| author | blanchet | 
| Thu, 05 Mar 2015 12:32:11 +0100 | |
| changeset 59607 | a93592aedce4 | 
| parent 59554 | 4044f53326c9 | 
| child 59984 | 4f1eccec320c | 
| permissions | -rw-r--r-- | 
| 47615 | 1 | (* Title: HOL/Library/Float.thy | 
| 2 | Author: Johannes Hölzl, Fabian Immler | |
| 3 | Copyright 2012 TU München | |
| 4 | *) | |
| 5 | ||
| 58881 | 6 | section {* Floating-Point Numbers *}
 | 
| 29988 | 7 | |
| 20485 | 8 | theory Float | 
| 51542 | 9 | imports Complex_Main Lattice_Algebras | 
| 20485 | 10 | begin | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 11 | |
| 49812 
e3945ddcb9aa
eliminated some remaining uses of typedef with implicit set definition;
 wenzelm parents: 
47937diff
changeset | 12 | definition "float = {m * 2 powr e | (m :: int) (e :: int). True}"
 | 
| 
e3945ddcb9aa
eliminated some remaining uses of typedef with implicit set definition;
 wenzelm parents: 
47937diff
changeset | 13 | |
| 49834 | 14 | typedef float = float | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 15 | morphisms real_of_float float_of | 
| 49812 
e3945ddcb9aa
eliminated some remaining uses of typedef with implicit set definition;
 wenzelm parents: 
47937diff
changeset | 16 | unfolding float_def by auto | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 17 | |
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 18 | instantiation float :: real_of | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 19 | begin | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 20 | |
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 21 | definition real_float :: "float \<Rightarrow> real" where | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 22 | real_of_float_def[code_unfold]: "real \<equiv> real_of_float" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 23 | |
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 24 | instance .. | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 25 | end | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57862diff
changeset | 26 | |
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 27 | lemma type_definition_float': "type_definition real float_of float" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 28 | using type_definition_float unfolding real_of_float_def . | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 29 | |
| 59487 
adaa430fc0f7
default abstypes and default abstract equations make technical (no_code) annotation superfluous
 haftmann parents: 
58989diff
changeset | 30 | setup_lifting type_definition_float' | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 31 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 32 | lemmas float_of_inject[simp] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 33 | |
| 47600 | 34 | declare [[coercion "real :: float \<Rightarrow> real"]] | 
| 35 | ||
| 36 | lemma real_of_float_eq: | |
| 37 | fixes f1 f2 :: float shows "f1 = f2 \<longleftrightarrow> real f1 = real f2" | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 38 | unfolding real_of_float_def real_of_float_inject .. | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 39 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 40 | lemma float_of_real[simp]: "float_of (real x) = x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 41 | unfolding real_of_float_def by (rule real_of_float_inverse) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 42 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 43 | lemma real_float[simp]: "x \<in> float \<Longrightarrow> real (float_of x) = x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 44 | unfolding real_of_float_def by (rule float_of_inverse) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 45 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 46 | subsection {* Real operations preserving the representation as floating point number *}
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 47 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 48 | lemma floatI: fixes m e :: int shows "m * 2 powr e = x \<Longrightarrow> x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 49 | by (auto simp: float_def) | 
| 19765 | 50 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 51 | lemma zero_float[simp]: "0 \<in> float" by (auto simp: float_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 52 | lemma one_float[simp]: "1 \<in> float" by (intro floatI[of 1 0]) simp | 
| 53381 | 53 | lemma numeral_float[simp]: "numeral i \<in> float" by (intro floatI[of "numeral i" 0]) simp | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 54 | lemma neg_numeral_float[simp]: "- numeral i \<in> float" by (intro floatI[of "- numeral i" 0]) simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 55 | lemma real_of_int_float[simp]: "real (x :: int) \<in> float" by (intro floatI[of x 0]) simp | 
| 47600 | 56 | lemma real_of_nat_float[simp]: "real (x :: nat) \<in> float" by (intro floatI[of x 0]) simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 57 | lemma two_powr_int_float[simp]: "2 powr (real (i::int)) \<in> float" by (intro floatI[of 1 i]) simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 58 | lemma two_powr_nat_float[simp]: "2 powr (real (i::nat)) \<in> float" by (intro floatI[of 1 i]) simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 59 | lemma two_powr_minus_int_float[simp]: "2 powr - (real (i::int)) \<in> float" by (intro floatI[of 1 "-i"]) simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 60 | lemma two_powr_minus_nat_float[simp]: "2 powr - (real (i::nat)) \<in> float" by (intro floatI[of 1 "-i"]) simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 61 | lemma two_powr_numeral_float[simp]: "2 powr numeral i \<in> float" by (intro floatI[of 1 "numeral i"]) simp | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 62 | lemma two_powr_neg_numeral_float[simp]: "2 powr - numeral i \<in> float" by (intro floatI[of 1 "- numeral i"]) simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 63 | lemma two_pow_float[simp]: "2 ^ n \<in> float" by (intro floatI[of 1 "n"]) (simp add: powr_realpow) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 64 | lemma real_of_float_float[simp]: "real (f::float) \<in> float" by (cases f) simp | 
| 45495 
c55a07526dbe
cleaned up float theories; removed duplicate definitions and theorems
 hoelzl parents: 
44766diff
changeset | 65 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 66 | lemma plus_float[simp]: "r \<in> float \<Longrightarrow> p \<in> float \<Longrightarrow> r + p \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 67 | unfolding float_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 68 | proof (safe, simp) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 69 | fix e1 m1 e2 m2 :: int | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 70 |   { fix e1 m1 e2 m2 :: int assume "e1 \<le> e2"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 71 | then have "m1 * 2 powr e1 + m2 * 2 powr e2 = (m1 + m2 * 2 ^ nat (e2 - e1)) * 2 powr e1" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 72 | by (simp add: powr_realpow[symmetric] powr_divide2[symmetric] field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 73 | then have "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 74 | by blast } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 75 | note * = this | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 76 | show "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 77 | proof (cases e1 e2 rule: linorder_le_cases) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 78 | assume "e2 \<le> e1" from *[OF this, of m2 m1] show ?thesis by (simp add: ac_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 79 | qed (rule *) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 80 | qed | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 81 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 82 | lemma uminus_float[simp]: "x \<in> float \<Longrightarrow> -x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 83 | apply (auto simp: float_def) | 
| 57492 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
56777diff
changeset | 84 | apply hypsubst_thin | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 85 | apply (rule_tac x="-x" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 86 | apply (rule_tac x="xa" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 87 | apply (simp add: field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 88 | done | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 89 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 90 | lemma times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x * y \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 91 | apply (auto simp: float_def) | 
| 57492 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
56777diff
changeset | 92 | apply hypsubst_thin | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 93 | apply (rule_tac x="x * xa" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 94 | apply (rule_tac x="xb + xc" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 95 | apply (simp add: powr_add) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 96 | done | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 97 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 98 | lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53381diff
changeset | 99 | using plus_float [of x "- y"] by simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 100 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 101 | lemma abs_float[simp]: "x \<in> float \<Longrightarrow> abs x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 102 | by (cases x rule: linorder_cases[of 0]) auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 103 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 104 | lemma sgn_of_float[simp]: "x \<in> float \<Longrightarrow> sgn x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 105 | by (cases x rule: linorder_cases[of 0]) (auto intro!: uminus_float) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21256diff
changeset | 106 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 107 | lemma div_power_2_float[simp]: "x \<in> float \<Longrightarrow> x / 2^d \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 108 | apply (auto simp add: float_def) | 
| 57492 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
56777diff
changeset | 109 | apply hypsubst_thin | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 110 | apply (rule_tac x="x" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 111 | apply (rule_tac x="xa - d" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 112 | apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 113 | done | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 114 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 115 | lemma div_power_2_int_float[simp]: "x \<in> float \<Longrightarrow> x / (2::int)^d \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 116 | apply (auto simp add: float_def) | 
| 57492 
74bf65a1910a
Hypsubst preserves equality hypotheses
 Thomas Sewell <thomas.sewell@nicta.com.au> parents: 
56777diff
changeset | 117 | apply hypsubst_thin | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 118 | apply (rule_tac x="x" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 119 | apply (rule_tac x="xa - d" in exI) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 120 | apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 121 | done | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 122 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 123 | lemma div_numeral_Bit0_float[simp]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 124 | assumes x: "x / numeral n \<in> float" shows "x / (numeral (Num.Bit0 n)) \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 125 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 126 | have "(x / numeral n) / 2^1 \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 127 | by (intro x div_power_2_float) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 128 | also have "(x / numeral n) / 2^1 = x / (numeral (Num.Bit0 n))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 129 | by (induct n) auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 130 | finally show ?thesis . | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 131 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 132 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 133 | lemma div_neg_numeral_Bit0_float[simp]: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 134 | assumes x: "x / numeral n \<in> float" shows "x / (- numeral (Num.Bit0 n)) \<in> float" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 135 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 136 | have "- (x / numeral (Num.Bit0 n)) \<in> float" using x by simp | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 137 | also have "- (x / numeral (Num.Bit0 n)) = x / - numeral (Num.Bit0 n)" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 138 | by simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 139 | finally show ?thesis . | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 140 | qed | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 141 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 142 | lemma power_float[simp]: assumes "a \<in> float" shows "a ^ b \<in> float" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 143 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 144 | from assms obtain m e::int where "a = m * 2 powr e" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 145 | by (auto simp: float_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 146 | thus ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 147 | by (auto intro!: floatI[where m="m^b" and e = "e*b"] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 148 | simp: power_mult_distrib powr_realpow[symmetric] powr_powr) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 149 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 150 | |
| 47600 | 151 | lift_definition Float :: "int \<Rightarrow> int \<Rightarrow> float" is "\<lambda>(m::int) (e::int). m * 2 powr e" by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 152 | declare Float.rep_eq[simp] | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 153 | |
| 47780 | 154 | lemma compute_real_of_float[code]: | 
| 155 | "real_of_float (Float m e) = (if e \<ge> 0 then m * 2 ^ nat e else m / 2 ^ (nat (-e)))" | |
| 156 | by (simp add: real_of_float_def[symmetric] powr_int) | |
| 157 | ||
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 158 | code_datatype Float | 
| 47600 | 159 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 160 | subsection {* Arithmetic operations on floating point numbers *}
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 161 | |
| 47600 | 162 | instantiation float :: "{ring_1, linorder, linordered_ring, linordered_idom, numeral, equal}"
 | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 163 | begin | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 164 | |
| 47600 | 165 | lift_definition zero_float :: float is 0 by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 166 | declare zero_float.rep_eq[simp] | 
| 47600 | 167 | lift_definition one_float :: float is 1 by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 168 | declare one_float.rep_eq[simp] | 
| 47600 | 169 | lift_definition plus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op +" by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 170 | declare plus_float.rep_eq[simp] | 
| 47600 | 171 | lift_definition times_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op *" by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 172 | declare times_float.rep_eq[simp] | 
| 47600 | 173 | lift_definition minus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op -" by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 174 | declare minus_float.rep_eq[simp] | 
| 47600 | 175 | lift_definition uminus_float :: "float \<Rightarrow> float" is "uminus" by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 176 | declare uminus_float.rep_eq[simp] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 177 | |
| 47600 | 178 | lift_definition abs_float :: "float \<Rightarrow> float" is abs by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 179 | declare abs_float.rep_eq[simp] | 
| 47600 | 180 | lift_definition sgn_float :: "float \<Rightarrow> float" is sgn by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 181 | declare sgn_float.rep_eq[simp] | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 182 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 183 | lift_definition equal_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op = :: real \<Rightarrow> real \<Rightarrow> bool" . | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 184 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 185 | lift_definition less_eq_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op \<le>" . | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 186 | declare less_eq_float.rep_eq[simp] | 
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 187 | lift_definition less_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op <" . | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 188 | declare less_float.rep_eq[simp] | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 189 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 190 | instance | 
| 47600 | 191 | proof qed (transfer, fastforce simp add: field_simps intro: mult_left_mono mult_right_mono)+ | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 192 | end | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 193 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 194 | lemma Float_0_eq_0[simp]: "Float 0 e = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 195 | by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 196 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 197 | lemma real_of_float_power[simp]: fixes f::float shows "real (f^n) = real f^n" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 198 | by (induct n) simp_all | 
| 45495 
c55a07526dbe
cleaned up float theories; removed duplicate definitions and theorems
 hoelzl parents: 
44766diff
changeset | 199 | |
| 53381 | 200 | lemma fixes x y::float | 
| 47600 | 201 | shows real_of_float_min: "real (min x y) = min (real x) (real y)" | 
| 202 | and real_of_float_max: "real (max x y) = max (real x) (real y)" | |
| 203 | by (simp_all add: min_def max_def) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 204 | |
| 53215 
5e47c31c6f7c
renamed typeclass dense_linorder to unbounded_dense_linorder
 hoelzl parents: 
51542diff
changeset | 205 | instance float :: unbounded_dense_linorder | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 206 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 207 | fix a b :: float | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 208 | show "\<exists>c. a < c" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 209 | apply (intro exI[of _ "a + 1"]) | 
| 47600 | 210 | apply transfer | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 211 | apply simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 212 | done | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 213 | show "\<exists>c. c < a" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 214 | apply (intro exI[of _ "a - 1"]) | 
| 47600 | 215 | apply transfer | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 216 | apply simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 217 | done | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 218 | assume "a < b" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 219 | then show "\<exists>c. a < c \<and> c < b" | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58042diff
changeset | 220 | apply (intro exI[of _ "(a + b) * Float 1 (- 1)"]) | 
| 47600 | 221 | apply transfer | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 222 | apply (simp add: powr_minus) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 223 | done | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 224 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 225 | |
| 47600 | 226 | instantiation float :: lattice_ab_group_add | 
| 46573 | 227 | begin | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 228 | |
| 47600 | 229 | definition inf_float::"float\<Rightarrow>float\<Rightarrow>float" | 
| 230 | where "inf_float a b = min a b" | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 231 | |
| 47600 | 232 | definition sup_float::"float\<Rightarrow>float\<Rightarrow>float" | 
| 233 | where "sup_float a b = max a b" | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 234 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 235 | instance | 
| 47600 | 236 | by default | 
| 237 | (transfer, simp_all add: inf_float_def sup_float_def real_of_float_min real_of_float_max)+ | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 238 | end | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 239 | |
| 47600 | 240 | lemma float_numeral[simp]: "real (numeral x :: float) = numeral x" | 
| 241 | apply (induct x) | |
| 242 | apply simp | |
| 243 | apply (simp_all only: numeral_Bit0 numeral_Bit1 real_of_float_eq real_float | |
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 244 | plus_float.rep_eq one_float.rep_eq plus_float numeral_float one_float) | 
| 47600 | 245 | done | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 246 | |
| 53381 | 247 | lemma transfer_numeral [transfer_rule]: | 
| 55945 | 248 | "rel_fun (op =) pcr_float (numeral :: _ \<Rightarrow> real) (numeral :: _ \<Rightarrow> float)" | 
| 249 | unfolding rel_fun_def float.pcr_cr_eq cr_float_def by simp | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 250 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 251 | lemma float_neg_numeral[simp]: "real (- numeral x :: float) = - numeral x" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 252 | by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 253 | |
| 53381 | 254 | lemma transfer_neg_numeral [transfer_rule]: | 
| 55945 | 255 | "rel_fun (op =) pcr_float (- numeral :: _ \<Rightarrow> real) (- numeral :: _ \<Rightarrow> float)" | 
| 256 | unfolding rel_fun_def float.pcr_cr_eq cr_float_def by simp | |
| 47600 | 257 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 258 | lemma | 
| 47600 | 259 | shows float_of_numeral[simp]: "numeral k = float_of (numeral k)" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 260 | and float_of_neg_numeral[simp]: "- numeral k = float_of (- numeral k)" | 
| 47600 | 261 | unfolding real_of_float_eq by simp_all | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 262 | |
| 58987 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 263 | subsection {* Quickcheck *}
 | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 264 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 265 | instantiation float :: exhaustive | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 266 | begin | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 267 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 268 | definition exhaustive_float where | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 269 | "exhaustive_float f d = | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 270 | Quickcheck_Exhaustive.exhaustive (%x. Quickcheck_Exhaustive.exhaustive (%y. f (Float x y)) d) d" | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 271 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 272 | instance .. | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 273 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 274 | end | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 275 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 276 | definition (in term_syntax) [code_unfold]: | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 277 |   "valtermify_float x y = Code_Evaluation.valtermify Float {\<cdot>} x {\<cdot>} y"
 | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 278 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 279 | instantiation float :: full_exhaustive | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 280 | begin | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 281 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 282 | definition full_exhaustive_float where | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 283 | "full_exhaustive_float f d = | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 284 | Quickcheck_Exhaustive.full_exhaustive | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 285 | (\<lambda>x. Quickcheck_Exhaustive.full_exhaustive (\<lambda>y. f (valtermify_float x y)) d) d" | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 286 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 287 | instance .. | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 288 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 289 | end | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 290 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 291 | instantiation float :: random | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 292 | begin | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 293 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 294 | definition "Quickcheck_Random.random i = | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 295 | scomp (Quickcheck_Random.random (2 ^ nat_of_natural i)) | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 296 | (\<lambda>man. scomp (Quickcheck_Random.random i) (\<lambda>exp. Pair (valtermify_float man exp)))" | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 297 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 298 | instance .. | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 299 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 300 | end | 
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 301 | |
| 
119680ebf37c
quickcheck setup for float, inspired by rat::{exhaustive,full_exhaustive,random}
 immler parents: 
58985diff
changeset | 302 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 303 | subsection {* Represent floats as unique mantissa and exponent *}
 | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46670diff
changeset | 304 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 305 | lemma int_induct_abs[case_names less]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 306 | fixes j :: int | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 307 | assumes H: "\<And>n. (\<And>i. \<bar>i\<bar> < \<bar>n\<bar> \<Longrightarrow> P i) \<Longrightarrow> P n" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 308 | shows "P j" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 309 | proof (induct "nat \<bar>j\<bar>" arbitrary: j rule: less_induct) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 310 | case less show ?case by (rule H[OF less]) simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 311 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 312 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 313 | lemma int_cancel_factors: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 314 | fixes n :: int assumes "1 < r" shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 315 | proof (induct n rule: int_induct_abs) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 316 | case (less n) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 317 |   { fix m assume n: "n \<noteq> 0" "n = m * r"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 318 | then have "\<bar>m \<bar> < \<bar>n\<bar>" | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
59487diff
changeset | 319 | using `1 < r` by (simp add: abs_mult) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 320 | from less[OF this] n have "\<exists>k i. n = k * r ^ Suc i \<and> \<not> r dvd k" by auto } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 321 | then show ?case | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
59487diff
changeset | 322 | by (metis dvd_def monoid_mult_class.mult.right_neutral mult.commute power_0) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 323 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 324 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 325 | lemma mult_powr_eq_mult_powr_iff_asym: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 326 | fixes m1 m2 e1 e2 :: int | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 327 | assumes m1: "\<not> 2 dvd m1" and "e1 \<le> e2" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 328 | shows "m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 329 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 330 | have "m1 \<noteq> 0" using m1 unfolding dvd_def by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 331 | assume eq: "m1 * 2 powr e1 = m2 * 2 powr e2" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 332 | with `e1 \<le> e2` have "m1 = m2 * 2 powr nat (e2 - e1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 333 | by (simp add: powr_divide2[symmetric] field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 334 | also have "\<dots> = m2 * 2^nat (e2 - e1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 335 | by (simp add: powr_realpow) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 336 | finally have m1_eq: "m1 = m2 * 2^nat (e2 - e1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 337 | unfolding real_of_int_inject . | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 338 | with m1 have "m1 = m2" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 339 | by (cases "nat (e2 - e1)") (auto simp add: dvd_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 340 | then show "m1 = m2 \<and> e1 = e2" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 341 | using eq `m1 \<noteq> 0` by (simp add: powr_inj) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 342 | qed simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 343 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 344 | lemma mult_powr_eq_mult_powr_iff: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 345 | fixes m1 m2 e1 e2 :: int | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 346 | shows "\<not> 2 dvd m1 \<Longrightarrow> \<not> 2 dvd m2 \<Longrightarrow> m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 347 | using mult_powr_eq_mult_powr_iff_asym[of m1 e1 e2 m2] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 348 | using mult_powr_eq_mult_powr_iff_asym[of m2 e2 e1 m1] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 349 | by (cases e1 e2 rule: linorder_le_cases) auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 350 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 351 | lemma floatE_normed: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 352 | assumes x: "x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 353 | obtains (zero) "x = 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 354 | | (powr) m e :: int where "x = m * 2 powr e" "\<not> 2 dvd m" "x \<noteq> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 355 | proof atomize_elim | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 356 |   { assume "x \<noteq> 0"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 357 | from x obtain m e :: int where x: "x = m * 2 powr e" by (auto simp: float_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 358 | with `x \<noteq> 0` int_cancel_factors[of 2 m] obtain k i where "m = k * 2 ^ i" "\<not> 2 dvd k" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 359 | by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 360 | with `\<not> 2 dvd k` x have "\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 361 | by (rule_tac exI[of _ "k"], rule_tac exI[of _ "e + int i"]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 362 | (simp add: powr_add powr_realpow) } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 363 | then show "x = 0 \<or> (\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m \<and> x \<noteq> 0)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 364 | by blast | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 365 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 366 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 367 | lemma float_normed_cases: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 368 | fixes f :: float | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 369 | obtains (zero) "f = 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 370 | | (powr) m e :: int where "real f = m * 2 powr e" "\<not> 2 dvd m" "f \<noteq> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 371 | proof (atomize_elim, induct f) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 372 | case (float_of y) then show ?case | 
| 47600 | 373 | by (cases rule: floatE_normed) (auto simp: zero_float_def) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 374 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 375 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 376 | definition mantissa :: "float \<Rightarrow> int" where | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 377 | "mantissa f = fst (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 378 | \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 379 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 380 | definition exponent :: "float \<Rightarrow> int" where | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 381 | "exponent f = snd (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 382 | \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 383 | |
| 53381 | 384 | lemma | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 385 | shows exponent_0[simp]: "exponent (float_of 0) = 0" (is ?E) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 386 | and mantissa_0[simp]: "mantissa (float_of 0) = 0" (is ?M) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 387 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 388 | have "\<And>p::int \<times> int. fst p = 0 \<and> snd p = 0 \<longleftrightarrow> p = (0, 0)" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 389 | then show ?E ?M | 
| 47600 | 390 | by (auto simp add: mantissa_def exponent_def zero_float_def) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 391 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 392 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 393 | lemma | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 394 | shows mantissa_exponent: "real f = mantissa f * 2 powr exponent f" (is ?E) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 395 | and mantissa_not_dvd: "f \<noteq> (float_of 0) \<Longrightarrow> \<not> 2 dvd mantissa f" (is "_ \<Longrightarrow> ?D") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 396 | proof cases | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 397 | assume [simp]: "f \<noteq> (float_of 0)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 398 | have "f = mantissa f * 2 powr exponent f \<and> \<not> 2 dvd mantissa f" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 399 | proof (cases f rule: float_normed_cases) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 400 | case (powr m e) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 401 | then have "\<exists>p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 402 | \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 403 | by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 404 | then show ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 405 | unfolding exponent_def mantissa_def | 
| 47600 | 406 | by (rule someI2_ex) (simp add: zero_float_def) | 
| 407 | qed (simp add: zero_float_def) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 408 | then show ?E ?D by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 409 | qed simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 410 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 411 | lemma mantissa_noteq_0: "f \<noteq> float_of 0 \<Longrightarrow> mantissa f \<noteq> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 412 | using mantissa_not_dvd[of f] by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 413 | |
| 53381 | 414 | lemma | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 415 | fixes m e :: int | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 416 | defines "f \<equiv> float_of (m * 2 powr e)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 417 | assumes dvd: "\<not> 2 dvd m" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 418 | shows mantissa_float: "mantissa f = m" (is "?M") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 419 | and exponent_float: "m \<noteq> 0 \<Longrightarrow> exponent f = e" (is "_ \<Longrightarrow> ?E") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 420 | proof cases | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 421 | assume "m = 0" with dvd show "mantissa f = m" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 422 | next | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 423 | assume "m \<noteq> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 424 | then have f_not_0: "f \<noteq> float_of 0" by (simp add: f_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 425 | from mantissa_exponent[of f] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 426 | have "m * 2 powr e = mantissa f * 2 powr exponent f" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 427 | by (auto simp add: f_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 428 | then show "?M" "?E" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 429 | using mantissa_not_dvd[OF f_not_0] dvd | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 430 | by (auto simp: mult_powr_eq_mult_powr_iff) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 431 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 432 | |
| 47600 | 433 | subsection {* Compute arithmetic operations *}
 | 
| 434 | ||
| 435 | lemma Float_mantissa_exponent: "Float (mantissa f) (exponent f) = f" | |
| 436 | unfolding real_of_float_eq mantissa_exponent[of f] by simp | |
| 437 | ||
| 438 | lemma Float_cases[case_names Float, cases type: float]: | |
| 439 | fixes f :: float | |
| 440 | obtains (Float) m e :: int where "f = Float m e" | |
| 441 | using Float_mantissa_exponent[symmetric] | |
| 442 | by (atomize_elim) auto | |
| 443 | ||
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 444 | lemma denormalize_shift: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 445 | assumes f_def: "f \<equiv> Float m e" and not_0: "f \<noteq> float_of 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 446 | obtains i where "m = mantissa f * 2 ^ i" "e = exponent f - i" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 447 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 448 | from mantissa_exponent[of f] f_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 449 | have "m * 2 powr e = mantissa f * 2 powr exponent f" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 450 | by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 451 | then have eq: "m = mantissa f * 2 powr (exponent f - e)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 452 | by (simp add: powr_divide2[symmetric] field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 453 | moreover | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 454 | have "e \<le> exponent f" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 455 | proof (rule ccontr) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 456 | assume "\<not> e \<le> exponent f" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 457 | then have pos: "exponent f < e" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 458 | then have "2 powr (exponent f - e) = 2 powr - real (e - exponent f)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 459 | by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 460 | also have "\<dots> = 1 / 2^nat (e - exponent f)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 461 | using pos by (simp add: powr_realpow[symmetric] powr_divide2[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 462 | finally have "m * 2^nat (e - exponent f) = real (mantissa f)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 463 | using eq by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 464 | then have "mantissa f = m * 2^nat (e - exponent f)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 465 | unfolding real_of_int_inject by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 466 | with `exponent f < e` have "2 dvd mantissa f" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 467 | apply (intro dvdI[where k="m * 2^(nat (e-exponent f)) div 2"]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 468 | apply (cases "nat (e - exponent f)") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 469 | apply auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 470 | done | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 471 | then show False using mantissa_not_dvd[OF not_0] by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 472 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 473 | ultimately have "real m = mantissa f * 2^nat (exponent f - e)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 474 | by (simp add: powr_realpow[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 475 | with `e \<le> exponent f` | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 476 | show "m = mantissa f * 2 ^ nat (exponent f - e)" "e = exponent f - nat (exponent f - e)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 477 | unfolding real_of_int_inject by auto | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 478 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 479 | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 480 | lemma compute_float_zero[code_unfold, code]: "0 = Float 0 0" | 
| 47600 | 481 | by transfer simp | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 482 | hide_fact (open) compute_float_zero | 
| 47600 | 483 | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 484 | lemma compute_float_one[code_unfold, code]: "1 = Float 1 0" | 
| 47600 | 485 | by transfer simp | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 486 | hide_fact (open) compute_float_one | 
| 47600 | 487 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 488 | lift_definition normfloat :: "float \<Rightarrow> float" is "\<lambda>x. x" . | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 489 | lemma normloat_id[simp]: "normfloat x = x" by transfer rule | 
| 47600 | 490 | |
| 491 | lemma compute_normfloat[code]: "normfloat (Float m e) = | |
| 492 | (if m mod 2 = 0 \<and> m \<noteq> 0 then normfloat (Float (m div 2) (e + 1)) | |
| 493 | else if m = 0 then 0 else Float m e)" | |
| 494 | by transfer (auto simp add: powr_add zmod_eq_0_iff) | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 495 | hide_fact (open) compute_normfloat | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 496 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 497 | lemma compute_float_numeral[code_abbrev]: "Float (numeral k) 0 = numeral k" | 
| 47600 | 498 | by transfer simp | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 499 | hide_fact (open) compute_float_numeral | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 500 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54230diff
changeset | 501 | lemma compute_float_neg_numeral[code_abbrev]: "Float (- numeral k) 0 = - numeral k" | 
| 47600 | 502 | by transfer simp | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 503 | hide_fact (open) compute_float_neg_numeral | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 504 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 505 | lemma compute_float_uminus[code]: "- Float m1 e1 = Float (- m1) e1" | 
| 47600 | 506 | by transfer simp | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 507 | hide_fact (open) compute_float_uminus | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 508 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 509 | lemma compute_float_times[code]: "Float m1 e1 * Float m2 e2 = Float (m1 * m2) (e1 + e2)" | 
| 47600 | 510 | by transfer (simp add: field_simps powr_add) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 511 | hide_fact (open) compute_float_times | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 512 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 513 | lemma compute_float_plus[code]: "Float m1 e1 + Float m2 e2 = | 
| 54783 
25860d89a044
Float: prevent unnecessary large numbers when adding 0
 immler parents: 
54782diff
changeset | 514 | (if m1 = 0 then Float m2 e2 else if m2 = 0 then Float m1 e1 else | 
| 
25860d89a044
Float: prevent unnecessary large numbers when adding 0
 immler parents: 
54782diff
changeset | 515 | if e1 \<le> e2 then Float (m1 + m2 * 2^nat (e2 - e1)) e1 | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 516 | else Float (m2 + m1 * 2^nat (e1 - e2)) e2)" | 
| 47600 | 517 | by transfer (simp add: field_simps powr_realpow[symmetric] powr_divide2[symmetric]) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 518 | hide_fact (open) compute_float_plus | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 519 | |
| 47600 | 520 | lemma compute_float_minus[code]: fixes f g::float shows "f - g = f + (-g)" | 
| 521 | by simp | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 522 | hide_fact (open) compute_float_minus | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 523 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 524 | lemma compute_float_sgn[code]: "sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then -1 else 0)" | 
| 47600 | 525 | by transfer (simp add: sgn_times) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 526 | hide_fact (open) compute_float_sgn | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 527 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 528 | lift_definition is_float_pos :: "float \<Rightarrow> bool" is "op < 0 :: real \<Rightarrow> bool" . | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 529 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 530 | lemma compute_is_float_pos[code]: "is_float_pos (Float m e) \<longleftrightarrow> 0 < m" | 
| 47600 | 531 | by transfer (auto simp add: zero_less_mult_iff not_le[symmetric, of _ 0]) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 532 | hide_fact (open) compute_is_float_pos | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 533 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 534 | lemma compute_float_less[code]: "a < b \<longleftrightarrow> is_float_pos (b - a)" | 
| 47600 | 535 | by transfer (simp add: field_simps) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 536 | hide_fact (open) compute_float_less | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 537 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 538 | lift_definition is_float_nonneg :: "float \<Rightarrow> bool" is "op \<le> 0 :: real \<Rightarrow> bool" . | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 539 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 540 | lemma compute_is_float_nonneg[code]: "is_float_nonneg (Float m e) \<longleftrightarrow> 0 \<le> m" | 
| 47600 | 541 | by transfer (auto simp add: zero_le_mult_iff not_less[symmetric, of _ 0]) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 542 | hide_fact (open) compute_is_float_nonneg | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 543 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 544 | lemma compute_float_le[code]: "a \<le> b \<longleftrightarrow> is_float_nonneg (b - a)" | 
| 47600 | 545 | by transfer (simp add: field_simps) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 546 | hide_fact (open) compute_float_le | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 547 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 548 | lift_definition is_float_zero :: "float \<Rightarrow> bool" is "op = 0 :: real \<Rightarrow> bool" . | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 549 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 550 | lemma compute_is_float_zero[code]: "is_float_zero (Float m e) \<longleftrightarrow> 0 = m" | 
| 47600 | 551 | by transfer (auto simp add: is_float_zero_def) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 552 | hide_fact (open) compute_is_float_zero | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 553 | |
| 47600 | 554 | lemma compute_float_abs[code]: "abs (Float m e) = Float (abs m) e" | 
| 555 | by transfer (simp add: abs_mult) | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 556 | hide_fact (open) compute_float_abs | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 557 | |
| 47600 | 558 | lemma compute_float_eq[code]: "equal_class.equal f g = is_float_zero (f - g)" | 
| 559 | by transfer simp | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 560 | hide_fact (open) compute_float_eq | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 561 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 562 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 563 | subsection {* Lemmas for types @{typ real}, @{typ nat}, @{typ int}*}
 | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 564 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 565 | lemmas real_of_ints = | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 566 | real_of_int_zero | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 567 | real_of_one | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 568 | real_of_int_add | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 569 | real_of_int_minus | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 570 | real_of_int_diff | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 571 | real_of_int_mult | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 572 | real_of_int_power | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 573 | real_numeral | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 574 | lemmas real_of_nats = | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 575 | real_of_nat_zero | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 576 | real_of_nat_one | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 577 | real_of_nat_1 | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 578 | real_of_nat_add | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 579 | real_of_nat_mult | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 580 | real_of_nat_power | 
| 58989 | 581 | real_of_nat_numeral | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 582 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 583 | lemmas int_of_reals = real_of_ints[symmetric] | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 584 | lemmas nat_of_reals = real_of_nats[symmetric] | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 585 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 586 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 587 | subsection {* Rounding Real Numbers *}
 | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 588 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 589 | definition round_down :: "int \<Rightarrow> real \<Rightarrow> real" where | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 590 | "round_down prec x = floor (x * 2 powr prec) * 2 powr -prec" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 591 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 592 | definition round_up :: "int \<Rightarrow> real \<Rightarrow> real" where | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 593 | "round_up prec x = ceiling (x * 2 powr prec) * 2 powr -prec" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 594 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 595 | lemma round_down_float[simp]: "round_down prec x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 596 | unfolding round_down_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 597 | by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 598 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 599 | lemma round_up_float[simp]: "round_up prec x \<in> float" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 600 | unfolding round_up_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 601 | by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 602 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 603 | lemma round_up: "x \<le> round_up prec x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 604 | by (simp add: powr_minus_divide le_divide_eq round_up_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 605 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 606 | lemma round_down: "round_down prec x \<le> x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 607 | by (simp add: powr_minus_divide divide_le_eq round_down_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 608 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 609 | lemma round_up_0[simp]: "round_up p 0 = 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 610 | unfolding round_up_def by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 611 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 612 | lemma round_down_0[simp]: "round_down p 0 = 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 613 | unfolding round_down_def by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 614 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 615 | lemma round_up_diff_round_down: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 616 | "round_up prec x - round_down prec x \<le> 2 powr -prec" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 617 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 618 | have "round_up prec x - round_down prec x = | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 619 | (ceiling (x * 2 powr prec) - floor (x * 2 powr prec)) * 2 powr -prec" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 620 | by (simp add: round_up_def round_down_def field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 621 | also have "\<dots> \<le> 1 * 2 powr -prec" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 622 | by (rule mult_mono) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 623 | (auto simp del: real_of_int_diff | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 624 | simp: real_of_int_diff[symmetric] real_of_int_le_one_cancel_iff ceiling_diff_floor_le_1) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 625 | finally show ?thesis by simp | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 626 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 627 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 628 | lemma round_down_shift: "round_down p (x * 2 powr k) = 2 powr k * round_down (p + k) x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 629 | unfolding round_down_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 630 | by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 631 | (simp add: powr_add[symmetric]) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 632 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 633 | lemma round_up_shift: "round_up p (x * 2 powr k) = 2 powr k * round_up (p + k) x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 634 | unfolding round_up_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 635 | by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 636 | (simp add: powr_add[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 637 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 638 | lemma round_up_uminus_eq: "round_up p (-x) = - round_down p x" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 639 | and round_down_uminus_eq: "round_down p (-x) = - round_up p x" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 640 | by (auto simp: round_up_def round_down_def ceiling_def) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 641 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 642 | lemma round_up_mono: "x \<le> y \<Longrightarrow> round_up p x \<le> round_up p y" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 643 | by (auto intro!: ceiling_mono simp: round_up_def) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 644 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 645 | lemma round_up_le1: | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 646 | assumes "x \<le> 1" "prec \<ge> 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 647 | shows "round_up prec x \<le> 1" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 648 | proof - | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 649 | have "real \<lceil>x * 2 powr prec\<rceil> \<le> real \<lceil>2 powr real prec\<rceil>" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 650 | using assms by (auto intro!: ceiling_mono) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 651 | also have "\<dots> = 2 powr prec" using assms by (auto simp: powr_int intro!: exI[where x="2^nat prec"]) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 652 | finally show ?thesis | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 653 | by (simp add: round_up_def) (simp add: powr_minus inverse_eq_divide) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 654 | qed | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 655 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 656 | lemma round_up_less1: | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 657 | assumes "x < 1 / 2" "p > 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 658 | shows "round_up p x < 1" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 659 | proof - | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 660 | have "x * 2 powr p < 1 / 2 * 2 powr p" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 661 | using assms by simp | 
| 58989 | 662 | also have "\<dots> \<le> 2 powr p - 1" using `p > 0` | 
| 663 | by (auto simp: powr_divide2[symmetric] powr_int field_simps self_le_power) | |
| 664 | finally show ?thesis using `p > 0` | |
| 665 | by (simp add: round_up_def field_simps powr_minus powr_int ceiling_less_eq) | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 666 | qed | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 667 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 668 | lemma round_down_ge1: | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 669 | assumes x: "x \<ge> 1" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 670 | assumes prec: "p \<ge> - log 2 x" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 671 | shows "1 \<le> round_down p x" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 672 | proof cases | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 673 | assume nonneg: "0 \<le> p" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 674 | have "2 powr p = real \<lfloor>2 powr real p\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 675 | using nonneg by (auto simp: powr_int) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 676 | also have "\<dots> \<le> real \<lfloor>x * 2 powr p\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 677 | using assms by (auto intro!: floor_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 678 | finally show ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 679 | by (simp add: round_down_def) (simp add: powr_minus inverse_eq_divide) | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 680 | next | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 681 | assume neg: "\<not> 0 \<le> p" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 682 | have "x = 2 powr (log 2 x)" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 683 | using x by simp | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 684 | also have "2 powr (log 2 x) \<ge> 2 powr - p" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 685 | using prec by auto | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 686 | finally have x_le: "x \<ge> 2 powr -p" . | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 687 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 688 | from neg have "2 powr real p \<le> 2 powr 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 689 | by (intro powr_mono) auto | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 690 | also have "\<dots> \<le> \<lfloor>2 powr 0\<rfloor>" by simp | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 691 | also have "\<dots> \<le> \<lfloor>x * 2 powr real p\<rfloor>" unfolding real_of_int_le_iff | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 692 | using x x_le by (intro floor_mono) (simp add: powr_minus_divide field_simps) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 693 | finally show ?thesis | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 694 | using prec x | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 695 | by (simp add: round_down_def powr_minus_divide pos_le_divide_eq) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 696 | qed | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 697 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 698 | lemma round_up_le0: "x \<le> 0 \<Longrightarrow> round_up p x \<le> 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 699 | unfolding round_up_def | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 700 | by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 701 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 702 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 703 | subsection {* Rounding Floats *}
 | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 704 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 705 | definition div_twopow::"int \<Rightarrow> nat \<Rightarrow> int" where [simp]: "div_twopow x n = x div (2 ^ n)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 706 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 707 | definition mod_twopow::"int \<Rightarrow> nat \<Rightarrow> int" where [simp]: "mod_twopow x n = x mod (2 ^ n)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 708 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 709 | lemma compute_div_twopow[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 710 | "div_twopow x n = (if x = 0 \<or> x = -1 \<or> n = 0 then x else div_twopow (x div 2) (n - 1))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 711 | by (cases n) (auto simp: zdiv_zmult2_eq div_eq_minus1) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 712 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 713 | lemma compute_mod_twopow[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 714 | "mod_twopow x n = (if n = 0 then 0 else x mod 2 + 2 * mod_twopow (x div 2) (n - 1))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 715 | by (cases n) (auto simp: zmod_zmult2_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 716 | |
| 47600 | 717 | lift_definition float_up :: "int \<Rightarrow> float \<Rightarrow> float" is round_up by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 718 | declare float_up.rep_eq[simp] | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 719 | |
| 54782 | 720 | lemma round_up_correct: | 
| 721 |   shows "round_up e f - f \<in> {0..2 powr -e}"
 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 722 | unfolding atLeastAtMost_iff | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 723 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 724 | have "round_up e f - f \<le> round_up e f - round_down e f" using round_down by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 725 | also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp | 
| 54782 | 726 | finally show "round_up e f - f \<le> 2 powr real (- e)" | 
| 47600 | 727 | by simp | 
| 728 | qed (simp add: algebra_simps round_up) | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 729 | |
| 54782 | 730 | lemma float_up_correct: | 
| 731 |   shows "real (float_up e f) - real f \<in> {0..2 powr -e}"
 | |
| 732 | by transfer (rule round_up_correct) | |
| 733 | ||
| 47600 | 734 | lift_definition float_down :: "int \<Rightarrow> float \<Rightarrow> float" is round_down by simp | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 735 | declare float_down.rep_eq[simp] | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 736 | |
| 54782 | 737 | lemma round_down_correct: | 
| 738 |   shows "f - (round_down e f) \<in> {0..2 powr -e}"
 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 739 | unfolding atLeastAtMost_iff | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 740 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 741 | have "f - round_down e f \<le> round_up e f - round_down e f" using round_up by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 742 | also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp | 
| 54782 | 743 | finally show "f - round_down e f \<le> 2 powr real (- e)" | 
| 47600 | 744 | by simp | 
| 745 | qed (simp add: algebra_simps round_down) | |
| 24301 | 746 | |
| 54782 | 747 | lemma float_down_correct: | 
| 748 |   shows "real f - real (float_down e f) \<in> {0..2 powr -e}"
 | |
| 749 | by transfer (rule round_down_correct) | |
| 750 | ||
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 751 | lemma compute_float_down[code]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 752 | "float_down p (Float m e) = | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 753 | (if p + e < 0 then Float (div_twopow m (nat (-(p + e)))) (-p) else Float m e)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 754 | proof cases | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 755 | assume "p + e < 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 756 | hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 757 | using powr_realpow[of 2 "nat (-(p + e))"] by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 758 | also have "... = 1 / 2 powr p / 2 powr e" | 
| 47600 | 759 | unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 760 | finally show ?thesis | 
| 47600 | 761 | using `p + e < 0` | 
| 762 | by transfer (simp add: ac_simps round_down_def floor_divide_eq_div[symmetric]) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 763 | next | 
| 47600 | 764 | assume "\<not> p + e < 0" | 
| 765 | then have r: "real e + real p = real (nat (e + p))" by simp | |
| 766 | have r: "\<lfloor>(m * 2 powr e) * 2 powr real p\<rfloor> = (m * 2 powr e) * 2 powr real p" | |
| 767 | by (auto intro: exI[where x="m*2^nat (e+p)"] | |
| 768 | simp add: ac_simps powr_add[symmetric] r powr_realpow) | |
| 769 | with `\<not> p + e < 0` show ?thesis | |
| 57862 | 770 | by transfer (auto simp add: round_down_def field_simps powr_add powr_minus) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 771 | qed | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 772 | hide_fact (open) compute_float_down | 
| 24301 | 773 | |
| 54782 | 774 | lemma abs_round_down_le: "\<bar>f - (round_down e f)\<bar> \<le> 2 powr -e" | 
| 775 | using round_down_correct[of f e] by simp | |
| 776 | ||
| 777 | lemma abs_round_up_le: "\<bar>f - (round_up e f)\<bar> \<le> 2 powr -e" | |
| 778 | using round_up_correct[of e f] by simp | |
| 779 | ||
| 780 | lemma round_down_nonneg: "0 \<le> s \<Longrightarrow> 0 \<le> round_down p s" | |
| 56536 | 781 | by (auto simp: round_down_def) | 
| 54782 | 782 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 783 | lemma ceil_divide_floor_conv: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 784 | assumes "b \<noteq> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 785 | shows "\<lceil>real a / real b\<rceil> = (if b dvd a then a div b else \<lfloor>real a / real b\<rfloor> + 1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 786 | proof cases | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 787 | assume "\<not> b dvd a" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 788 | hence "a mod b \<noteq> 0" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 789 | hence ne: "real (a mod b) / real b \<noteq> 0" using `b \<noteq> 0` by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 790 | have "\<lceil>real a / real b\<rceil> = \<lfloor>real a / real b\<rfloor> + 1" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 791 | apply (rule ceiling_eq) apply (auto simp: floor_divide_eq_div[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 792 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 793 | have "real \<lfloor>real a / real b\<rfloor> \<le> real a / real b" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 794 | moreover have "real \<lfloor>real a / real b\<rfloor> \<noteq> real a / real b" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 795 | apply (subst (2) real_of_int_div_aux) unfolding floor_divide_eq_div using ne `b \<noteq> 0` by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 796 | ultimately show "real \<lfloor>real a / real b\<rfloor> < real a / real b" by arith | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 797 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 798 | thus ?thesis using `\<not> b dvd a` by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 799 | qed (simp add: ceiling_def real_of_int_minus[symmetric] divide_minus_left[symmetric] | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 800 | floor_divide_eq_div dvd_neg_div del: divide_minus_left real_of_int_minus) | 
| 19765 | 801 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 802 | lemma compute_float_up[code]: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 803 | "float_up p x = - float_down p (-x)" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 804 | by transfer (simp add: round_down_uminus_eq) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 805 | hide_fact (open) compute_float_up | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 806 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 807 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 808 | subsection {* Compute bitlen of integers *}
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 809 | |
| 47600 | 810 | definition bitlen :: "int \<Rightarrow> int" where | 
| 811 | "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)" | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 812 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 813 | lemma bitlen_nonneg: "0 \<le> bitlen x" | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 814 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 815 |   {
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 816 | assume "0 > x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 817 | have "-1 = log 2 (inverse 2)" by (subst log_inverse) simp_all | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 818 | also have "... < log 2 (-x)" using `0 > x` by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 819 | finally have "-1 < log 2 (-x)" . | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 820 | } thus "0 \<le> bitlen x" unfolding bitlen_def by (auto intro!: add_nonneg_nonneg) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 821 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 822 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 823 | lemma bitlen_bounds: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 824 | assumes "x > 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 825 | shows "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 826 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 827 | have "(2::real) ^ nat \<lfloor>log 2 (real x)\<rfloor> = 2 powr real (floor (log 2 (real x)))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 828 | using powr_realpow[symmetric, of 2 "nat \<lfloor>log 2 (real x)\<rfloor>"] `x > 0` | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 829 | using real_nat_eq_real[of "floor (log 2 (real x))"] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 830 | by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 831 | also have "... \<le> 2 powr log 2 (real x)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 832 | by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 833 | also have "... = real x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 834 | using `0 < x` by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 835 | finally have "2 ^ nat \<lfloor>log 2 (real x)\<rfloor> \<le> real x" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 836 | thus "2 ^ nat (bitlen x - 1) \<le> x" using `x > 0` | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 837 | by (simp add: bitlen_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 838 | next | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 839 | have "x \<le> 2 powr (log 2 x)" using `x > 0` by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 840 | also have "... < 2 ^ nat (\<lfloor>log 2 (real x)\<rfloor> + 1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 841 | apply (simp add: powr_realpow[symmetric]) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 842 | using `x > 0` by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 843 | finally show "x < 2 ^ nat (bitlen x)" using `x > 0` | 
| 58989 | 844 | by (simp add: bitlen_def ac_simps) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 845 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 846 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 847 | lemma bitlen_pow2[simp]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 848 | assumes "b > 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 849 | shows "bitlen (b * 2 ^ c) = bitlen b + c" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 850 | proof - | 
| 56544 | 851 | from assms have "b * 2 ^ c > 0" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 852 | thus ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 853 | using floor_add[of "log 2 b" c] assms | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 854 | by (auto simp add: log_mult log_nat_power bitlen_def) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 855 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 856 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 857 | lemma bitlen_Float: | 
| 53381 | 858 | fixes m e | 
| 859 | defines "f \<equiv> Float m e" | |
| 860 | shows "bitlen (\<bar>mantissa f\<bar>) + exponent f = (if m = 0 then 0 else bitlen \<bar>m\<bar> + e)" | |
| 861 | proof (cases "m = 0") | |
| 862 | case True | |
| 863 | then show ?thesis by (simp add: f_def bitlen_def Float_def) | |
| 864 | next | |
| 865 | case False | |
| 47600 | 866 | hence "f \<noteq> float_of 0" | 
| 867 | unfolding real_of_float_eq by (simp add: f_def) | |
| 868 | hence "mantissa f \<noteq> 0" | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 869 | by (simp add: mantissa_noteq_0) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 870 | moreover | 
| 53381 | 871 | obtain i where "m = mantissa f * 2 ^ i" "e = exponent f - int i" | 
| 872 | by (rule f_def[THEN denormalize_shift, OF `f \<noteq> float_of 0`]) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 873 | ultimately show ?thesis by (simp add: abs_mult) | 
| 53381 | 874 | qed | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 875 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 876 | lemma compute_bitlen[code]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 877 | shows "bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 878 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 879 |   { assume "2 \<le> x"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 880 | then have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 (x - x mod 2)\<rfloor>" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 881 | by (simp add: log_mult zmod_zdiv_equality') | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 882 | also have "\<dots> = \<lfloor>log 2 (real x)\<rfloor>" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 883 | proof cases | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 884 | assume "x mod 2 = 0" then show ?thesis by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 885 | next | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 886 | def n \<equiv> "\<lfloor>log 2 (real x)\<rfloor>" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 887 | then have "0 \<le> n" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 888 | using `2 \<le> x` by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 889 | assume "x mod 2 \<noteq> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 890 | with `2 \<le> x` have "x mod 2 = 1" "\<not> 2 dvd x" by (auto simp add: dvd_eq_mod_eq_0) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 891 | with `2 \<le> x` have "x \<noteq> 2^nat n" by (cases "nat n") auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 892 | moreover | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 893 |       { have "real (2^nat n :: int) = 2 powr (nat n)"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 894 | by (simp add: powr_realpow) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 895 | also have "\<dots> \<le> 2 powr (log 2 x)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 896 | using `2 \<le> x` by (simp add: n_def del: powr_log_cancel) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 897 | finally have "2^nat n \<le> x" using `2 \<le> x` by simp } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 898 | ultimately have "2^nat n \<le> x - 1" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 899 | then have "2^nat n \<le> real (x - 1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 900 | unfolding real_of_int_le_iff[symmetric] by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 901 |       { have "n = \<lfloor>log 2 (2^nat n)\<rfloor>"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 902 | using `0 \<le> n` by (simp add: log_nat_power) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 903 | also have "\<dots> \<le> \<lfloor>log 2 (x - 1)\<rfloor>" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 904 | using `2^nat n \<le> real (x - 1)` `0 \<le> n` `2 \<le> x` by (auto intro: floor_mono) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 905 | finally have "n \<le> \<lfloor>log 2 (x - 1)\<rfloor>" . } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 906 | moreover have "\<lfloor>log 2 (x - 1)\<rfloor> \<le> n" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 907 | using `2 \<le> x` by (auto simp add: n_def intro!: floor_mono) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 908 | ultimately show "\<lfloor>log 2 (x - x mod 2)\<rfloor> = \<lfloor>log 2 x\<rfloor>" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 909 | unfolding n_def `x mod 2 = 1` by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 910 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 911 | finally have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 x\<rfloor>" . } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 912 | moreover | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 913 |   { assume "x < 2" "0 < x"
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 914 | then have "x = 1" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 915 | then have "\<lfloor>log 2 (real x)\<rfloor> = 0" by simp } | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 916 | ultimately show ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 917 | unfolding bitlen_def | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 918 | by (auto simp: pos_imp_zdiv_pos_iff not_le) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 919 | qed | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 920 | hide_fact (open) compute_bitlen | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 921 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 922 | lemma float_gt1_scale: assumes "1 \<le> Float m e" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 923 | shows "0 \<le> e + (bitlen m - 1)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 924 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 925 | have "0 < Float m e" using assms by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 926 | hence "0 < m" using powr_gt_zero[of 2 e] | 
| 47600 | 927 | by (auto simp: zero_less_mult_iff) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 928 | hence "m \<noteq> 0" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 929 | show ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 930 | proof (cases "0 \<le> e") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 931 | case True thus ?thesis using `0 < m` by (simp add: bitlen_def) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 932 | next | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 933 | have "(1::int) < 2" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 934 | case False let ?S = "2^(nat (-e))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 935 | have "inverse (2 ^ nat (- e)) = 2 powr e" using assms False powr_realpow[of 2 "nat (-e)"] | 
| 57862 | 936 | by (auto simp: powr_minus field_simps) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 937 | hence "1 \<le> real m * inverse ?S" using assms False powr_realpow[of 2 "nat (-e)"] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 938 | by (auto simp: powr_minus) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 939 | hence "1 * ?S \<le> real m * inverse ?S * ?S" by (rule mult_right_mono, auto) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57492diff
changeset | 940 | hence "?S \<le> real m" unfolding mult.assoc by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 941 | hence "?S \<le> m" unfolding real_of_int_le_iff[symmetric] by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 942 | from this bitlen_bounds[OF `0 < m`, THEN conjunct2] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 943 | have "nat (-e) < (nat (bitlen m))" unfolding power_strict_increasing_iff[OF `1 < 2`, symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 944 | by (rule order_le_less_trans) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 945 | hence "-e < bitlen m" using False by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 946 | thus ?thesis by auto | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 947 | qed | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 948 | qed | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 949 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 950 | lemma bitlen_div: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 951 | assumes "0 < m" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 952 | shows "1 \<le> real m / 2^nat (bitlen m - 1)" and "real m / 2^nat (bitlen m - 1) < 2" | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 953 | proof - | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 954 | let ?B = "2^nat(bitlen m - 1)" | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 955 | |
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 956 | have "?B \<le> m" using bitlen_bounds[OF `0 <m`] .. | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 957 | hence "1 * ?B \<le> real m" unfolding real_of_int_le_iff[symmetric] by auto | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 958 | thus "1 \<le> real m / ?B" by auto | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 959 | |
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 960 | have "m \<noteq> 0" using assms by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 961 | have "0 \<le> bitlen m - 1" using `0 < m` by (auto simp: bitlen_def) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 962 | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 963 | have "m < 2^nat(bitlen m)" using bitlen_bounds[OF `0 <m`] .. | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 964 | also have "\<dots> = 2^nat(bitlen m - 1 + 1)" using `0 < m` by (auto simp: bitlen_def) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 965 | also have "\<dots> = ?B * 2" unfolding nat_add_distrib[OF `0 \<le> bitlen m - 1` zero_le_one] by auto | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 966 | finally have "real m < 2 * ?B" unfolding real_of_int_less_iff[symmetric] by auto | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 967 | hence "real m / ?B < 2 * ?B / ?B" by (rule divide_strict_right_mono, auto) | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 968 | thus "real m / ?B < 2" by auto | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 969 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 970 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 971 | subsection {* Truncating Real Numbers*}
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 972 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 973 | definition truncate_down::"nat \<Rightarrow> real \<Rightarrow> real" where | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 974 | "truncate_down prec x = round_down (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 975 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 976 | lemma truncate_down: "truncate_down prec x \<le> x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 977 | using round_down by (simp add: truncate_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 978 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 979 | lemma truncate_down_le: "x \<le> y \<Longrightarrow> truncate_down prec x \<le> y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 980 | by (rule order_trans[OF truncate_down]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 981 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 982 | lemma truncate_down_zero[simp]: "truncate_down prec 0 = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 983 | by (simp add: truncate_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 984 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 985 | lemma truncate_down_float[simp]: "truncate_down p x \<in> float" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 986 | by (auto simp: truncate_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 987 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 988 | definition truncate_up::"nat \<Rightarrow> real \<Rightarrow> real" where | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 989 | "truncate_up prec x = round_up (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 990 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 991 | lemma truncate_up: "x \<le> truncate_up prec x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 992 | using round_up by (simp add: truncate_up_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 993 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 994 | lemma truncate_up_le: "x \<le> y \<Longrightarrow> x \<le> truncate_up prec y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 995 | by (rule order_trans[OF _ truncate_up]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 996 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 997 | lemma truncate_up_zero[simp]: "truncate_up prec 0 = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 998 | by (simp add: truncate_up_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 999 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1000 | lemma truncate_up_uminus_eq: "truncate_up prec (-x) = - truncate_down prec x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1001 | and truncate_down_uminus_eq: "truncate_down prec (-x) = - truncate_up prec x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1002 | by (auto simp: truncate_up_def round_up_def truncate_down_def round_down_def ceiling_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1003 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1004 | lemma truncate_up_float[simp]: "truncate_up p x \<in> float" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1005 | by (auto simp: truncate_up_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1006 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1007 | lemma mult_powr_eq: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> x * b powr y = b powr (y + log b x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1008 | by (simp_all add: powr_add) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1009 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1010 | lemma truncate_down_pos: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1011 | assumes "x > 0" "p > 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1012 | shows "truncate_down p x > 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1013 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1014 | have "0 \<le> log 2 x - real \<lfloor>log 2 x\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1015 | by (simp add: algebra_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1016 | from this assms | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1017 | show ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1018 | by (auto simp: truncate_down_def round_down_def mult_powr_eq | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1019 | intro!: ge_one_powr_ge_zero mult_pos_pos) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1020 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1021 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1022 | lemma truncate_down_nonneg: "0 \<le> y \<Longrightarrow> 0 \<le> truncate_down prec y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1023 | by (auto simp: truncate_down_def round_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1024 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1025 | lemma truncate_down_ge1: "1 \<le> x \<Longrightarrow> 1 \<le> p \<Longrightarrow> 1 \<le> truncate_down p x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1026 | by (auto simp: truncate_down_def algebra_simps intro!: round_down_ge1 add_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1027 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1028 | lemma truncate_up_nonpos: "x \<le> 0 \<Longrightarrow> truncate_up prec x \<le> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1029 | by (auto simp: truncate_up_def round_up_def intro!: mult_nonpos_nonneg) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1030 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1031 | lemma truncate_up_le1: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1032 | assumes "x \<le> 1" "1 \<le> p" shows "truncate_up p x \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1033 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1034 |   {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1035 | assume "x \<le> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1036 | with truncate_up_nonpos[OF this, of p] have ?thesis by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1037 |   } moreover {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1038 | assume "x > 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1039 | hence le: "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<le> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1040 | using assms by (auto simp: log_less_iff) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1041 | from assms have "1 \<le> int p" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1042 | from add_mono[OF this le] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1043 | have ?thesis using assms | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1044 | by (simp add: truncate_up_def round_up_le1 add_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1045 | } ultimately show ?thesis by arith | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1046 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1047 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1048 | subsection {* Truncating Floats*}
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1049 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1050 | lift_definition float_round_up :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_up | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1051 | by (simp add: truncate_up_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1052 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1053 | lemma float_round_up: "real x \<le> real (float_round_up prec x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1054 | using truncate_up by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1055 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1056 | lemma float_round_up_zero[simp]: "float_round_up prec 0 = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1057 | by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1058 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1059 | lift_definition float_round_down :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_down | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1060 | by (simp add: truncate_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1061 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1062 | lemma float_round_down: "real (float_round_down prec x) \<le> real x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1063 | using truncate_down by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1064 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1065 | lemma float_round_down_zero[simp]: "float_round_down prec 0 = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1066 | by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1067 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1068 | lemmas float_round_up_le = order_trans[OF _ float_round_up] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1069 | and float_round_down_le = order_trans[OF float_round_down] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1070 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1071 | lemma minus_float_round_up_eq: "- float_round_up prec x = float_round_down prec (- x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1072 | and minus_float_round_down_eq: "- float_round_down prec x = float_round_up prec (- x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1073 | by (transfer, simp add: truncate_down_uminus_eq truncate_up_uminus_eq)+ | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1074 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1075 | lemma compute_float_round_down[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1076 | "float_round_down prec (Float m e) = (let d = bitlen (abs m) - int prec in | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1077 | if 0 < d then Float (div_twopow m (nat d)) (e + d) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1078 | else Float m e)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1079 | using Float.compute_float_down[of "prec - bitlen \<bar>m\<bar> - e" m e, symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1080 | by transfer (simp add: field_simps abs_mult log_mult bitlen_def truncate_down_def | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1081 | cong del: if_weak_cong) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1082 | hide_fact (open) compute_float_round_down | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1083 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1084 | lemma compute_float_round_up[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1085 | "float_round_up prec x = - float_round_down prec (-x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1086 | by transfer (simp add: truncate_down_uminus_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1087 | hide_fact (open) compute_float_round_up | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1088 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1089 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1090 | subsection {* Approximation of positive rationals *}
 | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1091 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1092 | lemma div_mult_twopow_eq: fixes a b::nat shows "a div ((2::nat) ^ n) div b = a div (b * 2 ^ n)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1093 | by (cases "b=0") (simp_all add: div_mult2_eq[symmetric] ac_simps) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1094 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1095 | lemma real_div_nat_eq_floor_of_divide: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1096 | fixes a b::nat | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1097 | shows "a div b = real (floor (a/b))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1098 | by (metis floor_divide_eq_div real_of_int_of_nat_eq zdiv_int) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1099 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1100 | definition "rat_precision prec x y = int prec - (bitlen x - bitlen y)" | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1101 | |
| 47600 | 1102 | lift_definition lapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float" | 
| 1103 | is "\<lambda>prec (x::nat) (y::nat). round_down (rat_precision prec x y) (x / y)" by simp | |
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1104 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1105 | lemma compute_lapprox_posrat[code]: | 
| 53381 | 1106 | fixes prec x y | 
| 1107 | shows "lapprox_posrat prec x y = | |
| 1108 | (let | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1109 | l = rat_precision prec x y; | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1110 | d = if 0 \<le> l then x * 2^nat l div y else x div 2^nat (- l) div y | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1111 | in normfloat (Float d (- l)))" | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1112 | unfolding div_mult_twopow_eq | 
| 47600 | 1113 | by transfer | 
| 47615 | 1114 | (simp add: round_down_def powr_int real_div_nat_eq_floor_of_divide field_simps Let_def | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1115 | del: two_powr_minus_int_float) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 1116 | hide_fact (open) compute_lapprox_posrat | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1117 | |
| 47600 | 1118 | lift_definition rapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float" | 
| 1119 | is "\<lambda>prec (x::nat) (y::nat). round_up (rat_precision prec x y) (x / y)" by simp | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1120 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1121 | lemma compute_rapprox_posrat[code]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1122 | fixes prec x y | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1123 | notes divmod_int_mod_div[simp] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1124 | defines "l \<equiv> rat_precision prec x y" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1125 | shows "rapprox_posrat prec x y = (let | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1126 | l = l ; | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1127 | X = if 0 \<le> l then (x * 2^nat l, y) else (x, y * 2^nat(-l)) ; | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1128 | (d, m) = divmod_int (fst X) (snd X) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1129 | in normfloat (Float (d + (if m = 0 \<or> y = 0 then 0 else 1)) (- l)))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1130 | proof (cases "y = 0") | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1131 | assume "y = 0" thus ?thesis by transfer simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1132 | next | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1133 | assume "y \<noteq> 0" | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1134 | show ?thesis | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1135 | proof (cases "0 \<le> l") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1136 | assume "0 \<le> l" | 
| 56777 | 1137 | def x' \<equiv> "x * 2 ^ nat l" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1138 | have "int x * 2 ^ nat l = x'" by (simp add: x'_def int_mult int_power) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1139 | moreover have "real x * 2 powr real l = real x'" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1140 | by (simp add: powr_realpow[symmetric] `0 \<le> l` x'_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1141 | ultimately show ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1142 | using ceil_divide_floor_conv[of y x'] powr_realpow[of 2 "nat l"] `0 \<le> l` `y \<noteq> 0` | 
| 47600 | 1143 | l_def[symmetric, THEN meta_eq_to_obj_eq] | 
| 58834 | 1144 | by transfer (auto simp add: floor_divide_eq_div [symmetric] round_up_def) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1145 | next | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1146 | assume "\<not> 0 \<le> l" | 
| 56777 | 1147 | def y' \<equiv> "y * 2 ^ nat (- l)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1148 | from `y \<noteq> 0` have "y' \<noteq> 0" by (simp add: y'_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1149 | have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def int_mult int_power) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1150 | moreover have "real x * real (2::int) powr real l / real y = x / real y'" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1151 | using `\<not> 0 \<le> l` | 
| 57862 | 1152 | by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1153 | ultimately show ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1154 | using ceil_divide_floor_conv[of y' x] `\<not> 0 \<le> l` `y' \<noteq> 0` `y \<noteq> 0` | 
| 47600 | 1155 | l_def[symmetric, THEN meta_eq_to_obj_eq] | 
| 1156 | by transfer | |
| 58834 | 1157 | (auto simp add: round_up_def ceil_divide_floor_conv floor_divide_eq_div [symmetric]) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1158 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1159 | qed | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 1160 | hide_fact (open) compute_rapprox_posrat | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1161 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1162 | lemma rat_precision_pos: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1163 | assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1164 | shows "rat_precision n (int x) (int y) > 0" | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1165 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1166 |   { assume "0 < x" hence "log 2 x + 1 = log 2 (2 * x)" by (simp add: log_mult) }
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1167 | hence "bitlen (int x) < bitlen (int y)" using assms | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1168 | by (simp add: bitlen_def del: floor_add_one) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1169 | (auto intro!: floor_mono simp add: floor_add_one[symmetric] simp del: floor_add floor_add_one) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1170 | thus ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1171 | using assms by (auto intro!: pos_add_strict simp add: field_simps rat_precision_def) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1172 | qed | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1173 | |
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1174 | lemma rapprox_posrat_less1: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1175 | shows "0 \<le> x \<Longrightarrow> 0 < y \<Longrightarrow> 2 * x < y \<Longrightarrow> 0 < n \<Longrightarrow> real (rapprox_posrat n x y) < 1" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1176 | by transfer (simp add: rat_precision_pos round_up_less1) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1177 | |
| 47600 | 1178 | lift_definition lapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is | 
| 1179 | "\<lambda>prec (x::int) (y::int). round_down (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp | |
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1180 | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1181 | lemma compute_lapprox_rat[code]: | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1182 | "lapprox_rat prec x y = | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1183 | (if y = 0 then 0 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1184 | else if 0 \<le> x then | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1185 | (if 0 < y then lapprox_posrat prec (nat x) (nat y) | 
| 53381 | 1186 | else - (rapprox_posrat prec (nat x) (nat (-y)))) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1187 | else (if 0 < y | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1188 | then - (rapprox_posrat prec (nat (-x)) (nat y)) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1189 | else lapprox_posrat prec (nat (-x)) (nat (-y))))" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 1190 | by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 1191 | hide_fact (open) compute_lapprox_rat | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1192 | |
| 47600 | 1193 | lift_definition rapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is | 
| 1194 | "\<lambda>prec (x::int) (y::int). round_up (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1195 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1196 | lemma "rapprox_rat = rapprox_posrat" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1197 | by transfer auto | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1198 | |
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1199 | lemma "lapprox_rat = lapprox_posrat" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1200 | by transfer auto | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1201 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1202 | lemma compute_rapprox_rat[code]: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1203 | "rapprox_rat prec x y = - lapprox_rat prec (-x) y" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1204 | by transfer (simp add: round_down_uminus_eq) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 1205 | hide_fact (open) compute_rapprox_rat | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1206 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1207 | subsection {* Division *}
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1208 | |
| 54782 | 1209 | definition "real_divl prec a b = round_down (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)" | 
| 1210 | ||
| 1211 | definition "real_divr prec a b = round_up (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)" | |
| 1212 | ||
| 1213 | lift_definition float_divl :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divl | |
| 1214 | by (simp add: real_divl_def) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1215 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1216 | lemma compute_float_divl[code]: | 
| 47600 | 1217 | "float_divl prec (Float m1 s1) (Float m2 s2) = lapprox_rat prec m1 m2 * Float 1 (s1 - s2)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1218 | proof cases | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1219 | let ?f1 = "real m1 * 2 powr real s1" and ?f2 = "real m2 * 2 powr real s2" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1220 | let ?m = "real m1 / real m2" and ?s = "2 powr real (s1 - s2)" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1221 | assume not_0: "m1 \<noteq> 0 \<and> m2 \<noteq> 0" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1222 | then have eq2: "(int prec + \<lfloor>log 2 \<bar>?f2\<bar>\<rfloor> - \<lfloor>log 2 \<bar>?f1\<bar>\<rfloor>) = rat_precision prec \<bar>m1\<bar> \<bar>m2\<bar> + (s2 - s1)" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1223 | by (simp add: abs_mult log_mult rat_precision_def bitlen_def) | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1224 | have eq1: "real m1 * 2 powr real s1 / (real m2 * 2 powr real s2) = ?m * ?s" | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1225 | by (simp add: field_simps powr_divide2[symmetric]) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1226 | |
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1227 | show ?thesis | 
| 53381 | 1228 | using not_0 | 
| 54782 | 1229 | by (transfer fixing: m1 s1 m2 s2 prec) (unfold eq1 eq2 round_down_shift real_divl_def, | 
| 1230 | simp add: field_simps) | |
| 1231 | qed (transfer, auto simp: real_divl_def) | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 1232 | hide_fact (open) compute_float_divl | 
| 47600 | 1233 | |
| 54782 | 1234 | lift_definition float_divr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divr | 
| 1235 | by (simp add: real_divr_def) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1236 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1237 | lemma compute_float_divr[code]: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1238 | "float_divr prec x y = - float_divl prec (-x) y" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1239 | by transfer (simp add: real_divr_def real_divl_def round_down_uminus_eq) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1240 | hide_fact (open) compute_float_divr | 
| 47600 | 1241 | |
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1242 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1243 | subsection {* Approximate Power *}
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1244 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1245 | lemma div2_less_self[termination_simp]: fixes n::nat shows "odd n \<Longrightarrow> n div 2 < n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1246 | by (simp add: odd_pos) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1247 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1248 | fun power_down :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1249 | "power_down p x 0 = 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1250 | | "power_down p x (Suc n) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1251 | (if odd n then truncate_down (Suc p) ((power_down p x (Suc n div 2))\<^sup>2) else truncate_down (Suc p) (x * power_down p x n))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1252 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1253 | fun power_up :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1254 | "power_up p x 0 = 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1255 | | "power_up p x (Suc n) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1256 | (if odd n then truncate_up p ((power_up p x (Suc n div 2))\<^sup>2) else truncate_up p (x * power_up p x n))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1257 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1258 | lift_definition power_up_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_up | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1259 | by (induct_tac rule: power_up.induct) simp_all | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1260 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1261 | lift_definition power_down_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_down | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1262 | by (induct_tac rule: power_down.induct) simp_all | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1263 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1264 | lemma power_float_transfer[transfer_rule]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1265 | "(rel_fun pcr_float (rel_fun op = pcr_float)) op ^ op ^" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1266 | unfolding power_def | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1267 | by transfer_prover | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1268 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1269 | lemma compute_power_up_fl[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1270 | "power_up_fl p x 0 = 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1271 | "power_up_fl p x (Suc n) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1272 | (if odd n then float_round_up p ((power_up_fl p x (Suc n div 2))\<^sup>2) else float_round_up p (x * power_up_fl p x n))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1273 | and compute_power_down_fl[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1274 | "power_down_fl p x 0 = 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1275 | "power_down_fl p x (Suc n) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1276 | (if odd n then float_round_down (Suc p) ((power_down_fl p x (Suc n div 2))\<^sup>2) else float_round_down (Suc p) (x * power_down_fl p x n))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1277 | unfolding atomize_conj | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1278 | by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1279 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1280 | lemma power_down_pos: "0 < x \<Longrightarrow> 0 < power_down p x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1281 | by (induct p x n rule: power_down.induct) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1282 | (auto simp del: odd_Suc_div_two intro!: truncate_down_pos) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1283 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1284 | lemma power_down_nonneg: "0 \<le> x \<Longrightarrow> 0 \<le> power_down p x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1285 | by (induct p x n rule: power_down.induct) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1286 | (auto simp del: odd_Suc_div_two intro!: truncate_down_nonneg mult_nonneg_nonneg) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1287 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1288 | lemma power_down: "0 \<le> x \<Longrightarrow> power_down p x n \<le> x ^ n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1289 | proof (induct p x n rule: power_down.induct) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1290 | case (2 p x n) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1291 |   {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1292 | assume "odd n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1293 | hence "(power_down p x (Suc n div 2)) ^ 2 \<le> (x ^ (Suc n div 2)) ^ 2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1294 | using 2 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1295 | by (auto intro: power_mono power_down_nonneg simp del: odd_Suc_div_two) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1296 | also have "\<dots> = x ^ (Suc n div 2 * 2)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1297 | by (simp add: power_mult[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1298 | also have "Suc n div 2 * 2 = Suc n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1299 | using `odd n` by presburger | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1300 | finally have ?case | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1301 | using `odd n` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1302 | by (auto intro!: truncate_down_le simp del: odd_Suc_div_two) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1303 | } thus ?case | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1304 | by (auto intro!: truncate_down_le mult_left_mono 2 mult_nonneg_nonneg power_down_nonneg) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1305 | qed simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1306 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1307 | lemma power_up: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up p x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1308 | proof (induct p x n rule: power_up.induct) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1309 | case (2 p x n) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1310 |   {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1311 | assume "odd n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1312 | hence "Suc n = Suc n div 2 * 2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1313 | using `odd n` even_Suc by presburger | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1314 | hence "x ^ Suc n \<le> (x ^ (Suc n div 2))\<^sup>2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1315 | by (simp add: power_mult[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1316 | also have "\<dots> \<le> (power_up p x (Suc n div 2))\<^sup>2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1317 | using 2 `odd n` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1318 | by (auto intro: power_mono simp del: odd_Suc_div_two ) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1319 | finally have ?case | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1320 | using `odd n` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1321 | by (auto intro!: truncate_up_le simp del: odd_Suc_div_two ) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1322 | } thus ?case | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1323 | by (auto intro!: truncate_up_le mult_left_mono 2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1324 | qed simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1325 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1326 | lemmas power_up_le = order_trans[OF _ power_up] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1327 | and power_up_less = less_le_trans[OF _ power_up] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1328 | and power_down_le = order_trans[OF power_down] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1329 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1330 | lemma power_down_fl: "0 \<le> x \<Longrightarrow> power_down_fl p x n \<le> x ^ n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1331 | by transfer (rule power_down) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1332 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1333 | lemma power_up_fl: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up_fl p x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1334 | by transfer (rule power_up) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1335 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1336 | lemma real_power_up_fl: "real (power_up_fl p x n) = power_up p x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1337 | by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1338 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1339 | lemma real_power_down_fl: "real (power_down_fl p x n) = power_down p x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1340 | by transfer simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1341 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1342 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1343 | subsection {* Approximate Addition *}
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1344 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1345 | definition "plus_down prec x y = truncate_down prec (x + y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1346 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1347 | definition "plus_up prec x y = truncate_up prec (x + y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1348 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1349 | lemma float_plus_down_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_down p x y \<in> float" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1350 | by (simp add: plus_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1351 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1352 | lemma float_plus_up_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_up p x y \<in> float" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1353 | by (simp add: plus_up_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1354 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1355 | lift_definition float_plus_down::"nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_down .. | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1356 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1357 | lift_definition float_plus_up::"nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_up .. | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1358 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1359 | lemma plus_down: "plus_down prec x y \<le> x + y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1360 | and plus_up: "x + y \<le> plus_up prec x y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1361 | by (auto simp: plus_down_def truncate_down plus_up_def truncate_up) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1362 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1363 | lemma float_plus_down: "real (float_plus_down prec x y) \<le> x + y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1364 | and float_plus_up: "x + y \<le> real (float_plus_up prec x y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1365 | by (transfer, rule plus_down plus_up)+ | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1366 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1367 | lemmas plus_down_le = order_trans[OF plus_down] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1368 | and plus_up_le = order_trans[OF _ plus_up] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1369 | and float_plus_down_le = order_trans[OF float_plus_down] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1370 | and float_plus_up_le = order_trans[OF _ float_plus_up] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1371 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1372 | lemma compute_plus_up[code]: "plus_up p x y = - plus_down p (-x) (-y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1373 | using truncate_down_uminus_eq[of p "x + y"] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1374 | by (auto simp: plus_down_def plus_up_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1375 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1376 | lemma | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1377 | truncate_down_log2_eqI: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1378 | assumes "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1379 | assumes "\<lfloor>x * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)\<rfloor> = \<lfloor>y * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1380 | shows "truncate_down p x = truncate_down p y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1381 | using assms by (auto simp: truncate_down_def round_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1382 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1383 | lemma bitlen_eq_zero_iff: "bitlen x = 0 \<longleftrightarrow> x \<le> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1384 | by (clarsimp simp add: bitlen_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1385 | (metis Float.compute_bitlen add.commute bitlen_def bitlen_nonneg less_add_same_cancel2 not_less | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1386 | zero_less_one) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1387 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1388 | lemma | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1389 | sum_neq_zeroI: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1390 | fixes a k::real | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1391 | shows "abs a \<ge> k \<Longrightarrow> abs b < k \<Longrightarrow> a + b \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1392 | and "abs a > k \<Longrightarrow> abs b \<le> k \<Longrightarrow> a + b \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1393 | by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1394 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1395 | lemma | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1396 | abs_real_le_2_powr_bitlen[simp]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1397 | "\<bar>real m2\<bar> < 2 powr real (bitlen \<bar>m2\<bar>)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1398 | proof cases | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1399 | assume "m2 \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1400 | hence "\<bar>m2\<bar> < 2 ^ nat (bitlen \<bar>m2\<bar>)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1401 | using bitlen_bounds[of "\<bar>m2\<bar>"] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1402 | by (auto simp: powr_add bitlen_nonneg) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1403 | thus ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1404 | by (simp add: powr_int bitlen_nonneg real_of_int_less_iff[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1405 | qed simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1406 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1407 | lemma floor_sum_times_2_powr_sgn_eq: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1408 | fixes ai p q::int | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1409 | and a b::real | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1410 | assumes "a * 2 powr p = ai" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1411 | assumes b_le_1: "abs (b * 2 powr (p + 1)) \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1412 | assumes leqp: "q \<le> p" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1413 | shows "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2 * ai + sgn b) * 2 powr (q - p - 1)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1414 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1415 |   {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1416 | assume "b = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1417 | hence ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1418 | by (simp add: assms(1)[symmetric] powr_add[symmetric] algebra_simps powr_mult_base) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1419 |   } moreover {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1420 | assume "b > 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1421 | hence "b * 2 powr p < abs (b * 2 powr (p + 1))" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1422 | also note b_le_1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1423 | finally have b_less_1: "b * 2 powr real p < 1" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1424 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1425 | from b_less_1 `b > 0` have floor_eq: "\<lfloor>b * 2 powr real p\<rfloor> = 0" "\<lfloor>sgn b / 2\<rfloor> = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1426 | by (simp_all add: floor_eq_iff) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1427 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1428 | have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(a + b) * 2 powr p * 2 powr (q - p)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1429 | by (simp add: algebra_simps powr_realpow[symmetric] powr_add[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1430 | also have "\<dots> = \<lfloor>(ai + b * 2 powr p) * 2 powr (q - p)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1431 | by (simp add: assms algebra_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1432 | also have "\<dots> = \<lfloor>(ai + b * 2 powr p) / real ((2::int) ^ nat (p - q))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1433 | using assms | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1434 | by (simp add: algebra_simps powr_realpow[symmetric] divide_powr_uminus powr_add[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1435 | also have "\<dots> = \<lfloor>ai / real ((2::int) ^ nat (p - q))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1436 | by (simp del: real_of_int_power add: floor_divide_real_eq_div floor_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1437 | finally have "\<lfloor>(a + b) * 2 powr real q\<rfloor> = \<lfloor>real ai / real ((2::int) ^ nat (p - q))\<rfloor>" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1438 | moreover | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1439 |     {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1440 | have "\<lfloor>(2 * ai + sgn b) * 2 powr (real (q - p) - 1)\<rfloor> = \<lfloor>(ai + sgn b / 2) * 2 powr (q - p)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1441 | by (subst powr_divide2[symmetric]) (simp add: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1442 | also have "\<dots> = \<lfloor>(ai + sgn b / 2) / real ((2::int) ^ nat (p - q))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1443 | using leqp by (simp add: powr_realpow[symmetric] powr_divide2[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1444 | also have "\<dots> = \<lfloor>ai / real ((2::int) ^ nat (p - q))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1445 | by (simp del: real_of_int_power add: floor_divide_real_eq_div floor_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1446 | finally | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1447 | have "\<lfloor>(2 * ai + (sgn b)) * 2 powr (real (q - p) - 1)\<rfloor> = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1448 | \<lfloor>real ai / real ((2::int) ^ nat (p - q))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1449 | . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1450 | } ultimately have ?thesis by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1451 |   } moreover {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1452 | assume "\<not> 0 \<le> b" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1453 | hence "0 > b" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1454 | hence floor_eq: "\<lfloor>b * 2 powr (real p + 1)\<rfloor> = -1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1455 | using b_le_1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1456 | by (auto simp: floor_eq_iff algebra_simps pos_divide_le_eq[symmetric] abs_if divide_powr_uminus | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1457 | intro!: mult_neg_pos split: split_if_asm) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1458 | have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2*a + 2*b) * 2 powr p * 2 powr (q - p - 1)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1459 | by (simp add: algebra_simps powr_realpow[symmetric] powr_add[symmetric] powr_mult_base) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1460 | also have "\<dots> = \<lfloor>(2 * (a * 2 powr p) + 2 * b * 2 powr p) * 2 powr (q - p - 1)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1461 | by (simp add: algebra_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1462 | also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / 2 powr (1 - q + p)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1463 | using assms by (simp add: algebra_simps powr_mult_base divide_powr_uminus) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1464 | also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / real ((2::int) ^ nat (p - q + 1))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1465 | using assms by (simp add: algebra_simps powr_realpow[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1466 | also have "\<dots> = \<lfloor>(2 * ai - 1) / real ((2::int) ^ nat (p - q + 1))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1467 | using `b < 0` assms | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1468 | by (simp add: floor_divide_eq_div floor_eq floor_divide_real_eq_div | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1469 | del: real_of_int_mult real_of_int_power real_of_int_diff) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1470 | also have "\<dots> = \<lfloor>(2 * ai - 1) * 2 powr (q - p - 1)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1471 | using assms by (simp add: algebra_simps divide_powr_uminus powr_realpow[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1472 | finally have ?thesis using `b < 0` by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1473 | } ultimately show ?thesis by arith | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1474 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1475 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1476 | lemma | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1477 | log2_abs_int_add_less_half_sgn_eq: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1478 | fixes ai::int and b::real | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1479 | assumes "abs b \<le> 1/2" "ai \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1480 | shows "\<lfloor>log 2 \<bar>real ai + b\<bar>\<rfloor> = \<lfloor>log 2 \<bar>ai + sgn b / 2\<bar>\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1481 | proof cases | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1482 | assume "b = 0" thus ?thesis by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1483 | next | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1484 | assume "b \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1485 | def k \<equiv> "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1486 | hence "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor> = k" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1487 | hence k: "2 powr k \<le> \<bar>ai\<bar>" "\<bar>ai\<bar> < 2 powr (k + 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1488 | by (simp_all add: floor_log_eq_powr_iff `ai \<noteq> 0`) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1489 | have "k \<ge> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1490 | using assms by (auto simp: k_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1491 | def r \<equiv> "\<bar>ai\<bar> - 2 ^ nat k" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1492 | have r: "0 \<le> r" "r < 2 powr k" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1493 | using `k \<ge> 0` k | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1494 | by (auto simp: r_def k_def algebra_simps powr_add abs_if powr_int) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1495 | hence "r \<le> (2::int) ^ nat k - 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1496 | using `k \<ge> 0` by (auto simp: powr_int) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1497 | from this[simplified real_of_int_le_iff[symmetric]] `0 \<le> k` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1498 | have r_le: "r \<le> 2 powr k - 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1499 | by (auto simp: algebra_simps powr_int simp del: real_of_int_le_iff) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1500 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1501 | have "\<bar>ai\<bar> = 2 powr k + r" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1502 | using `k \<ge> 0` by (auto simp: k_def r_def powr_realpow[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1503 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1504 | have pos: "\<And>b::real. abs b < 1 \<Longrightarrow> 0 < 2 powr k + (r + b)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1505 | using `0 \<le> k` `ai \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1506 | by (auto simp add: r_def powr_realpow[symmetric] abs_if sgn_if algebra_simps | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1507 | split: split_if_asm) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1508 | have less: "\<bar>sgn ai * b\<bar> < 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1509 | and less': "\<bar>sgn (sgn ai * b) / 2\<bar> < 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1510 | using `abs b \<le> _` by (auto simp: abs_if sgn_if split: split_if_asm) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1511 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1512 | have floor_eq: "\<And>b::real. abs b \<le> 1 / 2 \<Longrightarrow> | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1513 | \<lfloor>log 2 (1 + (r + b) / 2 powr k)\<rfloor> = (if r = 0 \<and> b < 0 then -1 else 0)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1514 | using `k \<ge> 0` r r_le | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1515 | by (auto simp: floor_log_eq_powr_iff powr_minus_divide field_simps sgn_if) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1516 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1517 | from `real \<bar>ai\<bar> = _` have "\<bar>ai + b\<bar> = 2 powr k + (r + sgn ai * b)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1518 | using `abs b <= _` `0 \<le> k` r | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1519 | by (auto simp add: sgn_if abs_if) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1520 | also have "\<lfloor>log 2 \<dots>\<rfloor> = \<lfloor>log 2 (2 powr k + r + sgn (sgn ai * b) / 2)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1521 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1522 | have "2 powr k + (r + (sgn ai) * b) = 2 powr k * (1 + (r + sgn ai * b) / 2 powr k)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1523 | by (simp add: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1524 | also have "\<lfloor>log 2 \<dots>\<rfloor> = k + \<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1525 | using pos[OF less] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1526 | by (subst log_mult) (simp_all add: log_mult powr_mult field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1527 | also | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1528 | let ?if = "if r = 0 \<and> sgn ai * b < 0 then -1 else 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1529 | have "\<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor> = ?if" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1530 | using `abs b <= _` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1531 | by (intro floor_eq) (auto simp: abs_mult sgn_if) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1532 | also | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1533 | have "\<dots> = \<lfloor>log 2 (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1534 | by (subst floor_eq) (auto simp: sgn_if) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1535 | also have "k + \<dots> = \<lfloor>log 2 (2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k))\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1536 | unfolding floor_add2[symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1537 | using pos[OF less'] `abs b \<le> _` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1538 | by (simp add: field_simps add_log_eq_powr) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1539 | also have "2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1540 | 2 powr k + r + sgn (sgn ai * b) / 2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1541 | by (simp add: sgn_if field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1542 | finally show ?thesis . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1543 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1544 | also have "2 powr k + r + sgn (sgn ai * b) / 2 = \<bar>ai + sgn b / 2\<bar>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1545 | unfolding `real \<bar>ai\<bar> = _`[symmetric] using `ai \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1546 | by (auto simp: abs_if sgn_if algebra_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1547 | finally show ?thesis . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1548 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1549 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1550 | lemma compute_far_float_plus_down: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1551 | fixes m1 e1 m2 e2::int and p::nat | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1552 | defines "k1 \<equiv> p - nat (bitlen \<bar>m1\<bar>)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1553 | assumes H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - k1 - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1554 | shows "float_plus_down p (Float m1 e1) (Float m2 e2) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1555 | float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1556 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1557 | let ?a = "real (Float m1 e1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1558 | let ?b = "real (Float m2 e2)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1559 | let ?sum = "?a + ?b" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1560 | let ?shift = "real e2 - real e1 + real k1 + 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1561 | let ?m1 = "m1 * 2 ^ Suc k1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1562 | let ?m2 = "m2 * 2 powr ?shift" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1563 | let ?m2' = "sgn m2 / 2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1564 | let ?e = "e1 - int k1 - 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1565 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1566 | have sum_eq: "?sum = (?m1 + ?m2) * 2 powr ?e" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1567 | by (auto simp: powr_add[symmetric] powr_mult[symmetric] algebra_simps | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1568 | powr_realpow[symmetric] powr_mult_base) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1569 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1570 | have "\<bar>?m2\<bar> * 2 < 2 powr (bitlen \<bar>m2\<bar> + ?shift + 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1571 | by (auto simp: field_simps powr_add powr_mult_base powr_numeral powr_divide2[symmetric] abs_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1572 | also have "\<dots> \<le> 2 powr 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1573 | using H by (intro powr_mono) auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1574 | finally have abs_m2_less_half: "\<bar>?m2\<bar> < 1 / 2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1575 | by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1576 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1577 | hence "\<bar>real m2\<bar> < 2 powr -(?shift + 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1578 | unfolding powr_minus_divide by (auto simp: bitlen_def field_simps powr_mult_base abs_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1579 | also have "\<dots> \<le> 2 powr real (e1 - e2 - 2)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1580 | by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1581 | finally have b_less_quarter: "\<bar>?b\<bar> < 1/4 * 2 powr real e1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1582 | by (simp add: powr_add field_simps powr_divide2[symmetric] powr_numeral abs_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1583 | also have "1/4 < \<bar>real m1\<bar> / 2" using `m1 \<noteq> 0` by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1584 | finally have b_less_half_a: "\<bar>?b\<bar> < 1/2 * \<bar>?a\<bar>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1585 | by (simp add: algebra_simps powr_mult_base abs_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1586 | hence a_half_less_sum: "\<bar>?a\<bar> / 2 < \<bar>?sum\<bar>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1587 | by (auto simp: field_simps abs_if split: split_if_asm) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1588 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1589 | from b_less_half_a have "\<bar>?b\<bar> < \<bar>?a\<bar>" "\<bar>?b\<bar> \<le> \<bar>?a\<bar>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1590 | by simp_all | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1591 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1592 | have "\<bar>real (Float m1 e1)\<bar> \<ge> 1/4 * 2 powr real e1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1593 | using `m1 \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1594 | by (auto simp: powr_add powr_int bitlen_nonneg divide_right_mono abs_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1595 | hence "?sum \<noteq> 0" using b_less_quarter | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1596 | by (rule sum_neq_zeroI) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1597 | hence "?m1 + ?m2 \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1598 | unfolding sum_eq by (simp add: abs_mult zero_less_mult_iff) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1599 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1600 | have "\<bar>real ?m1\<bar> \<ge> 2 ^ Suc k1" "\<bar>?m2'\<bar> < 2 ^ Suc k1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1601 | using `m1 \<noteq> 0` `m2 \<noteq> 0` by (auto simp: sgn_if less_1_mult abs_mult simp del: power.simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1602 | hence sum'_nz: "?m1 + ?m2' \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1603 | by (intro sum_neq_zeroI) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1604 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1605 | have "\<lfloor>log 2 \<bar>real (Float m1 e1) + real (Float m2 e2)\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> + ?e" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1606 | using `?m1 + ?m2 \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1607 | unfolding floor_add[symmetric] sum_eq | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1608 | by (simp add: abs_mult log_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1609 | also have "\<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + sgn (real m2 * 2 powr ?shift) / 2\<bar>\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1610 | using abs_m2_less_half `m1 \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1611 | by (intro log2_abs_int_add_less_half_sgn_eq) (auto simp: abs_mult) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1612 | also have "sgn (real m2 * 2 powr ?shift) = sgn m2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1613 | by (auto simp: sgn_if zero_less_mult_iff less_not_sym) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1614 | also | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1615 | have "\<bar>?m1 + ?m2'\<bar> * 2 powr ?e = \<bar>?m1 * 2 + sgn m2\<bar> * 2 powr (?e - 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1616 | by (auto simp: field_simps powr_minus[symmetric] powr_divide2[symmetric] powr_mult_base) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1617 | hence "\<lfloor>log 2 \<bar>?m1 + ?m2'\<bar>\<rfloor> + ?e = \<lfloor>log 2 \<bar>real (Float (?m1 * 2 + sgn m2) (?e - 1))\<bar>\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1618 | using `?m1 + ?m2' \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1619 | unfolding floor_add[symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1620 | by (simp add: log_add_eq_powr abs_mult_pos) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1621 | finally | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1622 | have "\<lfloor>log 2 \<bar>?sum\<bar>\<rfloor> = \<lfloor>log 2 \<bar>real (Float (?m1*2 + sgn m2) (?e - 1))\<bar>\<rfloor>" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1623 | hence "plus_down p (Float m1 e1) (Float m2 e2) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1624 | truncate_down p (Float (?m1*2 + sgn m2) (?e - 1))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1625 | unfolding plus_down_def | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1626 | proof (rule truncate_down_log2_eqI) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1627 | let ?f = "(int p - \<lfloor>log 2 \<bar>real (Float m1 e1) + real (Float m2 e2)\<bar>\<rfloor> - 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1628 | let ?ai = "m1 * 2 ^ (Suc k1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1629 | have "\<lfloor>(?a + ?b) * 2 powr real ?f\<rfloor> = \<lfloor>(real (2 * ?ai) + sgn ?b) * 2 powr real (?f - - ?e - 1)\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1630 | proof (rule floor_sum_times_2_powr_sgn_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1631 | show "?a * 2 powr real (-?e) = real ?ai" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1632 | by (simp add: powr_add powr_realpow[symmetric] powr_divide2[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1633 | show "\<bar>?b * 2 powr real (-?e + 1)\<bar> \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1634 | using abs_m2_less_half | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1635 | by (simp add: abs_mult powr_add[symmetric] algebra_simps powr_mult_base) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1636 | next | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1637 | have "e1 + \<lfloor>log 2 \<bar>real m1\<bar>\<rfloor> - 1 = \<lfloor>log 2 \<bar>?a\<bar>\<rfloor> - 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1638 | using `m1 \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1639 | by (simp add: floor_add2[symmetric] algebra_simps log_mult abs_mult del: floor_add2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1640 | also have "\<dots> \<le> \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1641 | using a_half_less_sum `m1 \<noteq> 0` `?sum \<noteq> 0` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1642 | unfolding floor_subtract[symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1643 | by (auto simp add: log_minus_eq_powr powr_minus_divide | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1644 | intro!: floor_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1645 | finally | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1646 | have "int p - \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor> \<le> p - (bitlen \<bar>m1\<bar>) - e1 + 2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1647 | by (auto simp: algebra_simps bitlen_def `m1 \<noteq> 0`) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1648 | also have "\<dots> \<le> 1 - ?e" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1649 | using bitlen_nonneg[of "\<bar>m1\<bar>"] by (simp add: k1_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1650 | finally show "?f \<le> - ?e" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1651 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1652 | also have "sgn ?b = sgn m2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1653 | using powr_gt_zero[of 2 e2] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1654 | by (auto simp add: sgn_if zero_less_mult_iff simp del: powr_gt_zero) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1655 | also have "\<lfloor>(real (2 * ?m1) + real (sgn m2)) * 2 powr real (?f - - ?e - 1)\<rfloor> = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1656 | \<lfloor>Float (?m1 * 2 + sgn m2) (?e - 1) * 2 powr ?f\<rfloor>" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1657 | by (simp add: powr_add[symmetric] algebra_simps powr_realpow[symmetric]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1658 | finally | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1659 | show "\<lfloor>(?a + ?b) * 2 powr ?f\<rfloor> = \<lfloor>real (Float (?m1 * 2 + sgn m2) (?e - 1)) * 2 powr ?f\<rfloor>" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1660 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1661 | thus ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1662 | by transfer (simp add: plus_down_def ac_simps Let_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1663 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1664 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1665 | lemma compute_float_plus_down_naive[code]: "float_plus_down p x y = float_round_down p (x + y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1666 | by transfer (auto simp: plus_down_def) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1667 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1668 | lemma compute_float_plus_down[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1669 | fixes p::nat and m1 e1 m2 e2::int | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1670 | shows "float_plus_down p (Float m1 e1) (Float m2 e2) = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1671 | (if m1 = 0 then float_round_down p (Float m2 e2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1672 | else if m2 = 0 then float_round_down p (Float m1 e1) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1673 | else (if e1 \<ge> e2 then | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1674 | (let | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1675 | k1 = p - nat (bitlen \<bar>m1\<bar>) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1676 | in | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1677 | if bitlen \<bar>m2\<bar> > e1 - e2 - k1 - 2 then float_round_down p ((Float m1 e1) + (Float m2 e2)) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1678 | else float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1679 | else float_plus_down p (Float m2 e2) (Float m1 e1)))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1680 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1681 |   {
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1682 | assume H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - (p - nat (bitlen \<bar>m1\<bar>)) - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1683 | note compute_far_float_plus_down[OF H] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1684 | } | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1685 | thus ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1686 | by transfer (simp add: Let_def plus_down_def ac_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1687 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1688 | hide_fact (open) compute_far_float_plus_down | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1689 | hide_fact (open) compute_float_plus_down | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1690 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1691 | lemma compute_float_plus_up[code]: "float_plus_up p x y = - float_plus_down p (-x) (-y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1692 | using truncate_down_uminus_eq[of p "x + y"] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1693 | by transfer (simp add: plus_down_def plus_up_def ac_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1694 | hide_fact (open) compute_float_plus_up | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1695 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1696 | lemma mantissa_zero[simp]: "mantissa 0 = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1697 | by (metis mantissa_0 zero_float.abs_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1698 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1699 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1700 | subsection {* Lemmas needed by Approximate *}
 | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1701 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1702 | lemma Float_num[simp]: shows | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1703 | "real (Float 1 0) = 1" and "real (Float 1 1) = 2" and "real (Float 1 2) = 4" and | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58042diff
changeset | 1704 | "real (Float 1 (- 1)) = 1/2" and "real (Float 1 (- 2)) = 1/4" and "real (Float 1 (- 3)) = 1/8" and | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58042diff
changeset | 1705 | "real (Float (- 1) 0) = -1" and "real (Float (number_of n) 0) = number_of n" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1706 | using two_powr_int_float[of 2] two_powr_int_float[of "-1"] two_powr_int_float[of "-2"] two_powr_int_float[of "-3"] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1707 | using powr_realpow[of 2 2] powr_realpow[of 2 3] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1708 | using powr_minus[of 2 1] powr_minus[of 2 2] powr_minus[of 2 3] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1709 | by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1710 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1711 | lemma real_of_Float_int[simp]: "real (Float n 0) = real n" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1712 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1713 | lemma float_zero[simp]: "real (Float 0 e) = 0" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1714 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1715 | lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1716 | by arith | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1717 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1718 | lemma lapprox_rat: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1719 | shows "real (lapprox_rat prec x y) \<le> real x / real y" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1720 | using round_down by (simp add: lapprox_rat_def) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1721 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1722 | lemma mult_div_le: fixes a b:: int assumes "b > 0" shows "a \<ge> b * (a div b)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1723 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1724 | from zmod_zdiv_equality'[of a b] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1725 | have "a = b * (a div b) + a mod b" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1726 | also have "... \<ge> b * (a div b) + 0" apply (rule add_left_mono) apply (rule pos_mod_sign) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1727 | using assms by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1728 | finally show ?thesis by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1729 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1730 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1731 | lemma lapprox_rat_nonneg: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1732 | fixes n x y | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1733 | assumes "0 \<le> x" and "0 \<le> y" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1734 | shows "0 \<le> real (lapprox_rat n x y)" | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1735 | using assms by (auto simp: lapprox_rat_def simp: round_down_nonneg) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1736 | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
31021diff
changeset | 1737 | lemma rapprox_rat: "real x / real y \<le> real (rapprox_rat prec x y)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1738 | using round_up by (simp add: rapprox_rat_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1739 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1740 | lemma rapprox_rat_le1: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1741 | fixes n x y | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1742 | assumes xy: "0 \<le> x" "0 < y" "x \<le> y" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1743 | shows "real (rapprox_rat n x y) \<le> 1" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1744 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1745 | have "bitlen \<bar>x\<bar> \<le> bitlen \<bar>y\<bar>" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1746 | using xy unfolding bitlen_def by (auto intro!: floor_mono) | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1747 | from this assms show ?thesis | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1748 | by transfer (auto intro!: round_up_le1 simp: rat_precision_def) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1749 | qed | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1750 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1751 | lemma rapprox_rat_nonneg_nonpos: | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1752 | "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real (rapprox_rat n x y) \<le> 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1753 | by transfer (simp add: round_up_le0 divide_nonneg_nonpos) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1754 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1755 | lemma rapprox_rat_nonpos_nonneg: | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1756 | "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1757 | by transfer (simp add: round_up_le0 divide_nonpos_nonneg) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1758 | |
| 54782 | 1759 | lemma real_divl: "real_divl prec x y \<le> x / y" | 
| 1760 | by (simp add: real_divl_def round_down) | |
| 1761 | ||
| 1762 | lemma real_divr: "x / y \<le> real_divr prec x y" | |
| 1763 | using round_up by (simp add: real_divr_def) | |
| 1764 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
31021diff
changeset | 1765 | lemma float_divl: "real (float_divl prec x y) \<le> real x / real y" | 
| 54782 | 1766 | by transfer (rule real_divl) | 
| 1767 | ||
| 1768 | lemma real_divl_lower_bound: | |
| 1769 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real_divl prec x y" | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1770 | by (simp add: real_divl_def round_down_nonneg) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1771 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1772 | lemma float_divl_lower_bound: | 
| 54782 | 1773 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real (float_divl prec x y)" | 
| 1774 | by transfer (rule real_divl_lower_bound) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1775 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1776 | lemma exponent_1: "exponent 1 = 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1777 | using exponent_float[of 1 0] by (simp add: one_float_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1778 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1779 | lemma mantissa_1: "mantissa 1 = 1" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1780 | using mantissa_float[of 1 0] by (simp add: one_float_def) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1781 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1782 | lemma bitlen_1: "bitlen 1 = 1" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1783 | by (simp add: bitlen_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1784 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1785 | lemma mantissa_eq_zero_iff: "mantissa x = 0 \<longleftrightarrow> x = 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1786 | proof | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1787 | assume "mantissa x = 0" hence z: "0 = real x" using mantissa_exponent by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1788 | show "x = 0" by (simp add: zero_float_def z) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1789 | qed (simp add: zero_float_def) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1790 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1791 | lemma float_upper_bound: "x \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1792 | proof (cases "x = 0", simp) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1793 | assume "x \<noteq> 0" hence "mantissa x \<noteq> 0" using mantissa_eq_zero_iff by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1794 | have "x = mantissa x * 2 powr (exponent x)" by (rule mantissa_exponent) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1795 | also have "mantissa x \<le> \<bar>mantissa x\<bar>" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1796 | also have "... \<le> 2 powr (bitlen \<bar>mantissa x\<bar>)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1797 | using bitlen_bounds[of "\<bar>mantissa x\<bar>"] bitlen_nonneg `mantissa x \<noteq> 0` | 
| 58989 | 1798 | by (auto simp del: real_of_int_abs simp add: powr_int) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1799 | finally show ?thesis by (simp add: powr_add) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1800 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1801 | |
| 54782 | 1802 | lemma real_divl_pos_less1_bound: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1803 | assumes "0 < x" "x \<le> 1" "prec \<ge> 1" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1804 | shows "1 \<le> real_divl prec 1 x" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1805 | proof - | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1806 | have "log 2 x \<le> real prec + real \<lfloor>log 2 x\<rfloor>" using `prec \<ge> 1` by arith | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1807 | from this assms show ?thesis | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1808 | by (simp add: real_divl_def log_divide round_down_ge1) | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1809 | qed | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1810 | |
| 54782 | 1811 | lemma float_divl_pos_less1_bound: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1812 | "0 < real x \<Longrightarrow> real x \<le> 1 \<Longrightarrow> prec \<ge> 1 \<Longrightarrow> 1 \<le> real (float_divl prec 1 x)" | 
| 54782 | 1813 | by (transfer, rule real_divl_pos_less1_bound) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1814 | |
| 54782 | 1815 | lemma float_divr: "real x / real y \<le> real (float_divr prec x y)" | 
| 1816 | by transfer (rule real_divr) | |
| 1817 | ||
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1818 | lemma real_divr_pos_less1_lower_bound: assumes "0 < x" and "x \<le> 1" shows "1 \<le> real_divr prec 1 x" | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1819 | proof - | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1820 | have "1 \<le> 1 / x" using `0 < x` and `x <= 1` by auto | 
| 54782 | 1821 | also have "\<dots> \<le> real_divr prec 1 x" using real_divr[where x=1 and y=x] by auto | 
| 47600 | 1822 | finally show ?thesis by auto | 
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1823 | qed | 
| 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 1824 | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1825 | lemma float_divr_pos_less1_lower_bound: "0 < x \<Longrightarrow> x \<le> 1 \<Longrightarrow> 1 \<le> float_divr prec 1 x" | 
| 54782 | 1826 | by transfer (rule real_divr_pos_less1_lower_bound) | 
| 1827 | ||
| 1828 | lemma real_divr_nonpos_pos_upper_bound: | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1829 | "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real_divr prec x y \<le> 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1830 | by (simp add: real_divr_def round_up_le0 divide_le_0_iff) | 
| 54782 | 1831 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1832 | lemma float_divr_nonpos_pos_upper_bound: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1833 | "real x \<le> 0 \<Longrightarrow> 0 \<le> real y \<Longrightarrow> real (float_divr prec x y) \<le> 0" | 
| 54782 | 1834 | by transfer (rule real_divr_nonpos_pos_upper_bound) | 
| 1835 | ||
| 1836 | lemma real_divr_nonneg_neg_upper_bound: | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1837 | "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real_divr prec x y \<le> 0" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1838 | by (simp add: real_divr_def round_up_le0 divide_le_0_iff) | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 1839 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 1840 | lemma float_divr_nonneg_neg_upper_bound: | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 1841 | "0 \<le> real x \<Longrightarrow> real y \<le> 0 \<Longrightarrow> real (float_divr prec x y) \<le> 0" | 
| 54782 | 1842 | by transfer (rule real_divr_nonneg_neg_upper_bound) | 
| 1843 | ||
| 54784 | 1844 | lemma truncate_up_nonneg_mono: | 
| 1845 | assumes "0 \<le> x" "x \<le> y" | |
| 1846 | shows "truncate_up prec x \<le> truncate_up prec y" | |
| 1847 | proof - | |
| 1848 |   {
 | |
| 1849 | assume "\<lfloor>log 2 x\<rfloor> = \<lfloor>log 2 y\<rfloor>" | |
| 1850 | hence ?thesis | |
| 1851 | using assms | |
| 1852 | by (auto simp: truncate_up_def round_up_def intro!: ceiling_mono) | |
| 1853 |   } moreover {
 | |
| 1854 | assume "0 < x" | |
| 1855 | hence "log 2 x \<le> log 2 y" using assms by auto | |
| 1856 | moreover | |
| 1857 | assume "\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>" | |
| 1858 | ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>" | |
| 1859 | unfolding atomize_conj | |
| 1860 | by (metis floor_less_cancel linorder_cases not_le) | |
| 1861 | have "truncate_up prec x = | |
| 1862 | real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> * 2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1)" | |
| 1863 | using assms by (simp add: truncate_up_def round_up_def) | |
| 1864 | also have "\<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> (2 ^ prec)" | |
| 1865 | proof (unfold ceiling_le_eq) | |
| 1866 | have "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> x * (2 powr real prec / (2 powr log 2 x))" | |
| 1867 | using real_of_int_floor_add_one_ge[of "log 2 x"] assms | |
| 1868 | by (auto simp add: algebra_simps powr_divide2 intro!: mult_left_mono) | |
| 1869 | thus "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> real ((2::int) ^ prec)" | |
| 1870 | using `0 < x` by (simp add: powr_realpow) | |
| 1871 | qed | |
| 1872 | hence "real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> 2 powr int prec" | |
| 1873 | by (auto simp: powr_realpow) | |
| 1874 | also | |
| 1875 | have "2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)" | |
| 1876 | using logless flogless by (auto intro!: floor_mono) | |
| 1877 | also have "2 powr real (int prec) \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>))" | |
| 1878 | using assms `0 < x` | |
| 1879 | by (auto simp: algebra_simps) | |
| 1880 | finally have "truncate_up prec x \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>)) * 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)" | |
| 1881 | by simp | |
| 1882 | also have "\<dots> = 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>) - real (int prec - \<lfloor>log 2 y\<rfloor>))" | |
| 1883 | by (subst powr_add[symmetric]) simp | |
| 1884 | also have "\<dots> = y" | |
| 1885 | using `0 < x` assms | |
| 1886 | by (simp add: powr_add) | |
| 1887 | also have "\<dots> \<le> truncate_up prec y" | |
| 1888 | by (rule truncate_up) | |
| 1889 | finally have ?thesis . | |
| 1890 |   } moreover {
 | |
| 1891 | assume "~ 0 < x" | |
| 1892 | hence ?thesis | |
| 1893 | using assms | |
| 1894 | by (auto intro!: truncate_up_le) | |
| 1895 | } ultimately show ?thesis | |
| 1896 | by blast | |
| 1897 | qed | |
| 1898 | ||
| 1899 | lemma truncate_up_switch_sign_mono: | |
| 1900 | assumes "x \<le> 0" "0 \<le> y" | |
| 1901 | shows "truncate_up prec x \<le> truncate_up prec y" | |
| 1902 | proof - | |
| 1903 | note truncate_up_nonpos[OF `x \<le> 0`] | |
| 1904 | also note truncate_up_le[OF `0 \<le> y`] | |
| 1905 | finally show ?thesis . | |
| 1906 | qed | |
| 1907 | ||
| 1908 | lemma truncate_down_zeroprec_mono: | |
| 1909 | assumes "0 < x" "x \<le> y" | |
| 1910 | shows "truncate_down 0 x \<le> truncate_down 0 y" | |
| 1911 | proof - | |
| 1912 | have "x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1) = x * inverse (2 powr ((real \<lfloor>log 2 x\<rfloor> + 1)))" | |
| 1913 | by (simp add: powr_divide2[symmetric] powr_add powr_minus inverse_eq_divide) | |
| 1914 | also have "\<dots> = 2 powr (log 2 x - (real \<lfloor>log 2 x\<rfloor>) - 1)" | |
| 1915 | using `0 < x` | |
| 57862 | 1916 | by (auto simp: field_simps powr_add powr_divide2[symmetric]) | 
| 54784 | 1917 | also have "\<dots> < 2 powr 0" | 
| 1918 | using real_of_int_floor_add_one_gt | |
| 1919 | unfolding neg_less_iff_less | |
| 1920 | by (intro powr_less_mono) (auto simp: algebra_simps) | |
| 1921 | finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> < 1" | |
| 1922 | unfolding less_ceiling_eq real_of_int_minus real_of_one | |
| 1923 | by simp | |
| 1924 | moreover | |
| 1925 | have "0 \<le> \<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor>" | |
| 56536 | 1926 | using `x > 0` by auto | 
| 54784 | 1927 |   ultimately have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> \<in> {0 ..< 1}"
 | 
| 1928 | by simp | |
| 1929 |   also have "\<dots> \<subseteq> {0}" by auto
 | |
| 1930 | finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> = 0" by simp | |
| 1931 | with assms show ?thesis | |
| 56536 | 1932 | by (auto simp: truncate_down_def round_down_def) | 
| 54784 | 1933 | qed | 
| 1934 | ||
| 1935 | lemma truncate_down_switch_sign_mono: | |
| 1936 | assumes "x \<le> 0" "0 \<le> y" | |
| 1937 | assumes "x \<le> y" | |
| 1938 | shows "truncate_down prec x \<le> truncate_down prec y" | |
| 1939 | proof - | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1940 | note truncate_down_le[OF `x \<le> 0`] | 
| 54784 | 1941 | also note truncate_down_nonneg[OF `0 \<le> y`] | 
| 1942 | finally show ?thesis . | |
| 1943 | qed | |
| 1944 | ||
| 1945 | lemma truncate_down_nonneg_mono: | |
| 1946 | assumes "0 \<le> x" "x \<le> y" | |
| 1947 | shows "truncate_down prec x \<le> truncate_down prec y" | |
| 1948 | proof - | |
| 1949 |   {
 | |
| 1950 | assume "0 < x" "prec = 0" | |
| 1951 | with assms have ?thesis | |
| 1952 | by (simp add: truncate_down_zeroprec_mono) | |
| 1953 |   } moreover {
 | |
| 1954 | assume "~ 0 < x" | |
| 1955 | with assms have "x = 0" "0 \<le> y" by simp_all | |
| 1956 | hence ?thesis | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1957 | by (auto intro!: truncate_down_nonneg) | 
| 54784 | 1958 |   } moreover {
 | 
| 1959 | assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>" | |
| 1960 | hence ?thesis | |
| 1961 | using assms | |
| 1962 | by (auto simp: truncate_down_def round_down_def intro!: floor_mono) | |
| 1963 |   } moreover {
 | |
| 1964 | assume "0 < x" | |
| 1965 | hence "log 2 x \<le> log 2 y" "0 < y" "0 \<le> y" using assms by auto | |
| 1966 | moreover | |
| 1967 | assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<noteq> \<lfloor>log 2 \<bar>y\<bar>\<rfloor>" | |
| 1968 | ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>" | |
| 1969 | unfolding atomize_conj abs_of_pos[OF `0 < x`] abs_of_pos[OF `0 < y`] | |
| 1970 | by (metis floor_less_cancel linorder_cases not_le) | |
| 1971 | assume "prec \<noteq> 0" hence [simp]: "prec \<ge> Suc 0" by auto | |
| 1972 | have "2 powr (prec - 1) \<le> y * 2 powr real (prec - 1) / (2 powr log 2 y)" | |
| 1973 | using `0 < y` | |
| 1974 | by simp | |
| 1975 | also have "\<dots> \<le> y * 2 powr real prec / (2 powr (real \<lfloor>log 2 y\<rfloor> + 1))" | |
| 1976 | using `0 \<le> y` `0 \<le> x` assms(2) | |
| 56544 | 1977 | by (auto intro!: powr_mono divide_left_mono | 
| 54784 | 1978 | simp: real_of_nat_diff powr_add | 
| 1979 | powr_divide2[symmetric]) | |
| 1980 | also have "\<dots> = y * 2 powr real prec / (2 powr real \<lfloor>log 2 y\<rfloor> * 2)" | |
| 1981 | by (auto simp: powr_add) | |
| 1982 | finally have "(2 ^ (prec - 1)) \<le> \<lfloor>y * 2 powr real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)\<rfloor>" | |
| 1983 | using `0 \<le> y` | |
| 1984 | by (auto simp: powr_divide2[symmetric] le_floor_eq powr_realpow) | |
| 1985 | hence "(2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1) \<le> truncate_down prec y" | |
| 1986 | by (auto simp: truncate_down_def round_down_def) | |
| 1987 | moreover | |
| 1988 |     {
 | |
| 1989 | have "x = 2 powr (log 2 \<bar>x\<bar>)" using `0 < x` by simp | |
| 1990 | also have "\<dots> \<le> (2 ^ (prec )) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)" | |
| 1991 | using real_of_int_floor_add_one_ge[of "log 2 \<bar>x\<bar>"] | |
| 1992 | by (auto simp: powr_realpow[symmetric] powr_add[symmetric] algebra_simps) | |
| 1993 | also | |
| 1994 | have "2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor>)" | |
| 1995 | using logless flogless `x > 0` `y > 0` | |
| 1996 | by (auto intro!: floor_mono) | |
| 1997 | finally have "x \<le> (2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)" | |
| 1998 | by (auto simp: powr_realpow[symmetric] powr_divide2[symmetric] assms real_of_nat_diff) | |
| 1999 | } ultimately have ?thesis | |
| 2000 | by (metis dual_order.trans truncate_down) | |
| 2001 | } ultimately show ?thesis by blast | |
| 2002 | qed | |
| 2003 | ||
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 2004 | lemma truncate_down_eq_truncate_up: "truncate_down p x = - truncate_up p (-x)" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 2005 | and truncate_up_eq_truncate_down: "truncate_up p x = - truncate_down p (-x)" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 2006 | by (auto simp: truncate_up_uminus_eq truncate_down_uminus_eq) | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 2007 | |
| 54784 | 2008 | lemma truncate_down_mono: "x \<le> y \<Longrightarrow> truncate_down p x \<le> truncate_down p y" | 
| 2009 | apply (cases "0 \<le> x") | |
| 2010 | apply (rule truncate_down_nonneg_mono, assumption+) | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 2011 | apply (simp add: truncate_down_eq_truncate_up) | 
| 54784 | 2012 | apply (cases "0 \<le> y") | 
| 2013 | apply (auto intro: truncate_up_nonneg_mono truncate_up_switch_sign_mono) | |
| 2014 | done | |
| 2015 | ||
| 2016 | lemma truncate_up_mono: "x \<le> y \<Longrightarrow> truncate_up p x \<le> truncate_up p y" | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58881diff
changeset | 2017 | by (simp add: truncate_up_eq_truncate_down truncate_down_mono) | 
| 54784 | 2018 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2019 | lemma Float_le_zero_iff: "Float a b \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2020 | apply (auto simp: zero_float_def mult_le_0_iff) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2021 | using powr_gt_zero[of 2 b] by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2022 | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 2023 | lemma real_of_float_pprt[simp]: fixes a::float shows "real (pprt a) = pprt (real a)" | 
| 47600 | 2024 | unfolding pprt_def sup_float_def max_def sup_real_def by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2025 | |
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 2026 | lemma real_of_float_nprt[simp]: fixes a::float shows "real (nprt a) = nprt (real a)" | 
| 47600 | 2027 | unfolding nprt_def inf_float_def min_def inf_real_def by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2028 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
54784diff
changeset | 2029 | lift_definition int_floor_fl :: "float \<Rightarrow> int" is floor . | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 2030 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2031 | lemma compute_int_floor_fl[code]: | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2032 | "int_floor_fl (Float m e) = (if 0 \<le> e then m * 2 ^ nat e else m div (2 ^ (nat (-e))))" | 
| 47600 | 2033 | by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 2034 | hide_fact (open) compute_int_floor_fl | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2035 | |
| 47600 | 2036 | lift_definition floor_fl :: "float \<Rightarrow> float" is "\<lambda>x. real (floor x)" by simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2037 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2038 | lemma compute_floor_fl[code]: | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2039 | "floor_fl (Float m e) = (if 0 \<le> e then Float m e else Float (m div (2 ^ (nat (-e)))) 0)" | 
| 47600 | 2040 | by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints) | 
| 47621 
4cf6011fb884
hide code generation facts in the Float theory, they are only exported for Approximation
 hoelzl parents: 
47615diff
changeset | 2041 | hide_fact (open) compute_floor_fl | 
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 2042 | |
| 47600 | 2043 | lemma floor_fl: "real (floor_fl x) \<le> real x" by transfer simp | 
| 2044 | ||
| 2045 | lemma int_floor_fl: "real (int_floor_fl x) \<le> real x" by transfer simp | |
| 29804 
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
 hoelzl parents: 
29667diff
changeset | 2046 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2047 | lemma floor_pos_exp: "exponent (floor_fl x) \<ge> 0" | 
| 53381 | 2048 | proof (cases "floor_fl x = float_of 0") | 
| 2049 | case True | |
| 2050 | then show ?thesis by (simp add: floor_fl_def) | |
| 2051 | next | |
| 2052 | case False | |
| 2053 | have eq: "floor_fl x = Float \<lfloor>real x\<rfloor> 0" by transfer simp | |
| 2054 | obtain i where "\<lfloor>real x\<rfloor> = mantissa (floor_fl x) * 2 ^ i" "0 = exponent (floor_fl x) - int i" | |
| 2055 | by (rule denormalize_shift[OF eq[THEN eq_reflection] False]) | |
| 2056 | then show ?thesis by simp | |
| 2057 | qed | |
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 2058 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2059 | lemma compute_mantissa[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2060 | "mantissa (Float m e) = (if m = 0 then 0 else if 2 dvd m then mantissa (normfloat (Float m e)) else m)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2061 | by (auto simp: mantissa_float Float.abs_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2062 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2063 | lemma compute_exponent[code]: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2064 | "exponent (Float m e) = (if m = 0 then 0 else if 2 dvd m then exponent (normfloat (Float m e)) else e)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2065 | by (auto simp: exponent_float Float.abs_eq) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2066 | |
| 16782 
b214f21ae396
- use TableFun instead of homebrew binary tree in am_interpreter.ML
 obua parents: diff
changeset | 2067 | end | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47230diff
changeset | 2068 |