| 10654 |      1 | %
 | 
|  |      2 | \begin{isabellebody}%
 | 
|  |      3 | \def\isabellecontext{Partial}%
 | 
|  |      4 | %
 | 
|  |      5 | \begin{isamarkuptext}%
 | 
| 11494 |      6 | \noindent Throughout this tutorial, we have emphasized
 | 
|  |      7 | that all functions in HOL are total.  We cannot hope to define
 | 
| 11310 |      8 | truly partial functions, but must make them total.  A straightforward
 | 
|  |      9 | method is to lift the result type of the function from $\tau$ to
 | 
| 11277 |     10 | $\tau$~\isa{option} (see \ref{sec:option}), where \isa{None} is
 | 
|  |     11 | returned if the function is applied to an argument not in its
 | 
|  |     12 | domain. Function \isa{assoc} in \S\ref{sec:Trie} is a simple example.
 | 
|  |     13 | We do not pursue this schema further because it should be clear
 | 
|  |     14 | how it works. Its main drawback is that the result of such a lifted
 | 
|  |     15 | function has to be unpacked first before it can be processed
 | 
|  |     16 | further. Its main advantage is that you can distinguish if the
 | 
|  |     17 | function was applied to an argument in its domain or not. If you do
 | 
|  |     18 | not need to make this distinction, for example because the function is
 | 
|  |     19 | never used outside its domain, it is easier to work with
 | 
| 11428 |     20 | \emph{underdefined}\index{functions!underdefined} functions: for
 | 
| 11277 |     21 | certain arguments we only know that a result exists, but we do not
 | 
|  |     22 | know what it is. When defining functions that are normally considered
 | 
|  |     23 | partial, underdefinedness turns out to be a very reasonable
 | 
|  |     24 | alternative.
 | 
| 10654 |     25 | 
 | 
|  |     26 | We have already seen an instance of underdefinedness by means of
 | 
|  |     27 | non-exhaustive pattern matching: the definition of \isa{last} in
 | 
|  |     28 | \S\ref{sec:recdef-examples}. The same is allowed for \isacommand{primrec}%
 | 
|  |     29 | \end{isamarkuptext}%
 | 
|  |     30 | \isacommand{consts}\ hd\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline
 | 
|  |     31 | \isacommand{primrec}\ {\isachardoublequote}hd\ {\isacharparenleft}x{\isacharhash}xs{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequote}%
 | 
|  |     32 | \begin{isamarkuptext}%
 | 
|  |     33 | \noindent
 | 
|  |     34 | although it generates a warning.
 | 
|  |     35 | Even ordinary definitions allow underdefinedness, this time by means of
 | 
|  |     36 | preconditions:%
 | 
|  |     37 | \end{isamarkuptext}%
 | 
|  |     38 | \isacommand{constdefs}\ minus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline
 | 
|  |     39 | {\isachardoublequote}n\ {\isasymle}\ m\ {\isasymLongrightarrow}\ minus\ m\ n\ {\isasymequiv}\ m\ {\isacharminus}\ n{\isachardoublequote}%
 | 
|  |     40 | \begin{isamarkuptext}%
 | 
|  |     41 | The rest of this section is devoted to the question of how to define
 | 
| 11256 |     42 | partial recursive functions by other means than non-exhaustive pattern
 | 
| 10654 |     43 | matching.%
 | 
|  |     44 | \end{isamarkuptext}%
 | 
|  |     45 | %
 | 
| 10878 |     46 | \isamarkupsubsubsection{Guarded Recursion%
 | 
| 10654 |     47 | }
 | 
|  |     48 | %
 | 
|  |     49 | \begin{isamarkuptext}%
 | 
| 11494 |     50 | \index{recursion!guarded}%
 | 
| 10654 |     51 | Neither \isacommand{primrec} nor \isacommand{recdef} allow to
 | 
|  |     52 | prefix an equation with a condition in the way ordinary definitions do
 | 
|  |     53 | (see \isa{minus} above). Instead we have to move the condition over
 | 
|  |     54 | to the right-hand side of the equation. Given a partial function $f$
 | 
|  |     55 | that should satisfy the recursion equation $f(x) = t$ over its domain
 | 
|  |     56 | $dom(f)$, we turn this into the \isacommand{recdef}
 | 
|  |     57 | \begin{isabelle}%
 | 
|  |     58 | \ \ \ \ \ f\ x\ {\isacharequal}\ {\isacharparenleft}if\ x\ {\isasymin}\ dom\ f\ then\ t\ else\ arbitrary{\isacharparenright}%
 | 
|  |     59 | \end{isabelle}
 | 
|  |     60 | where \isa{arbitrary} is a predeclared constant of type \isa{{\isacharprime}a}
 | 
|  |     61 | which has no definition. Thus we know nothing about its value,
 | 
|  |     62 | which is ideal for specifying underdefined functions on top of it.
 | 
|  |     63 | 
 | 
|  |     64 | As a simple example we define division on \isa{nat}:%
 | 
|  |     65 | \end{isamarkuptext}%
 | 
|  |     66 | \isacommand{consts}\ divi\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymtimes}\ nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline
 | 
| 11627 |     67 | \isacommand{recdef}\ {\isacharparenleft}\isakeyword{permissive}{\isacharparenright}\ divi\ {\isachardoublequote}measure{\isacharparenleft}{\isasymlambda}{\isacharparenleft}m{\isacharcomma}n{\isacharparenright}{\isachardot}\ m{\isacharparenright}{\isachardoublequote}\isanewline
 | 
| 10654 |     68 | \ \ {\isachardoublequote}divi{\isacharparenleft}m{\isacharcomma}n{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ n\ {\isacharequal}\ {\isadigit{0}}\ then\ arbitrary\ else\isanewline
 | 
|  |     69 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ m\ {\isacharless}\ n\ then\ {\isadigit{0}}\ else\ divi{\isacharparenleft}m{\isacharminus}n{\isacharcomma}n{\isacharparenright}{\isacharplus}{\isadigit{1}}{\isacharparenright}{\isachardoublequote}%
 | 
|  |     70 | \begin{isamarkuptext}%
 | 
|  |     71 | \noindent Of course we could also have defined
 | 
|  |     72 | \isa{divi\ {\isacharparenleft}m{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}} to be some specific number, for example 0. The
 | 
|  |     73 | latter option is chosen for the predefined \isa{div} function, which
 | 
| 10878 |     74 | simplifies proofs at the expense of deviating from the
 | 
|  |     75 | standard mathematical division function.
 | 
| 10654 |     76 | 
 | 
|  |     77 | As a more substantial example we consider the problem of searching a graph.
 | 
| 11277 |     78 | For simplicity our graph is given by a function \isa{f} of
 | 
| 10654 |     79 | type \isa{{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a} which
 | 
| 11494 |     80 | maps each node to its successor; the graph is really a tree.
 | 
| 11196 |     81 | The task is to find the end of a chain, modelled by a node pointing to
 | 
|  |     82 | itself. Here is a first attempt:
 | 
| 10654 |     83 | \begin{isabelle}%
 | 
|  |     84 | \ \ \ \ \ find\ {\isacharparenleft}f{\isacharcomma}\ x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find\ {\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}{\isacharparenright}%
 | 
|  |     85 | \end{isabelle}
 | 
|  |     86 | This may be viewed as a fixed point finder or as one half of the well known
 | 
|  |     87 | \emph{Union-Find} algorithm.
 | 
| 11149 |     88 | The snag is that it may not terminate if \isa{f} has non-trivial cycles.
 | 
| 10654 |     89 | Phrased differently, the relation%
 | 
|  |     90 | \end{isamarkuptext}%
 | 
|  |     91 | \isacommand{constdefs}\ step{\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a{\isacharparenright}set{\isachardoublequote}\isanewline
 | 
|  |     92 | \ \ {\isachardoublequote}step{\isadigit{1}}\ f\ {\isasymequiv}\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ y\ {\isacharequal}\ f\ x\ {\isasymand}\ y\ {\isasymnoteq}\ x{\isacharbraceright}{\isachardoublequote}%
 | 
|  |     93 | \begin{isamarkuptext}%
 | 
|  |     94 | \noindent
 | 
|  |     95 | must be well-founded. Thus we make the following definition:%
 | 
|  |     96 | \end{isamarkuptext}%
 | 
|  |     97 | \isacommand{consts}\ find\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymtimes}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline
 | 
|  |     98 | \isacommand{recdef}\ find\ {\isachardoublequote}same{\isacharunderscore}fst\ {\isacharparenleft}{\isasymlambda}f{\isachardot}\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}{\isacharparenright}\ step{\isadigit{1}}{\isachardoublequote}\isanewline
 | 
|  |     99 | \ \ {\isachardoublequote}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\isanewline
 | 
|  |    100 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ then\ if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find{\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}\isanewline
 | 
|  |    101 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ arbitrary{\isacharparenright}{\isachardoublequote}\isanewline
 | 
| 11285 |    102 | {\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}%
 | 
| 10654 |    103 | \begin{isamarkuptext}%
 | 
|  |    104 | \noindent
 | 
|  |    105 | The recursion equation itself should be clear enough: it is our aborted
 | 
|  |    106 | first attempt augmented with a check that there are no non-trivial loops.
 | 
| 11277 |    107 | To express the required well-founded relation we employ the
 | 
| 11196 |    108 | predefined combinator \isa{same{\isacharunderscore}fst} of type
 | 
| 10654 |    109 | \begin{isabelle}%
 | 
|  |    110 | \ \ \ \ \ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}b{\isasymtimes}{\isacharprime}b{\isacharparenright}set{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharparenleft}{\isacharprime}a{\isasymtimes}{\isacharprime}b{\isacharparenright}\ {\isasymtimes}\ {\isacharparenleft}{\isacharprime}a{\isasymtimes}{\isacharprime}b{\isacharparenright}{\isacharparenright}set%
 | 
|  |    111 | \end{isabelle}
 | 
|  |    112 | defined as
 | 
|  |    113 | \begin{isabelle}%
 | 
|  |    114 | \ \ \ \ \ same{\isacharunderscore}fst\ P\ R\ {\isasymequiv}\ {\isacharbraceleft}{\isacharparenleft}{\isacharparenleft}x{\isacharprime}{\isacharcomma}\ y{\isacharprime}{\isacharparenright}{\isacharcomma}\ x{\isacharcomma}\ y{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isacharequal}\ x\ {\isasymand}\ P\ x\ {\isasymand}\ {\isacharparenleft}y{\isacharprime}{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ R\ x{\isacharbraceright}%
 | 
|  |    115 | \end{isabelle}
 | 
| 11196 |    116 | This combinator is designed for
 | 
|  |    117 | recursive functions on pairs where the first component of the argument is
 | 
|  |    118 | passed unchanged to all recursive calls. Given a constraint on the first
 | 
|  |    119 | component and a relation on the second component, \isa{same{\isacharunderscore}fst} builds the
 | 
|  |    120 | required relation on pairs.  The theorem
 | 
|  |    121 | \begin{isabelle}%
 | 
| 10654 |    122 | \ \ \ \ \ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ P\ x\ {\isasymLongrightarrow}\ wf\ {\isacharparenleft}R\ x{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ wf\ {\isacharparenleft}same{\isacharunderscore}fst\ P\ R{\isacharparenright}%
 | 
|  |    123 | \end{isabelle}
 | 
| 11196 |    124 | is known to the well-foundedness prover of \isacommand{recdef}.  Thus
 | 
|  |    125 | well-foundedness of the relation given to \isacommand{recdef} is immediate.
 | 
|  |    126 | Furthermore, each recursive call descends along that relation: the first
 | 
| 11285 |    127 | argument stays unchanged and the second one descends along \isa{step{\isadigit{1}}\ f}. The proof requires unfolding the definition of \isa{step{\isadigit{1}}},
 | 
|  |    128 | as specified in the \isacommand{hints} above.
 | 
| 10654 |    129 | 
 | 
| 11494 |    130 | Normally you will then derive the following conditional variant from
 | 
|  |    131 | the recursion equation:%
 | 
| 10654 |    132 | \end{isamarkuptext}%
 | 
|  |    133 | \isacommand{lemma}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\isanewline
 | 
|  |    134 | \ \ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\ find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find{\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
 | 
|  |    135 | \isacommand{by}\ simp%
 | 
|  |    136 | \begin{isamarkuptext}%
 | 
| 11494 |    137 | \noindent Then you should disable the original recursion equation:%
 | 
| 10654 |    138 | \end{isamarkuptext}%
 | 
|  |    139 | \isacommand{declare}\ find{\isachardot}simps{\isacharbrackleft}simp\ del{\isacharbrackright}%
 | 
|  |    140 | \begin{isamarkuptext}%
 | 
| 11494 |    141 | Reasoning about such underdefined functions is like that for other
 | 
|  |    142 | recursive functions.  Here is a simple example of recursion induction:%
 | 
| 10654 |    143 | \end{isamarkuptext}%
 | 
|  |    144 | \isacommand{lemma}\ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymlongrightarrow}\ f{\isacharparenleft}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}{\isachardoublequote}\isanewline
 | 
|  |    145 | \isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f\ x\ rule{\isacharcolon}find{\isachardot}induct{\isacharparenright}\isanewline
 | 
|  |    146 | \isacommand{apply}\ simp\isanewline
 | 
|  |    147 | \isacommand{done}%
 | 
| 10878 |    148 | \isamarkupsubsubsection{The {\tt\slshape while} Combinator%
 | 
| 10654 |    149 | }
 | 
|  |    150 | %
 | 
|  |    151 | \begin{isamarkuptext}%
 | 
|  |    152 | If the recursive function happens to be tail recursive, its
 | 
| 11428 |    153 | definition becomes a triviality if based on the predefined \cdx{while}
 | 
| 10878 |    154 | combinator.  The latter lives in the Library theory
 | 
| 11428 |    155 | \thydx{While_Combinator}, which is not part of \isa{Main} but needs to
 | 
| 10654 |    156 | be included explicitly among the ancestor theories.
 | 
|  |    157 | 
 | 
|  |    158 | Constant \isa{while} is of type \isa{{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ bool{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a}
 | 
|  |    159 | and satisfies the recursion equation \begin{isabelle}%
 | 
|  |    160 | \ \ \ \ \ while\ b\ c\ s\ {\isacharequal}\ {\isacharparenleft}if\ b\ s\ then\ while\ b\ c\ {\isacharparenleft}c\ s{\isacharparenright}\ else\ s{\isacharparenright}%
 | 
|  |    161 | \end{isabelle}
 | 
|  |    162 | That is, \isa{while\ b\ c\ s} is equivalent to the imperative program
 | 
|  |    163 | \begin{verbatim}
 | 
|  |    164 |      x := s; while b(x) do x := c(x); return x
 | 
|  |    165 | \end{verbatim}
 | 
| 11494 |    166 | In general, \isa{s} will be a tuple or record.  As an example
 | 
|  |    167 | consider the following definition of function \isa{find}:%
 | 
| 10654 |    168 | \end{isamarkuptext}%
 | 
|  |    169 | \isacommand{constdefs}\ find{\isadigit{2}}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline
 | 
|  |    170 | \ \ {\isachardoublequote}find{\isadigit{2}}\ f\ x\ {\isasymequiv}\isanewline
 | 
|  |    171 | \ \ \ fst{\isacharparenleft}while\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}f\ x{\isacharprime}{\isacharparenright}{\isacharparenright}\ {\isacharparenleft}x{\isacharcomma}f\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
 | 
|  |    172 | \begin{isamarkuptext}%
 | 
|  |    173 | \noindent
 | 
|  |    174 | The loop operates on two ``local variables'' \isa{x} and \isa{x{\isacharprime}}
 | 
|  |    175 | containing the ``current'' and the ``next'' value of function \isa{f}.
 | 
| 11310 |    176 | They are initialized with the global \isa{x} and \isa{f\ x}. At the
 | 
| 10654 |    177 | end \isa{fst} selects the local \isa{x}.
 | 
|  |    178 | 
 | 
| 11158 |    179 | Although the definition of tail recursive functions via \isa{while} avoids
 | 
|  |    180 | termination proofs, there is no free lunch. When proving properties of
 | 
|  |    181 | functions defined by \isa{while}, termination rears its ugly head
 | 
| 11494 |    182 | again. Here is \tdx{while_rule}, the well known proof rule for total
 | 
| 10654 |    183 | correctness of loops expressed with \isa{while}:
 | 
|  |    184 | \begin{isabelle}%
 | 
| 10696 |    185 | \ \ \ \ \ {\isasymlbrakk}P\ s{\isacharsemicolon}\ {\isasymAnd}s{\isachardot}\ {\isasymlbrakk}P\ s{\isacharsemicolon}\ b\ s{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}c\ s{\isacharparenright}{\isacharsemicolon}\isanewline
 | 
| 10950 |    186 | \isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}s{\isachardot}\ {\isasymlbrakk}P\ s{\isacharsemicolon}\ {\isasymnot}\ b\ s{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q\ s{\isacharsemicolon}\ wf\ r{\isacharsemicolon}\isanewline
 | 
|  |    187 | \isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}s{\isachardot}\ {\isasymlbrakk}P\ s{\isacharsemicolon}\ b\ s{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isacharparenleft}c\ s{\isacharcomma}\ s{\isacharparenright}\ {\isasymin}\ r{\isasymrbrakk}\isanewline
 | 
|  |    188 | \isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ Q\ {\isacharparenleft}while\ b\ c\ s{\isacharparenright}%
 | 
| 11158 |    189 | \end{isabelle} \isa{P} needs to be true of
 | 
|  |    190 | the initial state \isa{s} and invariant under \isa{c} (premises 1
 | 
|  |    191 | and~2). The post-condition \isa{Q} must become true when leaving the loop
 | 
|  |    192 | (premise~3). And each loop iteration must descend along a well-founded
 | 
|  |    193 | relation \isa{r} (premises 4 and~5).
 | 
| 10654 |    194 | 
 | 
|  |    195 | Let us now prove that \isa{find{\isadigit{2}}} does indeed find a fixed point. Instead
 | 
|  |    196 | of induction we apply the above while rule, suitably instantiated.
 | 
|  |    197 | Only the final premise of \isa{while{\isacharunderscore}rule} is left unproved
 | 
|  |    198 | by \isa{auto} but falls to \isa{simp}:%
 | 
|  |    199 | \end{isamarkuptext}%
 | 
| 11277 |    200 | \isacommand{lemma}\ lem{\isacharcolon}\ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\isanewline
 | 
|  |    201 | \ \ {\isasymexists}y{\isachardot}\ while\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharparenleft}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}f\ x{\isacharprime}{\isacharparenright}{\isacharparenright}\ {\isacharparenleft}x{\isacharcomma}f\ x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y{\isacharcomma}y{\isacharparenright}\ {\isasymand}\isanewline
 | 
| 10878 |    202 | \ \ \ \ \ \ \ f\ y\ {\isacharequal}\ y{\isachardoublequote}\isanewline
 | 
| 10654 |    203 | \isacommand{apply}{\isacharparenleft}rule{\isacharunderscore}tac\ P\ {\isacharequal}\ {\isachardoublequote}{\isasymlambda}{\isacharparenleft}x{\isacharcomma}x{\isacharprime}{\isacharparenright}{\isachardot}\ x{\isacharprime}\ {\isacharequal}\ f\ x{\isachardoublequote}\ \isakeyword{and}\isanewline
 | 
|  |    204 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ {\isacharequal}\ {\isachardoublequote}inv{\isacharunderscore}image\ {\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ fst{\isachardoublequote}\ \isakeyword{in}\ while{\isacharunderscore}rule{\isacharparenright}\isanewline
 | 
|  |    205 | \isacommand{apply}\ auto\isanewline
 | 
|  |    206 | \isacommand{apply}{\isacharparenleft}simp\ add{\isacharcolon}inv{\isacharunderscore}image{\isacharunderscore}def\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}\isanewline
 | 
|  |    207 | \isacommand{done}%
 | 
|  |    208 | \begin{isamarkuptext}%
 | 
|  |    209 | The theorem itself is a simple consequence of this lemma:%
 | 
|  |    210 | \end{isamarkuptext}%
 | 
|  |    211 | \isacommand{theorem}\ {\isachardoublequote}wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\ {\isasymLongrightarrow}\ f{\isacharparenleft}find{\isadigit{2}}\ f\ x{\isacharparenright}\ {\isacharequal}\ find{\isadigit{2}}\ f\ x{\isachardoublequote}\isanewline
 | 
|  |    212 | \isacommand{apply}{\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ x\ \isakeyword{in}\ lem{\isacharparenright}\isanewline
 | 
|  |    213 | \isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}find{\isadigit{2}}{\isacharunderscore}def{\isacharparenright}\isanewline
 | 
|  |    214 | \isacommand{done}%
 | 
|  |    215 | \begin{isamarkuptext}%
 | 
|  |    216 | Let us conclude this section on partial functions by a
 | 
|  |    217 | discussion of the merits of the \isa{while} combinator. We have
 | 
| 11494 |    218 | already seen that the advantage of not having to
 | 
| 11310 |    219 | provide a termination argument when defining a function via \isa{while} merely puts off the evil hour. On top of that, tail recursive
 | 
| 10654 |    220 | functions tend to be more complicated to reason about. So why use
 | 
|  |    221 | \isa{while} at all? The only reason is executability: the recursion
 | 
|  |    222 | equation for \isa{while} is a directly executable functional
 | 
|  |    223 | program. This is in stark contrast to guarded recursion as introduced
 | 
|  |    224 | above which requires an explicit test \isa{x\ {\isasymin}\ dom\ f} in the
 | 
|  |    225 | function body.  Unless \isa{dom} is trivial, this leads to a
 | 
| 11196 |    226 | definition that is impossible to execute or prohibitively slow.
 | 
| 10878 |    227 | Thus, if you are aiming for an efficiently executable definition
 | 
| 10654 |    228 | of a partial function, you are likely to need \isa{while}.%
 | 
|  |    229 | \end{isamarkuptext}%
 | 
|  |    230 | \end{isabellebody}%
 | 
|  |    231 | %%% Local Variables:
 | 
|  |    232 | %%% mode: latex
 | 
|  |    233 | %%% TeX-master: "root"
 | 
|  |    234 | %%% End:
 |