| author | wenzelm | 
| Mon, 11 Jul 2016 10:43:27 +0200 | |
| changeset 63433 | aa03b0487bf5 | 
| parent 54864 | a064732223ad | 
| child 67406 | 23307fd33906 | 
| permissions | -rw-r--r-- | 
| 43158 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 3 | theory Sec_Typing imports Sec_Type_Expr | |
| 4 | begin | |
| 5 | ||
| 6 | subsection "Syntax Directed Typing" | |
| 7 | ||
| 8 | inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
 | |
| 9 | Skip: | |
| 10 | "l \<turnstile> SKIP" | | |
| 11 | Assign: | |
| 50342 | 12 | "\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" | | 
| 47818 | 13 | Seq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 14 | "\<lbrakk> l \<turnstile> c\<^sub>1; l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^sub>1;;c\<^sub>2" | | 
| 43158 | 15 | If: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 16 | "\<lbrakk> max (sec b) l \<turnstile> c\<^sub>1; max (sec b) l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" | | 
| 43158 | 17 | While: | 
| 50342 | 18 | "max (sec b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c" | 
| 43158 | 19 | |
| 20 | code_pred (expected_modes: i => i => bool) sec_type . | |
| 21 | ||
| 22 | value "0 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP" | |
| 23 | value "1 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x'' ::= N 0 ELSE SKIP" | |
| 24 | value "2 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP" | |
| 25 | ||
| 26 | inductive_cases [elim!]: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 27 | "l \<turnstile> x ::= a" "l \<turnstile> c\<^sub>1;;c\<^sub>2" "l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" "l \<turnstile> WHILE b DO c" | 
| 43158 | 28 | |
| 29 | ||
| 30 | text{* An important property: anti-monotonicity. *}
 | |
| 31 | ||
| 32 | lemma anti_mono: "\<lbrakk> l \<turnstile> c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c" | |
| 45015 | 33 | apply(induction arbitrary: l' rule: sec_type.induct) | 
| 43158 | 34 | apply (metis sec_type.intros(1)) | 
| 35 | apply (metis le_trans sec_type.intros(2)) | |
| 36 | apply (metis sec_type.intros(3)) | |
| 37 | apply (metis If le_refl sup_mono sup_nat_def) | |
| 38 | apply (metis While le_refl sup_mono sup_nat_def) | |
| 39 | done | |
| 40 | ||
| 41 | lemma confinement: "\<lbrakk> (c,s) \<Rightarrow> t; l \<turnstile> c \<rbrakk> \<Longrightarrow> s = t (< l)" | |
| 45015 | 42 | proof(induction rule: big_step_induct) | 
| 43158 | 43 | case Skip thus ?case by simp | 
| 44 | next | |
| 45 | case Assign thus ?case by auto | |
| 46 | next | |
| 47818 | 47 | case Seq thus ?case by auto | 
| 43158 | 48 | next | 
| 49 | case (IfTrue b s c1) | |
| 50342 | 50 | hence "max (sec b) l \<turnstile> c1" by auto | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 51 | hence "l \<turnstile> c1" by (metis max.cobounded2 anti_mono) | 
| 45015 | 52 | thus ?case using IfTrue.IH by metis | 
| 43158 | 53 | next | 
| 54 | case (IfFalse b s c2) | |
| 50342 | 55 | hence "max (sec b) l \<turnstile> c2" by auto | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 56 | hence "l \<turnstile> c2" by (metis max.cobounded2 anti_mono) | 
| 45015 | 57 | thus ?case using IfFalse.IH by metis | 
| 43158 | 58 | next | 
| 59 | case WhileFalse thus ?case by auto | |
| 60 | next | |
| 61 | case (WhileTrue b s1 c) | |
| 50342 | 62 | hence "max (sec b) l \<turnstile> c" by auto | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 63 | hence "l \<turnstile> c" by (metis max.cobounded2 anti_mono) | 
| 43158 | 64 | thus ?case using WhileTrue by metis | 
| 65 | qed | |
| 66 | ||
| 67 | ||
| 68 | theorem noninterference: | |
| 69 | "\<lbrakk> (c,s) \<Rightarrow> s'; (c,t) \<Rightarrow> t'; 0 \<turnstile> c; s = t (\<le> l) \<rbrakk> | |
| 70 | \<Longrightarrow> s' = t' (\<le> l)" | |
| 45015 | 71 | proof(induction arbitrary: t t' rule: big_step_induct) | 
| 43158 | 72 | case Skip thus ?case by auto | 
| 73 | next | |
| 74 | case (Assign x a s) | |
| 75 | have [simp]: "t' = t(x := aval a t)" using Assign by auto | |
| 50342 | 76 | have "sec x >= sec a" using `0 \<turnstile> x ::= a` by auto | 
| 43158 | 77 | show ?case | 
| 78 | proof auto | |
| 79 | assume "sec x \<le> l" | |
| 50342 | 80 | with `sec x >= sec a` have "sec a \<le> l" by arith | 
| 43158 | 81 | thus "aval a s = aval a t" | 
| 82 | by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`]) | |
| 83 | next | |
| 84 | fix y assume "y \<noteq> x" "sec y \<le> l" | |
| 85 | thus "s y = t y" using `s = t (\<le> l)` by simp | |
| 86 | qed | |
| 87 | next | |
| 47818 | 88 | case Seq thus ?case by blast | 
| 43158 | 89 | next | 
| 90 | case (IfTrue b s c1 s' c2) | |
| 52382 | 91 | have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using `0 \<turnstile> IF b THEN c1 ELSE c2` by auto | 
| 43158 | 92 | show ?case | 
| 93 | proof cases | |
| 50342 | 94 | assume "sec b \<le> l" | 
| 95 | hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto | |
| 43158 | 96 | hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le) | 
| 50342 | 97 | with IfTrue.IH IfTrue.prems(1,3) `sec b \<turnstile> c1` anti_mono | 
| 43158 | 98 | show ?thesis by auto | 
| 99 | next | |
| 50342 | 100 | assume "\<not> sec b \<le> l" | 
| 101 | have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2" | |
| 102 | by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`) | |
| 52382 | 103 | from confinement[OF `(c1, s) \<Rightarrow> s'` `sec b \<turnstile> c1`] `\<not> sec b \<le> l` | 
| 43158 | 104 | have "s = s' (\<le> l)" by auto | 
| 105 | moreover | |
| 52382 | 106 | from confinement[OF `(IF b THEN c1 ELSE c2, t) \<Rightarrow> t'` 1] `\<not> sec b \<le> l` | 
| 43158 | 107 | have "t = t' (\<le> l)" by auto | 
| 108 | ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto | |
| 109 | qed | |
| 110 | next | |
| 111 | case (IfFalse b s c2 s' c1) | |
| 52382 | 112 | have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using `0 \<turnstile> IF b THEN c1 ELSE c2` by auto | 
| 43158 | 113 | show ?case | 
| 114 | proof cases | |
| 50342 | 115 | assume "sec b \<le> l" | 
| 116 | hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto | |
| 43158 | 117 | hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le) | 
| 50342 | 118 | with IfFalse.IH IfFalse.prems(1,3) `sec b \<turnstile> c2` anti_mono | 
| 43158 | 119 | show ?thesis by auto | 
| 120 | next | |
| 50342 | 121 | assume "\<not> sec b \<le> l" | 
| 122 | have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2" | |
| 123 | by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`) | |
| 124 | from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec b \<le> l` | |
| 43158 | 125 | have "s = s' (\<le> l)" by auto | 
| 126 | moreover | |
| 52382 | 127 | from confinement[OF `(IF b THEN c1 ELSE c2, t) \<Rightarrow> t'` 1] `\<not> sec b \<le> l` | 
| 43158 | 128 | have "t = t' (\<le> l)" by auto | 
| 129 | ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto | |
| 130 | qed | |
| 131 | next | |
| 132 | case (WhileFalse b s c) | |
| 50342 | 133 | have "sec b \<turnstile> c" using WhileFalse.prems(2) by auto | 
| 43158 | 134 | show ?case | 
| 135 | proof cases | |
| 50342 | 136 | assume "sec b \<le> l" | 
| 137 | hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto | |
| 43158 | 138 | hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le) | 
| 139 | with WhileFalse.prems(1,3) show ?thesis by auto | |
| 140 | next | |
| 50342 | 141 | assume "\<not> sec b \<le> l" | 
| 142 | have 1: "sec b \<turnstile> WHILE b DO c" | |
| 143 | by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c`) | |
| 52382 | 144 | from confinement[OF `(WHILE b DO c, t) \<Rightarrow> t'` 1] `\<not> sec b \<le> l` | 
| 43158 | 145 | have "t = t' (\<le> l)" by auto | 
| 146 | thus "s = t' (\<le> l)" using `s = t (\<le> l)` by auto | |
| 147 | qed | |
| 148 | next | |
| 149 | case (WhileTrue b s1 c s2 s3 t1 t3) | |
| 150 | let ?w = "WHILE b DO c" | |
| 52382 | 151 | have "sec b \<turnstile> c" using `0 \<turnstile> WHILE b DO c` by auto | 
| 43158 | 152 | show ?case | 
| 153 | proof cases | |
| 50342 | 154 | assume "sec b \<le> l" | 
| 155 | hence "s1 = t1 (\<le> sec b)" using `s1 = t1 (\<le> l)` by auto | |
| 43158 | 156 | hence "bval b t1" | 
| 157 | using `bval b s1` by(simp add: bval_eq_if_eq_le) | |
| 158 | then obtain t2 where "(c,t1) \<Rightarrow> t2" "(?w,t2) \<Rightarrow> t3" | |
| 159 | using `(?w,t1) \<Rightarrow> t3` by auto | |
| 45015 | 160 | from WhileTrue.IH(2)[OF `(?w,t2) \<Rightarrow> t3` `0 \<turnstile> ?w` | 
| 50342 | 161 | WhileTrue.IH(1)[OF `(c,t1) \<Rightarrow> t2` anti_mono[OF `sec b \<turnstile> c`] | 
| 43158 | 162 | `s1 = t1 (\<le> l)`]] | 
| 163 | show ?thesis by simp | |
| 164 | next | |
| 50342 | 165 | assume "\<not> sec b \<le> l" | 
| 166 | have 1: "sec b \<turnstile> ?w" by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c`) | |
| 167 | from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] `\<not> sec b \<le> l` | |
| 43158 | 168 | have "s1 = s3 (\<le> l)" by auto | 
| 169 | moreover | |
| 52382 | 170 | from confinement[OF `(WHILE b DO c, t1) \<Rightarrow> t3` 1] `\<not> sec b \<le> l` | 
| 43158 | 171 | have "t1 = t3 (\<le> l)" by auto | 
| 172 | ultimately show "s3 = t3 (\<le> l)" using `s1 = t1 (\<le> l)` by auto | |
| 173 | qed | |
| 174 | qed | |
| 175 | ||
| 176 | ||
| 177 | subsection "The Standard Typing System" | |
| 178 | ||
| 179 | text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The
 | |
| 180 | standard formulation, however, is slightly different, replacing the maximum | |
| 181 | computation by an antimonotonicity rule. We introduce the standard system now | |
| 182 | and show the equivalence with our formulation. *} | |
| 183 | ||
| 184 | inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
 | |
| 185 | Skip': | |
| 186 | "l \<turnstile>' SKIP" | | |
| 187 | Assign': | |
| 50342 | 188 | "\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" | | 
| 47818 | 189 | Seq': | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 190 | "\<lbrakk> l \<turnstile>' c\<^sub>1; l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' c\<^sub>1;;c\<^sub>2" | | 
| 43158 | 191 | If': | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 192 | "\<lbrakk> sec b \<le> l; l \<turnstile>' c\<^sub>1; l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^sub>1 ELSE c\<^sub>2" | | 
| 43158 | 193 | While': | 
| 50342 | 194 | "\<lbrakk> sec b \<le> l; l \<turnstile>' c \<rbrakk> \<Longrightarrow> l \<turnstile>' WHILE b DO c" | | 
| 43158 | 195 | anti_mono': | 
| 196 | "\<lbrakk> l \<turnstile>' c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c" | |
| 197 | ||
| 198 | lemma sec_type_sec_type': "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c" | |
| 45015 | 199 | apply(induction rule: sec_type.induct) | 
| 43158 | 200 | apply (metis Skip') | 
| 201 | apply (metis Assign') | |
| 47818 | 202 | apply (metis Seq') | 
| 54864 
a064732223ad
abolished slightly odd global lattice interpretation for min/max
 haftmann parents: 
54863diff
changeset | 203 | apply (metis max.commute max.absorb_iff2 nat_le_linear If' anti_mono') | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 204 | by (metis less_or_eq_imp_le max.absorb1 max.absorb2 nat_le_linear While' anti_mono') | 
| 43158 | 205 | |
| 206 | ||
| 207 | lemma sec_type'_sec_type: "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c" | |
| 45015 | 208 | apply(induction rule: sec_type'.induct) | 
| 43158 | 209 | apply (metis Skip) | 
| 210 | apply (metis Assign) | |
| 47818 | 211 | apply (metis Seq) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 212 | apply (metis max.absorb2 If) | 
| 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 213 | apply (metis max.absorb2 While) | 
| 43158 | 214 | by (metis anti_mono) | 
| 215 | ||
| 216 | subsection "A Bottom-Up Typing System" | |
| 217 | ||
| 218 | inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where
 | |
| 219 | Skip2: | |
| 220 | "\<turnstile> SKIP : l" | | |
| 221 | Assign2: | |
| 50342 | 222 | "sec x \<ge> sec a \<Longrightarrow> \<turnstile> x ::= a : sec x" | | 
| 47818 | 223 | Seq2: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 224 | "\<lbrakk> \<turnstile> c\<^sub>1 : l\<^sub>1; \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^sub>1;;c\<^sub>2 : min l\<^sub>1 l\<^sub>2 " | | 
| 43158 | 225 | If2: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 226 | "\<lbrakk> sec b \<le> min l\<^sub>1 l\<^sub>2; \<turnstile> c\<^sub>1 : l\<^sub>1; \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52382diff
changeset | 227 | \<Longrightarrow> \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2 : min l\<^sub>1 l\<^sub>2" | | 
| 43158 | 228 | While2: | 
| 50342 | 229 | "\<lbrakk> sec b \<le> l; \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l" | 
| 43158 | 230 | |
| 231 | ||
| 232 | lemma sec_type2_sec_type': "\<turnstile> c : l \<Longrightarrow> l \<turnstile>' c" | |
| 45015 | 233 | apply(induction rule: sec_type2.induct) | 
| 43158 | 234 | apply (metis Skip') | 
| 235 | apply (metis Assign' eq_imp_le) | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 236 | apply (metis Seq' anti_mono' min.cobounded1 min.cobounded2) | 
| 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 237 | apply (metis If' anti_mono' min.absorb2 min.absorb_iff1 nat_le_linear) | 
| 43158 | 238 | by (metis While') | 
| 239 | ||
| 240 | lemma sec_type'_sec_type2: "l \<turnstile>' c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'" | |
| 45015 | 241 | apply(induction rule: sec_type'.induct) | 
| 43158 | 242 | apply (metis Skip2 le_refl) | 
| 243 | apply (metis Assign2) | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
53015diff
changeset | 244 | apply (metis Seq2 min.boundedI) | 
| 43158 | 245 | apply (metis If2 inf_greatest inf_nat_def le_trans) | 
| 246 | apply (metis While2 le_trans) | |
| 247 | by (metis le_trans) | |
| 248 | ||
| 249 | end |