author | haftmann |
Sat, 20 Apr 2019 13:44:16 +0000 | |
changeset 70185 | ac1706cdde25 |
parent 70183 | 3ea80c950023 |
child 70186 | 18e94864fd0f |
permissions | -rw-r--r-- |
29628 | 1 |
(* Title: HOL/Word/Word.thy |
46124 | 2 |
Author: Jeremy Dawson and Gerwin Klein, NICTA |
24333 | 3 |
*) |
4 |
||
61799 | 5 |
section \<open>A type of finite bit strings\<close> |
24350 | 6 |
|
29628 | 7 |
theory Word |
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
41060
diff
changeset
|
8 |
imports |
66453
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
65363
diff
changeset
|
9 |
"HOL-Library.Type_Length" |
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents:
65363
diff
changeset
|
10 |
"HOL-Library.Boolean_Algebra" |
54854
3324a0078636
prefer "Bits" as theory name for abstract bit operations, similar to "Orderings", "Lattices", "Groups" etc.
haftmann
parents:
54849
diff
changeset
|
11 |
Bits_Bit |
70169 | 12 |
Bits_Int |
53062
3af1a6020014
some vague grouping of related theorems, with slight tuning of headings and sorting out of dubious lemmas into separate theory
haftmann
parents:
51717
diff
changeset
|
13 |
Misc_Typedef |
70170 | 14 |
Misc_Arithmetic |
37660 | 15 |
begin |
16 |
||
70173 | 17 |
text \<open>See \<^file>\<open>Word_Examples.thy\<close> for examples.\<close> |
61799 | 18 |
|
19 |
subsection \<open>Type definition\<close> |
|
37660 | 20 |
|
70185 | 21 |
typedef (overloaded) 'a word = "{(0::int) ..< 2 ^ LENGTH('a::len0)}" |
37660 | 22 |
morphisms uint Abs_word by auto |
23 |
||
65268 | 24 |
lemma uint_nonnegative: "0 \<le> uint w" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
25 |
using word.uint [of w] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
26 |
|
70185 | 27 |
lemma uint_bounded: "uint w < 2 ^ LENGTH('a)" |
65268 | 28 |
for w :: "'a::len0 word" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
29 |
using word.uint [of w] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
30 |
|
70185 | 31 |
lemma uint_idem: "uint w mod 2 ^ LENGTH('a) = uint w" |
65268 | 32 |
for w :: "'a::len0 word" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
33 |
using uint_nonnegative uint_bounded by (rule mod_pos_pos_trivial) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
34 |
|
65268 | 35 |
lemma word_uint_eq_iff: "a = b \<longleftrightarrow> uint a = uint b" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
36 |
by (simp add: uint_inject) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
37 |
|
65268 | 38 |
lemma word_uint_eqI: "uint a = uint b \<Longrightarrow> a = b" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
39 |
by (simp add: word_uint_eq_iff) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
40 |
|
61076 | 41 |
definition word_of_int :: "int \<Rightarrow> 'a::len0 word" |
61799 | 42 |
\<comment> \<open>representation of words using unsigned or signed bins, |
43 |
only difference in these is the type class\<close> |
|
70185 | 44 |
where "word_of_int k = Abs_word (k mod 2 ^ LENGTH('a))" |
45 |
||
46 |
lemma uint_word_of_int: "uint (word_of_int k :: 'a::len0 word) = k mod 2 ^ LENGTH('a)" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
47 |
by (auto simp add: word_of_int_def intro: Abs_word_inverse) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
48 |
|
65268 | 49 |
lemma word_of_int_uint: "word_of_int (uint w) = w" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
50 |
by (simp add: word_of_int_def uint_idem uint_inverse) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
51 |
|
65268 | 52 |
lemma split_word_all: "(\<And>x::'a::len0 word. PROP P x) \<equiv> (\<And>x. PROP P (word_of_int x))" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
53 |
proof |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
54 |
fix x :: "'a word" |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
55 |
assume "\<And>x. PROP P (word_of_int x)" |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
56 |
then have "PROP P (word_of_int (uint x))" . |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
57 |
then show "PROP P x" by (simp add: word_of_int_uint) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
58 |
qed |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
59 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
60 |
|
61799 | 61 |
subsection \<open>Type conversions and casting\<close> |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
62 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
63 |
definition sint :: "'a::len word \<Rightarrow> int" |
61799 | 64 |
\<comment> \<open>treats the most-significant-bit as a sign bit\<close> |
70175 | 65 |
where sint_uint: "sint w = sbintrunc (LENGTH('a) - 1) (uint w)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
66 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
67 |
definition unat :: "'a::len0 word \<Rightarrow> nat" |
65268 | 68 |
where "unat w = nat (uint w)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
69 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
70 |
definition uints :: "nat \<Rightarrow> int set" |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset
|
71 |
\<comment> \<open>the sets of integers representing the words\<close> |
65268 | 72 |
where "uints n = range (bintrunc n)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
73 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
74 |
definition sints :: "nat \<Rightarrow> int set" |
65268 | 75 |
where "sints n = range (sbintrunc (n - 1))" |
76 |
||
77 |
lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
78 |
by (simp add: uints_def range_bintrunc) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
79 |
|
65268 | 80 |
lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \<le> i \<and> i < 2 ^ (n - 1)}" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
81 |
by (simp add: sints_def range_sbintrunc) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
82 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
83 |
definition unats :: "nat \<Rightarrow> nat set" |
65268 | 84 |
where "unats n = {i. i < 2 ^ n}" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
85 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
86 |
definition norm_sint :: "nat \<Rightarrow> int \<Rightarrow> int" |
65268 | 87 |
where "norm_sint n w = (w + 2 ^ (n - 1)) mod 2 ^ n - 2 ^ (n - 1)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
88 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
89 |
definition scast :: "'a::len word \<Rightarrow> 'b::len word" |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset
|
90 |
\<comment> \<open>cast a word to a different length\<close> |
65268 | 91 |
where "scast w = word_of_int (sint w)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
92 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
93 |
definition ucast :: "'a::len0 word \<Rightarrow> 'b::len0 word" |
65268 | 94 |
where "ucast w = word_of_int (uint w)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
95 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
96 |
instantiation word :: (len0) size |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
97 |
begin |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
98 |
|
70183
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset
|
99 |
definition word_size: "size (w :: 'a word) = LENGTH('a)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
100 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
101 |
instance .. |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
102 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
103 |
end |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
104 |
|
65268 | 105 |
lemma word_size_gt_0 [iff]: "0 < size w" |
106 |
for w :: "'a::len word" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
107 |
by (simp add: word_size) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
108 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
109 |
lemmas lens_gt_0 = word_size_gt_0 len_gt_0 |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
110 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
111 |
lemma lens_not_0 [iff]: |
65268 | 112 |
fixes w :: "'a::len word" |
113 |
shows "size w \<noteq> 0" |
|
70185 | 114 |
and "LENGTH('a) \<noteq> 0" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
115 |
by auto |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
116 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
117 |
definition source_size :: "('a::len0 word \<Rightarrow> 'b) \<Rightarrow> nat" |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset
|
118 |
\<comment> \<open>whether a cast (or other) function is to a longer or shorter length\<close> |
65268 | 119 |
where [code del]: "source_size c = (let arb = undefined; x = c arb in size arb)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
120 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
121 |
definition target_size :: "('a \<Rightarrow> 'b::len0 word) \<Rightarrow> nat" |
65268 | 122 |
where [code del]: "target_size c = size (c undefined)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
123 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
124 |
definition is_up :: "('a::len0 word \<Rightarrow> 'b::len0 word) \<Rightarrow> bool" |
65268 | 125 |
where "is_up c \<longleftrightarrow> source_size c \<le> target_size c" |
126 |
||
127 |
definition is_down :: "('a::len0 word \<Rightarrow> 'b::len0 word) \<Rightarrow> bool" |
|
128 |
where "is_down c \<longleftrightarrow> target_size c \<le> source_size c" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
129 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
130 |
definition of_bl :: "bool list \<Rightarrow> 'a::len0 word" |
65268 | 131 |
where "of_bl bl = word_of_int (bl_to_bin bl)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
132 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
133 |
definition to_bl :: "'a::len0 word \<Rightarrow> bool list" |
70185 | 134 |
where "to_bl w = bin_to_bl (LENGTH('a)) (uint w)" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
135 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
136 |
definition word_reverse :: "'a::len0 word \<Rightarrow> 'a word" |
65268 | 137 |
where "word_reverse w = of_bl (rev (to_bl w))" |
138 |
||
139 |
definition word_int_case :: "(int \<Rightarrow> 'b) \<Rightarrow> 'a::len0 word \<Rightarrow> 'b" |
|
140 |
where "word_int_case f w = f (uint w)" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
141 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
142 |
translations |
65268 | 143 |
"case x of XCONST of_int y \<Rightarrow> b" \<rightleftharpoons> "CONST word_int_case (\<lambda>y. b) x" |
144 |
"case x of (XCONST of_int :: 'a) y \<Rightarrow> b" \<rightharpoonup> "CONST word_int_case (\<lambda>y. b) x" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
145 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
146 |
|
61799 | 147 |
subsection \<open>Correspondence relation for theorem transfer\<close> |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
148 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
149 |
definition cr_word :: "int \<Rightarrow> 'a::len0 word \<Rightarrow> bool" |
65268 | 150 |
where "cr_word = (\<lambda>x y. word_of_int x = y)" |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
151 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
152 |
lemma Quotient_word: |
70185 | 153 |
"Quotient (\<lambda>x y. bintrunc (LENGTH('a)) x = bintrunc (LENGTH('a)) y) |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
154 |
word_of_int uint (cr_word :: _ \<Rightarrow> 'a::len0 word \<Rightarrow> bool)" |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
155 |
unfolding Quotient_alt_def cr_word_def |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
156 |
by (simp add: no_bintr_alt1 word_of_int_uint) (simp add: word_of_int_def Abs_word_inject) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
157 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
158 |
lemma reflp_word: |
70185 | 159 |
"reflp (\<lambda>x y. bintrunc (LENGTH('a::len0)) x = bintrunc (LENGTH('a)) y)" |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
160 |
by (simp add: reflp_def) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
161 |
|
59487
adaa430fc0f7
default abstypes and default abstract equations make technical (no_code) annotation superfluous
haftmann
parents:
59094
diff
changeset
|
162 |
setup_lifting Quotient_word reflp_word |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
163 |
|
61799 | 164 |
text \<open>TODO: The next lemma could be generated automatically.\<close> |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
165 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
166 |
lemma uint_transfer [transfer_rule]: |
70185 | 167 |
"(rel_fun pcr_word (=)) (bintrunc (LENGTH('a))) (uint :: 'a::len0 word \<Rightarrow> int)" |
55945 | 168 |
unfolding rel_fun_def word.pcr_cr_eq cr_word_def |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
169 |
by (simp add: no_bintr_alt1 uint_word_of_int) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
170 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
171 |
|
61799 | 172 |
subsection \<open>Basic code generation setup\<close> |
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
173 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
174 |
definition Word :: "int \<Rightarrow> 'a::len0 word" |
65268 | 175 |
where [code_post]: "Word = word_of_int" |
176 |
||
177 |
lemma [code abstype]: "Word (uint w) = w" |
|
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
178 |
by (simp add: Word_def word_of_int_uint) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
179 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
180 |
declare uint_word_of_int [code abstract] |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
181 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
182 |
instantiation word :: (len0) equal |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
183 |
begin |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
184 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
185 |
definition equal_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool" |
65268 | 186 |
where "equal_word k l \<longleftrightarrow> HOL.equal (uint k) (uint l)" |
187 |
||
188 |
instance |
|
189 |
by standard (simp add: equal equal_word_def word_uint_eq_iff) |
|
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
190 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
191 |
end |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
192 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
193 |
notation fcomp (infixl "\<circ>>" 60) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
194 |
notation scomp (infixl "\<circ>\<rightarrow>" 60) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
195 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
196 |
instantiation word :: ("{len0, typerep}") random |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
197 |
begin |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
198 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
199 |
definition |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
200 |
"random_word i = Random.range i \<circ>\<rightarrow> (\<lambda>k. Pair ( |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
201 |
let j = word_of_int (int_of_integer (integer_of_natural k)) :: 'a word |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
202 |
in (j, \<lambda>_::unit. Code_Evaluation.term_of j)))" |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
203 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
204 |
instance .. |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
205 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
206 |
end |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
207 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
208 |
no_notation fcomp (infixl "\<circ>>" 60) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
209 |
no_notation scomp (infixl "\<circ>\<rightarrow>" 60) |
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
210 |
|
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset
|
211 |
|
61799 | 212 |
subsection \<open>Type-definition locale instantiations\<close> |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
213 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
214 |
lemmas uint_0 = uint_nonnegative (* FIXME duplicate *) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
215 |
lemmas uint_lt = uint_bounded (* FIXME duplicate *) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
216 |
lemmas uint_mod_same = uint_idem (* FIXME duplicate *) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
217 |
|
65268 | 218 |
lemma td_ext_uint: |
70185 | 219 |
"td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len0))) |
220 |
(\<lambda>w::int. w mod 2 ^ LENGTH('a))" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
221 |
apply (unfold td_ext_def') |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
222 |
apply (simp add: uints_num word_of_int_def bintrunc_mod2p) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
223 |
apply (simp add: uint_mod_same uint_0 uint_lt |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
224 |
word.uint_inverse word.Abs_word_inverse int_mod_lem) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
225 |
done |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
226 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
227 |
interpretation word_uint: |
65268 | 228 |
td_ext |
229 |
"uint::'a::len0 word \<Rightarrow> int" |
|
230 |
word_of_int |
|
70185 | 231 |
"uints (LENGTH('a::len0))" |
232 |
"\<lambda>w. w mod 2 ^ LENGTH('a::len0)" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
233 |
by (fact td_ext_uint) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
234 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
235 |
lemmas td_uint = word_uint.td_thm |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
236 |
lemmas int_word_uint = word_uint.eq_norm |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
237 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
238 |
lemma td_ext_ubin: |
70185 | 239 |
"td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len0))) |
240 |
(bintrunc (LENGTH('a)))" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
241 |
by (unfold no_bintr_alt1) (fact td_ext_uint) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
242 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
243 |
interpretation word_ubin: |
65268 | 244 |
td_ext |
245 |
"uint::'a::len0 word \<Rightarrow> int" |
|
246 |
word_of_int |
|
70185 | 247 |
"uints (LENGTH('a::len0))" |
248 |
"bintrunc (LENGTH('a::len0))" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
249 |
by (fact td_ext_ubin) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
250 |
|
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
251 |
|
61799 | 252 |
subsection \<open>Arithmetic operations\<close> |
37660 | 253 |
|
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
254 |
lift_definition word_succ :: "'a::len0 word \<Rightarrow> 'a word" is "\<lambda>x. x + 1" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
255 |
by (auto simp add: bintrunc_mod2p intro: mod_add_cong) |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
256 |
|
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
257 |
lift_definition word_pred :: "'a::len0 word \<Rightarrow> 'a word" is "\<lambda>x. x - 1" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
258 |
by (auto simp add: bintrunc_mod2p intro: mod_diff_cong) |
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
259 |
|
63950
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
63762
diff
changeset
|
260 |
instantiation word :: (len0) "{neg_numeral, modulo, comm_monoid_mult, comm_ring}" |
37660 | 261 |
begin |
262 |
||
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
263 |
lift_definition zero_word :: "'a word" is "0" . |
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
264 |
|
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
265 |
lift_definition one_word :: "'a word" is "1" . |
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
266 |
|
67399 | 267 |
lift_definition plus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is "(+)" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
268 |
by (auto simp add: bintrunc_mod2p intro: mod_add_cong) |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
269 |
|
67399 | 270 |
lift_definition minus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is "(-)" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
271 |
by (auto simp add: bintrunc_mod2p intro: mod_diff_cong) |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
272 |
|
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
273 |
lift_definition uminus_word :: "'a word \<Rightarrow> 'a word" is uminus |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
274 |
by (auto simp add: bintrunc_mod2p intro: mod_minus_cong) |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
275 |
|
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
68157
diff
changeset
|
276 |
lift_definition times_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is "(*)" |
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
277 |
by (auto simp add: bintrunc_mod2p intro: mod_mult_cong) |
37660 | 278 |
|
65328 | 279 |
definition word_div_def: "a div b = word_of_int (uint a div uint b)" |
280 |
||
281 |
definition word_mod_def: "a mod b = word_of_int (uint a mod uint b)" |
|
37660 | 282 |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
283 |
instance |
61169 | 284 |
by standard (transfer, simp add: algebra_simps)+ |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
285 |
|
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
286 |
end |
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
287 |
|
61799 | 288 |
text \<open>Legacy theorems:\<close> |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
289 |
|
65268 | 290 |
lemma word_arith_wis [code]: |
291 |
shows word_add_def: "a + b = word_of_int (uint a + uint b)" |
|
292 |
and word_sub_wi: "a - b = word_of_int (uint a - uint b)" |
|
293 |
and word_mult_def: "a * b = word_of_int (uint a * uint b)" |
|
294 |
and word_minus_def: "- a = word_of_int (- uint a)" |
|
295 |
and word_succ_alt: "word_succ a = word_of_int (uint a + 1)" |
|
296 |
and word_pred_alt: "word_pred a = word_of_int (uint a - 1)" |
|
297 |
and word_0_wi: "0 = word_of_int 0" |
|
298 |
and word_1_wi: "1 = word_of_int 1" |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
299 |
unfolding plus_word_def minus_word_def times_word_def uminus_word_def |
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
300 |
unfolding word_succ_def word_pred_def zero_word_def one_word_def |
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
301 |
by simp_all |
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
302 |
|
65268 | 303 |
lemma wi_homs: |
304 |
shows wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" |
|
305 |
and wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)" |
|
306 |
and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" |
|
307 |
and wi_hom_neg: "- word_of_int a = word_of_int (- a)" |
|
308 |
and wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" |
|
309 |
and wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)" |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
310 |
by (transfer, simp)+ |
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
311 |
|
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
312 |
lemmas wi_hom_syms = wi_homs [symmetric] |
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
313 |
|
46013 | 314 |
lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi |
46009 | 315 |
|
316 |
lemmas word_of_int_hom_syms = word_of_int_homs [symmetric] |
|
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
317 |
|
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
318 |
instance word :: (len) comm_ring_1 |
45810 | 319 |
proof |
70185 | 320 |
have *: "0 < LENGTH('a)" by (rule len_gt_0) |
65268 | 321 |
show "(0::'a word) \<noteq> 1" |
322 |
by transfer (use * in \<open>auto simp add: gr0_conv_Suc\<close>) |
|
45810 | 323 |
qed |
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
324 |
|
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
325 |
lemma word_of_nat: "of_nat n = word_of_int (int n)" |
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
326 |
by (induct n) (auto simp add : word_of_int_hom_syms) |
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
327 |
|
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
328 |
lemma word_of_int: "of_int = word_of_int" |
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
329 |
apply (rule ext) |
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
330 |
apply (case_tac x rule: int_diff_cases) |
46013 | 331 |
apply (simp add: word_of_nat wi_hom_sub) |
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
332 |
done |
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset
|
333 |
|
65268 | 334 |
definition udvd :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> bool" (infixl "udvd" 50) |
335 |
where "a udvd b = (\<exists>n\<ge>0. uint b = n * uint a)" |
|
37660 | 336 |
|
45547 | 337 |
|
61799 | 338 |
subsection \<open>Ordering\<close> |
45547 | 339 |
|
340 |
instantiation word :: (len0) linorder |
|
341 |
begin |
|
342 |
||
65268 | 343 |
definition word_le_def: "a \<le> b \<longleftrightarrow> uint a \<le> uint b" |
344 |
||
345 |
definition word_less_def: "a < b \<longleftrightarrow> uint a < uint b" |
|
37660 | 346 |
|
45547 | 347 |
instance |
61169 | 348 |
by standard (auto simp: word_less_def word_le_def) |
45547 | 349 |
|
350 |
end |
|
351 |
||
65268 | 352 |
definition word_sle :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool" ("(_/ <=s _)" [50, 51] 50) |
353 |
where "a <=s b \<longleftrightarrow> sint a \<le> sint b" |
|
354 |
||
355 |
definition word_sless :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool" ("(_/ <s _)" [50, 51] 50) |
|
356 |
where "x <s y \<longleftrightarrow> x <=s y \<and> x \<noteq> y" |
|
37660 | 357 |
|
358 |
||
61799 | 359 |
subsection \<open>Bit-wise operations\<close> |
37660 | 360 |
|
361 |
instantiation word :: (len0) bits |
|
362 |
begin |
|
363 |
||
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
364 |
lift_definition bitNOT_word :: "'a word \<Rightarrow> 'a word" is bitNOT |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
365 |
by (metis bin_trunc_not) |
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
366 |
|
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
367 |
lift_definition bitAND_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is bitAND |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
368 |
by (metis bin_trunc_and) |
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
369 |
|
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
370 |
lift_definition bitOR_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is bitOR |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
371 |
by (metis bin_trunc_or) |
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
372 |
|
47387
a0f257197741
remove now-unnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset
|
373 |
lift_definition bitXOR_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is bitXOR |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
374 |
by (metis bin_trunc_xor) |
37660 | 375 |
|
65268 | 376 |
definition word_test_bit_def: "test_bit a = bin_nth (uint a)" |
377 |
||
378 |
definition word_set_bit_def: "set_bit a n x = word_of_int (bin_sc n x (uint a))" |
|
379 |
||
70175 | 380 |
definition word_set_bits_def: "(BITS n. f n) = of_bl (bl_of_nth LENGTH('a) f)" |
65268 | 381 |
|
382 |
definition word_lsb_def: "lsb a \<longleftrightarrow> bin_last (uint a)" |
|
37660 | 383 |
|
70175 | 384 |
definition "msb a \<longleftrightarrow> bin_sign (sbintrunc (LENGTH('a) - 1) (uint a)) = - 1" |
385 |
||
54848 | 386 |
definition shiftl1 :: "'a word \<Rightarrow> 'a word" |
65268 | 387 |
where "shiftl1 w = word_of_int (uint w BIT False)" |
37660 | 388 |
|
54848 | 389 |
definition shiftr1 :: "'a word \<Rightarrow> 'a word" |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset
|
390 |
\<comment> \<open>shift right as unsigned or as signed, ie logical or arithmetic\<close> |
65328 | 391 |
where "shiftr1 w = word_of_int (bin_rest (uint w))" |
37660 | 392 |
|
65268 | 393 |
definition shiftl_def: "w << n = (shiftl1 ^^ n) w" |
394 |
||
395 |
definition shiftr_def: "w >> n = (shiftr1 ^^ n) w" |
|
37660 | 396 |
|
397 |
instance .. |
|
398 |
||
399 |
end |
|
400 |
||
70175 | 401 |
lemma word_msb_def: |
402 |
"msb a \<longleftrightarrow> bin_sign (sint a) = - 1" |
|
403 |
by (simp add: msb_word_def sint_uint) |
|
404 |
||
65268 | 405 |
lemma [code]: |
406 |
shows word_not_def: "NOT (a::'a::len0 word) = word_of_int (NOT (uint a))" |
|
407 |
and word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)" |
|
408 |
and word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)" |
|
409 |
and word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)" |
|
410 |
by (simp_all add: bitNOT_word_def bitAND_word_def bitOR_word_def bitXOR_word_def) |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
411 |
|
65268 | 412 |
definition setBit :: "'a::len0 word \<Rightarrow> nat \<Rightarrow> 'a word" |
413 |
where "setBit w n = set_bit w n True" |
|
414 |
||
415 |
definition clearBit :: "'a::len0 word \<Rightarrow> nat \<Rightarrow> 'a word" |
|
416 |
where "clearBit w n = set_bit w n False" |
|
37660 | 417 |
|
418 |
||
61799 | 419 |
subsection \<open>Shift operations\<close> |
37660 | 420 |
|
65268 | 421 |
definition sshiftr1 :: "'a::len word \<Rightarrow> 'a word" |
422 |
where "sshiftr1 w = word_of_int (bin_rest (sint w))" |
|
423 |
||
424 |
definition bshiftr1 :: "bool \<Rightarrow> 'a::len word \<Rightarrow> 'a word" |
|
425 |
where "bshiftr1 b w = of_bl (b # butlast (to_bl w))" |
|
426 |
||
427 |
definition sshiftr :: "'a::len word \<Rightarrow> nat \<Rightarrow> 'a word" (infixl ">>>" 55) |
|
428 |
where "w >>> n = (sshiftr1 ^^ n) w" |
|
429 |
||
430 |
definition mask :: "nat \<Rightarrow> 'a::len word" |
|
431 |
where "mask n = (1 << n) - 1" |
|
432 |
||
433 |
definition revcast :: "'a::len0 word \<Rightarrow> 'b::len0 word" |
|
70185 | 434 |
where "revcast w = of_bl (takefill False (LENGTH('b)) (to_bl w))" |
65268 | 435 |
|
436 |
definition slice1 :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'b::len0 word" |
|
437 |
where "slice1 n w = of_bl (takefill False n (to_bl w))" |
|
438 |
||
439 |
definition slice :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'b::len0 word" |
|
440 |
where "slice n w = slice1 (size w - n) w" |
|
37660 | 441 |
|
442 |
||
61799 | 443 |
subsection \<open>Rotation\<close> |
37660 | 444 |
|
65268 | 445 |
definition rotater1 :: "'a list \<Rightarrow> 'a list" |
446 |
where "rotater1 ys = |
|
447 |
(case ys of [] \<Rightarrow> [] | x # xs \<Rightarrow> last ys # butlast ys)" |
|
448 |
||
449 |
definition rotater :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
450 |
where "rotater n = rotater1 ^^ n" |
|
451 |
||
452 |
definition word_rotr :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'a::len0 word" |
|
453 |
where "word_rotr n w = of_bl (rotater n (to_bl w))" |
|
454 |
||
455 |
definition word_rotl :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'a::len0 word" |
|
456 |
where "word_rotl n w = of_bl (rotate n (to_bl w))" |
|
457 |
||
458 |
definition word_roti :: "int \<Rightarrow> 'a::len0 word \<Rightarrow> 'a::len0 word" |
|
459 |
where "word_roti i w = |
|
460 |
(if i \<ge> 0 then word_rotr (nat i) w else word_rotl (nat (- i)) w)" |
|
37660 | 461 |
|
462 |
||
61799 | 463 |
subsection \<open>Split and cat operations\<close> |
37660 | 464 |
|
65268 | 465 |
definition word_cat :: "'a::len0 word \<Rightarrow> 'b::len0 word \<Rightarrow> 'c::len0 word" |
70185 | 466 |
where "word_cat a b = word_of_int (bin_cat (uint a) (LENGTH('b)) (uint b))" |
65268 | 467 |
|
468 |
definition word_split :: "'a::len0 word \<Rightarrow> 'b::len0 word \<times> 'c::len0 word" |
|
469 |
where "word_split a = |
|
70185 | 470 |
(case bin_split (LENGTH('c)) (uint a) of |
65268 | 471 |
(u, v) \<Rightarrow> (word_of_int u, word_of_int v))" |
472 |
||
473 |
definition word_rcat :: "'a::len0 word list \<Rightarrow> 'b::len0 word" |
|
70185 | 474 |
where "word_rcat ws = word_of_int (bin_rcat (LENGTH('a)) (map uint ws))" |
65268 | 475 |
|
476 |
definition word_rsplit :: "'a::len0 word \<Rightarrow> 'b::len word list" |
|
70185 | 477 |
where "word_rsplit w = map word_of_int (bin_rsplit (LENGTH('b)) (LENGTH('a), uint w))" |
65268 | 478 |
|
65328 | 479 |
definition max_word :: "'a::len word" |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset
|
480 |
\<comment> \<open>Largest representable machine integer.\<close> |
70185 | 481 |
where "max_word = word_of_int (2 ^ LENGTH('a) - 1)" |
37660 | 482 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
483 |
lemmas of_nth_def = word_set_bits_def (* FIXME duplicate *) |
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
484 |
|
37660 | 485 |
|
61799 | 486 |
subsection \<open>Theorems about typedefs\<close> |
46010 | 487 |
|
70185 | 488 |
lemma sint_sbintrunc': "sint (word_of_int bin :: 'a word) = sbintrunc (LENGTH('a::len) - 1) bin" |
65268 | 489 |
by (auto simp: sint_uint word_ubin.eq_norm sbintrunc_bintrunc_lt) |
490 |
||
70185 | 491 |
lemma uint_sint: "uint w = bintrunc (LENGTH('a)) (sint w)" |
65328 | 492 |
for w :: "'a::len word" |
65268 | 493 |
by (auto simp: sint_uint bintrunc_sbintrunc_le) |
494 |
||
70185 | 495 |
lemma bintr_uint: "LENGTH('a) \<le> n \<Longrightarrow> bintrunc n (uint w) = uint w" |
65268 | 496 |
for w :: "'a::len0 word" |
497 |
apply (subst word_ubin.norm_Rep [symmetric]) |
|
37660 | 498 |
apply (simp only: bintrunc_bintrunc_min word_size) |
54863
82acc20ded73
prefer more canonical names for lemmas on min/max
haftmann
parents:
54854
diff
changeset
|
499 |
apply (simp add: min.absorb2) |
37660 | 500 |
done |
501 |
||
46057 | 502 |
lemma wi_bintr: |
70185 | 503 |
"LENGTH('a::len0) \<le> n \<Longrightarrow> |
46057 | 504 |
word_of_int (bintrunc n w) = (word_of_int w :: 'a word)" |
65268 | 505 |
by (auto simp: word_ubin.norm_eq_iff [symmetric] min.absorb1) |
506 |
||
507 |
lemma td_ext_sbin: |
|
70185 | 508 |
"td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len))) |
509 |
(sbintrunc (LENGTH('a) - 1))" |
|
37660 | 510 |
apply (unfold td_ext_def' sint_uint) |
511 |
apply (simp add : word_ubin.eq_norm) |
|
70185 | 512 |
apply (cases "LENGTH('a)") |
37660 | 513 |
apply (auto simp add : sints_def) |
514 |
apply (rule sym [THEN trans]) |
|
65268 | 515 |
apply (rule word_ubin.Abs_norm) |
37660 | 516 |
apply (simp only: bintrunc_sbintrunc) |
517 |
apply (drule sym) |
|
518 |
apply simp |
|
519 |
done |
|
520 |
||
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
521 |
lemma td_ext_sint: |
70185 | 522 |
"td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len))) |
523 |
(\<lambda>w. (w + 2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - |
|
524 |
2 ^ (LENGTH('a) - 1))" |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
525 |
using td_ext_sbin [where ?'a = 'a] by (simp add: no_sbintr_alt2) |
37660 | 526 |
|
67408 | 527 |
text \<open> |
528 |
We do \<open>sint\<close> before \<open>sbin\<close>, before \<open>sint\<close> is the user version |
|
529 |
and interpretations do not produce thm duplicates. I.e. |
|
530 |
we get the name \<open>word_sint.Rep_eqD\<close>, but not \<open>word_sbin.Req_eqD\<close>, |
|
531 |
because the latter is the same thm as the former. |
|
532 |
\<close> |
|
37660 | 533 |
interpretation word_sint: |
65268 | 534 |
td_ext |
535 |
"sint ::'a::len word \<Rightarrow> int" |
|
536 |
word_of_int |
|
70185 | 537 |
"sints (LENGTH('a::len))" |
538 |
"\<lambda>w. (w + 2^(LENGTH('a::len) - 1)) mod 2^LENGTH('a::len) - |
|
539 |
2 ^ (LENGTH('a::len) - 1)" |
|
37660 | 540 |
by (rule td_ext_sint) |
541 |
||
542 |
interpretation word_sbin: |
|
65268 | 543 |
td_ext |
544 |
"sint ::'a::len word \<Rightarrow> int" |
|
545 |
word_of_int |
|
70185 | 546 |
"sints (LENGTH('a::len))" |
547 |
"sbintrunc (LENGTH('a::len) - 1)" |
|
37660 | 548 |
by (rule td_ext_sbin) |
549 |
||
45604 | 550 |
lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm] |
37660 | 551 |
|
552 |
lemmas td_sint = word_sint.td |
|
553 |
||
70185 | 554 |
lemma to_bl_def': "(to_bl :: 'a::len0 word \<Rightarrow> bool list) = bin_to_bl (LENGTH('a)) \<circ> uint" |
44762 | 555 |
by (auto simp: to_bl_def) |
37660 | 556 |
|
65268 | 557 |
lemmas word_reverse_no_def [simp] = |
558 |
word_reverse_def [of "numeral w"] for w |
|
37660 | 559 |
|
45805 | 560 |
lemma uints_mod: "uints n = range (\<lambda>w. w mod 2 ^ n)" |
561 |
by (fact uints_def [unfolded no_bintr_alt1]) |
|
562 |
||
65268 | 563 |
lemma word_numeral_alt: "numeral b = word_of_int (numeral b)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
564 |
by (induct b, simp_all only: numeral.simps word_of_int_homs) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
565 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
566 |
declare word_numeral_alt [symmetric, code_abbrev] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
567 |
|
65268 | 568 |
lemma word_neg_numeral_alt: "- numeral b = word_of_int (- numeral b)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
569 |
by (simp only: word_numeral_alt wi_hom_neg) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
570 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
571 |
declare word_neg_numeral_alt [symmetric, code_abbrev] |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
572 |
|
47372 | 573 |
lemma word_numeral_transfer [transfer_rule]: |
67399 | 574 |
"(rel_fun (=) pcr_word) numeral numeral" |
575 |
"(rel_fun (=) pcr_word) (- numeral) (- numeral)" |
|
55945 | 576 |
apply (simp_all add: rel_fun_def word.pcr_cr_eq cr_word_def) |
65268 | 577 |
using word_numeral_alt [symmetric] word_neg_numeral_alt [symmetric] by auto |
47372 | 578 |
|
45805 | 579 |
lemma uint_bintrunc [simp]: |
65268 | 580 |
"uint (numeral bin :: 'a word) = |
70185 | 581 |
bintrunc (LENGTH('a::len0)) (numeral bin)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
582 |
unfolding word_numeral_alt by (rule word_ubin.eq_norm) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
583 |
|
65268 | 584 |
lemma uint_bintrunc_neg [simp]: |
70185 | 585 |
"uint (- numeral bin :: 'a word) = bintrunc (LENGTH('a::len0)) (- numeral bin)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
586 |
by (simp only: word_neg_numeral_alt word_ubin.eq_norm) |
37660 | 587 |
|
45805 | 588 |
lemma sint_sbintrunc [simp]: |
70185 | 589 |
"sint (numeral bin :: 'a word) = sbintrunc (LENGTH('a::len) - 1) (numeral bin)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
590 |
by (simp only: word_numeral_alt word_sbin.eq_norm) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
591 |
|
65268 | 592 |
lemma sint_sbintrunc_neg [simp]: |
70185 | 593 |
"sint (- numeral bin :: 'a word) = sbintrunc (LENGTH('a::len) - 1) (- numeral bin)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
594 |
by (simp only: word_neg_numeral_alt word_sbin.eq_norm) |
37660 | 595 |
|
45805 | 596 |
lemma unat_bintrunc [simp]: |
70185 | 597 |
"unat (numeral bin :: 'a::len0 word) = nat (bintrunc (LENGTH('a)) (numeral bin))" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
598 |
by (simp only: unat_def uint_bintrunc) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
599 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
600 |
lemma unat_bintrunc_neg [simp]: |
70185 | 601 |
"unat (- numeral bin :: 'a::len0 word) = nat (bintrunc (LENGTH('a)) (- numeral bin))" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
602 |
by (simp only: unat_def uint_bintrunc_neg) |
37660 | 603 |
|
65328 | 604 |
lemma size_0_eq: "size w = 0 \<Longrightarrow> v = w" |
605 |
for v w :: "'a::len0 word" |
|
37660 | 606 |
apply (unfold word_size) |
607 |
apply (rule word_uint.Rep_eqD) |
|
608 |
apply (rule box_equals) |
|
609 |
defer |
|
610 |
apply (rule word_ubin.norm_Rep)+ |
|
611 |
apply simp |
|
612 |
done |
|
613 |
||
65268 | 614 |
lemma uint_ge_0 [iff]: "0 \<le> uint x" |
615 |
for x :: "'a::len0 word" |
|
45805 | 616 |
using word_uint.Rep [of x] by (simp add: uints_num) |
617 |
||
70185 | 618 |
lemma uint_lt2p [iff]: "uint x < 2 ^ LENGTH('a)" |
65268 | 619 |
for x :: "'a::len0 word" |
45805 | 620 |
using word_uint.Rep [of x] by (simp add: uints_num) |
621 |
||
70185 | 622 |
lemma sint_ge: "- (2 ^ (LENGTH('a) - 1)) \<le> sint x" |
65268 | 623 |
for x :: "'a::len word" |
45805 | 624 |
using word_sint.Rep [of x] by (simp add: sints_num) |
625 |
||
70185 | 626 |
lemma sint_lt: "sint x < 2 ^ (LENGTH('a) - 1)" |
65268 | 627 |
for x :: "'a::len word" |
45805 | 628 |
using word_sint.Rep [of x] by (simp add: sints_num) |
37660 | 629 |
|
65268 | 630 |
lemma sign_uint_Pls [simp]: "bin_sign (uint x) = 0" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
631 |
by (simp add: sign_Pls_ge_0) |
37660 | 632 |
|
70185 | 633 |
lemma uint_m2p_neg: "uint x - 2 ^ LENGTH('a) < 0" |
65268 | 634 |
for x :: "'a::len0 word" |
45805 | 635 |
by (simp only: diff_less_0_iff_less uint_lt2p) |
636 |
||
70185 | 637 |
lemma uint_m2p_not_non_neg: "\<not> 0 \<le> uint x - 2 ^ LENGTH('a)" |
65268 | 638 |
for x :: "'a::len0 word" |
45805 | 639 |
by (simp only: not_le uint_m2p_neg) |
37660 | 640 |
|
70185 | 641 |
lemma lt2p_lem: "LENGTH('a) \<le> n \<Longrightarrow> uint w < 2 ^ n" |
65268 | 642 |
for w :: "'a::len0 word" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
643 |
by (metis bintr_uint bintrunc_mod2p int_mod_lem zless2p) |
37660 | 644 |
|
45805 | 645 |
lemma uint_le_0_iff [simp]: "uint x \<le> 0 \<longleftrightarrow> uint x = 0" |
646 |
by (fact uint_ge_0 [THEN leD, THEN linorder_antisym_conv1]) |
|
37660 | 647 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
648 |
lemma uint_nat: "uint w = int (unat w)" |
65268 | 649 |
by (auto simp: unat_def) |
650 |
||
70185 | 651 |
lemma uint_numeral: "uint (numeral b :: 'a::len0 word) = numeral b mod 2 ^ LENGTH('a)" |
65268 | 652 |
by (simp only: word_numeral_alt int_word_uint) |
653 |
||
70185 | 654 |
lemma uint_neg_numeral: "uint (- numeral b :: 'a::len0 word) = - numeral b mod 2 ^ LENGTH('a)" |
65268 | 655 |
by (simp only: word_neg_numeral_alt int_word_uint) |
656 |
||
70185 | 657 |
lemma unat_numeral: "unat (numeral b :: 'a::len0 word) = numeral b mod 2 ^ LENGTH('a)" |
37660 | 658 |
apply (unfold unat_def) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
659 |
apply (clarsimp simp only: uint_numeral) |
37660 | 660 |
apply (rule nat_mod_distrib [THEN trans]) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
661 |
apply (rule zero_le_numeral) |
37660 | 662 |
apply (simp_all add: nat_power_eq) |
663 |
done |
|
664 |
||
65268 | 665 |
lemma sint_numeral: |
666 |
"sint (numeral b :: 'a::len word) = |
|
667 |
(numeral b + |
|
70185 | 668 |
2 ^ (LENGTH('a) - 1)) mod 2 ^ LENGTH('a) - |
669 |
2 ^ (LENGTH('a) - 1)" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
670 |
unfolding word_numeral_alt by (rule int_word_sint) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
671 |
|
65268 | 672 |
lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0" |
45958 | 673 |
unfolding word_0_wi .. |
674 |
||
65268 | 675 |
lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1" |
45958 | 676 |
unfolding word_1_wi .. |
677 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
678 |
lemma word_of_int_neg_1 [simp]: "word_of_int (- 1) = - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
679 |
by (simp add: wi_hom_syms) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
680 |
|
65268 | 681 |
lemma word_of_int_numeral [simp] : "(word_of_int (numeral bin) :: 'a::len0 word) = numeral bin" |
682 |
by (simp only: word_numeral_alt) |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
683 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
684 |
lemma word_of_int_neg_numeral [simp]: |
65268 | 685 |
"(word_of_int (- numeral bin) :: 'a::len0 word) = - numeral bin" |
686 |
by (simp only: word_numeral_alt wi_hom_syms) |
|
687 |
||
688 |
lemma word_int_case_wi: |
|
70185 | 689 |
"word_int_case f (word_of_int i :: 'b word) = f (i mod 2 ^ LENGTH('b::len0))" |
65268 | 690 |
by (simp add: word_int_case_def word_uint.eq_norm) |
691 |
||
692 |
lemma word_int_split: |
|
693 |
"P (word_int_case f x) = |
|
70185 | 694 |
(\<forall>i. x = (word_of_int i :: 'b::len0 word) \<and> 0 \<le> i \<and> i < 2 ^ LENGTH('b) \<longrightarrow> P (f i))" |
65268 | 695 |
by (auto simp: word_int_case_def word_uint.eq_norm mod_pos_pos_trivial) |
696 |
||
697 |
lemma word_int_split_asm: |
|
698 |
"P (word_int_case f x) = |
|
70185 | 699 |
(\<nexists>n. x = (word_of_int n :: 'b::len0 word) \<and> 0 \<le> n \<and> n < 2 ^ LENGTH('b::len0) \<and> \<not> P (f n))" |
65268 | 700 |
by (auto simp: word_int_case_def word_uint.eq_norm mod_pos_pos_trivial) |
45805 | 701 |
|
45604 | 702 |
lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq] |
703 |
lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq] |
|
37660 | 704 |
|
65268 | 705 |
lemma uint_range_size: "0 \<le> uint w \<and> uint w < 2 ^ size w" |
37660 | 706 |
unfolding word_size by (rule uint_range') |
707 |
||
65268 | 708 |
lemma sint_range_size: "- (2 ^ (size w - Suc 0)) \<le> sint w \<and> sint w < 2 ^ (size w - Suc 0)" |
37660 | 709 |
unfolding word_size by (rule sint_range') |
710 |
||
65268 | 711 |
lemma sint_above_size: "2 ^ (size w - 1) \<le> x \<Longrightarrow> sint w < x" |
712 |
for w :: "'a::len word" |
|
45805 | 713 |
unfolding word_size by (rule less_le_trans [OF sint_lt]) |
714 |
||
65268 | 715 |
lemma sint_below_size: "x \<le> - (2 ^ (size w - 1)) \<Longrightarrow> x \<le> sint w" |
716 |
for w :: "'a::len word" |
|
45805 | 717 |
unfolding word_size by (rule order_trans [OF _ sint_ge]) |
37660 | 718 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
719 |
|
61799 | 720 |
subsection \<open>Testing bits\<close> |
46010 | 721 |
|
65268 | 722 |
lemma test_bit_eq_iff: "test_bit u = test_bit v \<longleftrightarrow> u = v" |
723 |
for u v :: "'a::len0 word" |
|
37660 | 724 |
unfolding word_test_bit_def by (simp add: bin_nth_eq_iff) |
725 |
||
65268 | 726 |
lemma test_bit_size [rule_format] : "w !! n \<longrightarrow> n < size w" |
727 |
for w :: "'a::len0 word" |
|
37660 | 728 |
apply (unfold word_test_bit_def) |
729 |
apply (subst word_ubin.norm_Rep [symmetric]) |
|
730 |
apply (simp only: nth_bintr word_size) |
|
731 |
apply fast |
|
732 |
done |
|
733 |
||
70185 | 734 |
lemma word_eq_iff: "x = y \<longleftrightarrow> (\<forall>n<LENGTH('a). x !! n = y !! n)" |
65268 | 735 |
for x y :: "'a::len0 word" |
46021 | 736 |
unfolding uint_inject [symmetric] bin_eq_iff word_test_bit_def [symmetric] |
737 |
by (metis test_bit_size [unfolded word_size]) |
|
738 |
||
65268 | 739 |
lemma word_eqI: "(\<And>n. n < size u \<longrightarrow> u !! n = v !! n) \<Longrightarrow> u = v" |
740 |
for u :: "'a::len0 word" |
|
46021 | 741 |
by (simp add: word_size word_eq_iff) |
37660 | 742 |
|
65268 | 743 |
lemma word_eqD: "u = v \<Longrightarrow> u !! x = v !! x" |
744 |
for u v :: "'a::len0 word" |
|
45805 | 745 |
by simp |
37660 | 746 |
|
65268 | 747 |
lemma test_bit_bin': "w !! n \<longleftrightarrow> n < size w \<and> bin_nth (uint w) n" |
748 |
by (simp add: word_test_bit_def word_size nth_bintr [symmetric]) |
|
37660 | 749 |
|
750 |
lemmas test_bit_bin = test_bit_bin' [unfolded word_size] |
|
751 |
||
70185 | 752 |
lemma bin_nth_uint_imp: "bin_nth (uint w) n \<Longrightarrow> n < LENGTH('a)" |
65268 | 753 |
for w :: "'a::len0 word" |
37660 | 754 |
apply (rule nth_bintr [THEN iffD1, THEN conjunct1]) |
755 |
apply (subst word_ubin.norm_Rep) |
|
756 |
apply assumption |
|
757 |
done |
|
758 |
||
46057 | 759 |
lemma bin_nth_sint: |
70185 | 760 |
"LENGTH('a) \<le> n \<Longrightarrow> |
761 |
bin_nth (sint w) n = bin_nth (sint w) (LENGTH('a) - 1)" |
|
65268 | 762 |
for w :: "'a::len word" |
37660 | 763 |
apply (subst word_sbin.norm_Rep [symmetric]) |
46057 | 764 |
apply (auto simp add: nth_sbintr) |
37660 | 765 |
done |
766 |
||
67408 | 767 |
\<comment> \<open>type definitions theorem for in terms of equivalent bool list\<close> |
65268 | 768 |
lemma td_bl: |
769 |
"type_definition |
|
770 |
(to_bl :: 'a::len0 word \<Rightarrow> bool list) |
|
771 |
of_bl |
|
70185 | 772 |
{bl. length bl = LENGTH('a)}" |
37660 | 773 |
apply (unfold type_definition_def of_bl_def to_bl_def) |
774 |
apply (simp add: word_ubin.eq_norm) |
|
775 |
apply safe |
|
776 |
apply (drule sym) |
|
777 |
apply simp |
|
778 |
done |
|
779 |
||
780 |
interpretation word_bl: |
|
65268 | 781 |
type_definition |
782 |
"to_bl :: 'a::len0 word \<Rightarrow> bool list" |
|
783 |
of_bl |
|
70185 | 784 |
"{bl. length bl = LENGTH('a::len0)}" |
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
785 |
by (fact td_bl) |
37660 | 786 |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
787 |
lemmas word_bl_Rep' = word_bl.Rep [unfolded mem_Collect_eq, iff] |
45538
1fffa81b9b83
eliminated slightly odd Rep' with dynamically-scoped [simplified];
wenzelm
parents:
45529
diff
changeset
|
788 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
789 |
lemma word_size_bl: "size w = size (to_bl w)" |
65268 | 790 |
by (auto simp: word_size) |
791 |
||
792 |
lemma to_bl_use_of_bl: "to_bl w = bl \<longleftrightarrow> w = of_bl bl \<and> length bl = length (to_bl w)" |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
793 |
by (fastforce elim!: word_bl.Abs_inverse [unfolded mem_Collect_eq]) |
37660 | 794 |
|
795 |
lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)" |
|
65268 | 796 |
by (simp add: word_reverse_def word_bl.Abs_inverse) |
37660 | 797 |
|
798 |
lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w" |
|
65268 | 799 |
by (simp add: word_reverse_def word_bl.Abs_inverse) |
37660 | 800 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
801 |
lemma word_rev_gal: "word_reverse w = u \<Longrightarrow> word_reverse u = w" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
802 |
by (metis word_rev_rev) |
37660 | 803 |
|
45805 | 804 |
lemma word_rev_gal': "u = word_reverse w \<Longrightarrow> w = word_reverse u" |
805 |
by simp |
|
806 |
||
65268 | 807 |
lemma length_bl_gt_0 [iff]: "0 < length (to_bl x)" |
808 |
for x :: "'a::len word" |
|
45805 | 809 |
unfolding word_bl_Rep' by (rule len_gt_0) |
810 |
||
65268 | 811 |
lemma bl_not_Nil [iff]: "to_bl x \<noteq> []" |
812 |
for x :: "'a::len word" |
|
45805 | 813 |
by (fact length_bl_gt_0 [unfolded length_greater_0_conv]) |
814 |
||
65268 | 815 |
lemma length_bl_neq_0 [iff]: "length (to_bl x) \<noteq> 0" |
816 |
for x :: "'a::len word" |
|
45805 | 817 |
by (fact length_bl_gt_0 [THEN gr_implies_not0]) |
37660 | 818 |
|
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
819 |
lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = -1)" |
37660 | 820 |
apply (unfold to_bl_def sint_uint) |
821 |
apply (rule trans [OF _ bl_sbin_sign]) |
|
822 |
apply simp |
|
823 |
done |
|
824 |
||
65268 | 825 |
lemma of_bl_drop': |
70185 | 826 |
"lend = length bl - LENGTH('a::len0) \<Longrightarrow> |
37660 | 827 |
of_bl (drop lend bl) = (of_bl bl :: 'a word)" |
65268 | 828 |
by (auto simp: of_bl_def trunc_bl2bin [symmetric]) |
829 |
||
830 |
lemma test_bit_of_bl: |
|
70185 | 831 |
"(of_bl bl::'a::len0 word) !! n = (rev bl ! n \<and> n < LENGTH('a) \<and> n < length bl)" |
65328 | 832 |
by (auto simp add: of_bl_def word_test_bit_def word_size |
833 |
word_ubin.eq_norm nth_bintr bin_nth_of_bl) |
|
65268 | 834 |
|
70185 | 835 |
lemma no_of_bl: "(numeral bin ::'a::len0 word) = of_bl (bin_to_bl (LENGTH('a)) (numeral bin))" |
65268 | 836 |
by (simp add: of_bl_def) |
37660 | 837 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
838 |
lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)" |
65268 | 839 |
by (auto simp: word_size to_bl_def) |
37660 | 840 |
|
841 |
lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w" |
|
65268 | 842 |
by (simp add: uint_bl word_size) |
843 |
||
70185 | 844 |
lemma to_bl_of_bin: "to_bl (word_of_int bin::'a::len0 word) = bin_to_bl (LENGTH('a)) bin" |
65268 | 845 |
by (auto simp: uint_bl word_ubin.eq_norm word_size) |
37660 | 846 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
847 |
lemma to_bl_numeral [simp]: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
848 |
"to_bl (numeral bin::'a::len0 word) = |
70185 | 849 |
bin_to_bl (LENGTH('a)) (numeral bin)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
850 |
unfolding word_numeral_alt by (rule to_bl_of_bin) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
851 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
852 |
lemma to_bl_neg_numeral [simp]: |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
853 |
"to_bl (- numeral bin::'a::len0 word) = |
70185 | 854 |
bin_to_bl (LENGTH('a)) (- numeral bin)" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
855 |
unfolding word_neg_numeral_alt by (rule to_bl_of_bin) |
37660 | 856 |
|
857 |
lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w" |
|
65268 | 858 |
by (simp add: uint_bl word_size) |
859 |
||
70185 | 860 |
lemma uint_bl_bin: "bl_to_bin (bin_to_bl (LENGTH('a)) (uint x)) = uint x" |
65268 | 861 |
for x :: "'a::len0 word" |
46011 | 862 |
by (rule trans [OF bin_bl_bin word_ubin.norm_Rep]) |
45604 | 863 |
|
67408 | 864 |
\<comment> \<open>naturals\<close> |
37660 | 865 |
lemma uints_unats: "uints n = int ` unats n" |
866 |
apply (unfold unats_def uints_num) |
|
867 |
apply safe |
|
65268 | 868 |
apply (rule_tac image_eqI) |
869 |
apply (erule_tac nat_0_le [symmetric]) |
|
66912
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
immler
parents:
66808
diff
changeset
|
870 |
by auto |
37660 | 871 |
|
872 |
lemma unats_uints: "unats n = nat ` uints n" |
|
65268 | 873 |
by (auto simp: uints_unats image_iff) |
874 |
||
875 |
lemmas bintr_num = |
|
876 |
word_ubin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b |
|
877 |
lemmas sbintr_num = |
|
878 |
word_sbin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b |
|
37660 | 879 |
|
880 |
lemma num_of_bintr': |
|
70185 | 881 |
"bintrunc (LENGTH('a::len0)) (numeral a) = (numeral b) \<Longrightarrow> |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
882 |
numeral a = (numeral b :: 'a word)" |
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
883 |
unfolding bintr_num by (erule subst, simp) |
37660 | 884 |
|
885 |
lemma num_of_sbintr': |
|
70185 | 886 |
"sbintrunc (LENGTH('a::len) - 1) (numeral a) = (numeral b) \<Longrightarrow> |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
887 |
numeral a = (numeral b :: 'a word)" |
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
888 |
unfolding sbintr_num by (erule subst, simp) |
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
889 |
|
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
890 |
lemma num_abs_bintr: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
891 |
"(numeral x :: 'a word) = |
70185 | 892 |
word_of_int (bintrunc (LENGTH('a::len0)) (numeral x))" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
893 |
by (simp only: word_ubin.Abs_norm word_numeral_alt) |
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
894 |
|
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
895 |
lemma num_abs_sbintr: |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
896 |
"(numeral x :: 'a word) = |
70185 | 897 |
word_of_int (sbintrunc (LENGTH('a::len) - 1) (numeral x))" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
898 |
by (simp only: word_sbin.Abs_norm word_numeral_alt) |
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset
|
899 |
|
67408 | 900 |
text \<open> |
901 |
\<open>cast\<close> -- note, no arg for new length, as it's determined by type of result, |
|
902 |
thus in \<open>cast w = w\<close>, the type means cast to length of \<open>w\<close>! |
|
903 |
\<close> |
|
37660 | 904 |
|
905 |
lemma ucast_id: "ucast w = w" |
|
65268 | 906 |
by (auto simp: ucast_def) |
37660 | 907 |
|
908 |
lemma scast_id: "scast w = w" |
|
65268 | 909 |
by (auto simp: scast_def) |
37660 | 910 |
|
40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset
|
911 |
lemma ucast_bl: "ucast w = of_bl (to_bl w)" |
65268 | 912 |
by (auto simp: ucast_def of_bl_def uint_bl word_size) |
913 |
||
70185 | 914 |
lemma nth_ucast: "(ucast w::'a::len0 word) !! n = (w !! n \<and> n < LENGTH('a))" |
65268 | 915 |
by (simp add: ucast_def test_bit_bin word_ubin.eq_norm nth_bintr word_size) |
916 |
(fast elim!: bin_nth_uint_imp) |
|
37660 | 917 |
|
67408 | 918 |
\<comment> \<open>literal u(s)cast\<close> |
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
919 |
lemma ucast_bintr [simp]: |
65328 | 920 |
"ucast (numeral w :: 'a::len0 word) = |
70185 | 921 |
word_of_int (bintrunc (LENGTH('a)) (numeral w))" |
65268 | 922 |
by (simp add: ucast_def) |
923 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
924 |
(* TODO: neg_numeral *) |
37660 | 925 |
|
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset
|
926 |
lemma scast_sbintr [simp]: |
65268 | 927 |
"scast (numeral w ::'a::len word) = |
70185 | 928 |
word_of_int (sbintrunc (LENGTH('a) - Suc 0) (numeral w))" |
65268 | 929 |
by (simp add: scast_def) |
37660 | 930 |
|
70185 | 931 |
lemma source_size: "source_size (c::'a::len0 word \<Rightarrow> _) = LENGTH('a)" |
46011 | 932 |
unfolding source_size_def word_size Let_def .. |
933 |
||
70185 | 934 |
lemma target_size: "target_size (c::_ \<Rightarrow> 'b::len0 word) = LENGTH('b)" |
46011 | 935 |
unfolding target_size_def word_size Let_def .. |
936 |
||
70185 | 937 |
lemma is_down: "is_down c \<longleftrightarrow> LENGTH('b) \<le> LENGTH('a)" |
65268 | 938 |
for c :: "'a::len0 word \<Rightarrow> 'b::len0 word" |
939 |
by (simp only: is_down_def source_size target_size) |
|
940 |
||
70185 | 941 |
lemma is_up: "is_up c \<longleftrightarrow> LENGTH('a) \<le> LENGTH('b)" |
65268 | 942 |
for c :: "'a::len0 word \<Rightarrow> 'b::len0 word" |
943 |
by (simp only: is_up_def source_size target_size) |
|
37660 | 944 |
|
45604 | 945 |
lemmas is_up_down = trans [OF is_up is_down [symmetric]] |
37660 | 946 |
|
45811 | 947 |
lemma down_cast_same [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc = scast" |
37660 | 948 |
apply (unfold is_down) |
949 |
apply safe |
|
950 |
apply (rule ext) |
|
951 |
apply (unfold ucast_def scast_def uint_sint) |
|
952 |
apply (rule word_ubin.norm_eq_iff [THEN iffD1]) |
|
953 |
apply simp |
|
954 |
done |
|
955 |
||
45811 | 956 |
lemma word_rev_tf: |
957 |
"to_bl (of_bl bl::'a::len0 word) = |
|
70185 | 958 |
rev (takefill False (LENGTH('a)) (rev bl))" |
65268 | 959 |
by (auto simp: of_bl_def uint_bl bl_bin_bl_rtf word_ubin.eq_norm word_size) |
37660 | 960 |
|
45811 | 961 |
lemma word_rep_drop: |
962 |
"to_bl (of_bl bl::'a::len0 word) = |
|
70185 | 963 |
replicate (LENGTH('a) - length bl) False @ |
964 |
drop (length bl - LENGTH('a)) bl" |
|
45811 | 965 |
by (simp add: word_rev_tf takefill_alt rev_take) |
37660 | 966 |
|
65268 | 967 |
lemma to_bl_ucast: |
968 |
"to_bl (ucast (w::'b::len0 word) ::'a::len0 word) = |
|
70185 | 969 |
replicate (LENGTH('a) - LENGTH('b)) False @ |
970 |
drop (LENGTH('b) - LENGTH('a)) (to_bl w)" |
|
37660 | 971 |
apply (unfold ucast_bl) |
972 |
apply (rule trans) |
|
973 |
apply (rule word_rep_drop) |
|
974 |
apply simp |
|
975 |
done |
|
976 |
||
45811 | 977 |
lemma ucast_up_app [OF refl]: |
65268 | 978 |
"uc = ucast \<Longrightarrow> source_size uc + n = target_size uc \<Longrightarrow> |
37660 | 979 |
to_bl (uc w) = replicate n False @ (to_bl w)" |
980 |
by (auto simp add : source_size target_size to_bl_ucast) |
|
981 |
||
45811 | 982 |
lemma ucast_down_drop [OF refl]: |
65268 | 983 |
"uc = ucast \<Longrightarrow> source_size uc = target_size uc + n \<Longrightarrow> |
37660 | 984 |
to_bl (uc w) = drop n (to_bl w)" |
985 |
by (auto simp add : source_size target_size to_bl_ucast) |
|
986 |
||
45811 | 987 |
lemma scast_down_drop [OF refl]: |
65268 | 988 |
"sc = scast \<Longrightarrow> source_size sc = target_size sc + n \<Longrightarrow> |
37660 | 989 |
to_bl (sc w) = drop n (to_bl w)" |
990 |
apply (subgoal_tac "sc = ucast") |
|
991 |
apply safe |
|
992 |
apply simp |
|
45811 | 993 |
apply (erule ucast_down_drop) |
994 |
apply (rule down_cast_same [symmetric]) |
|
37660 | 995 |
apply (simp add : source_size target_size is_down) |
996 |
done |
|
997 |
||
65268 | 998 |
lemma sint_up_scast [OF refl]: "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> sint (sc w) = sint w" |
37660 | 999 |
apply (unfold is_up) |
1000 |
apply safe |
|
1001 |
apply (simp add: scast_def word_sbin.eq_norm) |
|
1002 |
apply (rule box_equals) |
|
1003 |
prefer 3 |
|
1004 |
apply (rule word_sbin.norm_Rep) |
|
1005 |
apply (rule sbintrunc_sbintrunc_l) |
|
1006 |
defer |
|
1007 |
apply (subst word_sbin.norm_Rep) |
|
1008 |
apply (rule refl) |
|
1009 |
apply simp |
|
1010 |
done |
|
1011 |
||
65268 | 1012 |
lemma uint_up_ucast [OF refl]: "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> uint (uc w) = uint w" |
37660 | 1013 |
apply (unfold is_up) |
1014 |
apply safe |
|
1015 |
apply (rule bin_eqI) |
|
1016 |
apply (fold word_test_bit_def) |
|
1017 |
apply (auto simp add: nth_ucast) |
|
1018 |
apply (auto simp add: test_bit_bin) |
|
1019 |
done |
|
45811 | 1020 |
|
65268 | 1021 |
lemma ucast_up_ucast [OF refl]: "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> ucast (uc w) = ucast w" |
37660 | 1022 |
apply (simp (no_asm) add: ucast_def) |
1023 |
apply (clarsimp simp add: uint_up_ucast) |
|
1024 |
done |
|
65268 | 1025 |
|
1026 |
lemma scast_up_scast [OF refl]: "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> scast (sc w) = scast w" |
|
37660 | 1027 |
apply (simp (no_asm) add: scast_def) |
1028 |
apply (clarsimp simp add: sint_up_scast) |
|
1029 |
done |
|
65268 | 1030 |
|
1031 |
lemma ucast_of_bl_up [OF refl]: "w = of_bl bl \<Longrightarrow> size bl \<le> size w \<Longrightarrow> ucast w = of_bl bl" |
|
37660 | 1032 |
by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI) |
1033 |
||
1034 |
lemmas ucast_up_ucast_id = trans [OF ucast_up_ucast ucast_id] |
|
1035 |
lemmas scast_up_scast_id = trans [OF scast_up_scast scast_id] |
|
1036 |
||
1037 |
lemmas isduu = is_up_down [where c = "ucast", THEN iffD2] |
|
1038 |
lemmas isdus = is_up_down [where c = "scast", THEN iffD2] |
|
1039 |
lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id] |
|
1040 |
lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id] |
|
1041 |
||
1042 |
lemma up_ucast_surj: |
|
65268 | 1043 |
"is_up (ucast :: 'b::len0 word \<Rightarrow> 'a::len0 word) \<Longrightarrow> |
1044 |
surj (ucast :: 'a word \<Rightarrow> 'b word)" |
|
1045 |
by (rule surjI) (erule ucast_up_ucast_id) |
|
37660 | 1046 |
|
1047 |
lemma up_scast_surj: |
|
65268 | 1048 |
"is_up (scast :: 'b::len word \<Rightarrow> 'a::len word) \<Longrightarrow> |
1049 |
surj (scast :: 'a word \<Rightarrow> 'b word)" |
|
1050 |
by (rule surjI) (erule scast_up_scast_id) |
|
37660 | 1051 |
|
1052 |
lemma down_scast_inj: |
|
65268 | 1053 |
"is_down (scast :: 'b::len word \<Rightarrow> 'a::len word) \<Longrightarrow> |
1054 |
inj_on (ucast :: 'a word \<Rightarrow> 'b word) A" |
|
37660 | 1055 |
by (rule inj_on_inverseI, erule scast_down_scast_id) |
1056 |
||
1057 |
lemma down_ucast_inj: |
|
65268 | 1058 |
"is_down (ucast :: 'b::len0 word \<Rightarrow> 'a::len0 word) \<Longrightarrow> |
1059 |
inj_on (ucast :: 'a word \<Rightarrow> 'b word) A" |
|
1060 |
by (rule inj_on_inverseI) (erule ucast_down_ucast_id) |
|
37660 | 1061 |
|
1062 |
lemma of_bl_append_same: "of_bl (X @ to_bl w) = w" |
|
1063 |
by (rule word_bl.Rep_eqD) (simp add: word_rep_drop) |
|
45811 | 1064 |
|
65268 | 1065 |
lemma ucast_down_wi [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x" |
46646 | 1066 |
apply (unfold is_down) |
37660 | 1067 |
apply (clarsimp simp add: ucast_def word_ubin.eq_norm) |
1068 |
apply (rule word_ubin.norm_eq_iff [THEN iffD1]) |
|
1069 |
apply (erule bintrunc_bintrunc_ge) |
|
1070 |
done |
|
45811 | 1071 |
|
65268 | 1072 |
lemma ucast_down_no [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (numeral bin) = numeral bin" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1073 |
unfolding word_numeral_alt by clarify (rule ucast_down_wi) |
46646 | 1074 |
|
65268 | 1075 |
lemma ucast_down_bl [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (of_bl bl) = of_bl bl" |
46646 | 1076 |
unfolding of_bl_def by clarify (erule ucast_down_wi) |
37660 | 1077 |
|
1078 |
lemmas slice_def' = slice_def [unfolded word_size] |
|
1079 |
lemmas test_bit_def' = word_test_bit_def [THEN fun_cong] |
|
1080 |
||
1081 |
lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def |
|
1082 |
||
1083 |
||
61799 | 1084 |
subsection \<open>Word Arithmetic\<close> |
37660 | 1085 |
|
65268 | 1086 |
lemma word_less_alt: "a < b \<longleftrightarrow> uint a < uint b" |
55818 | 1087 |
by (fact word_less_def) |
37660 | 1088 |
|
1089 |
lemma signed_linorder: "class.linorder word_sle word_sless" |
|
65268 | 1090 |
by standard (auto simp: word_sle_def word_sless_def) |
37660 | 1091 |
|
1092 |
interpretation signed: linorder "word_sle" "word_sless" |
|
1093 |
by (rule signed_linorder) |
|
1094 |
||
65268 | 1095 |
lemma udvdI: "0 \<le> n \<Longrightarrow> uint b = n * uint a \<Longrightarrow> a udvd b" |
37660 | 1096 |
by (auto simp: udvd_def) |
1097 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1098 |
lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1099 |
lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1100 |
lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1101 |
lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1102 |
lemmas word_sless_no [simp] = word_sless_def [of "numeral a" "numeral b"] for a b |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1103 |
lemmas word_sle_no [simp] = word_sle_def [of "numeral a" "numeral b"] for a b |
37660 | 1104 |
|
65268 | 1105 |
lemma word_m1_wi: "- 1 = word_of_int (- 1)" |
1106 |
by (simp add: word_neg_numeral_alt [of Num.One]) |
|
37660 | 1107 |
|
46648 | 1108 |
lemma word_0_bl [simp]: "of_bl [] = 0" |
65268 | 1109 |
by (simp add: of_bl_def) |
1110 |
||
1111 |
lemma word_1_bl: "of_bl [True] = 1" |
|
1112 |
by (simp add: of_bl_def bl_to_bin_def) |
|
46648 | 1113 |
|
1114 |
lemma uint_eq_0 [simp]: "uint 0 = 0" |
|
1115 |
unfolding word_0_wi word_ubin.eq_norm by simp |
|
37660 | 1116 |
|
45995
b16070689726
declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents:
45958
diff
changeset
|
1117 |
lemma of_bl_0 [simp]: "of_bl (replicate n False) = 0" |
46648 | 1118 |
by (simp add: of_bl_def bl_to_bin_rep_False) |
37660 | 1119 |
|
70185 | 1120 |
lemma to_bl_0 [simp]: "to_bl (0::'a::len0 word) = replicate (LENGTH('a)) False" |
65268 | 1121 |
by (simp add: uint_bl word_size bin_to_bl_zero) |
1122 |
||
1123 |
lemma uint_0_iff: "uint x = 0 \<longleftrightarrow> x = 0" |
|
55818 | 1124 |
by (simp add: word_uint_eq_iff) |
1125 |
||
65268 | 1126 |
lemma unat_0_iff: "unat x = 0 \<longleftrightarrow> x = 0" |
1127 |
by (auto simp: unat_def nat_eq_iff uint_0_iff) |
|
1128 |
||
1129 |
lemma unat_0 [simp]: "unat 0 = 0" |
|
1130 |
by (auto simp: unat_def) |
|
1131 |
||
1132 |
lemma size_0_same': "size w = 0 \<Longrightarrow> w = v" |
|
1133 |
for v w :: "'a::len0 word" |
|
37660 | 1134 |
apply (unfold word_size) |
1135 |
apply (rule box_equals) |
|
1136 |
defer |
|
1137 |
apply (rule word_uint.Rep_inverse)+ |
|
1138 |
apply (rule word_ubin.norm_eq_iff [THEN iffD1]) |
|
1139 |
apply simp |
|
1140 |
done |
|
1141 |
||
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
1142 |
lemmas size_0_same = size_0_same' [unfolded word_size] |
37660 | 1143 |
|
1144 |
lemmas unat_eq_0 = unat_0_iff |
|
1145 |
lemmas unat_eq_zero = unat_0_iff |
|
1146 |
||
65268 | 1147 |
lemma unat_gt_0: "0 < unat x \<longleftrightarrow> x \<noteq> 0" |
1148 |
by (auto simp: unat_0_iff [symmetric]) |
|
37660 | 1149 |
|
45958 | 1150 |
lemma ucast_0 [simp]: "ucast 0 = 0" |
65268 | 1151 |
by (simp add: ucast_def) |
45958 | 1152 |
|
1153 |
lemma sint_0 [simp]: "sint 0 = 0" |
|
65268 | 1154 |
by (simp add: sint_uint) |
45958 | 1155 |
|
1156 |
lemma scast_0 [simp]: "scast 0 = 0" |
|
65268 | 1157 |
by (simp add: scast_def) |
37660 | 1158 |
|
58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58061
diff
changeset
|
1159 |
lemma sint_n1 [simp] : "sint (- 1) = - 1" |
65268 | 1160 |
by (simp only: word_m1_wi word_sbin.eq_norm) simp |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
1161 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54225
diff
changeset
|
1162 |
lemma scast_n1 [simp]: "scast (- 1) = - 1" |
65268 | 1163 |
by (simp add: scast_def) |
45958 | 1164 |
|
1165 |
lemma uint_1 [simp]: "uint (1::'a::len word) = 1" |
|
55818 | 1166 |
by (simp only: word_1_wi word_ubin.eq_norm) (simp add: bintrunc_minus_simps(4)) |
45958 | 1167 |
|
1168 |
lemma unat_1 [simp]: "unat (1::'a::len word) = 1" |
|
65268 | 1169 |
by (simp add: unat_def) |
45958 | 1170 |
|
1171 |
lemma ucast_1 [simp]: "ucast (1::'a::len word) = 1" |
|
65268 | 1172 |
by (simp add: ucast_def) |
37660 | 1173 |
|
67408 | 1174 |
\<comment> \<open>now, to get the weaker results analogous to \<open>word_div\<close>/\<open>mod_def\<close>\<close> |
37660 | 1175 |
|
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset
|
1176 |
|
61799 | 1177 |
subsection \<open>Transferring goals from words to ints\<close> |
37660 | 1178 |
|
65268 | 1179 |
lemma word_ths: |
1180 |
shows word_succ_p1: "word_succ a = a + 1" |
|
1181 |
and word_pred_m1: "word_pred a = a - 1" |
|
1182 |
and word_pred_succ: "word_pred (word_succ a) = a" |
|
1183 |
and word_succ_pred: "word_succ (word_pred a) = a" |
|
1184 |
and word_mult_succ: "word_succ a * b = b + a * b" |
|
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
1185 |
by (transfer, simp add: algebra_simps)+ |
37660 | 1186 |
|
45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
1187 |
lemma uint_cong: "x = y \<Longrightarrow> uint x = uint y" |
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset
|
1188 |
by simp |
37660 | 1189 |
|
55818 | 1190 |
lemma uint_word_ariths: |
1191 |
fixes a b :: "'a::len0 word" |
|
70185 | 1192 |
shows "uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH('a::len0)" |
1193 |
and "uint (a - b) = (uint a - uint b) mod 2 ^ LENGTH('a)" |
|
1194 |
and "uint (a * b) = uint a * uint b mod 2 ^ LENGTH('a)" |
|
1195 |
and "uint (- a) = - uint a mod 2 ^ LENGTH('a)" |
|
1196 |
and "uint (word_succ a) = (uint a + 1) mod 2 ^ LENGTH('a)" |
|
1197 |
and "uint (word_pred a) = (uint a - 1) mod 2 ^ LENGTH('a)" |
|
1198 |
and "uint (0 :: 'a word) = 0 mod 2 ^ LENGTH('a)" |
|
1199 |
and "uint (1 :: 'a word) = 1 mod 2 ^ LENGTH('a)" |
|
55818 | 1200 |
by (simp_all add: word_arith_wis [THEN trans [OF uint_cong int_word_uint]]) |
1201 |
||
1202 |
lemma uint_word_arith_bintrs: |
|
1203 |
fixes a b :: "'a::len0 word" |
|
70185 | 1204 |
shows "uint (a + b) = bintrunc (LENGTH('a)) (uint a + uint b)" |
1205 |
and "uint (a - b) = bintrunc (LENGTH('a)) (uint a - uint b)" |
|
1206 |
and "uint (a * b) = bintrunc (LENGTH('a)) (uint a * uint b)" |
|
1207 |
and "uint (- a) = bintrunc (LENGTH('a)) (- uint a)" |
|
1208 |
and "uint (word_succ a) = bintrunc (LENGTH('a)) (uint a + 1)" |
|
1209 |
and "uint (word_pred a) = bintrunc (LENGTH('a)) (uint a - 1)" |
|
1210 |
and "uint (0 :: 'a word) = bintrunc (LENGTH('a)) 0" |
|
1211 |
and "uint (1 :: 'a word) = bintrunc (LENGTH('a)) 1" |
|
55818 | 1212 |
by (simp_all add: uint_word_ariths bintrunc_mod2p) |
1213 |
||
1214 |
lemma sint_word_ariths: |
|
1215 |
fixes a b :: "'a::len word" |
|
70185 | 1216 |
shows "sint (a + b) = sbintrunc (LENGTH('a) - 1) (sint a + sint b)" |
1217 |
and "sint (a - b) = sbintrunc (LENGTH('a) - 1) (sint a - sint b)" |
|
1218 |
and "sint (a * b) = sbintrunc (LENGTH('a) - 1) (sint a * sint b)" |
|
1219 |
and "sint (- a) = sbintrunc (LENGTH('a) - 1) (- sint a)" |
|
1220 |
and "sint (word_succ a) = sbintrunc (LENGTH('a) - 1) (sint a + 1)" |
|
1221 |
and "sint (word_pred a) = sbintrunc (LENGTH('a) - 1) (sint a - 1)" |
|
1222 |
and "sint (0 :: 'a word) = sbintrunc (LENGTH('a) - 1) 0" |
|
1223 |
and "sint (1 :: 'a word) = sbintrunc (LENGTH('a) - 1) 1" |
|
64593
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
1224 |
apply (simp_all only: word_sbin.inverse_norm [symmetric]) |
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
1225 |
apply (simp_all add: wi_hom_syms) |
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
1226 |
apply transfer apply simp |
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
1227 |
apply transfer apply simp |
50c715579715
reoriented congruence rules in non-explosive direction
haftmann
parents:
64243
diff
changeset
|
1228 |
done |
45604 | 1229 |
|
1230 |
lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]] |
|
1231 |
lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]] |
|
37660 | 1232 |
|
58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58061
diff
changeset
|
1233 |
lemma word_pred_0_n1: "word_pred 0 = word_of_int (- 1)" |
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset
|
1234 |
unfolding word_pred_m1 by simp |
37660 | 1235 |
|
1236 |
lemma succ_pred_no [simp]: |
|
65268 | 1237 |
"word_succ (numeral w) = numeral w + 1" |
1238 |
"word_pred (numeral w) = numeral w - 1" |
|
1239 |
"word_succ (- numeral w) = - numeral w + 1" |
|
1240 |
"word_pred (- numeral w) = - numeral w - 1" |
|
1241 |
by (simp_all add: word_succ_p1 word_pred_m1) |
|
1242 |
||
1243 |
lemma word_sp_01 [simp]: |
|
1244 |
"word_succ (- 1) = 0 \<and> word_succ 0 = 1 \<and> word_pred 0 = - 1 \<and> word_pred 1 = 0" |
|
1245 |
by (simp_all add: word_succ_p1 word_pred_m1) |
|
37660 | 1246 |
|
67408 | 1247 |
\<comment> \<open>alternative approach to lifting arithmetic equalities\<close> |
65268 | 1248 |
lemma word_of_int_Ex: "\<exists>y. x = word_of_int y" |
37660 | 1249 |
by (rule_tac x="uint x" in exI) simp |
1250 |
||
1251 |
||
61799 | 1252 |
subsection \<open>Order on fixed-length words\<close> |
37660 | 1253 |
|
65328 | 1254 |
lemma word_zero_le [simp]: "0 \<le> y" |
1255 |
for y :: "'a::len0 word" |
|
37660 | 1256 |
unfolding word_le_def by auto |
65268 | 1257 |
|
65328 | 1258 |
lemma word_m1_ge [simp] : "word_pred 0 \<ge> y" (* FIXME: delete *) |
1259 |
by (simp only: word_le_def word_pred_0_n1 word_uint.eq_norm m1mod2k) auto |
|
1260 |
||
1261 |
lemma word_n1_ge [simp]: "y \<le> -1" |
|
1262 |
for y :: "'a::len0 word" |
|
1263 |
by (simp only: word_le_def word_m1_wi word_uint.eq_norm m1mod2k) auto |
|
37660 | 1264 |
|
65268 | 1265 |
lemmas word_not_simps [simp] = |
37660 | 1266 |
word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD] |
1267 |
||
65328 | 1268 |
lemma word_gt_0: "0 < y \<longleftrightarrow> 0 \<noteq> y" |
1269 |
for y :: "'a::len0 word" |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1270 |
by (simp add: less_le) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1271 |
|
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset
|
1272 |
lemmas word_gt_0_no [simp] = word_gt_0 [of "numeral y"] for y |
37660 | 1273 |
|
65328 | 1274 |
lemma word_sless_alt: "a <s b \<longleftrightarrow> sint a < sint b" |
1275 |
by (auto simp add: word_sle_def word_sless_def less_le) |
|
1276 |
||
1277 |
lemma word_le_nat_alt: "a \<le> b \<longleftrightarrow> unat a \<le> unat b" |
|
37660 | 1278 |
unfolding unat_def word_le_def |
1279 |
by (rule nat_le_eq_zle [symmetric]) simp |
|
1280 |
||
65328 | 1281 |
lemma word_less_nat_alt: "a < b \<longleftrightarrow> unat a < unat b" |
37660 | 1282 |
unfolding unat_def word_less_alt |
1283 |
by (rule nat_less_eq_zless [symmetric]) simp |
|
65268 | 1284 |
|