author  haftmann 
Sat, 20 Apr 2019 13:44:16 +0000  
changeset 70185  ac1706cdde25 
parent 70183  3ea80c950023 
child 70186  18e94864fd0f 
permissions  rwrr 
29628  1 
(* Title: HOL/Word/Word.thy 
46124  2 
Author: Jeremy Dawson and Gerwin Klein, NICTA 
24333  3 
*) 
4 

61799  5 
section \<open>A type of finite bit strings\<close> 
24350  6 

29628  7 
theory Word 
41413
64cd30d6b0b8
explicit file specifications  avoid secondary load path;
wenzelm
parents:
41060
diff
changeset

8 
imports 
66453
cc19f7ca2ed6
sessionqualified theory imports: isabelle imports U i d '~~/src/Benchmarks' a;
wenzelm
parents:
65363
diff
changeset

9 
"HOLLibrary.Type_Length" 
cc19f7ca2ed6
sessionqualified theory imports: isabelle imports U i d '~~/src/Benchmarks' a;
wenzelm
parents:
65363
diff
changeset

10 
"HOLLibrary.Boolean_Algebra" 
54854
3324a0078636
prefer "Bits" as theory name for abstract bit operations, similar to "Orderings", "Lattices", "Groups" etc.
haftmann
parents:
54849
diff
changeset

11 
Bits_Bit 
70169  12 
Bits_Int 
53062
3af1a6020014
some vague grouping of related theorems, with slight tuning of headings and sorting out of dubious lemmas into separate theory
haftmann
parents:
51717
diff
changeset

13 
Misc_Typedef 
70170  14 
Misc_Arithmetic 
37660  15 
begin 
16 

70173  17 
text \<open>See \<^file>\<open>Word_Examples.thy\<close> for examples.\<close> 
61799  18 

19 
subsection \<open>Type definition\<close> 

37660  20 

70185  21 
typedef (overloaded) 'a word = "{(0::int) ..< 2 ^ LENGTH('a::len0)}" 
37660  22 
morphisms uint Abs_word by auto 
23 

65268  24 
lemma uint_nonnegative: "0 \<le> uint w" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

25 
using word.uint [of w] by simp 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

26 

70185  27 
lemma uint_bounded: "uint w < 2 ^ LENGTH('a)" 
65268  28 
for w :: "'a::len0 word" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

29 
using word.uint [of w] by simp 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

30 

70185  31 
lemma uint_idem: "uint w mod 2 ^ LENGTH('a) = uint w" 
65268  32 
for w :: "'a::len0 word" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

33 
using uint_nonnegative uint_bounded by (rule mod_pos_pos_trivial) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

34 

65268  35 
lemma word_uint_eq_iff: "a = b \<longleftrightarrow> uint a = uint b" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

36 
by (simp add: uint_inject) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

37 

65268  38 
lemma word_uint_eqI: "uint a = uint b \<Longrightarrow> a = b" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

39 
by (simp add: word_uint_eq_iff) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

40 

61076  41 
definition word_of_int :: "int \<Rightarrow> 'a::len0 word" 
61799  42 
\<comment> \<open>representation of words using unsigned or signed bins, 
43 
only difference in these is the type class\<close> 

70185  44 
where "word_of_int k = Abs_word (k mod 2 ^ LENGTH('a))" 
45 

46 
lemma uint_word_of_int: "uint (word_of_int k :: 'a::len0 word) = k mod 2 ^ LENGTH('a)" 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

47 
by (auto simp add: word_of_int_def intro: Abs_word_inverse) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

48 

65268  49 
lemma word_of_int_uint: "word_of_int (uint w) = w" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

50 
by (simp add: word_of_int_def uint_idem uint_inverse) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

51 

65268  52 
lemma split_word_all: "(\<And>x::'a::len0 word. PROP P x) \<equiv> (\<And>x. PROP P (word_of_int x))" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

53 
proof 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

54 
fix x :: "'a word" 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

55 
assume "\<And>x. PROP P (word_of_int x)" 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

56 
then have "PROP P (word_of_int (uint x))" . 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

57 
then show "PROP P x" by (simp add: word_of_int_uint) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

58 
qed 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

59 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

60 

61799  61 
subsection \<open>Type conversions and casting\<close> 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

62 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

63 
definition sint :: "'a::len word \<Rightarrow> int" 
61799  64 
\<comment> \<open>treats the mostsignificantbit as a sign bit\<close> 
70175  65 
where sint_uint: "sint w = sbintrunc (LENGTH('a)  1) (uint w)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

66 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

67 
definition unat :: "'a::len0 word \<Rightarrow> nat" 
65268  68 
where "unat w = nat (uint w)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

69 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

70 
definition uints :: "nat \<Rightarrow> int set" 
67443
3abf6a722518
standardized towards newstyle formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset

71 
\<comment> \<open>the sets of integers representing the words\<close> 
65268  72 
where "uints n = range (bintrunc n)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

73 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

74 
definition sints :: "nat \<Rightarrow> int set" 
65268  75 
where "sints n = range (sbintrunc (n  1))" 
76 

77 
lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

78 
by (simp add: uints_def range_bintrunc) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

79 

65268  80 
lemma sints_num: "sints n = {i.  (2 ^ (n  1)) \<le> i \<and> i < 2 ^ (n  1)}" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

81 
by (simp add: sints_def range_sbintrunc) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

82 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

83 
definition unats :: "nat \<Rightarrow> nat set" 
65268  84 
where "unats n = {i. i < 2 ^ n}" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

85 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

86 
definition norm_sint :: "nat \<Rightarrow> int \<Rightarrow> int" 
65268  87 
where "norm_sint n w = (w + 2 ^ (n  1)) mod 2 ^ n  2 ^ (n  1)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

88 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

89 
definition scast :: "'a::len word \<Rightarrow> 'b::len word" 
67443
3abf6a722518
standardized towards newstyle formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset

90 
\<comment> \<open>cast a word to a different length\<close> 
65268  91 
where "scast w = word_of_int (sint w)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

92 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

93 
definition ucast :: "'a::len0 word \<Rightarrow> 'b::len0 word" 
65268  94 
where "ucast w = word_of_int (uint w)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

95 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

96 
instantiation word :: (len0) size 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

97 
begin 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

98 

70183
3ea80c950023
incorporated various material from the AFP into the distribution
haftmann
parents:
70175
diff
changeset

99 
definition word_size: "size (w :: 'a word) = LENGTH('a)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

100 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

101 
instance .. 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

102 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

103 
end 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

104 

65268  105 
lemma word_size_gt_0 [iff]: "0 < size w" 
106 
for w :: "'a::len word" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

107 
by (simp add: word_size) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

108 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

109 
lemmas lens_gt_0 = word_size_gt_0 len_gt_0 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

110 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

111 
lemma lens_not_0 [iff]: 
65268  112 
fixes w :: "'a::len word" 
113 
shows "size w \<noteq> 0" 

70185  114 
and "LENGTH('a) \<noteq> 0" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

115 
by auto 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

116 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

117 
definition source_size :: "('a::len0 word \<Rightarrow> 'b) \<Rightarrow> nat" 
67443
3abf6a722518
standardized towards newstyle formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset

118 
\<comment> \<open>whether a cast (or other) function is to a longer or shorter length\<close> 
65268  119 
where [code del]: "source_size c = (let arb = undefined; x = c arb in size arb)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

120 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

121 
definition target_size :: "('a \<Rightarrow> 'b::len0 word) \<Rightarrow> nat" 
65268  122 
where [code del]: "target_size c = size (c undefined)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

123 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

124 
definition is_up :: "('a::len0 word \<Rightarrow> 'b::len0 word) \<Rightarrow> bool" 
65268  125 
where "is_up c \<longleftrightarrow> source_size c \<le> target_size c" 
126 

127 
definition is_down :: "('a::len0 word \<Rightarrow> 'b::len0 word) \<Rightarrow> bool" 

128 
where "is_down c \<longleftrightarrow> target_size c \<le> source_size c" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

129 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

130 
definition of_bl :: "bool list \<Rightarrow> 'a::len0 word" 
65268  131 
where "of_bl bl = word_of_int (bl_to_bin bl)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

132 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

133 
definition to_bl :: "'a::len0 word \<Rightarrow> bool list" 
70185  134 
where "to_bl w = bin_to_bl (LENGTH('a)) (uint w)" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

135 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

136 
definition word_reverse :: "'a::len0 word \<Rightarrow> 'a word" 
65268  137 
where "word_reverse w = of_bl (rev (to_bl w))" 
138 

139 
definition word_int_case :: "(int \<Rightarrow> 'b) \<Rightarrow> 'a::len0 word \<Rightarrow> 'b" 

140 
where "word_int_case f w = f (uint w)" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

141 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

142 
translations 
65268  143 
"case x of XCONST of_int y \<Rightarrow> b" \<rightleftharpoons> "CONST word_int_case (\<lambda>y. b) x" 
144 
"case x of (XCONST of_int :: 'a) y \<Rightarrow> b" \<rightharpoonup> "CONST word_int_case (\<lambda>y. b) x" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

145 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

146 

61799  147 
subsection \<open>Correspondence relation for theorem transfer\<close> 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

148 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

149 
definition cr_word :: "int \<Rightarrow> 'a::len0 word \<Rightarrow> bool" 
65268  150 
where "cr_word = (\<lambda>x y. word_of_int x = y)" 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

151 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

152 
lemma Quotient_word: 
70185  153 
"Quotient (\<lambda>x y. bintrunc (LENGTH('a)) x = bintrunc (LENGTH('a)) y) 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

154 
word_of_int uint (cr_word :: _ \<Rightarrow> 'a::len0 word \<Rightarrow> bool)" 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

155 
unfolding Quotient_alt_def cr_word_def 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

156 
by (simp add: no_bintr_alt1 word_of_int_uint) (simp add: word_of_int_def Abs_word_inject) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

157 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

158 
lemma reflp_word: 
70185  159 
"reflp (\<lambda>x y. bintrunc (LENGTH('a::len0)) x = bintrunc (LENGTH('a)) y)" 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

160 
by (simp add: reflp_def) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

161 

59487
adaa430fc0f7
default abstypes and default abstract equations make technical (no_code) annotation superfluous
haftmann
parents:
59094
diff
changeset

162 
setup_lifting Quotient_word reflp_word 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

163 

61799  164 
text \<open>TODO: The next lemma could be generated automatically.\<close> 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

165 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

166 
lemma uint_transfer [transfer_rule]: 
70185  167 
"(rel_fun pcr_word (=)) (bintrunc (LENGTH('a))) (uint :: 'a::len0 word \<Rightarrow> int)" 
55945  168 
unfolding rel_fun_def word.pcr_cr_eq cr_word_def 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

169 
by (simp add: no_bintr_alt1 uint_word_of_int) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

170 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

171 

61799  172 
subsection \<open>Basic code generation setup\<close> 
55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

173 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

174 
definition Word :: "int \<Rightarrow> 'a::len0 word" 
65268  175 
where [code_post]: "Word = word_of_int" 
176 

177 
lemma [code abstype]: "Word (uint w) = w" 

55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

178 
by (simp add: Word_def word_of_int_uint) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

179 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

180 
declare uint_word_of_int [code abstract] 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

181 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

182 
instantiation word :: (len0) equal 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

183 
begin 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

184 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

185 
definition equal_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool" 
65268  186 
where "equal_word k l \<longleftrightarrow> HOL.equal (uint k) (uint l)" 
187 

188 
instance 

189 
by standard (simp add: equal equal_word_def word_uint_eq_iff) 

55817
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

190 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

191 
end 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

192 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

193 
notation fcomp (infixl "\<circ>>" 60) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

194 
notation scomp (infixl "\<circ>\<rightarrow>" 60) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

195 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

196 
instantiation word :: ("{len0, typerep}") random 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

197 
begin 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

198 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

199 
definition 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

200 
"random_word i = Random.range i \<circ>\<rightarrow> (\<lambda>k. Pair ( 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

201 
let j = word_of_int (int_of_integer (integer_of_natural k)) :: 'a word 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

202 
in (j, \<lambda>_::unit. Code_Evaluation.term_of j)))" 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

203 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

204 
instance .. 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

205 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

206 
end 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

207 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

208 
no_notation fcomp (infixl "\<circ>>" 60) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

209 
no_notation scomp (infixl "\<circ>\<rightarrow>" 60) 
0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

210 

0bc0217387a5
earlier setup of transfer, without dependency on psychodelic interpretations
haftmann
parents:
55816
diff
changeset

211 

61799  212 
subsection \<open>Typedefinition locale instantiations\<close> 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

213 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

214 
lemmas uint_0 = uint_nonnegative (* FIXME duplicate *) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

215 
lemmas uint_lt = uint_bounded (* FIXME duplicate *) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

216 
lemmas uint_mod_same = uint_idem (* FIXME duplicate *) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

217 

65268  218 
lemma td_ext_uint: 
70185  219 
"td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len0))) 
220 
(\<lambda>w::int. w mod 2 ^ LENGTH('a))" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

221 
apply (unfold td_ext_def') 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

222 
apply (simp add: uints_num word_of_int_def bintrunc_mod2p) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

223 
apply (simp add: uint_mod_same uint_0 uint_lt 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

224 
word.uint_inverse word.Abs_word_inverse int_mod_lem) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

225 
done 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

226 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

227 
interpretation word_uint: 
65268  228 
td_ext 
229 
"uint::'a::len0 word \<Rightarrow> int" 

230 
word_of_int 

70185  231 
"uints (LENGTH('a::len0))" 
232 
"\<lambda>w. w mod 2 ^ LENGTH('a::len0)" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

233 
by (fact td_ext_uint) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

234 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

235 
lemmas td_uint = word_uint.td_thm 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

236 
lemmas int_word_uint = word_uint.eq_norm 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

237 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

238 
lemma td_ext_ubin: 
70185  239 
"td_ext (uint :: 'a word \<Rightarrow> int) word_of_int (uints (LENGTH('a::len0))) 
240 
(bintrunc (LENGTH('a)))" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

241 
by (unfold no_bintr_alt1) (fact td_ext_uint) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

242 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

243 
interpretation word_ubin: 
65268  244 
td_ext 
245 
"uint::'a::len0 word \<Rightarrow> int" 

246 
word_of_int 

70185  247 
"uints (LENGTH('a::len0))" 
248 
"bintrunc (LENGTH('a::len0))" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

249 
by (fact td_ext_ubin) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

250 

e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

251 

61799  252 
subsection \<open>Arithmetic operations\<close> 
37660  253 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

254 
lift_definition word_succ :: "'a::len0 word \<Rightarrow> 'a word" is "\<lambda>x. x + 1" 
64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

255 
by (auto simp add: bintrunc_mod2p intro: mod_add_cong) 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

256 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

257 
lift_definition word_pred :: "'a::len0 word \<Rightarrow> 'a word" is "\<lambda>x. x  1" 
64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

258 
by (auto simp add: bintrunc_mod2p intro: mod_diff_cong) 
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

259 

63950
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
63762
diff
changeset

260 
instantiation word :: (len0) "{neg_numeral, modulo, comm_monoid_mult, comm_ring}" 
37660  261 
begin 
262 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

263 
lift_definition zero_word :: "'a word" is "0" . 
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

264 

a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

265 
lift_definition one_word :: "'a word" is "1" . 
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

266 

67399  267 
lift_definition plus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is "(+)" 
64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

268 
by (auto simp add: bintrunc_mod2p intro: mod_add_cong) 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

269 

67399  270 
lift_definition minus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is "()" 
64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

271 
by (auto simp add: bintrunc_mod2p intro: mod_diff_cong) 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

272 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

273 
lift_definition uminus_word :: "'a word \<Rightarrow> 'a word" is uminus 
64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

274 
by (auto simp add: bintrunc_mod2p intro: mod_minus_cong) 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

275 

69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
68157
diff
changeset

276 
lift_definition times_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is "(*)" 
64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

277 
by (auto simp add: bintrunc_mod2p intro: mod_mult_cong) 
37660  278 

65328  279 
definition word_div_def: "a div b = word_of_int (uint a div uint b)" 
280 

281 
definition word_mod_def: "a mod b = word_of_int (uint a mod uint b)" 

37660  282 

47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

283 
instance 
61169  284 
by standard (transfer, simp add: algebra_simps)+ 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

285 

9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

286 
end 
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

287 

61799  288 
text \<open>Legacy theorems:\<close> 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

289 

65268  290 
lemma word_arith_wis [code]: 
291 
shows word_add_def: "a + b = word_of_int (uint a + uint b)" 

292 
and word_sub_wi: "a  b = word_of_int (uint a  uint b)" 

293 
and word_mult_def: "a * b = word_of_int (uint a * uint b)" 

294 
and word_minus_def: " a = word_of_int ( uint a)" 

295 
and word_succ_alt: "word_succ a = word_of_int (uint a + 1)" 

296 
and word_pred_alt: "word_pred a = word_of_int (uint a  1)" 

297 
and word_0_wi: "0 = word_of_int 0" 

298 
and word_1_wi: "1 = word_of_int 1" 

47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

299 
unfolding plus_word_def minus_word_def times_word_def uminus_word_def 
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

300 
unfolding word_succ_def word_pred_def zero_word_def one_word_def 
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

301 
by simp_all 
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

302 

65268  303 
lemma wi_homs: 
304 
shows wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" 

305 
and wi_hom_sub: "word_of_int a  word_of_int b = word_of_int (a  b)" 

306 
and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" 

307 
and wi_hom_neg: " word_of_int a = word_of_int ( a)" 

308 
and wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" 

309 
and wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a  1)" 

47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

310 
by (transfer, simp)+ 
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

311 

26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

312 
lemmas wi_hom_syms = wi_homs [symmetric] 
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

313 

46013  314 
lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi 
46009  315 

316 
lemmas word_of_int_hom_syms = word_of_int_homs [symmetric] 

45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

317 

26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

318 
instance word :: (len) comm_ring_1 
45810  319 
proof 
70185  320 
have *: "0 < LENGTH('a)" by (rule len_gt_0) 
65268  321 
show "(0::'a word) \<noteq> 1" 
322 
by transfer (use * in \<open>auto simp add: gr0_conv_Suc\<close>) 

45810  323 
qed 
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

324 

26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

325 
lemma word_of_nat: "of_nat n = word_of_int (int n)" 
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

326 
by (induct n) (auto simp add : word_of_int_hom_syms) 
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

327 

26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

328 
lemma word_of_int: "of_int = word_of_int" 
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

329 
apply (rule ext) 
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

330 
apply (case_tac x rule: int_diff_cases) 
46013  331 
apply (simp add: word_of_nat wi_hom_sub) 
45545
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

332 
done 
26aebb8ac9c1
Word.thy: rearrange to instantiate arithmetic classes together with arithmetic operations
huffman
parents:
45544
diff
changeset

333 

65268  334 
definition udvd :: "'a::len word \<Rightarrow> 'a::len word \<Rightarrow> bool" (infixl "udvd" 50) 
335 
where "a udvd b = (\<exists>n\<ge>0. uint b = n * uint a)" 

37660  336 

45547  337 

61799  338 
subsection \<open>Ordering\<close> 
45547  339 

340 
instantiation word :: (len0) linorder 

341 
begin 

342 

65268  343 
definition word_le_def: "a \<le> b \<longleftrightarrow> uint a \<le> uint b" 
344 

345 
definition word_less_def: "a < b \<longleftrightarrow> uint a < uint b" 

37660  346 

45547  347 
instance 
61169  348 
by standard (auto simp: word_less_def word_le_def) 
45547  349 

350 
end 

351 

65268  352 
definition word_sle :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool" ("(_/ <=s _)" [50, 51] 50) 
353 
where "a <=s b \<longleftrightarrow> sint a \<le> sint b" 

354 

355 
definition word_sless :: "'a::len word \<Rightarrow> 'a word \<Rightarrow> bool" ("(_/ <s _)" [50, 51] 50) 

356 
where "x <s y \<longleftrightarrow> x <=s y \<and> x \<noteq> y" 

37660  357 

358 

61799  359 
subsection \<open>Bitwise operations\<close> 
37660  360 

361 
instantiation word :: (len0) bits 

362 
begin 

363 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

364 
lift_definition bitNOT_word :: "'a word \<Rightarrow> 'a word" is bitNOT 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

365 
by (metis bin_trunc_not) 
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

366 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

367 
lift_definition bitAND_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is bitAND 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

368 
by (metis bin_trunc_and) 
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

369 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

370 
lift_definition bitOR_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is bitOR 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

371 
by (metis bin_trunc_or) 
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

372 

47387
a0f257197741
remove nowunnecessary type annotations from lift_definition commands
huffman
parents:
47377
diff
changeset

373 
lift_definition bitXOR_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word" is bitXOR 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

374 
by (metis bin_trunc_xor) 
37660  375 

65268  376 
definition word_test_bit_def: "test_bit a = bin_nth (uint a)" 
377 

378 
definition word_set_bit_def: "set_bit a n x = word_of_int (bin_sc n x (uint a))" 

379 

70175  380 
definition word_set_bits_def: "(BITS n. f n) = of_bl (bl_of_nth LENGTH('a) f)" 
65268  381 

382 
definition word_lsb_def: "lsb a \<longleftrightarrow> bin_last (uint a)" 

37660  383 

70175  384 
definition "msb a \<longleftrightarrow> bin_sign (sbintrunc (LENGTH('a)  1) (uint a)) =  1" 
385 

54848  386 
definition shiftl1 :: "'a word \<Rightarrow> 'a word" 
65268  387 
where "shiftl1 w = word_of_int (uint w BIT False)" 
37660  388 

54848  389 
definition shiftr1 :: "'a word \<Rightarrow> 'a word" 
67443
3abf6a722518
standardized towards newstyle formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset

390 
\<comment> \<open>shift right as unsigned or as signed, ie logical or arithmetic\<close> 
65328  391 
where "shiftr1 w = word_of_int (bin_rest (uint w))" 
37660  392 

65268  393 
definition shiftl_def: "w << n = (shiftl1 ^^ n) w" 
394 

395 
definition shiftr_def: "w >> n = (shiftr1 ^^ n) w" 

37660  396 

397 
instance .. 

398 

399 
end 

400 

70175  401 
lemma word_msb_def: 
402 
"msb a \<longleftrightarrow> bin_sign (sint a) =  1" 

403 
by (simp add: msb_word_def sint_uint) 

404 

65268  405 
lemma [code]: 
406 
shows word_not_def: "NOT (a::'a::len0 word) = word_of_int (NOT (uint a))" 

407 
and word_and_def: "(a::'a word) AND b = word_of_int (uint a AND uint b)" 

408 
and word_or_def: "(a::'a word) OR b = word_of_int (uint a OR uint b)" 

409 
and word_xor_def: "(a::'a word) XOR b = word_of_int (uint a XOR uint b)" 

410 
by (simp_all add: bitNOT_word_def bitAND_word_def bitOR_word_def bitXOR_word_def) 

47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

411 

65268  412 
definition setBit :: "'a::len0 word \<Rightarrow> nat \<Rightarrow> 'a word" 
413 
where "setBit w n = set_bit w n True" 

414 

415 
definition clearBit :: "'a::len0 word \<Rightarrow> nat \<Rightarrow> 'a word" 

416 
where "clearBit w n = set_bit w n False" 

37660  417 

418 

61799  419 
subsection \<open>Shift operations\<close> 
37660  420 

65268  421 
definition sshiftr1 :: "'a::len word \<Rightarrow> 'a word" 
422 
where "sshiftr1 w = word_of_int (bin_rest (sint w))" 

423 

424 
definition bshiftr1 :: "bool \<Rightarrow> 'a::len word \<Rightarrow> 'a word" 

425 
where "bshiftr1 b w = of_bl (b # butlast (to_bl w))" 

426 

427 
definition sshiftr :: "'a::len word \<Rightarrow> nat \<Rightarrow> 'a word" (infixl ">>>" 55) 

428 
where "w >>> n = (sshiftr1 ^^ n) w" 

429 

430 
definition mask :: "nat \<Rightarrow> 'a::len word" 

431 
where "mask n = (1 << n)  1" 

432 

433 
definition revcast :: "'a::len0 word \<Rightarrow> 'b::len0 word" 

70185  434 
where "revcast w = of_bl (takefill False (LENGTH('b)) (to_bl w))" 
65268  435 

436 
definition slice1 :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'b::len0 word" 

437 
where "slice1 n w = of_bl (takefill False n (to_bl w))" 

438 

439 
definition slice :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'b::len0 word" 

440 
where "slice n w = slice1 (size w  n) w" 

37660  441 

442 

61799  443 
subsection \<open>Rotation\<close> 
37660  444 

65268  445 
definition rotater1 :: "'a list \<Rightarrow> 'a list" 
446 
where "rotater1 ys = 

447 
(case ys of [] \<Rightarrow> []  x # xs \<Rightarrow> last ys # butlast ys)" 

448 

449 
definition rotater :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" 

450 
where "rotater n = rotater1 ^^ n" 

451 

452 
definition word_rotr :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'a::len0 word" 

453 
where "word_rotr n w = of_bl (rotater n (to_bl w))" 

454 

455 
definition word_rotl :: "nat \<Rightarrow> 'a::len0 word \<Rightarrow> 'a::len0 word" 

456 
where "word_rotl n w = of_bl (rotate n (to_bl w))" 

457 

458 
definition word_roti :: "int \<Rightarrow> 'a::len0 word \<Rightarrow> 'a::len0 word" 

459 
where "word_roti i w = 

460 
(if i \<ge> 0 then word_rotr (nat i) w else word_rotl (nat ( i)) w)" 

37660  461 

462 

61799  463 
subsection \<open>Split and cat operations\<close> 
37660  464 

65268  465 
definition word_cat :: "'a::len0 word \<Rightarrow> 'b::len0 word \<Rightarrow> 'c::len0 word" 
70185  466 
where "word_cat a b = word_of_int (bin_cat (uint a) (LENGTH('b)) (uint b))" 
65268  467 

468 
definition word_split :: "'a::len0 word \<Rightarrow> 'b::len0 word \<times> 'c::len0 word" 

469 
where "word_split a = 

70185  470 
(case bin_split (LENGTH('c)) (uint a) of 
65268  471 
(u, v) \<Rightarrow> (word_of_int u, word_of_int v))" 
472 

473 
definition word_rcat :: "'a::len0 word list \<Rightarrow> 'b::len0 word" 

70185  474 
where "word_rcat ws = word_of_int (bin_rcat (LENGTH('a)) (map uint ws))" 
65268  475 

476 
definition word_rsplit :: "'a::len0 word \<Rightarrow> 'b::len word list" 

70185  477 
where "word_rsplit w = map word_of_int (bin_rsplit (LENGTH('b)) (LENGTH('a), uint w))" 
65268  478 

65328  479 
definition max_word :: "'a::len word" 
67443
3abf6a722518
standardized towards newstyle formal comments: isabelle update_comments;
wenzelm
parents:
67408
diff
changeset

480 
\<comment> \<open>Largest representable machine integer.\<close> 
70185  481 
where "max_word = word_of_int (2 ^ LENGTH('a)  1)" 
37660  482 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

483 
lemmas of_nth_def = word_set_bits_def (* FIXME duplicate *) 
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

484 

37660  485 

61799  486 
subsection \<open>Theorems about typedefs\<close> 
46010  487 

70185  488 
lemma sint_sbintrunc': "sint (word_of_int bin :: 'a word) = sbintrunc (LENGTH('a::len)  1) bin" 
65268  489 
by (auto simp: sint_uint word_ubin.eq_norm sbintrunc_bintrunc_lt) 
490 

70185  491 
lemma uint_sint: "uint w = bintrunc (LENGTH('a)) (sint w)" 
65328  492 
for w :: "'a::len word" 
65268  493 
by (auto simp: sint_uint bintrunc_sbintrunc_le) 
494 

70185  495 
lemma bintr_uint: "LENGTH('a) \<le> n \<Longrightarrow> bintrunc n (uint w) = uint w" 
65268  496 
for w :: "'a::len0 word" 
497 
apply (subst word_ubin.norm_Rep [symmetric]) 

37660  498 
apply (simp only: bintrunc_bintrunc_min word_size) 
54863
82acc20ded73
prefer more canonical names for lemmas on min/max
haftmann
parents:
54854
diff
changeset

499 
apply (simp add: min.absorb2) 
37660  500 
done 
501 

46057  502 
lemma wi_bintr: 
70185  503 
"LENGTH('a::len0) \<le> n \<Longrightarrow> 
46057  504 
word_of_int (bintrunc n w) = (word_of_int w :: 'a word)" 
65268  505 
by (auto simp: word_ubin.norm_eq_iff [symmetric] min.absorb1) 
506 

507 
lemma td_ext_sbin: 

70185  508 
"td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len))) 
509 
(sbintrunc (LENGTH('a)  1))" 

37660  510 
apply (unfold td_ext_def' sint_uint) 
511 
apply (simp add : word_ubin.eq_norm) 

70185  512 
apply (cases "LENGTH('a)") 
37660  513 
apply (auto simp add : sints_def) 
514 
apply (rule sym [THEN trans]) 

65268  515 
apply (rule word_ubin.Abs_norm) 
37660  516 
apply (simp only: bintrunc_sbintrunc) 
517 
apply (drule sym) 

518 
apply simp 

519 
done 

520 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

521 
lemma td_ext_sint: 
70185  522 
"td_ext (sint :: 'a word \<Rightarrow> int) word_of_int (sints (LENGTH('a::len))) 
523 
(\<lambda>w. (w + 2 ^ (LENGTH('a)  1)) mod 2 ^ LENGTH('a)  

524 
2 ^ (LENGTH('a)  1))" 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

525 
using td_ext_sbin [where ?'a = 'a] by (simp add: no_sbintr_alt2) 
37660  526 

67408  527 
text \<open> 
528 
We do \<open>sint\<close> before \<open>sbin\<close>, before \<open>sint\<close> is the user version 

529 
and interpretations do not produce thm duplicates. I.e. 

530 
we get the name \<open>word_sint.Rep_eqD\<close>, but not \<open>word_sbin.Req_eqD\<close>, 

531 
because the latter is the same thm as the former. 

532 
\<close> 

37660  533 
interpretation word_sint: 
65268  534 
td_ext 
535 
"sint ::'a::len word \<Rightarrow> int" 

536 
word_of_int 

70185  537 
"sints (LENGTH('a::len))" 
538 
"\<lambda>w. (w + 2^(LENGTH('a::len)  1)) mod 2^LENGTH('a::len)  

539 
2 ^ (LENGTH('a::len)  1)" 

37660  540 
by (rule td_ext_sint) 
541 

542 
interpretation word_sbin: 

65268  543 
td_ext 
544 
"sint ::'a::len word \<Rightarrow> int" 

545 
word_of_int 

70185  546 
"sints (LENGTH('a::len))" 
547 
"sbintrunc (LENGTH('a::len)  1)" 

37660  548 
by (rule td_ext_sbin) 
549 

45604  550 
lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm] 
37660  551 

552 
lemmas td_sint = word_sint.td 

553 

70185  554 
lemma to_bl_def': "(to_bl :: 'a::len0 word \<Rightarrow> bool list) = bin_to_bl (LENGTH('a)) \<circ> uint" 
44762  555 
by (auto simp: to_bl_def) 
37660  556 

65268  557 
lemmas word_reverse_no_def [simp] = 
558 
word_reverse_def [of "numeral w"] for w 

37660  559 

45805  560 
lemma uints_mod: "uints n = range (\<lambda>w. w mod 2 ^ n)" 
561 
by (fact uints_def [unfolded no_bintr_alt1]) 

562 

65268  563 
lemma word_numeral_alt: "numeral b = word_of_int (numeral b)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

564 
by (induct b, simp_all only: numeral.simps word_of_int_homs) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

565 

2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

566 
declare word_numeral_alt [symmetric, code_abbrev] 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

567 

65268  568 
lemma word_neg_numeral_alt: " numeral b = word_of_int ( numeral b)" 
54489
03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

569 
by (simp only: word_numeral_alt wi_hom_neg) 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

570 

2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

571 
declare word_neg_numeral_alt [symmetric, code_abbrev] 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

572 

47372  573 
lemma word_numeral_transfer [transfer_rule]: 
67399  574 
"(rel_fun (=) pcr_word) numeral numeral" 
575 
"(rel_fun (=) pcr_word) ( numeral) ( numeral)" 

55945  576 
apply (simp_all add: rel_fun_def word.pcr_cr_eq cr_word_def) 
65268  577 
using word_numeral_alt [symmetric] word_neg_numeral_alt [symmetric] by auto 
47372  578 

45805  579 
lemma uint_bintrunc [simp]: 
65268  580 
"uint (numeral bin :: 'a word) = 
70185  581 
bintrunc (LENGTH('a::len0)) (numeral bin)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

582 
unfolding word_numeral_alt by (rule word_ubin.eq_norm) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

583 

65268  584 
lemma uint_bintrunc_neg [simp]: 
70185  585 
"uint ( numeral bin :: 'a word) = bintrunc (LENGTH('a::len0)) ( numeral bin)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

586 
by (simp only: word_neg_numeral_alt word_ubin.eq_norm) 
37660  587 

45805  588 
lemma sint_sbintrunc [simp]: 
70185  589 
"sint (numeral bin :: 'a word) = sbintrunc (LENGTH('a::len)  1) (numeral bin)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

590 
by (simp only: word_numeral_alt word_sbin.eq_norm) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

591 

65268  592 
lemma sint_sbintrunc_neg [simp]: 
70185  593 
"sint ( numeral bin :: 'a word) = sbintrunc (LENGTH('a::len)  1) ( numeral bin)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

594 
by (simp only: word_neg_numeral_alt word_sbin.eq_norm) 
37660  595 

45805  596 
lemma unat_bintrunc [simp]: 
70185  597 
"unat (numeral bin :: 'a::len0 word) = nat (bintrunc (LENGTH('a)) (numeral bin))" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

598 
by (simp only: unat_def uint_bintrunc) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

599 

2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

600 
lemma unat_bintrunc_neg [simp]: 
70185  601 
"unat ( numeral bin :: 'a::len0 word) = nat (bintrunc (LENGTH('a)) ( numeral bin))" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

602 
by (simp only: unat_def uint_bintrunc_neg) 
37660  603 

65328  604 
lemma size_0_eq: "size w = 0 \<Longrightarrow> v = w" 
605 
for v w :: "'a::len0 word" 

37660  606 
apply (unfold word_size) 
607 
apply (rule word_uint.Rep_eqD) 

608 
apply (rule box_equals) 

609 
defer 

610 
apply (rule word_ubin.norm_Rep)+ 

611 
apply simp 

612 
done 

613 

65268  614 
lemma uint_ge_0 [iff]: "0 \<le> uint x" 
615 
for x :: "'a::len0 word" 

45805  616 
using word_uint.Rep [of x] by (simp add: uints_num) 
617 

70185  618 
lemma uint_lt2p [iff]: "uint x < 2 ^ LENGTH('a)" 
65268  619 
for x :: "'a::len0 word" 
45805  620 
using word_uint.Rep [of x] by (simp add: uints_num) 
621 

70185  622 
lemma sint_ge: " (2 ^ (LENGTH('a)  1)) \<le> sint x" 
65268  623 
for x :: "'a::len word" 
45805  624 
using word_sint.Rep [of x] by (simp add: sints_num) 
625 

70185  626 
lemma sint_lt: "sint x < 2 ^ (LENGTH('a)  1)" 
65268  627 
for x :: "'a::len word" 
45805  628 
using word_sint.Rep [of x] by (simp add: sints_num) 
37660  629 

65268  630 
lemma sign_uint_Pls [simp]: "bin_sign (uint x) = 0" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

631 
by (simp add: sign_Pls_ge_0) 
37660  632 

70185  633 
lemma uint_m2p_neg: "uint x  2 ^ LENGTH('a) < 0" 
65268  634 
for x :: "'a::len0 word" 
45805  635 
by (simp only: diff_less_0_iff_less uint_lt2p) 
636 

70185  637 
lemma uint_m2p_not_non_neg: "\<not> 0 \<le> uint x  2 ^ LENGTH('a)" 
65268  638 
for x :: "'a::len0 word" 
45805  639 
by (simp only: not_le uint_m2p_neg) 
37660  640 

70185  641 
lemma lt2p_lem: "LENGTH('a) \<le> n \<Longrightarrow> uint w < 2 ^ n" 
65268  642 
for w :: "'a::len0 word" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

643 
by (metis bintr_uint bintrunc_mod2p int_mod_lem zless2p) 
37660  644 

45805  645 
lemma uint_le_0_iff [simp]: "uint x \<le> 0 \<longleftrightarrow> uint x = 0" 
646 
by (fact uint_ge_0 [THEN leD, THEN linorder_antisym_conv1]) 

37660  647 

40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset

648 
lemma uint_nat: "uint w = int (unat w)" 
65268  649 
by (auto simp: unat_def) 
650 

70185  651 
lemma uint_numeral: "uint (numeral b :: 'a::len0 word) = numeral b mod 2 ^ LENGTH('a)" 
65268  652 
by (simp only: word_numeral_alt int_word_uint) 
653 

70185  654 
lemma uint_neg_numeral: "uint ( numeral b :: 'a::len0 word) =  numeral b mod 2 ^ LENGTH('a)" 
65268  655 
by (simp only: word_neg_numeral_alt int_word_uint) 
656 

70185  657 
lemma unat_numeral: "unat (numeral b :: 'a::len0 word) = numeral b mod 2 ^ LENGTH('a)" 
37660  658 
apply (unfold unat_def) 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

659 
apply (clarsimp simp only: uint_numeral) 
37660  660 
apply (rule nat_mod_distrib [THEN trans]) 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

661 
apply (rule zero_le_numeral) 
37660  662 
apply (simp_all add: nat_power_eq) 
663 
done 

664 

65268  665 
lemma sint_numeral: 
666 
"sint (numeral b :: 'a::len word) = 

667 
(numeral b + 

70185  668 
2 ^ (LENGTH('a)  1)) mod 2 ^ LENGTH('a)  
669 
2 ^ (LENGTH('a)  1)" 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

670 
unfolding word_numeral_alt by (rule int_word_sint) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

671 

65268  672 
lemma word_of_int_0 [simp, code_post]: "word_of_int 0 = 0" 
45958  673 
unfolding word_0_wi .. 
674 

65268  675 
lemma word_of_int_1 [simp, code_post]: "word_of_int 1 = 1" 
45958  676 
unfolding word_1_wi .. 
677 

54489
03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

678 
lemma word_of_int_neg_1 [simp]: "word_of_int ( 1) =  1" 
03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

679 
by (simp add: wi_hom_syms) 
03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

680 

65268  681 
lemma word_of_int_numeral [simp] : "(word_of_int (numeral bin) :: 'a::len0 word) = numeral bin" 
682 
by (simp only: word_numeral_alt) 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

683 

2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

684 
lemma word_of_int_neg_numeral [simp]: 
65268  685 
"(word_of_int ( numeral bin) :: 'a::len0 word) =  numeral bin" 
686 
by (simp only: word_numeral_alt wi_hom_syms) 

687 

688 
lemma word_int_case_wi: 

70185  689 
"word_int_case f (word_of_int i :: 'b word) = f (i mod 2 ^ LENGTH('b::len0))" 
65268  690 
by (simp add: word_int_case_def word_uint.eq_norm) 
691 

692 
lemma word_int_split: 

693 
"P (word_int_case f x) = 

70185  694 
(\<forall>i. x = (word_of_int i :: 'b::len0 word) \<and> 0 \<le> i \<and> i < 2 ^ LENGTH('b) \<longrightarrow> P (f i))" 
65268  695 
by (auto simp: word_int_case_def word_uint.eq_norm mod_pos_pos_trivial) 
696 

697 
lemma word_int_split_asm: 

698 
"P (word_int_case f x) = 

70185  699 
(\<nexists>n. x = (word_of_int n :: 'b::len0 word) \<and> 0 \<le> n \<and> n < 2 ^ LENGTH('b::len0) \<and> \<not> P (f n))" 
65268  700 
by (auto simp: word_int_case_def word_uint.eq_norm mod_pos_pos_trivial) 
45805  701 

45604  702 
lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq] 
703 
lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq] 

37660  704 

65268  705 
lemma uint_range_size: "0 \<le> uint w \<and> uint w < 2 ^ size w" 
37660  706 
unfolding word_size by (rule uint_range') 
707 

65268  708 
lemma sint_range_size: " (2 ^ (size w  Suc 0)) \<le> sint w \<and> sint w < 2 ^ (size w  Suc 0)" 
37660  709 
unfolding word_size by (rule sint_range') 
710 

65268  711 
lemma sint_above_size: "2 ^ (size w  1) \<le> x \<Longrightarrow> sint w < x" 
712 
for w :: "'a::len word" 

45805  713 
unfolding word_size by (rule less_le_trans [OF sint_lt]) 
714 

65268  715 
lemma sint_below_size: "x \<le>  (2 ^ (size w  1)) \<Longrightarrow> x \<le> sint w" 
716 
for w :: "'a::len word" 

45805  717 
unfolding word_size by (rule order_trans [OF _ sint_ge]) 
37660  718 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

719 

61799  720 
subsection \<open>Testing bits\<close> 
46010  721 

65268  722 
lemma test_bit_eq_iff: "test_bit u = test_bit v \<longleftrightarrow> u = v" 
723 
for u v :: "'a::len0 word" 

37660  724 
unfolding word_test_bit_def by (simp add: bin_nth_eq_iff) 
725 

65268  726 
lemma test_bit_size [rule_format] : "w !! n \<longrightarrow> n < size w" 
727 
for w :: "'a::len0 word" 

37660  728 
apply (unfold word_test_bit_def) 
729 
apply (subst word_ubin.norm_Rep [symmetric]) 

730 
apply (simp only: nth_bintr word_size) 

731 
apply fast 

732 
done 

733 

70185  734 
lemma word_eq_iff: "x = y \<longleftrightarrow> (\<forall>n<LENGTH('a). x !! n = y !! n)" 
65268  735 
for x y :: "'a::len0 word" 
46021  736 
unfolding uint_inject [symmetric] bin_eq_iff word_test_bit_def [symmetric] 
737 
by (metis test_bit_size [unfolded word_size]) 

738 

65268  739 
lemma word_eqI: "(\<And>n. n < size u \<longrightarrow> u !! n = v !! n) \<Longrightarrow> u = v" 
740 
for u :: "'a::len0 word" 

46021  741 
by (simp add: word_size word_eq_iff) 
37660  742 

65268  743 
lemma word_eqD: "u = v \<Longrightarrow> u !! x = v !! x" 
744 
for u v :: "'a::len0 word" 

45805  745 
by simp 
37660  746 

65268  747 
lemma test_bit_bin': "w !! n \<longleftrightarrow> n < size w \<and> bin_nth (uint w) n" 
748 
by (simp add: word_test_bit_def word_size nth_bintr [symmetric]) 

37660  749 

750 
lemmas test_bit_bin = test_bit_bin' [unfolded word_size] 

751 

70185  752 
lemma bin_nth_uint_imp: "bin_nth (uint w) n \<Longrightarrow> n < LENGTH('a)" 
65268  753 
for w :: "'a::len0 word" 
37660  754 
apply (rule nth_bintr [THEN iffD1, THEN conjunct1]) 
755 
apply (subst word_ubin.norm_Rep) 

756 
apply assumption 

757 
done 

758 

46057  759 
lemma bin_nth_sint: 
70185  760 
"LENGTH('a) \<le> n \<Longrightarrow> 
761 
bin_nth (sint w) n = bin_nth (sint w) (LENGTH('a)  1)" 

65268  762 
for w :: "'a::len word" 
37660  763 
apply (subst word_sbin.norm_Rep [symmetric]) 
46057  764 
apply (auto simp add: nth_sbintr) 
37660  765 
done 
766 

67408  767 
\<comment> \<open>type definitions theorem for in terms of equivalent bool list\<close> 
65268  768 
lemma td_bl: 
769 
"type_definition 

770 
(to_bl :: 'a::len0 word \<Rightarrow> bool list) 

771 
of_bl 

70185  772 
{bl. length bl = LENGTH('a)}" 
37660  773 
apply (unfold type_definition_def of_bl_def to_bl_def) 
774 
apply (simp add: word_ubin.eq_norm) 

775 
apply safe 

776 
apply (drule sym) 

777 
apply simp 

778 
done 

779 

780 
interpretation word_bl: 

65268  781 
type_definition 
782 
"to_bl :: 'a::len0 word \<Rightarrow> bool list" 

783 
of_bl 

70185  784 
"{bl. length bl = LENGTH('a::len0)}" 
55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

785 
by (fact td_bl) 
37660  786 

45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset

787 
lemmas word_bl_Rep' = word_bl.Rep [unfolded mem_Collect_eq, iff] 
45538
1fffa81b9b83
eliminated slightly odd Rep' with dynamicallyscoped [simplified];
wenzelm
parents:
45529
diff
changeset

788 

40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset

789 
lemma word_size_bl: "size w = size (to_bl w)" 
65268  790 
by (auto simp: word_size) 
791 

792 
lemma to_bl_use_of_bl: "to_bl w = bl \<longleftrightarrow> w = of_bl bl \<and> length bl = length (to_bl w)" 

45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset

793 
by (fastforce elim!: word_bl.Abs_inverse [unfolded mem_Collect_eq]) 
37660  794 

795 
lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)" 

65268  796 
by (simp add: word_reverse_def word_bl.Abs_inverse) 
37660  797 

798 
lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w" 

65268  799 
by (simp add: word_reverse_def word_bl.Abs_inverse) 
37660  800 

40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset

801 
lemma word_rev_gal: "word_reverse w = u \<Longrightarrow> word_reverse u = w" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

802 
by (metis word_rev_rev) 
37660  803 

45805  804 
lemma word_rev_gal': "u = word_reverse w \<Longrightarrow> w = word_reverse u" 
805 
by simp 

806 

65268  807 
lemma length_bl_gt_0 [iff]: "0 < length (to_bl x)" 
808 
for x :: "'a::len word" 

45805  809 
unfolding word_bl_Rep' by (rule len_gt_0) 
810 

65268  811 
lemma bl_not_Nil [iff]: "to_bl x \<noteq> []" 
812 
for x :: "'a::len word" 

45805  813 
by (fact length_bl_gt_0 [unfolded length_greater_0_conv]) 
814 

65268  815 
lemma length_bl_neq_0 [iff]: "length (to_bl x) \<noteq> 0" 
816 
for x :: "'a::len word" 

45805  817 
by (fact length_bl_gt_0 [THEN gr_implies_not0]) 
37660  818 

46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset

819 
lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = 1)" 
37660  820 
apply (unfold to_bl_def sint_uint) 
821 
apply (rule trans [OF _ bl_sbin_sign]) 

822 
apply simp 

823 
done 

824 

65268  825 
lemma of_bl_drop': 
70185  826 
"lend = length bl  LENGTH('a::len0) \<Longrightarrow> 
37660  827 
of_bl (drop lend bl) = (of_bl bl :: 'a word)" 
65268  828 
by (auto simp: of_bl_def trunc_bl2bin [symmetric]) 
829 

830 
lemma test_bit_of_bl: 

70185  831 
"(of_bl bl::'a::len0 word) !! n = (rev bl ! n \<and> n < LENGTH('a) \<and> n < length bl)" 
65328  832 
by (auto simp add: of_bl_def word_test_bit_def word_size 
833 
word_ubin.eq_norm nth_bintr bin_nth_of_bl) 

65268  834 

70185  835 
lemma no_of_bl: "(numeral bin ::'a::len0 word) = of_bl (bin_to_bl (LENGTH('a)) (numeral bin))" 
65268  836 
by (simp add: of_bl_def) 
37660  837 

40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset

838 
lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)" 
65268  839 
by (auto simp: word_size to_bl_def) 
37660  840 

841 
lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w" 

65268  842 
by (simp add: uint_bl word_size) 
843 

70185  844 
lemma to_bl_of_bin: "to_bl (word_of_int bin::'a::len0 word) = bin_to_bl (LENGTH('a)) bin" 
65268  845 
by (auto simp: uint_bl word_ubin.eq_norm word_size) 
37660  846 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

847 
lemma to_bl_numeral [simp]: 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

848 
"to_bl (numeral bin::'a::len0 word) = 
70185  849 
bin_to_bl (LENGTH('a)) (numeral bin)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

850 
unfolding word_numeral_alt by (rule to_bl_of_bin) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

851 

2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

852 
lemma to_bl_neg_numeral [simp]: 
54489
03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

853 
"to_bl ( numeral bin::'a::len0 word) = 
70185  854 
bin_to_bl (LENGTH('a)) ( numeral bin)" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

855 
unfolding word_neg_numeral_alt by (rule to_bl_of_bin) 
37660  856 

857 
lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w" 

65268  858 
by (simp add: uint_bl word_size) 
859 

70185  860 
lemma uint_bl_bin: "bl_to_bin (bin_to_bl (LENGTH('a)) (uint x)) = uint x" 
65268  861 
for x :: "'a::len0 word" 
46011  862 
by (rule trans [OF bin_bl_bin word_ubin.norm_Rep]) 
45604  863 

67408  864 
\<comment> \<open>naturals\<close> 
37660  865 
lemma uints_unats: "uints n = int ` unats n" 
866 
apply (unfold unats_def uints_num) 

867 
apply safe 

65268  868 
apply (rule_tac image_eqI) 
869 
apply (erule_tac nat_0_le [symmetric]) 

66912
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
immler
parents:
66808
diff
changeset

870 
by auto 
37660  871 

872 
lemma unats_uints: "unats n = nat ` uints n" 

65268  873 
by (auto simp: uints_unats image_iff) 
874 

875 
lemmas bintr_num = 

876 
word_ubin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b 

877 
lemmas sbintr_num = 

878 
word_sbin.norm_eq_iff [of "numeral a" "numeral b", symmetric, folded word_numeral_alt] for a b 

37660  879 

880 
lemma num_of_bintr': 

70185  881 
"bintrunc (LENGTH('a::len0)) (numeral a) = (numeral b) \<Longrightarrow> 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

882 
numeral a = (numeral b :: 'a word)" 
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

883 
unfolding bintr_num by (erule subst, simp) 
37660  884 

885 
lemma num_of_sbintr': 

70185  886 
"sbintrunc (LENGTH('a::len)  1) (numeral a) = (numeral b) \<Longrightarrow> 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

887 
numeral a = (numeral b :: 'a word)" 
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

888 
unfolding sbintr_num by (erule subst, simp) 
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

889 

5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

890 
lemma num_abs_bintr: 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

891 
"(numeral x :: 'a word) = 
70185  892 
word_of_int (bintrunc (LENGTH('a::len0)) (numeral x))" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

893 
by (simp only: word_ubin.Abs_norm word_numeral_alt) 
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

894 

5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

895 
lemma num_abs_sbintr: 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

896 
"(numeral x :: 'a word) = 
70185  897 
word_of_int (sbintrunc (LENGTH('a::len)  1) (numeral x))" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

898 
by (simp only: word_sbin.Abs_norm word_numeral_alt) 
46962
5bdcdb28be83
make more word theorems respect int/bin distinction
huffman
parents:
46656
diff
changeset

899 

67408  900 
text \<open> 
901 
\<open>cast\<close>  note, no arg for new length, as it's determined by type of result, 

902 
thus in \<open>cast w = w\<close>, the type means cast to length of \<open>w\<close>! 

903 
\<close> 

37660  904 

905 
lemma ucast_id: "ucast w = w" 

65268  906 
by (auto simp: ucast_def) 
37660  907 

908 
lemma scast_id: "scast w = w" 

65268  909 
by (auto simp: scast_def) 
37660  910 

40827
abbc05c20e24
code preprocessor setup for numerals on word type;
haftmann
parents:
39910
diff
changeset

911 
lemma ucast_bl: "ucast w = of_bl (to_bl w)" 
65268  912 
by (auto simp: ucast_def of_bl_def uint_bl word_size) 
913 

70185  914 
lemma nth_ucast: "(ucast w::'a::len0 word) !! n = (w !! n \<and> n < LENGTH('a))" 
65268  915 
by (simp add: ucast_def test_bit_bin word_ubin.eq_norm nth_bintr word_size) 
916 
(fast elim!: bin_nth_uint_imp) 

37660  917 

67408  918 
\<comment> \<open>literal u(s)cast\<close> 
46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset

919 
lemma ucast_bintr [simp]: 
65328  920 
"ucast (numeral w :: 'a::len0 word) = 
70185  921 
word_of_int (bintrunc (LENGTH('a)) (numeral w))" 
65268  922 
by (simp add: ucast_def) 
923 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

924 
(* TODO: neg_numeral *) 
37660  925 

46001
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
huffman
parents:
46000
diff
changeset

926 
lemma scast_sbintr [simp]: 
65268  927 
"scast (numeral w ::'a::len word) = 
70185  928 
word_of_int (sbintrunc (LENGTH('a)  Suc 0) (numeral w))" 
65268  929 
by (simp add: scast_def) 
37660  930 

70185  931 
lemma source_size: "source_size (c::'a::len0 word \<Rightarrow> _) = LENGTH('a)" 
46011  932 
unfolding source_size_def word_size Let_def .. 
933 

70185  934 
lemma target_size: "target_size (c::_ \<Rightarrow> 'b::len0 word) = LENGTH('b)" 
46011  935 
unfolding target_size_def word_size Let_def .. 
936 

70185  937 
lemma is_down: "is_down c \<longleftrightarrow> LENGTH('b) \<le> LENGTH('a)" 
65268  938 
for c :: "'a::len0 word \<Rightarrow> 'b::len0 word" 
939 
by (simp only: is_down_def source_size target_size) 

940 

70185  941 
lemma is_up: "is_up c \<longleftrightarrow> LENGTH('a) \<le> LENGTH('b)" 
65268  942 
for c :: "'a::len0 word \<Rightarrow> 'b::len0 word" 
943 
by (simp only: is_up_def source_size target_size) 

37660  944 

45604  945 
lemmas is_up_down = trans [OF is_up is_down [symmetric]] 
37660  946 

45811  947 
lemma down_cast_same [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc = scast" 
37660  948 
apply (unfold is_down) 
949 
apply safe 

950 
apply (rule ext) 

951 
apply (unfold ucast_def scast_def uint_sint) 

952 
apply (rule word_ubin.norm_eq_iff [THEN iffD1]) 

953 
apply simp 

954 
done 

955 

45811  956 
lemma word_rev_tf: 
957 
"to_bl (of_bl bl::'a::len0 word) = 

70185  958 
rev (takefill False (LENGTH('a)) (rev bl))" 
65268  959 
by (auto simp: of_bl_def uint_bl bl_bin_bl_rtf word_ubin.eq_norm word_size) 
37660  960 

45811  961 
lemma word_rep_drop: 
962 
"to_bl (of_bl bl::'a::len0 word) = 

70185  963 
replicate (LENGTH('a)  length bl) False @ 
964 
drop (length bl  LENGTH('a)) bl" 

45811  965 
by (simp add: word_rev_tf takefill_alt rev_take) 
37660  966 

65268  967 
lemma to_bl_ucast: 
968 
"to_bl (ucast (w::'b::len0 word) ::'a::len0 word) = 

70185  969 
replicate (LENGTH('a)  LENGTH('b)) False @ 
970 
drop (LENGTH('b)  LENGTH('a)) (to_bl w)" 

37660  971 
apply (unfold ucast_bl) 
972 
apply (rule trans) 

973 
apply (rule word_rep_drop) 

974 
apply simp 

975 
done 

976 

45811  977 
lemma ucast_up_app [OF refl]: 
65268  978 
"uc = ucast \<Longrightarrow> source_size uc + n = target_size uc \<Longrightarrow> 
37660  979 
to_bl (uc w) = replicate n False @ (to_bl w)" 
980 
by (auto simp add : source_size target_size to_bl_ucast) 

981 

45811  982 
lemma ucast_down_drop [OF refl]: 
65268  983 
"uc = ucast \<Longrightarrow> source_size uc = target_size uc + n \<Longrightarrow> 
37660  984 
to_bl (uc w) = drop n (to_bl w)" 
985 
by (auto simp add : source_size target_size to_bl_ucast) 

986 

45811  987 
lemma scast_down_drop [OF refl]: 
65268  988 
"sc = scast \<Longrightarrow> source_size sc = target_size sc + n \<Longrightarrow> 
37660  989 
to_bl (sc w) = drop n (to_bl w)" 
990 
apply (subgoal_tac "sc = ucast") 

991 
apply safe 

992 
apply simp 

45811  993 
apply (erule ucast_down_drop) 
994 
apply (rule down_cast_same [symmetric]) 

37660  995 
apply (simp add : source_size target_size is_down) 
996 
done 

997 

65268  998 
lemma sint_up_scast [OF refl]: "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> sint (sc w) = sint w" 
37660  999 
apply (unfold is_up) 
1000 
apply safe 

1001 
apply (simp add: scast_def word_sbin.eq_norm) 

1002 
apply (rule box_equals) 

1003 
prefer 3 

1004 
apply (rule word_sbin.norm_Rep) 

1005 
apply (rule sbintrunc_sbintrunc_l) 

1006 
defer 

1007 
apply (subst word_sbin.norm_Rep) 

1008 
apply (rule refl) 

1009 
apply simp 

1010 
done 

1011 

65268  1012 
lemma uint_up_ucast [OF refl]: "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> uint (uc w) = uint w" 
37660  1013 
apply (unfold is_up) 
1014 
apply safe 

1015 
apply (rule bin_eqI) 

1016 
apply (fold word_test_bit_def) 

1017 
apply (auto simp add: nth_ucast) 

1018 
apply (auto simp add: test_bit_bin) 

1019 
done 

45811  1020 

65268  1021 
lemma ucast_up_ucast [OF refl]: "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> ucast (uc w) = ucast w" 
37660  1022 
apply (simp (no_asm) add: ucast_def) 
1023 
apply (clarsimp simp add: uint_up_ucast) 

1024 
done 

65268  1025 

1026 
lemma scast_up_scast [OF refl]: "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> scast (sc w) = scast w" 

37660  1027 
apply (simp (no_asm) add: scast_def) 
1028 
apply (clarsimp simp add: sint_up_scast) 

1029 
done 

65268  1030 

1031 
lemma ucast_of_bl_up [OF refl]: "w = of_bl bl \<Longrightarrow> size bl \<le> size w \<Longrightarrow> ucast w = of_bl bl" 

37660  1032 
by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI) 
1033 

1034 
lemmas ucast_up_ucast_id = trans [OF ucast_up_ucast ucast_id] 

1035 
lemmas scast_up_scast_id = trans [OF scast_up_scast scast_id] 

1036 

1037 
lemmas isduu = is_up_down [where c = "ucast", THEN iffD2] 

1038 
lemmas isdus = is_up_down [where c = "scast", THEN iffD2] 

1039 
lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id] 

1040 
lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id] 

1041 

1042 
lemma up_ucast_surj: 

65268  1043 
"is_up (ucast :: 'b::len0 word \<Rightarrow> 'a::len0 word) \<Longrightarrow> 
1044 
surj (ucast :: 'a word \<Rightarrow> 'b word)" 

1045 
by (rule surjI) (erule ucast_up_ucast_id) 

37660  1046 

1047 
lemma up_scast_surj: 

65268  1048 
"is_up (scast :: 'b::len word \<Rightarrow> 'a::len word) \<Longrightarrow> 
1049 
surj (scast :: 'a word \<Rightarrow> 'b word)" 

1050 
by (rule surjI) (erule scast_up_scast_id) 

37660  1051 

1052 
lemma down_scast_inj: 

65268  1053 
"is_down (scast :: 'b::len word \<Rightarrow> 'a::len word) \<Longrightarrow> 
1054 
inj_on (ucast :: 'a word \<Rightarrow> 'b word) A" 

37660  1055 
by (rule inj_on_inverseI, erule scast_down_scast_id) 
1056 

1057 
lemma down_ucast_inj: 

65268  1058 
"is_down (ucast :: 'b::len0 word \<Rightarrow> 'a::len0 word) \<Longrightarrow> 
1059 
inj_on (ucast :: 'a word \<Rightarrow> 'b word) A" 

1060 
by (rule inj_on_inverseI) (erule ucast_down_ucast_id) 

37660  1061 

1062 
lemma of_bl_append_same: "of_bl (X @ to_bl w) = w" 

1063 
by (rule word_bl.Rep_eqD) (simp add: word_rep_drop) 

45811  1064 

65268  1065 
lemma ucast_down_wi [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x" 
46646  1066 
apply (unfold is_down) 
37660  1067 
apply (clarsimp simp add: ucast_def word_ubin.eq_norm) 
1068 
apply (rule word_ubin.norm_eq_iff [THEN iffD1]) 

1069 
apply (erule bintrunc_bintrunc_ge) 

1070 
done 

45811  1071 

65268  1072 
lemma ucast_down_no [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (numeral bin) = numeral bin" 
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1073 
unfolding word_numeral_alt by clarify (rule ucast_down_wi) 
46646  1074 

65268  1075 
lemma ucast_down_bl [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (of_bl bl) = of_bl bl" 
46646  1076 
unfolding of_bl_def by clarify (erule ucast_down_wi) 
37660  1077 

1078 
lemmas slice_def' = slice_def [unfolded word_size] 

1079 
lemmas test_bit_def' = word_test_bit_def [THEN fun_cong] 

1080 

1081 
lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def 

1082 

1083 

61799  1084 
subsection \<open>Word Arithmetic\<close> 
37660  1085 

65268  1086 
lemma word_less_alt: "a < b \<longleftrightarrow> uint a < uint b" 
55818  1087 
by (fact word_less_def) 
37660  1088 

1089 
lemma signed_linorder: "class.linorder word_sle word_sless" 

65268  1090 
by standard (auto simp: word_sle_def word_sless_def) 
37660  1091 

1092 
interpretation signed: linorder "word_sle" "word_sless" 

1093 
by (rule signed_linorder) 

1094 

65268  1095 
lemma udvdI: "0 \<le> n \<Longrightarrow> uint b = n * uint a \<Longrightarrow> a udvd b" 
37660  1096 
by (auto simp: udvd_def) 
1097 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1098 
lemmas word_div_no [simp] = word_div_def [of "numeral a" "numeral b"] for a b 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1099 
lemmas word_mod_no [simp] = word_mod_def [of "numeral a" "numeral b"] for a b 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1100 
lemmas word_less_no [simp] = word_less_def [of "numeral a" "numeral b"] for a b 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1101 
lemmas word_le_no [simp] = word_le_def [of "numeral a" "numeral b"] for a b 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1102 
lemmas word_sless_no [simp] = word_sless_def [of "numeral a" "numeral b"] for a b 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1103 
lemmas word_sle_no [simp] = word_sle_def [of "numeral a" "numeral b"] for a b 
37660  1104 

65268  1105 
lemma word_m1_wi: " 1 = word_of_int ( 1)" 
1106 
by (simp add: word_neg_numeral_alt [of Num.One]) 

37660  1107 

46648  1108 
lemma word_0_bl [simp]: "of_bl [] = 0" 
65268  1109 
by (simp add: of_bl_def) 
1110 

1111 
lemma word_1_bl: "of_bl [True] = 1" 

1112 
by (simp add: of_bl_def bl_to_bin_def) 

46648  1113 

1114 
lemma uint_eq_0 [simp]: "uint 0 = 0" 

1115 
unfolding word_0_wi word_ubin.eq_norm by simp 

37660  1116 

45995
b16070689726
declare word_of_int_{0,1} [simp], for consistency with word_of_int_bin
huffman
parents:
45958
diff
changeset

1117 
lemma of_bl_0 [simp]: "of_bl (replicate n False) = 0" 
46648  1118 
by (simp add: of_bl_def bl_to_bin_rep_False) 
37660  1119 

70185  1120 
lemma to_bl_0 [simp]: "to_bl (0::'a::len0 word) = replicate (LENGTH('a)) False" 
65268  1121 
by (simp add: uint_bl word_size bin_to_bl_zero) 
1122 

1123 
lemma uint_0_iff: "uint x = 0 \<longleftrightarrow> x = 0" 

55818  1124 
by (simp add: word_uint_eq_iff) 
1125 

65268  1126 
lemma unat_0_iff: "unat x = 0 \<longleftrightarrow> x = 0" 
1127 
by (auto simp: unat_def nat_eq_iff uint_0_iff) 

1128 

1129 
lemma unat_0 [simp]: "unat 0 = 0" 

1130 
by (auto simp: unat_def) 

1131 

1132 
lemma size_0_same': "size w = 0 \<Longrightarrow> w = v" 

1133 
for v w :: "'a::len0 word" 

37660  1134 
apply (unfold word_size) 
1135 
apply (rule box_equals) 

1136 
defer 

1137 
apply (rule word_uint.Rep_inverse)+ 

1138 
apply (rule word_ubin.norm_eq_iff [THEN iffD1]) 

1139 
apply simp 

1140 
done 

1141 

45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset

1142 
lemmas size_0_same = size_0_same' [unfolded word_size] 
37660  1143 

1144 
lemmas unat_eq_0 = unat_0_iff 

1145 
lemmas unat_eq_zero = unat_0_iff 

1146 

65268  1147 
lemma unat_gt_0: "0 < unat x \<longleftrightarrow> x \<noteq> 0" 
1148 
by (auto simp: unat_0_iff [symmetric]) 

37660  1149 

45958  1150 
lemma ucast_0 [simp]: "ucast 0 = 0" 
65268  1151 
by (simp add: ucast_def) 
45958  1152 

1153 
lemma sint_0 [simp]: "sint 0 = 0" 

65268  1154 
by (simp add: sint_uint) 
45958  1155 

1156 
lemma scast_0 [simp]: "scast 0 = 0" 

65268  1157 
by (simp add: scast_def) 
37660  1158 

58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58061
diff
changeset

1159 
lemma sint_n1 [simp] : "sint ( 1) =  1" 
65268  1160 
by (simp only: word_m1_wi word_sbin.eq_norm) simp 
54489
03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

1161 

03ff4d1e6784
eliminiated neg_numeral in favour of  (numeral _)
haftmann
parents:
54225
diff
changeset

1162 
lemma scast_n1 [simp]: "scast ( 1) =  1" 
65268  1163 
by (simp add: scast_def) 
45958  1164 

1165 
lemma uint_1 [simp]: "uint (1::'a::len word) = 1" 

55818  1166 
by (simp only: word_1_wi word_ubin.eq_norm) (simp add: bintrunc_minus_simps(4)) 
45958  1167 

1168 
lemma unat_1 [simp]: "unat (1::'a::len word) = 1" 

65268  1169 
by (simp add: unat_def) 
45958  1170 

1171 
lemma ucast_1 [simp]: "ucast (1::'a::len word) = 1" 

65268  1172 
by (simp add: ucast_def) 
37660  1173 

67408  1174 
\<comment> \<open>now, to get the weaker results analogous to \<open>word_div\<close>/\<open>mod_def\<close>\<close> 
37660  1175 

55816
e8dd03241e86
cursory polishing: tuned proofs, tuned symbols, tuned headings
haftmann
parents:
55415
diff
changeset

1176 

61799  1177 
subsection \<open>Transferring goals from words to ints\<close> 
37660  1178 

65268  1179 
lemma word_ths: 
1180 
shows word_succ_p1: "word_succ a = a + 1" 

1181 
and word_pred_m1: "word_pred a = a  1" 

1182 
and word_pred_succ: "word_pred (word_succ a) = a" 

1183 
and word_succ_pred: "word_succ (word_pred a) = a" 

1184 
and word_mult_succ: "word_succ a * b = b + a * b" 

47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

1185 
by (transfer, simp add: algebra_simps)+ 
37660  1186 

45816
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset

1187 
lemma uint_cong: "x = y \<Longrightarrow> uint x = uint y" 
6a04efd99f25
replace more uses of 'lemmas' with explicit 'lemma';
huffman
parents:
45811
diff
changeset

1188 
by simp 
37660  1189 

55818  1190 
lemma uint_word_ariths: 
1191 
fixes a b :: "'a::len0 word" 

70185  1192 
shows "uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH('a::len0)" 
1193 
and "uint (a  b) = (uint a  uint b) mod 2 ^ LENGTH('a)" 

1194 
and "uint (a * b) = uint a * uint b mod 2 ^ LENGTH('a)" 

1195 
and "uint ( a) =  uint a mod 2 ^ LENGTH('a)" 

1196 
and "uint (word_succ a) = (uint a + 1) mod 2 ^ LENGTH('a)" 

1197 
and "uint (word_pred a) = (uint a  1) mod 2 ^ LENGTH('a)" 

1198 
and "uint (0 :: 'a word) = 0 mod 2 ^ LENGTH('a)" 

1199 
and "uint (1 :: 'a word) = 1 mod 2 ^ LENGTH('a)" 

55818  1200 
by (simp_all add: word_arith_wis [THEN trans [OF uint_cong int_word_uint]]) 
1201 

1202 
lemma uint_word_arith_bintrs: 

1203 
fixes a b :: "'a::len0 word" 

70185  1204 
shows "uint (a + b) = bintrunc (LENGTH('a)) (uint a + uint b)" 
1205 
and "uint (a  b) = bintrunc (LENGTH('a)) (uint a  uint b)" 

1206 
and "uint (a * b) = bintrunc (LENGTH('a)) (uint a * uint b)" 

1207 
and "uint ( a) = bintrunc (LENGTH('a)) ( uint a)" 

1208 
and "uint (word_succ a) = bintrunc (LENGTH('a)) (uint a + 1)" 

1209 
and "uint (word_pred a) = bintrunc (LENGTH('a)) (uint a  1)" 

1210 
and "uint (0 :: 'a word) = bintrunc (LENGTH('a)) 0" 

1211 
and "uint (1 :: 'a word) = bintrunc (LENGTH('a)) 1" 

55818  1212 
by (simp_all add: uint_word_ariths bintrunc_mod2p) 
1213 

1214 
lemma sint_word_ariths: 

1215 
fixes a b :: "'a::len word" 

70185  1216 
shows "sint (a + b) = sbintrunc (LENGTH('a)  1) (sint a + sint b)" 
1217 
and "sint (a  b) = sbintrunc (LENGTH('a)  1) (sint a  sint b)" 

1218 
and "sint (a * b) = sbintrunc (LENGTH('a)  1) (sint a * sint b)" 

1219 
and "sint ( a) = sbintrunc (LENGTH('a)  1) ( sint a)" 

1220 
and "sint (word_succ a) = sbintrunc (LENGTH('a)  1) (sint a + 1)" 

1221 
and "sint (word_pred a) = sbintrunc (LENGTH('a)  1) (sint a  1)" 

1222 
and "sint (0 :: 'a word) = sbintrunc (LENGTH('a)  1) 0" 

1223 
and "sint (1 :: 'a word) = sbintrunc (LENGTH('a)  1) 1" 

64593
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

1224 
apply (simp_all only: word_sbin.inverse_norm [symmetric]) 
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

1225 
apply (simp_all add: wi_hom_syms) 
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

1226 
apply transfer apply simp 
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

1227 
apply transfer apply simp 
50c715579715
reoriented congruence rules in nonexplosive direction
haftmann
parents:
64243
diff
changeset

1228 
done 
45604  1229 

1230 
lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]] 

1231 
lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]] 

37660  1232 

58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58061
diff
changeset

1233 
lemma word_pred_0_n1: "word_pred 0 = word_of_int ( 1)" 
47374
9475d524bafb
set up and use lift_definition for word operations
huffman
parents:
47372
diff
changeset

1234 
unfolding word_pred_m1 by simp 
37660  1235 

1236 
lemma succ_pred_no [simp]: 

65268  1237 
"word_succ (numeral w) = numeral w + 1" 
1238 
"word_pred (numeral w) = numeral w  1" 

1239 
"word_succ ( numeral w) =  numeral w + 1" 

1240 
"word_pred ( numeral w) =  numeral w  1" 

1241 
by (simp_all add: word_succ_p1 word_pred_m1) 

1242 

1243 
lemma word_sp_01 [simp]: 

1244 
"word_succ ( 1) = 0 \<and> word_succ 0 = 1 \<and> word_pred 0 =  1 \<and> word_pred 1 = 0" 

1245 
by (simp_all add: word_succ_p1 word_pred_m1) 

37660  1246 

67408  1247 
\<comment> \<open>alternative approach to lifting arithmetic equalities\<close> 
65268  1248 
lemma word_of_int_Ex: "\<exists>y. x = word_of_int y" 
37660  1249 
by (rule_tac x="uint x" in exI) simp 
1250 

1251 

61799  1252 
subsection \<open>Order on fixedlength words\<close> 
37660  1253 

65328  1254 
lemma word_zero_le [simp]: "0 \<le> y" 
1255 
for y :: "'a::len0 word" 

37660  1256 
unfolding word_le_def by auto 
65268  1257 

65328  1258 
lemma word_m1_ge [simp] : "word_pred 0 \<ge> y" (* FIXME: delete *) 
1259 
by (simp only: word_le_def word_pred_0_n1 word_uint.eq_norm m1mod2k) auto 

1260 

1261 
lemma word_n1_ge [simp]: "y \<le> 1" 

1262 
for y :: "'a::len0 word" 

1263 
by (simp only: word_le_def word_m1_wi word_uint.eq_norm m1mod2k) auto 

37660  1264 

65268  1265 
lemmas word_not_simps [simp] = 
37660  1266 
word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD] 
1267 

65328  1268 
lemma word_gt_0: "0 < y \<longleftrightarrow> 0 \<noteq> y" 
1269 
for y :: "'a::len0 word" 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1270 
by (simp add: less_le) 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1271 

2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46962
diff
changeset

1272 
lemmas word_gt_0_no [simp] = word_gt_0 [of "numeral y"] for y 
37660  1273 

65328  1274 
lemma word_sless_alt: "a <s b \<longleftrightarrow> sint a < sint b" 
1275 
by (auto simp add: word_sle_def word_sless_def less_le) 

1276 

1277 
lemma word_le_nat_alt: "a \<le> b \<longleftrightarrow> unat a \<le> unat b" 

37660  1278 
unfolding unat_def word_le_def 
1279 
by (rule nat_le_eq_zle [symmetric]) simp 

1280 

65328  1281 
lemma word_less_nat_alt: "a < b \<longleftrightarrow> unat a < unat b" 
37660  1282 
unfolding unat_def word_less_alt 
1283 
by (rule nat_less_eq_zless [symmetric]) simp 

65268  1284 
