author | nipkow |
Tue, 05 Sep 2017 20:03:52 +0200 | |
changeset 66607 | a8edca8c4a68 |
parent 62020 | 5d208fd2507d |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Hered.thy |
1474 | 2 |
Author: Martin Coen |
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
*) |
|
5 |
||
60770 | 6 |
section \<open>Hereditary Termination -- cf. Martin Lo\"f\<close> |
17456 | 7 |
|
8 |
theory Hered |
|
9 |
imports Type |
|
10 |
begin |
|
11 |
||
60770 | 12 |
text \<open> |
62020 | 13 |
Note that this is based on an untyped equality and so \<open>lam |
14 |
x. b(x)\<close> is only hereditarily terminating if \<open>ALL x. b(x)\<close> |
|
17456 | 15 |
is. Not so useful for functions! |
60770 | 16 |
\<close> |
0 | 17 |
|
58977 | 18 |
definition HTTgen :: "i set \<Rightarrow> i set" where |
42156 | 19 |
"HTTgen(R) == |
58977 | 20 |
{t. t=true | t=false | (EX a b. t= <a, b> \<and> a : R \<and> b : R) | |
21 |
(EX f. t = lam x. f(x) \<and> (ALL x. f(x) : R))}" |
|
0 | 22 |
|
42156 | 23 |
definition HTT :: "i set" |
24 |
where "HTT == gfp(HTTgen)" |
|
17456 | 25 |
|
20140 | 26 |
|
60770 | 27 |
subsection \<open>Hereditary Termination\<close> |
20140 | 28 |
|
58977 | 29 |
lemma HTTgen_mono: "mono(\<lambda>X. HTTgen(X))" |
20140 | 30 |
apply (unfold HTTgen_def) |
31 |
apply (rule monoI) |
|
32 |
apply blast |
|
33 |
done |
|
34 |
||
35 |
lemma HTTgenXH: |
|
58977 | 36 |
"t : HTTgen(A) \<longleftrightarrow> t=true | t=false | (EX a b. t=<a,b> \<and> a : A \<and> b : A) | |
37 |
(EX f. t=lam x. f(x) \<and> (ALL x. f(x) : A))" |
|
20140 | 38 |
apply (unfold HTTgen_def) |
39 |
apply blast |
|
40 |
done |
|
41 |
||
42 |
lemma HTTXH: |
|
58977 | 43 |
"t : HTT \<longleftrightarrow> t=true | t=false | (EX a b. t=<a,b> \<and> a : HTT \<and> b : HTT) | |
44 |
(EX f. t=lam x. f(x) \<and> (ALL x. f(x) : HTT))" |
|
20140 | 45 |
apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def]) |
46 |
apply blast |
|
47 |
done |
|
48 |
||
49 |
||
60770 | 50 |
subsection \<open>Introduction Rules for HTT\<close> |
20140 | 51 |
|
58977 | 52 |
lemma HTT_bot: "\<not> bot : HTT" |
20140 | 53 |
by (blast dest: HTTXH [THEN iffD1]) |
54 |
||
55 |
lemma HTT_true: "true : HTT" |
|
56 |
by (blast intro: HTTXH [THEN iffD2]) |
|
57 |
||
58 |
lemma HTT_false: "false : HTT" |
|
59 |
by (blast intro: HTTXH [THEN iffD2]) |
|
60 |
||
58977 | 61 |
lemma HTT_pair: "<a,b> : HTT \<longleftrightarrow> a : HTT \<and> b : HTT" |
20140 | 62 |
apply (rule HTTXH [THEN iff_trans]) |
63 |
apply blast |
|
64 |
done |
|
65 |
||
58977 | 66 |
lemma HTT_lam: "lam x. f(x) : HTT \<longleftrightarrow> (ALL x. f(x) : HTT)" |
20140 | 67 |
apply (rule HTTXH [THEN iff_trans]) |
68 |
apply auto |
|
69 |
done |
|
70 |
||
71 |
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam |
|
72 |
||
73 |
lemma HTT_rews2: |
|
74 |
"one : HTT" |
|
58977 | 75 |
"inl(a) : HTT \<longleftrightarrow> a : HTT" |
76 |
"inr(b) : HTT \<longleftrightarrow> b : HTT" |
|
20140 | 77 |
"zero : HTT" |
58977 | 78 |
"succ(n) : HTT \<longleftrightarrow> n : HTT" |
20140 | 79 |
"[] : HTT" |
58977 | 80 |
"x$xs : HTT \<longleftrightarrow> x : HTT \<and> xs : HTT" |
20140 | 81 |
by (simp_all add: data_defs HTT_rews1) |
82 |
||
83 |
lemmas HTT_rews = HTT_rews1 HTT_rews2 |
|
84 |
||
85 |
||
60770 | 86 |
subsection \<open>Coinduction for HTT\<close> |
20140 | 87 |
|
58977 | 88 |
lemma HTT_coinduct: "\<lbrakk>t : R; R <= HTTgen(R)\<rbrakk> \<Longrightarrow> t : HTT" |
20140 | 89 |
apply (erule HTT_def [THEN def_coinduct]) |
90 |
apply assumption |
|
91 |
done |
|
92 |
||
58977 | 93 |
lemma HTT_coinduct3: "\<lbrakk>t : R; R <= HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))\<rbrakk> \<Longrightarrow> t : HTT" |
20140 | 94 |
apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]]) |
95 |
apply assumption |
|
96 |
done |
|
97 |
||
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
98 |
lemma HTTgenIs: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
99 |
"true : HTTgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
100 |
"false : HTTgen(R)" |
58977 | 101 |
"\<lbrakk>a : R; b : R\<rbrakk> \<Longrightarrow> <a,b> : HTTgen(R)" |
102 |
"\<And>b. (\<And>x. b(x) : R) \<Longrightarrow> lam x. b(x) : HTTgen(R)" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
103 |
"one : HTTgen(R)" |
58977 | 104 |
"a : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> inl(a) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" |
105 |
"b : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> inr(b) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" |
|
106 |
"zero : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" |
|
107 |
"n : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> succ(n) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" |
|
108 |
"[] : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" |
|
109 |
"\<lbrakk>h : lfp(\<lambda>x. HTTgen(x) Un R Un HTT); t : lfp(\<lambda>x. HTTgen(x) Un R Un HTT)\<rbrakk> \<Longrightarrow> |
|
110 |
h$t : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
111 |
unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+ |
20140 | 112 |
|
113 |
||
60770 | 114 |
subsection \<open>Formation Rules for Types\<close> |
20140 | 115 |
|
116 |
lemma UnitF: "Unit <= HTT" |
|
117 |
by (simp add: subsetXH UnitXH HTT_rews) |
|
118 |
||
119 |
lemma BoolF: "Bool <= HTT" |
|
47966 | 120 |
by (fastforce simp: subsetXH BoolXH iff: HTT_rews) |
20140 | 121 |
|
58977 | 122 |
lemma PlusF: "\<lbrakk>A <= HTT; B <= HTT\<rbrakk> \<Longrightarrow> A + B <= HTT" |
47966 | 123 |
by (fastforce simp: subsetXH PlusXH iff: HTT_rews) |
20140 | 124 |
|
58977 | 125 |
lemma SigmaF: "\<lbrakk>A <= HTT; \<And>x. x:A \<Longrightarrow> B(x) <= HTT\<rbrakk> \<Longrightarrow> SUM x:A. B(x) <= HTT" |
47966 | 126 |
by (fastforce simp: subsetXH SgXH HTT_rews) |
20140 | 127 |
|
128 |
||
129 |
(*** Formation Rules for Recursive types - using coinduction these only need ***) |
|
130 |
(*** exhaution rule for type-former ***) |
|
131 |
||
132 |
(*Proof by induction - needs induction rule for type*) |
|
133 |
lemma "Nat <= HTT" |
|
134 |
apply (simp add: subsetXH) |
|
135 |
apply clarify |
|
136 |
apply (erule Nat_ind) |
|
47966 | 137 |
apply (fastforce iff: HTT_rews)+ |
20140 | 138 |
done |
139 |
||
140 |
lemma NatF: "Nat <= HTT" |
|
141 |
apply clarify |
|
142 |
apply (erule HTT_coinduct3) |
|
143 |
apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1]) |
|
144 |
done |
|
145 |
||
58977 | 146 |
lemma ListF: "A <= HTT \<Longrightarrow> List(A) <= HTT" |
20140 | 147 |
apply clarify |
148 |
apply (erule HTT_coinduct3) |
|
149 |
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] |
|
150 |
subsetD [THEN HTTgen_mono [THEN ci3_AI]] |
|
151 |
dest: ListXH [THEN iffD1]) |
|
152 |
done |
|
153 |
||
58977 | 154 |
lemma ListsF: "A <= HTT \<Longrightarrow> Lists(A) <= HTT" |
20140 | 155 |
apply clarify |
156 |
apply (erule HTT_coinduct3) |
|
157 |
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] |
|
158 |
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1]) |
|
159 |
done |
|
160 |
||
58977 | 161 |
lemma IListsF: "A <= HTT \<Longrightarrow> ILists(A) <= HTT" |
20140 | 162 |
apply clarify |
163 |
apply (erule HTT_coinduct3) |
|
164 |
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] |
|
165 |
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1]) |
|
166 |
done |
|
167 |
||
168 |
end |