_obj_eq]  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1424  | 
apply transfer  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1425  | 
apply (auto simp add: round_up_def ceil_divide_floor_conv truncate_up_rat_precision)  | 
| 67118 | 1426  | 
apply (metis dvd_triv_left of_nat_dvd_iff)  | 
| 63356 | 1427  | 
apply (metis floor_divide_of_int_eq of_int_of_nat_eq)  | 
1428  | 
done  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1429  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1430  | 
qed  | 
| 60376 | 1431  | 
|
1432  | 
end  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1433  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1434  | 
lemma rat_precision_pos:  | 
| 60698 | 1435  | 
assumes "0 \<le> x"  | 
1436  | 
and "0 < y"  | 
|
1437  | 
and "2 * x < y"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1438  | 
shows "rat_precision n (int x) (int y) > 0"  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1439  | 
proof -  | 
| 60698 | 1440  | 
have "0 < x \<Longrightarrow> log 2 x + 1 = log 2 (2 * x)"  | 
1441  | 
by (simp add: log_mult)  | 
|
1442  | 
then have "bitlen (int x) < bitlen (int y)"  | 
|
1443  | 
using assms  | 
|
| 63599 | 1444  | 
by (simp add: bitlen_alt_def)  | 
1445  | 
(auto intro!: floor_mono simp add: one_add_floor)  | 
|
| 60698 | 1446  | 
then show ?thesis  | 
1447  | 
using assms  | 
|
1448  | 
by (auto intro!: pos_add_strict simp add: field_simps rat_precision_def)  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1449  | 
qed  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
1450  | 
|
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
1451  | 
lemma rapprox_posrat_less1:  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1452  | 
"0 \<le> x \<Longrightarrow> 0 < y \<Longrightarrow> 2 * x < y \<Longrightarrow> real_of_float (rapprox_posrat n x y) < 1"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1453  | 
by transfer (simp add: rat_precision_pos round_up_less1 truncate_up_rat_precision)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1454  | 
|
| 47600 | 1455  | 
lift_definition lapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1456  | 
"\<lambda>prec (x::int) (y::int). truncate_down prec (x / y)"  | 
| 60698 | 1457  | 
by simp  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
1458  | 
|
| 60698 | 1459  | 
context  | 
1460  | 
begin  | 
|
1461  | 
||
1462  | 
qualified lemma compute_lapprox_rat[code]:  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1463  | 
"lapprox_rat prec x y =  | 
| 60698 | 1464  | 
(if y = 0 then 0  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1465  | 
else if 0 \<le> x then  | 
| 60698 | 1466  | 
(if 0 < y then lapprox_posrat prec (nat x) (nat y)  | 
| 53381 | 1467  | 
else - (rapprox_posrat prec (nat x) (nat (-y))))  | 
| 63356 | 1468  | 
else  | 
1469  | 
(if 0 < y  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1470  | 
then - (rapprox_posrat prec (nat (-x)) (nat y))  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1471  | 
else lapprox_posrat prec (nat (-x)) (nat (-y))))"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1472  | 
by transfer (simp add: truncate_up_uminus_eq)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1473  | 
|
| 47600 | 1474  | 
lift_definition rapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1475  | 
"\<lambda>prec (x::int) (y::int). truncate_up prec (x / y)"  | 
| 60698 | 1476  | 
by simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1477  | 
|
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1478  | 
lemma "rapprox_rat = rapprox_posrat"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1479  | 
by transfer auto  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1480  | 
|
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1481  | 
lemma "lapprox_rat = lapprox_posrat"  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1482  | 
by transfer auto  | 
| 
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1483  | 
|
| 60698 | 1484  | 
qualified lemma compute_rapprox_rat[code]:  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1485  | 
"rapprox_rat prec x y = - lapprox_rat prec (-x) y"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1486  | 
by transfer (simp add: truncate_down_uminus_eq)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1487  | 
|
| 63356 | 1488  | 
qualified lemma compute_truncate_down[code]:  | 
1489  | 
"truncate_down p (Ratreal r) = (let (a, b) = quotient_of r in lapprox_rat p a b)"  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1490  | 
by transfer (auto split: prod.split simp: of_rat_divide dest!: quotient_of_div)  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1491  | 
|
| 63356 | 1492  | 
qualified lemma compute_truncate_up[code]:  | 
1493  | 
"truncate_up p (Ratreal r) = (let (a, b) = quotient_of r in rapprox_rat p a b)"  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1494  | 
by transfer (auto split: prod.split simp: of_rat_divide dest!: quotient_of_div)  | 
| 60698 | 1495  | 
|
1496  | 
end  | 
|
1497  | 
||
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1498  | 
|
| 60500 | 1499  | 
subsection \<open>Division\<close>  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1500  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1501  | 
definition "real_divl prec a b = truncate_down prec (a / b)"  | 
| 54782 | 1502  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1503  | 
definition "real_divr prec a b = truncate_up prec (a / b)"  | 
| 54782 | 1504  | 
|
1505  | 
lift_definition float_divl :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divl  | 
|
1506  | 
by (simp add: real_divl_def)  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1507  | 
|
| 60698 | 1508  | 
context  | 
1509  | 
begin  | 
|
1510  | 
||
1511  | 
qualified lemma compute_float_divl[code]:  | 
|
| 47600 | 1512  | 
"float_divl prec (Float m1 s1) (Float m2 s2) = lapprox_rat prec m1 m2 * Float 1 (s1 - s2)"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1513  | 
apply transfer  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1514  | 
unfolding real_divl_def of_int_1 mult_1 truncate_down_shift_int[symmetric]  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
1515  | 
apply (simp add: powr_diff powr_minus)  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1516  | 
done  | 
| 47600 | 1517  | 
|
| 54782 | 1518  | 
lift_definition float_divr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divr  | 
1519  | 
by (simp add: real_divr_def)  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
1520  | 
|
| 60698 | 1521  | 
qualified lemma compute_float_divr[code]:  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
1522  | 
"float_divr prec x y = - float_divl prec (-x) y"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1523  | 
by transfer (simp add: real_divr_def real_divl_def truncate_down_uminus_eq)  | 
| 60698 | 1524  | 
|
1525  | 
end  | 
|
| 47600 | 1526  | 
|
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
1527  | 
|
| 60500 | 1528  | 
subsection \<open>Approximate Addition\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1529  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1530  | 
definition "plus_down prec x y = truncate_down prec (x + y)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1531  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1532  | 
definition "plus_up prec x y = truncate_up prec (x + y)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1533  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1534  | 
lemma float_plus_down_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_down p x y \<in> float"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1535  | 
by (simp add: plus_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1536  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1537  | 
lemma float_plus_up_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_up p x y \<in> float"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1538  | 
by (simp add: plus_up_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1539  | 
|
| 63356 | 1540  | 
lift_definition float_plus_down :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_down ..  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1541  | 
|
| 63356 | 1542  | 
lift_definition float_plus_up :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_up ..  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1543  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1544  | 
lemma plus_down: "plus_down prec x y \<le> x + y"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1545  | 
and plus_up: "x + y \<le> plus_up prec x y"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1546  | 
by (auto simp: plus_down_def truncate_down plus_up_def truncate_up)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1547  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1548  | 
lemma float_plus_down: "real_of_float (float_plus_down prec x y) \<le> x + y"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1549  | 
and float_plus_up: "x + y \<le> real_of_float (float_plus_up prec x y)"  | 
| 63356 | 1550  | 
by (transfer; rule plus_down plus_up)+  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1551  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1552  | 
lemmas plus_down_le = order_trans[OF plus_down]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1553  | 
and plus_up_le = order_trans[OF _ plus_up]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1554  | 
and float_plus_down_le = order_trans[OF float_plus_down]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1555  | 
and float_plus_up_le = order_trans[OF _ float_plus_up]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1556  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1557  | 
lemma compute_plus_up[code]: "plus_up p x y = - plus_down p (-x) (-y)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1558  | 
using truncate_down_uminus_eq[of p "x + y"]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1559  | 
by (auto simp: plus_down_def plus_up_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1560  | 
|
| 60698 | 1561  | 
lemma truncate_down_log2_eqI:  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1562  | 
assumes "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1563  | 
assumes "\<lfloor>x * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor>)\<rfloor> = \<lfloor>y * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor>)\<rfloor>"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1564  | 
shows "truncate_down p x = truncate_down p y"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1565  | 
using assms by (auto simp: truncate_down_def round_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1566  | 
|
| 60698 | 1567  | 
lemma sum_neq_zeroI:  | 
| 63356 | 1568  | 
"\<bar>a\<bar> \<ge> k \<Longrightarrow> \<bar>b\<bar> < k \<Longrightarrow> a + b \<noteq> 0"  | 
1569  | 
"\<bar>a\<bar> > k \<Longrightarrow> \<bar>b\<bar> \<le> k \<Longrightarrow> a + b \<noteq> 0"  | 
|
1570  | 
for a k :: real  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1571  | 
by auto  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1572  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1573  | 
lemma abs_real_le_2_powr_bitlen[simp]: "\<bar>real_of_int m2\<bar> < 2 powr real_of_int (bitlen \<bar>m2\<bar>)"  | 
| 60698 | 1574  | 
proof (cases "m2 = 0")  | 
1575  | 
case True  | 
|
1576  | 
then show ?thesis by simp  | 
|
1577  | 
next  | 
|
1578  | 
case False  | 
|
1579  | 
then have "\<bar>m2\<bar> < 2 ^ nat (bitlen \<bar>m2\<bar>)"  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1580  | 
using bitlen_bounds[of "\<bar>m2\<bar>"]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1581  | 
by (auto simp: powr_add bitlen_nonneg)  | 
| 60698 | 1582  | 
then show ?thesis  | 
| 
66912
 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 
immler 
parents: 
65583 
diff
changeset
 | 
1583  | 
by (metis bitlen_nonneg powr_int of_int_abs of_int_less_numeral_power_cancel_iff  | 
| 
 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 
immler 
parents: 
65583 
diff
changeset
 | 
1584  | 
zero_less_numeral)  | 
| 60698 | 1585  | 
qed  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1586  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1587  | 
lemma floor_sum_times_2_powr_sgn_eq:  | 
| 60698 | 1588  | 
fixes ai p q :: int  | 
1589  | 
and a b :: real  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1590  | 
assumes "a * 2 powr p = ai"  | 
| 61945 | 1591  | 
and b_le_1: "\<bar>b * 2 powr (p + 1)\<bar> \<le> 1"  | 
| 60698 | 1592  | 
and leqp: "q \<le> p"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1593  | 
shows "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2 * ai + sgn b) * 2 powr (q - p - 1)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1594  | 
proof -  | 
| 60698 | 1595  | 
consider "b = 0" | "b > 0" | "b < 0" by arith  | 
1596  | 
then show ?thesis  | 
|
1597  | 
proof cases  | 
|
1598  | 
case 1  | 
|
1599  | 
then show ?thesis  | 
|
| 68406 | 1600  | 
by (simp flip: assms(1) powr_add add: algebra_simps powr_mult_base)  | 
| 60698 | 1601  | 
next  | 
1602  | 
case 2  | 
|
| 61945 | 1603  | 
then have "b * 2 powr p < \<bar>b * 2 powr (p + 1)\<bar>"  | 
| 60698 | 1604  | 
by simp  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1605  | 
also note b_le_1  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1606  | 
finally have b_less_1: "b * 2 powr real_of_int p < 1" .  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1607  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1608  | 
from b_less_1 \<open>b > 0\<close> have floor_eq: "\<lfloor>b * 2 powr real_of_int p\<rfloor> = 0" "\<lfloor>sgn b / 2\<rfloor> = 0"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1609  | 
by (simp_all add: floor_eq_iff)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1610  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1611  | 
have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(a + b) * 2 powr p * 2 powr (q - p)\<rfloor>"  | 
| 68406 | 1612  | 
by (simp add: algebra_simps flip: powr_realpow powr_add)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1613  | 
also have "\<dots> = \<lfloor>(ai + b * 2 powr p) * 2 powr (q - p)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1614  | 
by (simp add: assms algebra_simps)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1615  | 
also have "\<dots> = \<lfloor>(ai + b * 2 powr p) / real_of_int ((2::int) ^ nat (p - q))\<rfloor>"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1616  | 
using assms  | 
| 68406 | 1617  | 
by (simp add: algebra_simps divide_powr_uminus flip: powr_realpow powr_add)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1618  | 
also have "\<dots> = \<lfloor>ai / real_of_int ((2::int) ^ nat (p - q))\<rfloor>"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1619  | 
by (simp del: of_int_power add: floor_divide_real_eq_div floor_eq)  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1620  | 
finally have "\<lfloor>(a + b) * 2 powr real_of_int q\<rfloor> = \<lfloor>real_of_int ai / real_of_int ((2::int) ^ nat (p - q))\<rfloor>" .  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1621  | 
moreover  | 
| 63356 | 1622  | 
have "\<lfloor>(2 * ai + (sgn b)) * 2 powr (real_of_int (q - p) - 1)\<rfloor> =  | 
1623  | 
\<lfloor>real_of_int ai / real_of_int ((2::int) ^ nat (p - q))\<rfloor>"  | 
|
1624  | 
proof -  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1625  | 
have "\<lfloor>(2 * ai + sgn b) * 2 powr (real_of_int (q - p) - 1)\<rfloor> = \<lfloor>(ai + sgn b / 2) * 2 powr (q - p)\<rfloor>"  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
1626  | 
by (subst powr_diff) (simp add: field_simps)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1627  | 
also have "\<dots> = \<lfloor>(ai + sgn b / 2) / real_of_int ((2::int) ^ nat (p - q))\<rfloor>"  | 
| 68406 | 1628  | 
using leqp by (simp flip: powr_realpow add: powr_diff)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1629  | 
also have "\<dots> = \<lfloor>ai / real_of_int ((2::int) ^ nat (p - q))\<rfloor>"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1630  | 
by (simp del: of_int_power add: floor_divide_real_eq_div floor_eq)  | 
| 63356 | 1631  | 
finally show ?thesis .  | 
1632  | 
qed  | 
|
| 60698 | 1633  | 
ultimately show ?thesis by simp  | 
1634  | 
next  | 
|
1635  | 
case 3  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1636  | 
then have floor_eq: "\<lfloor>b * 2 powr (real_of_int p + 1)\<rfloor> = -1"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1637  | 
using b_le_1  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1638  | 
by (auto simp: floor_eq_iff algebra_simps pos_divide_le_eq[symmetric] abs_if divide_powr_uminus  | 
| 62390 | 1639  | 
intro!: mult_neg_pos split: if_split_asm)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1640  | 
have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2*a + 2*b) * 2 powr p * 2 powr (q - p - 1)\<rfloor>"  | 
| 68406 | 1641  | 
by (simp add: algebra_simps powr_mult_base flip: powr_realpow powr_add)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1642  | 
also have "\<dots> = \<lfloor>(2 * (a * 2 powr p) + 2 * b * 2 powr p) * 2 powr (q - p - 1)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1643  | 
by (simp add: algebra_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1644  | 
also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / 2 powr (1 - q + p)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1645  | 
using assms by (simp add: algebra_simps powr_mult_base divide_powr_uminus)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1646  | 
also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / real_of_int ((2::int) ^ nat (p - q + 1))\<rfloor>"  | 
| 68406 | 1647  | 
using assms by (simp add: algebra_simps flip: powr_realpow)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1648  | 
also have "\<dots> = \<lfloor>(2 * ai - 1) / real_of_int ((2::int) ^ nat (p - q + 1))\<rfloor>"  | 
| 60500 | 1649  | 
using \<open>b < 0\<close> assms  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1650  | 
by (simp add: floor_divide_of_int_eq floor_eq floor_divide_real_eq_div  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1651  | 
del: of_int_mult of_int_power of_int_diff)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1652  | 
also have "\<dots> = \<lfloor>(2 * ai - 1) * 2 powr (q - p - 1)\<rfloor>"  | 
| 68406 | 1653  | 
using assms by (simp add: algebra_simps divide_powr_uminus flip: powr_realpow)  | 
| 60698 | 1654  | 
finally show ?thesis  | 
1655  | 
using \<open>b < 0\<close> by simp  | 
|
1656  | 
qed  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1657  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1658  | 
|
| 60698 | 1659  | 
lemma log2_abs_int_add_less_half_sgn_eq:  | 
1660  | 
fixes ai :: int  | 
|
1661  | 
and b :: real  | 
|
| 61945 | 1662  | 
assumes "\<bar>b\<bar> \<le> 1/2"  | 
| 60698 | 1663  | 
and "ai \<noteq> 0"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1664  | 
shows "\<lfloor>log 2 \<bar>real_of_int ai + b\<bar>\<rfloor> = \<lfloor>log 2 \<bar>ai + sgn b / 2\<bar>\<rfloor>"  | 
| 60698 | 1665  | 
proof (cases "b = 0")  | 
1666  | 
case True  | 
|
1667  | 
then show ?thesis by simp  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1668  | 
next  | 
| 60698 | 1669  | 
case False  | 
| 63040 | 1670  | 
define k where "k = \<lfloor>log 2 \<bar>ai\<bar>\<rfloor>"  | 
| 60698 | 1671  | 
then have "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor> = k"  | 
1672  | 
by simp  | 
|
1673  | 
then have k: "2 powr k \<le> \<bar>ai\<bar>" "\<bar>ai\<bar> < 2 powr (k + 1)"  | 
|
| 60500 | 1674  | 
by (simp_all add: floor_log_eq_powr_iff \<open>ai \<noteq> 0\<close>)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1675  | 
have "k \<ge> 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1676  | 
using assms by (auto simp: k_def)  | 
| 63040 | 1677  | 
define r where "r = \<bar>ai\<bar> - 2 ^ nat k"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1678  | 
have r: "0 \<le> r" "r < 2 powr k"  | 
| 60500 | 1679  | 
using \<open>k \<ge> 0\<close> k  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1680  | 
by (auto simp: r_def k_def algebra_simps powr_add abs_if powr_int)  | 
| 60698 | 1681  | 
then have "r \<le> (2::int) ^ nat k - 1"  | 
| 60500 | 1682  | 
using \<open>k \<ge> 0\<close> by (auto simp: powr_int)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1683  | 
from this[simplified of_int_le_iff[symmetric]] \<open>0 \<le> k\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1684  | 
have r_le: "r \<le> 2 powr k - 1"  | 
| 63356 | 1685  | 
by (auto simp: algebra_simps powr_int)  | 
| 
66912
 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 
immler 
parents: 
65583 
diff
changeset
 | 
1686  | 
(metis of_int_1 of_int_add of_int_le_numeral_power_cancel_iff)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1687  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1688  | 
have "\<bar>ai\<bar> = 2 powr k + r"  | 
| 68406 | 1689  | 
using \<open>k \<ge> 0\<close> by (auto simp: k_def r_def simp flip: powr_realpow)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1690  | 
|
| 61945 | 1691  | 
have pos: "\<bar>b\<bar> < 1 \<Longrightarrow> 0 < 2 powr k + (r + b)" for b :: real  | 
| 60500 | 1692  | 
using \<open>0 \<le> k\<close> \<open>ai \<noteq> 0\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1693  | 
by (auto simp add: r_def powr_realpow[symmetric] abs_if sgn_if algebra_simps  | 
| 62390 | 1694  | 
split: if_split_asm)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1695  | 
have less: "\<bar>sgn ai * b\<bar> < 1"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1696  | 
and less': "\<bar>sgn (sgn ai * b) / 2\<bar> < 1"  | 
| 62390 | 1697  | 
using \<open>\<bar>b\<bar> \<le> _\<close> by (auto simp: abs_if sgn_if split: if_split_asm)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1698  | 
|
| 61945 | 1699  | 
have floor_eq: "\<And>b::real. \<bar>b\<bar> \<le> 1 / 2 \<Longrightarrow>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1700  | 
\<lfloor>log 2 (1 + (r + b) / 2 powr k)\<rfloor> = (if r = 0 \<and> b < 0 then -1 else 0)"  | 
| 60500 | 1701  | 
using \<open>k \<ge> 0\<close> r r_le  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1702  | 
by (auto simp: floor_log_eq_powr_iff powr_minus_divide field_simps sgn_if)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1703  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1704  | 
from \<open>real_of_int \<bar>ai\<bar> = _\<close> have "\<bar>ai + b\<bar> = 2 powr k + (r + sgn ai * b)"  | 
| 63356 | 1705  | 
using \<open>\<bar>b\<bar> \<le> _\<close> \<open>0 \<le> k\<close> r  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1706  | 
by (auto simp add: sgn_if abs_if)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1707  | 
also have "\<lfloor>log 2 \<dots>\<rfloor> = \<lfloor>log 2 (2 powr k + r + sgn (sgn ai * b) / 2)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1708  | 
proof -  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1709  | 
have "2 powr k + (r + (sgn ai) * b) = 2 powr k * (1 + (r + sgn ai * b) / 2 powr k)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1710  | 
by (simp add: field_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1711  | 
also have "\<lfloor>log 2 \<dots>\<rfloor> = k + \<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1712  | 
using pos[OF less]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1713  | 
by (subst log_mult) (simp_all add: log_mult powr_mult field_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1714  | 
also  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1715  | 
let ?if = "if r = 0 \<and> sgn ai * b < 0 then -1 else 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1716  | 
have "\<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor> = ?if"  | 
| 63356 | 1717  | 
using \<open>\<bar>b\<bar> \<le> _\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1718  | 
by (intro floor_eq) (auto simp: abs_mult sgn_if)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1719  | 
also  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1720  | 
have "\<dots> = \<lfloor>log 2 (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k)\<rfloor>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1721  | 
by (subst floor_eq) (auto simp: sgn_if)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1722  | 
also have "k + \<dots> = \<lfloor>log 2 (2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k))\<rfloor>"  | 
| 63599 | 1723  | 
unfolding int_add_floor  | 
| 61945 | 1724  | 
using pos[OF less'] \<open>\<bar>b\<bar> \<le> _\<close>  | 
| 63599 | 1725  | 
by (simp add: field_simps add_log_eq_powr del: floor_add2)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1726  | 
also have "2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k) =  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1727  | 
2 powr k + r + sgn (sgn ai * b) / 2"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1728  | 
by (simp add: sgn_if field_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1729  | 
finally show ?thesis .  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1730  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1731  | 
also have "2 powr k + r + sgn (sgn ai * b) / 2 = \<bar>ai + sgn b / 2\<bar>"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1732  | 
unfolding \<open>real_of_int \<bar>ai\<bar> = _\<close>[symmetric] using \<open>ai \<noteq> 0\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1733  | 
by (auto simp: abs_if sgn_if algebra_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1734  | 
finally show ?thesis .  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1735  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1736  | 
|
| 60698 | 1737  | 
context  | 
1738  | 
begin  | 
|
1739  | 
||
1740  | 
qualified lemma compute_far_float_plus_down:  | 
|
1741  | 
fixes m1 e1 m2 e2 :: int  | 
|
1742  | 
and p :: nat  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1743  | 
defines "k1 \<equiv> Suc p - nat (bitlen \<bar>m1\<bar>)"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1744  | 
assumes H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - k1 - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1745  | 
shows "float_plus_down p (Float m1 e1) (Float m2 e2) =  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1746  | 
float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2))"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1747  | 
proof -  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1748  | 
let ?a = "real_of_float (Float m1 e1)"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1749  | 
let ?b = "real_of_float (Float m2 e2)"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1750  | 
let ?sum = "?a + ?b"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1751  | 
let ?shift = "real_of_int e2 - real_of_int e1 + real k1 + 1"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1752  | 
let ?m1 = "m1 * 2 ^ Suc k1"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1753  | 
let ?m2 = "m2 * 2 powr ?shift"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1754  | 
let ?m2' = "sgn m2 / 2"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1755  | 
let ?e = "e1 - int k1 - 1"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1756  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1757  | 
have sum_eq: "?sum = (?m1 + ?m2) * 2 powr ?e"  | 
| 68406 | 1758  | 
by (auto simp flip: powr_add powr_mult powr_realpow simp: powr_mult_base algebra_simps)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1759  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1760  | 
have "\<bar>?m2\<bar> * 2 < 2 powr (bitlen \<bar>m2\<bar> + ?shift + 1)"  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
1761  | 
by (auto simp: field_simps powr_add powr_mult_base powr_diff abs_mult)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1762  | 
also have "\<dots> \<le> 2 powr 0"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1763  | 
using H by (intro powr_mono) auto  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1764  | 
finally have abs_m2_less_half: "\<bar>?m2\<bar> < 1 / 2"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1765  | 
by simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1766  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1767  | 
then have "\<bar>real_of_int m2\<bar> < 2 powr -(?shift + 1)"  | 
| 63248 | 1768  | 
unfolding powr_minus_divide by (auto simp: bitlen_alt_def field_simps powr_mult_base abs_mult)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1769  | 
also have "\<dots> \<le> 2 powr real_of_int (e1 - e2 - 2)"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1770  | 
by simp  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1771  | 
finally have b_less_quarter: "\<bar>?b\<bar> < 1/4 * 2 powr real_of_int e1"  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
1772  | 
by (simp add: powr_add field_simps powr_diff abs_mult)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1773  | 
also have "1/4 < \<bar>real_of_int m1\<bar> / 2" using \<open>m1 \<noteq> 0\<close> by simp  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1774  | 
finally have b_less_half_a: "\<bar>?b\<bar> < 1/2 * \<bar>?a\<bar>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1775  | 
by (simp add: algebra_simps powr_mult_base abs_mult)  | 
| 60698 | 1776  | 
then have a_half_less_sum: "\<bar>?a\<bar> / 2 < \<bar>?sum\<bar>"  | 
| 62390 | 1777  | 
by (auto simp: field_simps abs_if split: if_split_asm)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1778  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1779  | 
from b_less_half_a have "\<bar>?b\<bar> < \<bar>?a\<bar>" "\<bar>?b\<bar> \<le> \<bar>?a\<bar>"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1780  | 
by simp_all  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1781  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1782  | 
have "\<bar>real_of_float (Float m1 e1)\<bar> \<ge> 1/4 * 2 powr real_of_int e1"  | 
| 60500 | 1783  | 
using \<open>m1 \<noteq> 0\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1784  | 
by (auto simp: powr_add powr_int bitlen_nonneg divide_right_mono abs_mult)  | 
| 60698 | 1785  | 
then have "?sum \<noteq> 0" using b_less_quarter  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1786  | 
by (rule sum_neq_zeroI)  | 
| 60698 | 1787  | 
then have "?m1 + ?m2 \<noteq> 0"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1788  | 
unfolding sum_eq by (simp add: abs_mult zero_less_mult_iff)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1789  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1790  | 
have "\<bar>real_of_int ?m1\<bar> \<ge> 2 ^ Suc k1" "\<bar>?m2'\<bar> < 2 ^ Suc k1"  | 
| 60500 | 1791  | 
using \<open>m1 \<noteq> 0\<close> \<open>m2 \<noteq> 0\<close> by (auto simp: sgn_if less_1_mult abs_mult simp del: power.simps)  | 
| 60698 | 1792  | 
then have sum'_nz: "?m1 + ?m2' \<noteq> 0"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1793  | 
by (intro sum_neq_zeroI)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1794  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1795  | 
have "\<lfloor>log 2 \<bar>real_of_float (Float m1 e1) + real_of_float (Float m2 e2)\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> + ?e"  | 
| 60500 | 1796  | 
using \<open>?m1 + ?m2 \<noteq> 0\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1797  | 
unfolding floor_add[symmetric] sum_eq  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1798  | 
by (simp add: abs_mult log_mult) linarith  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1799  | 
also have "\<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + sgn (real_of_int m2 * 2 powr ?shift) / 2\<bar>\<rfloor>"  | 
| 60500 | 1800  | 
using abs_m2_less_half \<open>m1 \<noteq> 0\<close>  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1801  | 
by (intro log2_abs_int_add_less_half_sgn_eq) (auto simp: abs_mult)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1802  | 
also have "sgn (real_of_int m2 * 2 powr ?shift) = sgn m2"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1803  | 
by (auto simp: sgn_if zero_less_mult_iff less_not_sym)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1804  | 
also  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1805  | 
have "\<bar>?m1 + ?m2'\<bar> * 2 powr ?e = \<bar>?m1 * 2 + sgn m2\<bar> * 2 powr (?e - 1)"  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
1806  | 
by (auto simp: field_simps powr_minus[symmetric] powr_diff powr_mult_base)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1807  | 
then have "\<lfloor>log 2 \<bar>?m1 + ?m2'\<bar>\<rfloor> + ?e = \<lfloor>log 2 \<bar>real_of_float (Float (?m1 * 2 + sgn m2) (?e - 1))\<bar>\<rfloor>"  | 
| 60500 | 1808  | 
using \<open>?m1 + ?m2' \<noteq> 0\<close>  | 
| 63599 | 1809  | 
unfolding floor_add_int  | 
1810  | 
by (simp add: log_add_eq_powr abs_mult_pos del: floor_add2)  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1811  | 
finally  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1812  | 
have "\<lfloor>log 2 \<bar>?sum\<bar>\<rfloor> = \<lfloor>log 2 \<bar>real_of_float (Float (?m1*2 + sgn m2) (?e - 1))\<bar>\<rfloor>" .  | 
| 60698 | 1813  | 
then have "plus_down p (Float m1 e1) (Float m2 e2) =  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1814  | 
truncate_down p (Float (?m1*2 + sgn m2) (?e - 1))"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1815  | 
unfolding plus_down_def  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1816  | 
proof (rule truncate_down_log2_eqI)  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1817  | 
let ?f = "(int p - \<lfloor>log 2 \<bar>real_of_float (Float m1 e1) + real_of_float (Float m2 e2)\<bar>\<rfloor>)"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1818  | 
let ?ai = "m1 * 2 ^ (Suc k1)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1819  | 
have "\<lfloor>(?a + ?b) * 2 powr real_of_int ?f\<rfloor> = \<lfloor>(real_of_int (2 * ?ai) + sgn ?b) * 2 powr real_of_int (?f - - ?e - 1)\<rfloor>"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1820  | 
proof (rule floor_sum_times_2_powr_sgn_eq)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1821  | 
show "?a * 2 powr real_of_int (-?e) = real_of_int ?ai"  | 
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
1822  | 
by (simp add: powr_add powr_realpow[symmetric] powr_diff)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1823  | 
show "\<bar>?b * 2 powr real_of_int (-?e + 1)\<bar> \<le> 1"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1824  | 
using abs_m2_less_half  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1825  | 
by (simp add: abs_mult powr_add[symmetric] algebra_simps powr_mult_base)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1826  | 
next  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1827  | 
have "e1 + \<lfloor>log 2 \<bar>real_of_int m1\<bar>\<rfloor> - 1 = \<lfloor>log 2 \<bar>?a\<bar>\<rfloor> - 1"  | 
| 60500 | 1828  | 
using \<open>m1 \<noteq> 0\<close>  | 
| 63599 | 1829  | 
by (simp add: int_add_floor algebra_simps log_mult abs_mult del: floor_add2)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1830  | 
also have "\<dots> \<le> \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor>"  | 
| 60500 | 1831  | 
using a_half_less_sum \<open>m1 \<noteq> 0\<close> \<open>?sum \<noteq> 0\<close>  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1832  | 
unfolding floor_diff_of_int[symmetric]  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1833  | 
by (auto simp add: log_minus_eq_powr powr_minus_divide intro!: floor_mono)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1834  | 
finally  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1835  | 
have "int p - \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor> \<le> p - (bitlen \<bar>m1\<bar>) - e1 + 2"  | 
| 63248 | 1836  | 
by (auto simp: algebra_simps bitlen_alt_def \<open>m1 \<noteq> 0\<close>)  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1837  | 
also have "\<dots> \<le> - ?e"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1838  | 
using bitlen_nonneg[of "\<bar>m1\<bar>"] by (simp add: k1_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1839  | 
finally show "?f \<le> - ?e" by simp  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1840  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1841  | 
also have "sgn ?b = sgn m2"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1842  | 
using powr_gt_zero[of 2 e2]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1843  | 
by (auto simp add: sgn_if zero_less_mult_iff simp del: powr_gt_zero)  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1844  | 
also have "\<lfloor>(real_of_int (2 * ?m1) + real_of_int (sgn m2)) * 2 powr real_of_int (?f - - ?e - 1)\<rfloor> =  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1845  | 
\<lfloor>Float (?m1 * 2 + sgn m2) (?e - 1) * 2 powr ?f\<rfloor>"  | 
| 68406 | 1846  | 
by (simp flip: powr_add powr_realpow add: algebra_simps)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1847  | 
finally  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
1848  | 
show "\<lfloor>(?a + ?b) * 2 powr ?f\<rfloor> = \<lfloor>real_of_float (Float (?m1 * 2 + sgn m2) (?e - 1)) * 2 powr ?f\<rfloor>" .  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1849  | 
qed  | 
| 60698 | 1850  | 
then show ?thesis  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1851  | 
by transfer (simp add: plus_down_def ac_simps Let_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1852  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1853  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1854  | 
lemma compute_float_plus_down_naive[code]: "float_plus_down p x y = float_round_down p (x + y)"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1855  | 
by transfer (auto simp: plus_down_def)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1856  | 
|
| 60698 | 1857  | 
qualified lemma compute_float_plus_down[code]:  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1858  | 
fixes p::nat and m1 e1 m2 e2::int  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1859  | 
shows "float_plus_down p (Float m1 e1) (Float m2 e2) =  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1860  | 
(if m1 = 0 then float_round_down p (Float m2 e2)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1861  | 
else if m2 = 0 then float_round_down p (Float m1 e1)  | 
| 63356 | 1862  | 
else  | 
1863  | 
(if e1 \<ge> e2 then  | 
|
1864  | 
(let k1 = Suc p - nat (bitlen \<bar>m1\<bar>) in  | 
|
1865  | 
if bitlen \<bar>m2\<bar> > e1 - e2 - k1 - 2  | 
|
1866  | 
then float_round_down p ((Float m1 e1) + (Float m2 e2))  | 
|
1867  | 
else float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2)))  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1868  | 
else float_plus_down p (Float m2 e2) (Float m1 e1)))"  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1869  | 
proof -  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1870  | 
  {
 | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
1871  | 
assume "bitlen \<bar>m2\<bar> \<le> e1 - e2 - (Suc p - nat (bitlen \<bar>m1\<bar>)) - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2"  | 
| 60698 | 1872  | 
note compute_far_float_plus_down[OF this]  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1873  | 
}  | 
| 60698 | 1874  | 
then show ?thesis  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1875  | 
by transfer (simp add: Let_def plus_down_def ac_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1876  | 
qed  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1877  | 
|
| 60698 | 1878  | 
qualified lemma compute_float_plus_up[code]: "float_plus_up p x y = - float_plus_down p (-x) (-y)"  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1879  | 
using truncate_down_uminus_eq[of p "x + y"]  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1880  | 
by transfer (simp add: plus_down_def plus_up_def ac_simps)  | 
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1881  | 
|
| 70347 | 1882  | 
lemma mantissa_zero: "mantissa 0 = 0"  | 
1883  | 
by (fact mantissa_0)  | 
|
| 60698 | 1884  | 
|
| 
62421
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1885  | 
qualified lemma compute_float_less[code]: "a < b \<longleftrightarrow> is_float_pos (float_plus_down 0 b (- a))"  | 
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1886  | 
using truncate_down[of 0 "b - a"] truncate_down_pos[of "b - a" 0]  | 
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1887  | 
by transfer (auto simp: plus_down_def)  | 
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1888  | 
|
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1889  | 
qualified lemma compute_float_le[code]: "a \<le> b \<longleftrightarrow> is_float_nonneg (float_plus_down 0 b (- a))"  | 
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1890  | 
using truncate_down[of 0 "b - a"] truncate_down_nonneg[of "b - a" 0]  | 
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1891  | 
by transfer (auto simp: plus_down_def)  | 
| 
 
28d2c75dd180
finite precision computation to determine sign for comparison
 
immler 
parents: 
62420 
diff
changeset
 | 
1892  | 
|
| 60698 | 1893  | 
end  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
1894  | 
|
| 71036 | 1895  | 
lemma plus_down_mono: "plus_down p a b \<le> plus_down p c d" if "a + b \<le> c + d"  | 
1896  | 
by (auto simp: plus_down_def intro!: truncate_down_mono that)  | 
|
1897  | 
||
1898  | 
lemma plus_up_mono: "plus_up p a b \<le> plus_up p c d" if "a + b \<le> c + d"  | 
|
1899  | 
by (auto simp: plus_up_def intro!: truncate_up_mono that)  | 
|
1900  | 
||
1901  | 
subsection \<open>Approximate Multiplication\<close>  | 
|
1902  | 
||
1903  | 
lemma mult_mono_nonpos_nonneg: "a * b \<le> c * d"  | 
|
1904  | 
if "a \<le> c" "a \<le> 0" "0 \<le> d" "d \<le> b" for a b c d::"'a::ordered_ring"  | 
|
1905  | 
by (meson dual_order.trans mult_left_mono_neg mult_right_mono that)  | 
|
1906  | 
||
1907  | 
lemma mult_mono_nonneg_nonpos: "b * a \<le> d * c"  | 
|
1908  | 
if "a \<le> c" "c \<le> 0" "0 \<le> d" "d \<le> b" for a b c d::"'a::ordered_ring"  | 
|
1909  | 
by (meson dual_order.trans mult_right_mono_neg mult_left_mono that)  | 
|
1910  | 
||
1911  | 
lemma mult_mono_nonpos_nonpos: "a * b \<le> c * d"  | 
|
1912  | 
if "a \<ge> c" "a \<le> 0" "b \<ge> d" "d \<le> 0" for a b c d::real  | 
|
1913  | 
by (meson dual_order.trans mult_left_mono_neg mult_right_mono_neg that)  | 
|
1914  | 
||
1915  | 
lemma mult_float_mono1:  | 
|
1916  | 
notes mono_rules = plus_down_mono add_mono nprt_mono nprt_le_zero zero_le_pprt pprt_mono  | 
|
1917  | 
shows "a \<le> b \<Longrightarrow> ab \<le> bb \<Longrightarrow>  | 
|
1918  | 
aa \<le> a \<Longrightarrow>  | 
|
1919  | 
b \<le> ba \<Longrightarrow>  | 
|
1920  | 
ac \<le> ab \<Longrightarrow>  | 
|
1921  | 
bb \<le> bc \<Longrightarrow>  | 
|
1922  | 
plus_down prec (nprt aa * pprt bc)  | 
|
1923  | 
(plus_down prec (nprt ba * nprt bc)  | 
|
1924  | 
(plus_down prec (pprt aa * pprt ac)  | 
|
1925  | 
(pprt ba * nprt ac)))  | 
|
1926  | 
\<le> plus_down prec (nprt a * pprt bb)  | 
|
1927  | 
(plus_down prec (nprt b * nprt bb)  | 
|
1928  | 
(plus_down prec (pprt a * pprt ab)  | 
|
1929  | 
(pprt b * nprt ab)))"  | 
|
1930  | 
apply (rule order_trans)  | 
|
1931  | 
apply (rule mono_rules | assumption)+  | 
|
1932  | 
apply (rule mult_mono_nonpos_nonneg)  | 
|
1933  | 
apply (rule mono_rules | assumption)+  | 
|
1934  | 
apply (rule mult_mono_nonpos_nonpos)  | 
|
1935  | 
apply (rule mono_rules | assumption)+  | 
|
1936  | 
apply (rule mult_mono)  | 
|
1937  | 
apply (rule mono_rules | assumption)+  | 
|
1938  | 
apply (rule mult_mono_nonneg_nonpos)  | 
|
1939  | 
apply (rule mono_rules | assumption)+  | 
|
1940  | 
by (rule order_refl)+  | 
|
1941  | 
||
1942  | 
lemma mult_float_mono2:  | 
|
1943  | 
notes mono_rules = plus_up_mono add_mono nprt_mono nprt_le_zero zero_le_pprt pprt_mono  | 
|
1944  | 
shows "a \<le> b \<Longrightarrow>  | 
|
1945  | 
ab \<le> bb \<Longrightarrow>  | 
|
1946  | 
aa \<le> a \<Longrightarrow>  | 
|
1947  | 
b \<le> ba \<Longrightarrow>  | 
|
1948  | 
ac \<le> ab \<Longrightarrow>  | 
|
1949  | 
bb \<le> bc \<Longrightarrow>  | 
|
1950  | 
plus_up prec (pprt b * pprt bb)  | 
|
1951  | 
(plus_up prec (pprt a * nprt bb)  | 
|
1952  | 
(plus_up prec (nprt b * pprt ab)  | 
|
1953  | 
(nprt a * nprt ab)))  | 
|
1954  | 
\<le> plus_up prec (pprt ba * pprt bc)  | 
|
1955  | 
(plus_up prec (pprt aa * nprt bc)  | 
|
1956  | 
(plus_up prec (nprt ba * pprt ac)  | 
|
1957  | 
(nprt aa * nprt ac)))"  | 
|
1958  | 
apply (rule order_trans)  | 
|
1959  | 
apply (rule mono_rules | assumption)+  | 
|
1960  | 
apply (rule mult_mono)  | 
|
1961  | 
apply (rule mono_rules | assumption)+  | 
|
1962  | 
apply (rule mult_mono_nonneg_nonpos)  | 
|
1963  | 
apply (rule mono_rules | assumption)+  | 
|
1964  | 
apply (rule mult_mono_nonpos_nonneg)  | 
|
1965  | 
apply (rule mono_rules | assumption)+  | 
|
1966  | 
apply (rule mult_mono_nonpos_nonpos)  | 
|
1967  | 
apply (rule mono_rules | assumption)+  | 
|
1968  | 
by (rule order_refl)+  | 
|
1969  | 
||
1970  | 
||
1971  | 
subsection \<open>Approximate Power\<close>  | 
|
1972  | 
||
1973  | 
lemma div2_less_self[termination_simp]: "odd n \<Longrightarrow> n div 2 < n" for n :: nat  | 
|
1974  | 
by (simp add: odd_pos)  | 
|
1975  | 
||
1976  | 
fun power_down :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real"  | 
|
1977  | 
where  | 
|
1978  | 
"power_down p x 0 = 1"  | 
|
1979  | 
| "power_down p x (Suc n) =  | 
|
1980  | 
(if odd n then truncate_down (Suc p) ((power_down p x (Suc n div 2))\<^sup>2)  | 
|
1981  | 
else truncate_down (Suc p) (x * power_down p x n))"  | 
|
1982  | 
||
1983  | 
fun power_up :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real"  | 
|
1984  | 
where  | 
|
1985  | 
"power_up p x 0 = 1"  | 
|
1986  | 
| "power_up p x (Suc n) =  | 
|
1987  | 
(if odd n then truncate_up p ((power_up p x (Suc n div 2))\<^sup>2)  | 
|
1988  | 
else truncate_up p (x * power_up p x n))"  | 
|
1989  | 
||
1990  | 
lift_definition power_up_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_up  | 
|
1991  | 
by (induct_tac rule: power_up.induct) simp_all  | 
|
1992  | 
||
1993  | 
lift_definition power_down_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_down  | 
|
1994  | 
by (induct_tac rule: power_down.induct) simp_all  | 
|
1995  | 
||
1996  | 
lemma power_float_transfer[transfer_rule]:  | 
|
1997  | 
"(rel_fun pcr_float (rel_fun (=) pcr_float)) (^) (^)"  | 
|
1998  | 
unfolding power_def  | 
|
1999  | 
by transfer_prover  | 
|
2000  | 
||
2001  | 
lemma compute_power_up_fl[code]:  | 
|
2002  | 
"power_up_fl p x 0 = 1"  | 
|
2003  | 
"power_up_fl p x (Suc n) =  | 
|
2004  | 
(if odd n then float_round_up p ((power_up_fl p x (Suc n div 2))\<^sup>2)  | 
|
2005  | 
else float_round_up p (x * power_up_fl p x n))"  | 
|
2006  | 
and compute_power_down_fl[code]:  | 
|
2007  | 
"power_down_fl p x 0 = 1"  | 
|
2008  | 
"power_down_fl p x (Suc n) =  | 
|
2009  | 
(if odd n then float_round_down (Suc p) ((power_down_fl p x (Suc n div 2))\<^sup>2)  | 
|
2010  | 
else float_round_down (Suc p) (x * power_down_fl p x n))"  | 
|
2011  | 
unfolding atomize_conj by transfer simp  | 
|
2012  | 
||
2013  | 
lemma power_down_pos: "0 < x \<Longrightarrow> 0 < power_down p x n"  | 
|
2014  | 
by (induct p x n rule: power_down.induct)  | 
|
2015  | 
(auto simp del: odd_Suc_div_two intro!: truncate_down_pos)  | 
|
2016  | 
||
2017  | 
lemma power_down_nonneg: "0 \<le> x \<Longrightarrow> 0 \<le> power_down p x n"  | 
|
2018  | 
by (induct p x n rule: power_down.induct)  | 
|
2019  | 
(auto simp del: odd_Suc_div_two intro!: truncate_down_nonneg mult_nonneg_nonneg)  | 
|
2020  | 
||
2021  | 
lemma power_down: "0 \<le> x \<Longrightarrow> power_down p x n \<le> x ^ n"  | 
|
2022  | 
proof (induct p x n rule: power_down.induct)  | 
|
2023  | 
case (2 p x n)  | 
|
2024  | 
have ?case if "odd n"  | 
|
2025  | 
proof -  | 
|
2026  | 
from that 2 have "(power_down p x (Suc n div 2)) ^ 2 \<le> (x ^ (Suc n div 2)) ^ 2"  | 
|
2027  | 
by (auto intro: power_mono power_down_nonneg simp del: odd_Suc_div_two)  | 
|
2028  | 
also have "\<dots> = x ^ (Suc n div 2 * 2)"  | 
|
2029  | 
by (simp flip: power_mult)  | 
|
2030  | 
also have "Suc n div 2 * 2 = Suc n"  | 
|
2031  | 
using \<open>odd n\<close> by presburger  | 
|
2032  | 
finally show ?thesis  | 
|
2033  | 
using that by (auto intro!: truncate_down_le simp del: odd_Suc_div_two)  | 
|
2034  | 
qed  | 
|
2035  | 
then show ?case  | 
|
2036  | 
by (auto intro!: truncate_down_le mult_left_mono 2 mult_nonneg_nonneg power_down_nonneg)  | 
|
2037  | 
qed simp  | 
|
2038  | 
||
2039  | 
lemma power_up: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up p x n"  | 
|
2040  | 
proof (induct p x n rule: power_up.induct)  | 
|
2041  | 
case (2 p x n)  | 
|
2042  | 
have ?case if "odd n"  | 
|
2043  | 
proof -  | 
|
2044  | 
from that even_Suc have "Suc n = Suc n div 2 * 2"  | 
|
2045  | 
by presburger  | 
|
2046  | 
then have "x ^ Suc n \<le> (x ^ (Suc n div 2))\<^sup>2"  | 
|
2047  | 
by (simp flip: power_mult)  | 
|
2048  | 
also from that 2 have "\<dots> \<le> (power_up p x (Suc n div 2))\<^sup>2"  | 
|
2049  | 
by (auto intro: power_mono simp del: odd_Suc_div_two)  | 
|
2050  | 
finally show ?thesis  | 
|
2051  | 
using that by (auto intro!: truncate_up_le simp del: odd_Suc_div_two)  | 
|
2052  | 
qed  | 
|
2053  | 
then show ?case  | 
|
2054  | 
by (auto intro!: truncate_up_le mult_left_mono 2)  | 
|
2055  | 
qed simp  | 
|
2056  | 
||
2057  | 
lemmas power_up_le = order_trans[OF _ power_up]  | 
|
2058  | 
and power_up_less = less_le_trans[OF _ power_up]  | 
|
2059  | 
and power_down_le = order_trans[OF power_down]  | 
|
2060  | 
||
2061  | 
lemma power_down_fl: "0 \<le> x \<Longrightarrow> power_down_fl p x n \<le> x ^ n"  | 
|
2062  | 
by transfer (rule power_down)  | 
|
2063  | 
||
2064  | 
lemma power_up_fl: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up_fl p x n"  | 
|
2065  | 
by transfer (rule power_up)  | 
|
2066  | 
||
2067  | 
lemma real_power_up_fl: "real_of_float (power_up_fl p x n) = power_up p x n"  | 
|
2068  | 
by transfer simp  | 
|
2069  | 
||
2070  | 
lemma real_power_down_fl: "real_of_float (power_down_fl p x n) = power_down p x n"  | 
|
2071  | 
by transfer simp  | 
|
2072  | 
||
2073  | 
lemmas [simp del] = power_down.simps(2) power_up.simps(2)  | 
|
2074  | 
||
2075  | 
lemmas power_down_simp = power_down.simps(2)  | 
|
2076  | 
lemmas power_up_simp = power_up.simps(2)  | 
|
2077  | 
||
2078  | 
lemma power_down_even_nonneg: "even n \<Longrightarrow> 0 \<le> power_down p x n"  | 
|
2079  | 
by (induct p x n rule: power_down.induct)  | 
|
2080  | 
(auto simp: power_down_simp simp del: odd_Suc_div_two intro!: truncate_down_nonneg )  | 
|
2081  | 
||
2082  | 
lemma power_down_eq_zero_iff[simp]: "power_down prec b n = 0 \<longleftrightarrow> b = 0 \<and> n \<noteq> 0"  | 
|
2083  | 
proof (induction n arbitrary: b rule: less_induct)  | 
|
2084  | 
case (less x)  | 
|
2085  | 
then show ?case  | 
|
2086  | 
using power_down_simp[of _ _ "x - 1"]  | 
|
2087  | 
by (cases x) (auto simp add: div2_less_self)  | 
|
2088  | 
qed  | 
|
2089  | 
||
2090  | 
lemma power_down_nonneg_iff[simp]:  | 
|
2091  | 
"power_down prec b n \<ge> 0 \<longleftrightarrow> even n \<or> b \<ge> 0"  | 
|
2092  | 
proof (induction n arbitrary: b rule: less_induct)  | 
|
2093  | 
case (less x)  | 
|
2094  | 
show ?case  | 
|
2095  | 
using less(1)[of "x - 1" b] power_down_simp[of _ _ "x - 1"]  | 
|
2096  | 
by (cases x) (auto simp: algebra_split_simps zero_le_mult_iff)  | 
|
2097  | 
qed  | 
|
2098  | 
||
2099  | 
lemma power_down_neg_iff[simp]:  | 
|
2100  | 
"power_down prec b n < 0 \<longleftrightarrow>  | 
|
2101  | 
b < 0 \<and> odd n"  | 
|
2102  | 
using power_down_nonneg_iff[of prec b n] by (auto simp del: power_down_nonneg_iff)  | 
|
2103  | 
||
2104  | 
lemma power_down_nonpos_iff[simp]:  | 
|
2105  | 
notes [simp del] = power_down_neg_iff power_down_eq_zero_iff  | 
|
2106  | 
shows "power_down prec b n \<le> 0 \<longleftrightarrow> b < 0 \<and> odd n \<or> b = 0 \<and> n \<noteq> 0"  | 
|
2107  | 
using power_down_neg_iff[of prec b n] power_down_eq_zero_iff[of prec b n]  | 
|
2108  | 
by auto  | 
|
2109  | 
||
2110  | 
lemma power_down_mono:  | 
|
2111  | 
"power_down prec a n \<le> power_down prec b n"  | 
|
2112  | 
if "((0 \<le> a \<and> a \<le> b)\<or>(odd n \<and> a \<le> b) \<or> (even n \<and> a \<le> 0 \<and> b \<le> a))"  | 
|
2113  | 
using that  | 
|
2114  | 
proof (induction n arbitrary: a b rule: less_induct)  | 
|
2115  | 
case (less i)  | 
|
2116  | 
show ?case  | 
|
2117  | 
proof (cases i)  | 
|
2118  | 
case j: (Suc j)  | 
|
2119  | 
note IH = less[unfolded j even_Suc not_not]  | 
|
2120  | 
note [simp del] = power_down.simps  | 
|
2121  | 
show ?thesis  | 
|
2122  | 
proof cases  | 
|
2123  | 
assume [simp]: "even j"  | 
|
2124  | 
have "a * power_down prec a j \<le> b * power_down prec b j"  | 
|
2125  | 
by (smt IH(1) IH(2) \<open>even j\<close> lessI mult_mono' mult_mono_nonpos_nonneg power_down_even_nonneg)  | 
|
2126  | 
then have "truncate_down (Suc prec) (a * power_down prec a j) \<le> truncate_down (Suc prec) (b * power_down prec b j)"  | 
|
2127  | 
by (auto intro!: truncate_down_mono simp: abs_le_square_iff[symmetric] abs_real_def)  | 
|
2128  | 
then show ?thesis  | 
|
2129  | 
unfolding j  | 
|
2130  | 
by (simp add: power_down_simp)  | 
|
2131  | 
next  | 
|
2132  | 
assume [simp]: "odd j"  | 
|
2133  | 
have "power_down prec 0 (Suc (j div 2)) \<le> - power_down prec b (Suc (j div 2))"  | 
|
2134  | 
if "b < 0" "even (j div 2)"  | 
|
2135  | 
apply (rule order_trans[where y=0])  | 
|
2136  | 
using IH that by (auto simp: div2_less_self)  | 
|
2137  | 
then have "truncate_down (Suc prec) ((power_down prec a (Suc (j div 2)))\<^sup>2)  | 
|
2138  | 
\<le> truncate_down (Suc prec) ((power_down prec b (Suc (j div 2)))\<^sup>2)"  | 
|
2139  | 
using IH  | 
|
2140  | 
by (auto intro!: truncate_down_mono intro: order_trans[where y=0]  | 
|
2141  | 
simp: abs_le_square_iff[symmetric] abs_real_def  | 
|
2142  | 
div2_less_self)  | 
|
2143  | 
then show ?thesis  | 
|
2144  | 
unfolding j  | 
|
2145  | 
by (simp add: power_down_simp)  | 
|
2146  | 
qed  | 
|
2147  | 
qed simp  | 
|
2148  | 
qed  | 
|
2149  | 
||
2150  | 
lemma power_up_even_nonneg: "even n \<Longrightarrow> 0 \<le> power_up p x n"  | 
|
2151  | 
by (induct p x n rule: power_up.induct)  | 
|
2152  | 
(auto simp: power_up.simps simp del: odd_Suc_div_two intro!: )  | 
|
2153  | 
||
2154  | 
lemma power_up_eq_zero_iff[simp]: "power_up prec b n = 0 \<longleftrightarrow> b = 0 \<and> n \<noteq> 0"  | 
|
2155  | 
proof (induction n arbitrary: b rule: less_induct)  | 
|
2156  | 
case (less x)  | 
|
2157  | 
then show ?case  | 
|
2158  | 
using power_up_simp[of _ _ "x - 1"]  | 
|
2159  | 
by (cases x) (auto simp: algebra_split_simps zero_le_mult_iff div2_less_self)  | 
|
2160  | 
qed  | 
|
2161  | 
||
2162  | 
lemma power_up_nonneg_iff[simp]:  | 
|
2163  | 
"power_up prec b n \<ge> 0 \<longleftrightarrow> even n \<or> b \<ge> 0"  | 
|
2164  | 
proof (induction n arbitrary: b rule: less_induct)  | 
|
2165  | 
case (less x)  | 
|
2166  | 
show ?case  | 
|
2167  | 
using less(1)[of "x - 1" b] power_up_simp[of _ _ "x - 1"]  | 
|
2168  | 
by (cases x) (auto simp: algebra_split_simps zero_le_mult_iff)  | 
|
2169  | 
qed  | 
|
2170  | 
||
2171  | 
lemma power_up_neg_iff[simp]:  | 
|
2172  | 
"power_up prec b n < 0 \<longleftrightarrow> b < 0 \<and> odd n"  | 
|
2173  | 
using power_up_nonneg_iff[of prec b n] by (auto simp del: power_up_nonneg_iff)  | 
|
2174  | 
||
2175  | 
lemma power_up_nonpos_iff[simp]:  | 
|
2176  | 
notes [simp del] = power_up_neg_iff power_up_eq_zero_iff  | 
|
2177  | 
shows "power_up prec b n \<le> 0 \<longleftrightarrow> b < 0 \<and> odd n \<or> b = 0 \<and> n \<noteq> 0"  | 
|
2178  | 
using power_up_neg_iff[of prec b n] power_up_eq_zero_iff[of prec b n]  | 
|
2179  | 
by auto  | 
|
2180  | 
||
2181  | 
lemma power_up_mono:  | 
|
2182  | 
"power_up prec a n \<le> power_up prec b n"  | 
|
2183  | 
if "((0 \<le> a \<and> a \<le> b)\<or>(odd n \<and> a \<le> b) \<or> (even n \<and> a \<le> 0 \<and> b \<le> a))"  | 
|
2184  | 
using that  | 
|
2185  | 
proof (induction n arbitrary: a b rule: less_induct)  | 
|
2186  | 
case (less i)  | 
|
2187  | 
show ?case  | 
|
2188  | 
proof (cases i)  | 
|
2189  | 
case j: (Suc j)  | 
|
2190  | 
note IH = less[unfolded j even_Suc not_not]  | 
|
2191  | 
note [simp del] = power_up.simps  | 
|
2192  | 
show ?thesis  | 
|
2193  | 
proof cases  | 
|
2194  | 
assume [simp]: "even j"  | 
|
2195  | 
have "a * power_up prec a j \<le> b * power_up prec b j"  | 
|
2196  | 
by (smt IH(1) IH(2) \<open>even j\<close> lessI mult_mono' mult_mono_nonpos_nonneg power_up_even_nonneg)  | 
|
2197  | 
then have "truncate_up prec (a * power_up prec a j) \<le> truncate_up prec (b * power_up prec b j)"  | 
|
2198  | 
by (auto intro!: truncate_up_mono simp: abs_le_square_iff[symmetric] abs_real_def)  | 
|
2199  | 
then show ?thesis  | 
|
2200  | 
unfolding j  | 
|
2201  | 
by (simp add: power_up_simp)  | 
|
2202  | 
next  | 
|
2203  | 
assume [simp]: "odd j"  | 
|
2204  | 
have "power_up prec 0 (Suc (j div 2)) \<le> - power_up prec b (Suc (j div 2))"  | 
|
2205  | 
if "b < 0" "even (j div 2)"  | 
|
2206  | 
apply (rule order_trans[where y=0])  | 
|
2207  | 
using IH that by (auto simp: div2_less_self)  | 
|
2208  | 
then have "truncate_up prec ((power_up prec a (Suc (j div 2)))\<^sup>2)  | 
|
2209  | 
\<le> truncate_up prec ((power_up prec b (Suc (j div 2)))\<^sup>2)"  | 
|
2210  | 
using IH  | 
|
2211  | 
by (auto intro!: truncate_up_mono intro: order_trans[where y=0]  | 
|
2212  | 
simp: abs_le_square_iff[symmetric] abs_real_def  | 
|
2213  | 
div2_less_self)  | 
|
2214  | 
then show ?thesis  | 
|
2215  | 
unfolding j  | 
|
2216  | 
by (simp add: power_up_simp)  | 
|
2217  | 
qed  | 
|
2218  | 
qed simp  | 
|
2219  | 
qed  | 
|
2220  | 
||
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
2221  | 
|
| 60500 | 2222  | 
subsection \<open>Lemmas needed by Approximate\<close>  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2223  | 
|
| 60698 | 2224  | 
lemma Float_num[simp]:  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2225  | 
"real_of_float (Float 1 0) = 1"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2226  | 
"real_of_float (Float 1 1) = 2"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2227  | 
"real_of_float (Float 1 2) = 4"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2228  | 
"real_of_float (Float 1 (- 1)) = 1/2"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2229  | 
"real_of_float (Float 1 (- 2)) = 1/4"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2230  | 
"real_of_float (Float 1 (- 3)) = 1/8"  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2231  | 
"real_of_float (Float (- 1) 0) = -1"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2232  | 
"real_of_float (Float (numeral n) 0) = numeral n"  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2233  | 
"real_of_float (Float (- numeral n) 0) = - numeral n"  | 
| 60698 | 2234  | 
using two_powr_int_float[of 2] two_powr_int_float[of "-1"] two_powr_int_float[of "-2"]  | 
2235  | 
two_powr_int_float[of "-3"]  | 
|
2236  | 
using powr_realpow[of 2 2] powr_realpow[of 2 3]  | 
|
| 
65583
 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 
paulson <lp15@cam.ac.uk> 
parents: 
65109 
diff
changeset
 | 
2237  | 
using powr_minus[of "2::real" 1] powr_minus[of "2::real" 2] powr_minus[of "2::real" 3]  | 
| 60698 | 2238  | 
by auto  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2239  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2240  | 
lemma real_of_Float_int[simp]: "real_of_float (Float n 0) = real n"  | 
| 60698 | 2241  | 
by simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2242  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2243  | 
lemma float_zero[simp]: "real_of_float (Float 0 e) = 0"  | 
| 60698 | 2244  | 
by simp  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2245  | 
|
| 61945 | 2246  | 
lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> \<bar>(a::int) div 2\<bar> < \<bar>a\<bar>"  | 
| 60698 | 2247  | 
by arith  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2248  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2249  | 
lemma lapprox_rat: "real_of_float (lapprox_rat prec x y) \<le> real_of_int x / real_of_int y"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2250  | 
by (simp add: lapprox_rat.rep_eq truncate_down)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2251  | 
|
| 60698 | 2252  | 
lemma mult_div_le:  | 
2253  | 
fixes a b :: int  | 
|
2254  | 
assumes "b > 0"  | 
|
2255  | 
shows "a \<ge> b * (a div b)"  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2256  | 
proof -  | 
| 64246 | 2257  | 
from minus_div_mult_eq_mod [symmetric, of a b] have "a = b * (a div b) + a mod b"  | 
| 60698 | 2258  | 
by simp  | 
2259  | 
also have "\<dots> \<ge> b * (a div b) + 0"  | 
|
2260  | 
apply (rule add_left_mono)  | 
|
2261  | 
apply (rule pos_mod_sign)  | 
|
| 63356 | 2262  | 
using assms  | 
2263  | 
apply simp  | 
|
| 60698 | 2264  | 
done  | 
2265  | 
finally show ?thesis  | 
|
2266  | 
by simp  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2267  | 
qed  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2268  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2269  | 
lemma lapprox_rat_nonneg:  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
2270  | 
assumes "0 \<le> x" and "0 \<le> y"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2271  | 
shows "0 \<le> real_of_float (lapprox_rat n x y)"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2272  | 
using assms  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2273  | 
by transfer (simp add: truncate_down_nonneg)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2274  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2275  | 
lemma rapprox_rat: "real_of_int x / real_of_int y \<le> real_of_float (rapprox_rat prec x y)"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2276  | 
by transfer (simp add: truncate_up)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2277  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2278  | 
lemma rapprox_rat_le1:  | 
| 63356 | 2279  | 
assumes "0 \<le> x" "0 < y" "x \<le> y"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2280  | 
shows "real_of_float (rapprox_rat n x y) \<le> 1"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2281  | 
using assms  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2282  | 
by transfer (simp add: truncate_up_le1)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2283  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2284  | 
lemma rapprox_rat_nonneg_nonpos: "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real_of_float (rapprox_rat n x y) \<le> 0"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2285  | 
by transfer (simp add: truncate_up_nonpos divide_nonneg_nonpos)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2286  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2287  | 
lemma rapprox_rat_nonpos_nonneg: "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real_of_float (rapprox_rat n x y) \<le> 0"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2288  | 
by transfer (simp add: truncate_up_nonpos divide_nonpos_nonneg)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2289  | 
|
| 54782 | 2290  | 
lemma real_divl: "real_divl prec x y \<le> x / y"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2291  | 
by (simp add: real_divl_def truncate_down)  | 
| 54782 | 2292  | 
|
2293  | 
lemma real_divr: "x / y \<le> real_divr prec x y"  | 
|
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2294  | 
by (simp add: real_divr_def truncate_up)  | 
| 54782 | 2295  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2296  | 
lemma float_divl: "real_of_float (float_divl prec x y) \<le> x / y"  | 
| 54782 | 2297  | 
by transfer (rule real_divl)  | 
2298  | 
||
| 63356 | 2299  | 
lemma real_divl_lower_bound: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real_divl prec x y"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2300  | 
by (simp add: real_divl_def truncate_down_nonneg)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2301  | 
|
| 63356 | 2302  | 
lemma float_divl_lower_bound: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real_of_float (float_divl prec x y)"  | 
| 54782 | 2303  | 
by transfer (rule real_divl_lower_bound)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2304  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2305  | 
lemma exponent_1: "exponent 1 = 0"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2306  | 
using exponent_float[of 1 0] by (simp add: one_float_def)  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2307  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2308  | 
lemma mantissa_1: "mantissa 1 = 1"  | 
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2309  | 
using mantissa_float[of 1 0] by (simp add: one_float_def)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2310  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2311  | 
lemma bitlen_1: "bitlen 1 = 1"  | 
| 63248 | 2312  | 
by (simp add: bitlen_alt_def)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2313  | 
|
| 
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2314  | 
lemma float_upper_bound: "x \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x)"  | 
| 60698 | 2315  | 
proof (cases "x = 0")  | 
2316  | 
case True  | 
|
2317  | 
then show ?thesis by simp  | 
|
2318  | 
next  | 
|
2319  | 
case False  | 
|
2320  | 
then have "mantissa x \<noteq> 0"  | 
|
2321  | 
using mantissa_eq_zero_iff by auto  | 
|
2322  | 
have "x = mantissa x * 2 powr (exponent x)"  | 
|
2323  | 
by (rule mantissa_exponent)  | 
|
2324  | 
also have "mantissa x \<le> \<bar>mantissa x\<bar>"  | 
|
2325  | 
by simp  | 
|
2326  | 
also have "\<dots> \<le> 2 powr (bitlen \<bar>mantissa x\<bar>)"  | 
|
| 60500 | 2327  | 
using bitlen_bounds[of "\<bar>mantissa x\<bar>"] bitlen_nonneg \<open>mantissa x \<noteq> 0\<close>  | 
| 
61649
 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 
paulson <lp15@cam.ac.uk> 
parents: 
61639 
diff
changeset
 | 
2328  | 
by (auto simp del: of_int_abs simp add: powr_int)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2329  | 
finally show ?thesis by (simp add: powr_add)  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2330  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2331  | 
|
| 54782 | 2332  | 
lemma real_divl_pos_less1_bound:  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2333  | 
assumes "0 < x" "x \<le> 1"  | 
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
2334  | 
shows "1 \<le> real_divl prec 1 x"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2335  | 
using assms  | 
| 
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2336  | 
by (auto intro!: truncate_down_ge1 simp: real_divl_def)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2337  | 
|
| 54782 | 2338  | 
lemma float_divl_pos_less1_bound:  | 
| 63356 | 2339  | 
"0 < real_of_float x \<Longrightarrow> real_of_float x \<le> 1 \<Longrightarrow> prec \<ge> 1 \<Longrightarrow>  | 
2340  | 
1 \<le> real_of_float (float_divl prec 1 x)"  | 
|
| 60698 | 2341  | 
by transfer (rule real_divl_pos_less1_bound)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2342  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2343  | 
lemma float_divr: "real_of_float x / real_of_float y \<le> real_of_float (float_divr prec x y)"  | 
| 54782 | 2344  | 
by transfer (rule real_divr)  | 
2345  | 
||
| 60698 | 2346  | 
lemma real_divr_pos_less1_lower_bound:  | 
2347  | 
assumes "0 < x"  | 
|
2348  | 
and "x \<le> 1"  | 
|
2349  | 
shows "1 \<le> real_divr prec 1 x"  | 
|
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2350  | 
proof -  | 
| 60698 | 2351  | 
have "1 \<le> 1 / x"  | 
| 63356 | 2352  | 
using \<open>0 < x\<close> and \<open>x \<le> 1\<close> by auto  | 
| 60698 | 2353  | 
also have "\<dots> \<le> real_divr prec 1 x"  | 
| 63356 | 2354  | 
using real_divr[where x = 1 and y = x] by auto  | 
| 47600 | 2355  | 
finally show ?thesis by auto  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2356  | 
qed  | 
| 
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2357  | 
|
| 
58982
 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 
immler 
parents: 
58881 
diff
changeset
 | 
2358  | 
lemma float_divr_pos_less1_lower_bound: "0 < x \<Longrightarrow> x \<le> 1 \<Longrightarrow> 1 \<le> float_divr prec 1 x"  | 
| 54782 | 2359  | 
by transfer (rule real_divr_pos_less1_lower_bound)  | 
2360  | 
||
| 63356 | 2361  | 
lemma real_divr_nonpos_pos_upper_bound: "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real_divr prec x y \<le> 0"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2362  | 
by (simp add: real_divr_def truncate_up_nonpos divide_le_0_iff)  | 
| 54782 | 2363  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2364  | 
lemma float_divr_nonpos_pos_upper_bound:  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2365  | 
"real_of_float x \<le> 0 \<Longrightarrow> 0 \<le> real_of_float y \<Longrightarrow> real_of_float (float_divr prec x y) \<le> 0"  | 
| 54782 | 2366  | 
by transfer (rule real_divr_nonpos_pos_upper_bound)  | 
2367  | 
||
| 63356 | 2368  | 
lemma real_divr_nonneg_neg_upper_bound: "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real_divr prec x y \<le> 0"  | 
| 
62420
 
c7666166c24e
positive precision for truncate; fixed precision for approximation of rationals; code for truncate
 
immler 
parents: 
62419 
diff
changeset
 | 
2369  | 
by (simp add: real_divr_def truncate_up_nonpos divide_le_0_iff)  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2370  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2371  | 
lemma float_divr_nonneg_neg_upper_bound:  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2372  | 
"0 \<le> real_of_float x \<Longrightarrow> real_of_float y \<le> 0 \<Longrightarrow> real_of_float (float_divr prec x y) \<le> 0"  | 
| 54782 | 2373  | 
by transfer (rule real_divr_nonneg_neg_upper_bound)  | 
2374  | 
||
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2375  | 
lemma Float_le_zero_iff: "Float a b \<le> 0 \<longleftrightarrow> a \<le> 0"  | 
| 67573 | 2376  | 
by (auto simp: zero_float_def mult_le_0_iff)  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2377  | 
|
| 60698 | 2378  | 
lemma real_of_float_pprt[simp]:  | 
2379  | 
fixes a :: float  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2380  | 
shows "real_of_float (pprt a) = pprt (real_of_float a)"  | 
| 47600 | 2381  | 
unfolding pprt_def sup_float_def max_def sup_real_def by auto  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2382  | 
|
| 60698 | 2383  | 
lemma real_of_float_nprt[simp]:  | 
2384  | 
fixes a :: float  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2385  | 
shows "real_of_float (nprt a) = nprt (real_of_float a)"  | 
| 47600 | 2386  | 
unfolding nprt_def inf_float_def min_def inf_real_def by auto  | 
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2387  | 
|
| 60698 | 2388  | 
context  | 
2389  | 
begin  | 
|
2390  | 
||
| 
55565
 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 
kuncar 
parents: 
54784 
diff
changeset
 | 
2391  | 
lift_definition int_floor_fl :: "float \<Rightarrow> int" is floor .  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2392  | 
|
| 60698 | 2393  | 
qualified lemma compute_int_floor_fl[code]:  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
2394  | 
"int_floor_fl (Float m e) = (if 0 \<le> e then m * 2 ^ nat e else m div (2 ^ (nat (-e))))"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2395  | 
apply transfer  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2396  | 
apply (simp add: powr_int floor_divide_of_int_eq)  | 
| 61942 | 2397  | 
apply (metis (no_types, hide_lams)floor_divide_of_int_eq of_int_numeral of_int_power floor_of_int of_int_mult)  | 
2398  | 
done  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2399  | 
|
| 61942 | 2400  | 
lift_definition floor_fl :: "float \<Rightarrow> float" is "\<lambda>x. real_of_int \<lfloor>x\<rfloor>"  | 
2401  | 
by simp  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2402  | 
|
| 60698 | 2403  | 
qualified lemma compute_floor_fl[code]:  | 
| 
47601
 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 
hoelzl 
parents: 
47600 
diff
changeset
 | 
2404  | 
"floor_fl (Float m e) = (if 0 \<le> e then Float m e else Float (m div (2 ^ (nat (-e)))) 0)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2405  | 
apply transfer  | 
| 
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2406  | 
apply (simp add: powr_int floor_divide_of_int_eq)  | 
| 61942 | 2407  | 
apply (metis (no_types, hide_lams)floor_divide_of_int_eq of_int_numeral of_int_power of_int_mult)  | 
2408  | 
done  | 
|
| 60698 | 2409  | 
|
2410  | 
end  | 
|
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2411  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2412  | 
lemma floor_fl: "real_of_float (floor_fl x) \<le> real_of_float x"  | 
| 60698 | 2413  | 
by transfer simp  | 
| 47600 | 2414  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2415  | 
lemma int_floor_fl: "real_of_int (int_floor_fl x) \<le> real_of_float x"  | 
| 60698 | 2416  | 
by transfer simp  | 
| 
29804
 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
2417  | 
|
| 
47599
 
400b158f1589
replace the float datatype by a type with unique representation
 
hoelzl 
parents: 
47230 
diff
changeset
 | 
2418  | 
lemma floor_pos_exp: "exponent (floor_fl x) \<ge> 0"  | 
| 67573 | 2419  | 
proof (cases "floor_fl x = 0")  | 
| 53381 | 2420  | 
case True  | 
| 60698 | 2421  | 
then show ?thesis  | 
2422  | 
by (simp add: floor_fl_def)  | 
|
| 53381 | 2423  | 
next  | 
2424  | 
case False  | 
|
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2425  | 
have eq: "floor_fl x = Float \<lfloor>real_of_float x\<rfloor> 0"  | 
| 60698 | 2426  | 
by transfer simp  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
60868 
diff
changeset
 | 
2427  | 
obtain i where "\<lfloor>real_of_float x\<rfloor> = mantissa (floor_fl x) * 2 ^ i" "0 = exponent (floor_fl x) - int i"  | 
| 67573 | 2428  | 
by (rule denormalize_shift[OF eq False])  | 
| 60698 | 2429  | 
then show ?thesis  | 
2430  | 
by simp  | 
|
| 53381 | 2431  | 
qed  | 
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2432  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
2433  | 
lemma compute_mantissa[code]:  | 
| 60698 | 2434  | 
"mantissa (Float m e) =  | 
2435  | 
(if m = 0 then 0 else if 2 dvd m then mantissa (normfloat (Float m e)) else m)"  | 
|
| 68406 | 2436  | 
by (auto simp: mantissa_float Float.abs_eq simp flip: zero_float_def)  | 
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
2437  | 
|
| 
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
2438  | 
lemma compute_exponent[code]:  | 
| 60698 | 2439  | 
"exponent (Float m e) =  | 
2440  | 
(if m = 0 then 0 else if 2 dvd m then exponent (normfloat (Float m e)) else e)"  | 
|
| 68406 | 2441  | 
by (auto simp: exponent_float Float.abs_eq simp flip: zero_float_def)  | 
| 67573 | 2442  | 
|
2443  | 
lifting_update Float.float.lifting  | 
|
2444  | 
lifting_forget Float.float.lifting  | 
|
| 
58985
 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 
immler 
parents: 
58982 
diff
changeset
 | 
2445  | 
|
| 
16782
 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 
obua 
parents:  
diff
changeset
 | 
2446  | 
end  |