| author | wenzelm | 
| Mon, 21 Dec 2015 15:09:35 +0100 | |
| changeset 61885 | acdfc76a6c33 | 
| parent 61694 | 6571c78c9667 | 
| child 62376 | 85f38d5f8807 | 
| permissions | -rw-r--r-- | 
| 36648 | 1 | (* Title: HOL/Library/Convex.thy | 
| 2 | Author: Armin Heller, TU Muenchen | |
| 3 | Author: Johannes Hoelzl, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 60423 | 6 | section \<open>Convexity in real vector spaces\<close> | 
| 36648 | 7 | |
| 36623 | 8 | theory Convex | 
| 9 | imports Product_Vector | |
| 10 | begin | |
| 11 | ||
| 60423 | 12 | subsection \<open>Convexity\<close> | 
| 36623 | 13 | |
| 49609 | 14 | definition convex :: "'a::real_vector set \<Rightarrow> bool" | 
| 15 | where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 36623 | 16 | |
| 53676 | 17 | lemma convexI: | 
| 18 | assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 19 | shows "convex s" | |
| 20 | using assms unfolding convex_def by fast | |
| 21 | ||
| 22 | lemma convexD: | |
| 23 | assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" | |
| 24 | shows "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 25 | using assms unfolding convex_def by fast | |
| 26 | ||
| 36623 | 27 | lemma convex_alt: | 
| 28 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | |
| 29 | (is "_ \<longleftrightarrow> ?alt") | |
| 30 | proof | |
| 31 | assume alt[rule_format]: ?alt | |
| 56796 | 32 |   {
 | 
| 33 | fix x y and u v :: real | |
| 34 | assume mem: "x \<in> s" "y \<in> s" | |
| 49609 | 35 | assume "0 \<le> u" "0 \<le> v" | 
| 56796 | 36 | moreover | 
| 37 | assume "u + v = 1" | |
| 38 | then have "u = 1 - v" by auto | |
| 39 | ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 40 | using alt[OF mem] by auto | |
| 41 | } | |
| 42 | then show "convex s" | |
| 43 | unfolding convex_def by auto | |
| 36623 | 44 | qed (auto simp: convex_def) | 
| 45 | ||
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61070diff
changeset | 46 | lemma convexD_alt: | 
| 36623 | 47 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | 
| 48 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 49 | using assms unfolding convex_alt by auto | |
| 50 | ||
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 51 | lemma mem_convex_alt: | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 52 | assumes "convex S" "x \<in> S" "y \<in> S" "u \<ge> 0" "v \<ge> 0" "u + v > 0" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 53 | shows "((u/(u+v)) *\<^sub>R x + (v/(u+v)) *\<^sub>R y) \<in> S" | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 54 | apply (rule convexD) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 55 | using assms | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 56 | apply (simp_all add: zero_le_divide_iff add_divide_distrib [symmetric]) | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 57 | done | 
| 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61518diff
changeset | 58 | |
| 60303 | 59 | lemma convex_empty[intro,simp]: "convex {}"
 | 
| 36623 | 60 | unfolding convex_def by simp | 
| 61 | ||
| 60303 | 62 | lemma convex_singleton[intro,simp]: "convex {a}"
 | 
| 36623 | 63 | unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) | 
| 64 | ||
| 60303 | 65 | lemma convex_UNIV[intro,simp]: "convex UNIV" | 
| 36623 | 66 | unfolding convex_def by auto | 
| 67 | ||
| 60423 | 68 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) \<Longrightarrow> convex(\<Inter>f)" | 
| 36623 | 69 | unfolding convex_def by auto | 
| 70 | ||
| 71 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 72 | unfolding convex_def by auto | |
| 73 | ||
| 53596 | 74 | lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)" | 
| 75 | unfolding convex_def by auto | |
| 76 | ||
| 77 | lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)" | |
| 78 | unfolding convex_def by auto | |
| 79 | ||
| 36623 | 80 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
| 81 | unfolding convex_def | |
| 44142 | 82 | by (auto simp: inner_add intro!: convex_bound_le) | 
| 36623 | 83 | |
| 84 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 85 | proof - | |
| 56796 | 86 |   have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}"
 | 
| 87 | by auto | |
| 88 | show ?thesis | |
| 89 | unfolding * using convex_halfspace_le[of "-a" "-b"] by auto | |
| 36623 | 90 | qed | 
| 91 | ||
| 92 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 49609 | 93 | proof - | 
| 56796 | 94 |   have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}"
 | 
| 95 | by auto | |
| 36623 | 96 | show ?thesis using convex_halfspace_le convex_halfspace_ge | 
| 97 | by (auto intro!: convex_Int simp: *) | |
| 98 | qed | |
| 99 | ||
| 100 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 101 | unfolding convex_def | |
| 102 | by (auto simp: convex_bound_lt inner_add) | |
| 103 | ||
| 104 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 105 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 106 | ||
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 107 | lemma convex_real_interval [iff]: | 
| 36623 | 108 | fixes a b :: "real" | 
| 109 |   shows "convex {a..}" and "convex {..b}"
 | |
| 49609 | 110 |     and "convex {a<..}" and "convex {..<b}"
 | 
| 111 |     and "convex {a..b}" and "convex {a<..b}"
 | |
| 112 |     and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 36623 | 113 | proof - | 
| 60423 | 114 |   have "{a..} = {x. a \<le> inner 1 x}"
 | 
| 115 | by auto | |
| 116 |   then show 1: "convex {a..}"
 | |
| 117 | by (simp only: convex_halfspace_ge) | |
| 118 |   have "{..b} = {x. inner 1 x \<le> b}"
 | |
| 119 | by auto | |
| 120 |   then show 2: "convex {..b}"
 | |
| 121 | by (simp only: convex_halfspace_le) | |
| 122 |   have "{a<..} = {x. a < inner 1 x}"
 | |
| 123 | by auto | |
| 124 |   then show 3: "convex {a<..}"
 | |
| 125 | by (simp only: convex_halfspace_gt) | |
| 126 |   have "{..<b} = {x. inner 1 x < b}"
 | |
| 127 | by auto | |
| 128 |   then show 4: "convex {..<b}"
 | |
| 129 | by (simp only: convex_halfspace_lt) | |
| 130 |   have "{a..b} = {a..} \<inter> {..b}"
 | |
| 131 | by auto | |
| 132 |   then show "convex {a..b}"
 | |
| 133 | by (simp only: convex_Int 1 2) | |
| 134 |   have "{a<..b} = {a<..} \<inter> {..b}"
 | |
| 135 | by auto | |
| 136 |   then show "convex {a<..b}"
 | |
| 137 | by (simp only: convex_Int 3 2) | |
| 138 |   have "{a..<b} = {a..} \<inter> {..<b}"
 | |
| 139 | by auto | |
| 140 |   then show "convex {a..<b}"
 | |
| 141 | by (simp only: convex_Int 1 4) | |
| 142 |   have "{a<..<b} = {a<..} \<inter> {..<b}"
 | |
| 143 | by auto | |
| 144 |   then show "convex {a<..<b}"
 | |
| 145 | by (simp only: convex_Int 3 4) | |
| 36623 | 146 | qed | 
| 147 | ||
| 61070 | 148 | lemma convex_Reals: "convex \<real>" | 
| 59862 | 149 | by (simp add: convex_def scaleR_conv_of_real) | 
| 60423 | 150 | |
| 151 | ||
| 152 | subsection \<open>Explicit expressions for convexity in terms of arbitrary sums\<close> | |
| 36623 | 153 | |
| 154 | lemma convex_setsum: | |
| 155 | fixes C :: "'a::real_vector set" | |
| 56796 | 156 | assumes "finite s" | 
| 157 | and "convex C" | |
| 158 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 159 | assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 160 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 161 | shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" | 
| 55909 | 162 | using assms(1,3,4,5) | 
| 163 | proof (induct arbitrary: a set: finite) | |
| 49609 | 164 | case empty | 
| 55909 | 165 | then show ?case by simp | 
| 36623 | 166 | next | 
| 55909 | 167 | case (insert i s) note IH = this(3) | 
| 56796 | 168 | have "a i + setsum a s = 1" | 
| 169 | and "0 \<le> a i" | |
| 170 | and "\<forall>j\<in>s. 0 \<le> a j" | |
| 171 | and "y i \<in> C" | |
| 172 | and "\<forall>j\<in>s. y j \<in> C" | |
| 55909 | 173 | using insert.hyps(1,2) insert.prems by simp_all | 
| 56796 | 174 | then have "0 \<le> setsum a s" | 
| 175 | by (simp add: setsum_nonneg) | |
| 55909 | 176 | have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C" | 
| 177 | proof (cases) | |
| 178 | assume z: "setsum a s = 0" | |
| 60423 | 179 | with \<open>a i + setsum a s = 1\<close> have "a i = 1" | 
| 56796 | 180 | by simp | 
| 60423 | 181 | from setsum_nonneg_0 [OF \<open>finite s\<close> _ z] \<open>\<forall>j\<in>s. 0 \<le> a j\<close> have "\<forall>j\<in>s. a j = 0" | 
| 56796 | 182 | by simp | 
| 60423 | 183 | show ?thesis using \<open>a i = 1\<close> and \<open>\<forall>j\<in>s. a j = 0\<close> and \<open>y i \<in> C\<close> | 
| 56796 | 184 | by simp | 
| 55909 | 185 | next | 
| 186 | assume nz: "setsum a s \<noteq> 0" | |
| 60423 | 187 | with \<open>0 \<le> setsum a s\<close> have "0 < setsum a s" | 
| 56796 | 188 | by simp | 
| 55909 | 189 | then have "(\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 60423 | 190 | using \<open>\<forall>j\<in>s. 0 \<le> a j\<close> and \<open>\<forall>j\<in>s. y j \<in> C\<close> | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 191 | by (simp add: IH setsum_divide_distrib [symmetric]) | 
| 60423 | 192 | from \<open>convex C\<close> and \<open>y i \<in> C\<close> and this and \<open>0 \<le> a i\<close> | 
| 193 | and \<open>0 \<le> setsum a s\<close> and \<open>a i + setsum a s = 1\<close> | |
| 55909 | 194 | have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 195 | by (rule convexD) | |
| 56796 | 196 | then show ?thesis | 
| 197 | by (simp add: scaleR_setsum_right nz) | |
| 55909 | 198 | qed | 
| 60423 | 199 | then show ?case using \<open>finite s\<close> and \<open>i \<notin> s\<close> | 
| 56796 | 200 | by simp | 
| 36623 | 201 | qed | 
| 202 | ||
| 203 | lemma convex: | |
| 49609 | 204 |   "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
| 205 |       \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 36623 | 206 | proof safe | 
| 49609 | 207 | fix k :: nat | 
| 208 | fix u :: "nat \<Rightarrow> real" | |
| 209 | fix x | |
| 36623 | 210 | assume "convex s" | 
| 211 | "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" | |
| 212 |     "setsum u {1..k} = 1"
 | |
| 60423 | 213 |   with convex_setsum[of "{1 .. k}" s] show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s"
 | 
| 56796 | 214 | by auto | 
| 36623 | 215 | next | 
| 60423 | 216 |   assume *: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | 
| 36623 | 217 | \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" | 
| 56796 | 218 |   {
 | 
| 219 | fix \<mu> :: real | |
| 49609 | 220 | fix x y :: 'a | 
| 221 | assume xy: "x \<in> s" "y \<in> s" | |
| 222 | assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 223 | let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>" | |
| 224 | let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y" | |
| 56796 | 225 |     have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}"
 | 
| 226 | by auto | |
| 227 |     then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1"
 | |
| 228 | by simp | |
| 49609 | 229 |     then have "setsum ?u {1 .. 2} = 1"
 | 
| 57418 | 230 |       using setsum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | 
| 36623 | 231 | by auto | 
| 60423 | 232 |     with *[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | 
| 36623 | 233 | using mu xy by auto | 
| 234 |     have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | |
| 235 | using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto | |
| 236 | from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] | |
| 56796 | 237 |     have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
 | 
| 238 | by auto | |
| 239 | then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" | |
| 60423 | 240 | using s by (auto simp: add.commute) | 
| 49609 | 241 | } | 
| 56796 | 242 | then show "convex s" | 
| 243 | unfolding convex_alt by auto | |
| 36623 | 244 | qed | 
| 245 | ||
| 246 | ||
| 247 | lemma convex_explicit: | |
| 248 | fixes s :: "'a::real_vector set" | |
| 249 | shows "convex s \<longleftrightarrow> | |
| 49609 | 250 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | 
| 36623 | 251 | proof safe | 
| 49609 | 252 | fix t | 
| 253 | fix u :: "'a \<Rightarrow> real" | |
| 56796 | 254 | assume "convex s" | 
| 255 | and "finite t" | |
| 256 | and "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 49609 | 257 | then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 258 | using convex_setsum[of t s u "\<lambda> x. x"] by auto | 
| 259 | next | |
| 60423 | 260 | assume *: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> | 
| 56796 | 261 | setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 262 | show "convex s" | 
| 263 | unfolding convex_alt | |
| 264 | proof safe | |
| 49609 | 265 | fix x y | 
| 266 | fix \<mu> :: real | |
| 60423 | 267 | assume **: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 268 | show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | |
| 269 | proof (cases "x = y") | |
| 270 | case False | |
| 271 | then show ?thesis | |
| 272 |         using *[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"] **
 | |
| 273 | by auto | |
| 274 | next | |
| 275 | case True | |
| 276 | then show ?thesis | |
| 277 |         using *[rule_format, of "{x, y}" "\<lambda> z. 1"] **
 | |
| 278 | by (auto simp: field_simps real_vector.scale_left_diff_distrib) | |
| 279 | qed | |
| 36623 | 280 | qed | 
| 281 | qed | |
| 282 | ||
| 49609 | 283 | lemma convex_finite: | 
| 284 | assumes "finite s" | |
| 56796 | 285 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | 
| 36623 | 286 | unfolding convex_explicit | 
| 49609 | 287 | proof safe | 
| 288 | fix t u | |
| 289 | assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" | |
| 36623 | 290 | and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | 
| 56796 | 291 | have *: "s \<inter> t = t" | 
| 292 | using as(2) by auto | |
| 49609 | 293 | have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" | 
| 294 | by simp | |
| 36623 | 295 | show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 296 | using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as * | |
| 57418 | 297 | by (auto simp: assms setsum.If_cases if_distrib if_distrib_arg) | 
| 36623 | 298 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | 
| 299 | ||
| 56796 | 300 | |
| 60423 | 301 | subsection \<open>Functions that are convex on a set\<close> | 
| 55909 | 302 | |
| 49609 | 303 | definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 304 | where "convex_on s f \<longleftrightarrow> | |
| 305 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 36623 | 306 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 307 | lemma convex_onI [intro?]: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 308 | assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 309 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 310 | shows "convex_on A f" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 311 | unfolding convex_on_def | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 312 | proof clarify | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 313 | fix x y u v assume A: "x \<in> A" "y \<in> A" "(u::real) \<ge> 0" "v \<ge> 0" "u + v = 1" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 314 | from A(5) have [simp]: "v = 1 - u" by (simp add: algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 315 | from A(1-4) show "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using assms[of u y x] | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 316 | by (cases "u = 0 \<or> u = 1") (auto simp: algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 317 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 318 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 319 | lemma convex_on_linorderI [intro?]: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 320 |   fixes A :: "('a::{linorder,real_vector}) set"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 321 | assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x < y \<Longrightarrow> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 322 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 323 | shows "convex_on A f" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 324 | proof | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 325 | fix t x y assume A: "x \<in> A" "y \<in> A" "(t::real) > 0" "t < 1" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 326 | case (goal1 t x y) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 327 | with goal1 assms[of t x y] assms[of "1 - t" y x] | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 328 | show ?case by (cases x y rule: linorder_cases) (auto simp: algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 329 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 330 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 331 | lemma convex_onD: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 332 | assumes "convex_on A f" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 333 | shows "\<And>t x y. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 334 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 335 | using assms unfolding convex_on_def by auto | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 336 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 337 | lemma convex_onD_Icc: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 338 |   assumes "convex_on {x..y} f" "x \<le> (y :: _ :: {real_vector,preorder})"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 339 | shows "\<And>t. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 340 | f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 341 | using assms(2) by (intro convex_onD[OF assms(1)]) simp_all | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 342 | |
| 36623 | 343 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | 
| 344 | unfolding convex_on_def by auto | |
| 345 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 346 | lemma convex_on_add [intro]: | 
| 56796 | 347 | assumes "convex_on s f" | 
| 348 | and "convex_on s g" | |
| 36623 | 349 | shows "convex_on s (\<lambda>x. f x + g x)" | 
| 49609 | 350 | proof - | 
| 56796 | 351 |   {
 | 
| 352 | fix x y | |
| 353 | assume "x \<in> s" "y \<in> s" | |
| 49609 | 354 | moreover | 
| 355 | fix u v :: real | |
| 356 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 357 | ultimately | |
| 358 | have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 60423 | 359 | using assms unfolding convex_on_def by (auto simp: add_mono) | 
| 49609 | 360 | then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" | 
| 361 | by (simp add: field_simps) | |
| 362 | } | |
| 56796 | 363 | then show ?thesis | 
| 364 | unfolding convex_on_def by auto | |
| 36623 | 365 | qed | 
| 366 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 367 | lemma convex_on_cmul [intro]: | 
| 56796 | 368 | fixes c :: real | 
| 369 | assumes "0 \<le> c" | |
| 370 | and "convex_on s f" | |
| 36623 | 371 | shows "convex_on s (\<lambda>x. c * f x)" | 
| 56796 | 372 | proof - | 
| 60423 | 373 | have *: "\<And>u c fx v fy :: real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" | 
| 49609 | 374 | by (simp add: field_simps) | 
| 375 | show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] | |
| 376 | unfolding convex_on_def and * by auto | |
| 36623 | 377 | qed | 
| 378 | ||
| 379 | lemma convex_lower: | |
| 56796 | 380 | assumes "convex_on s f" | 
| 381 | and "x \<in> s" | |
| 382 | and "y \<in> s" | |
| 383 | and "0 \<le> u" | |
| 384 | and "0 \<le> v" | |
| 385 | and "u + v = 1" | |
| 36623 | 386 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | 
| 56796 | 387 | proof - | 
| 36623 | 388 | let ?m = "max (f x) (f y)" | 
| 389 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" | |
| 60423 | 390 | using assms(4,5) by (auto simp: mult_left_mono add_mono) | 
| 56796 | 391 | also have "\<dots> = max (f x) (f y)" | 
| 60423 | 392 | using assms(6) by (simp add: distrib_right [symmetric]) | 
| 36623 | 393 | finally show ?thesis | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 394 | using assms unfolding convex_on_def by fastforce | 
| 36623 | 395 | qed | 
| 396 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 397 | lemma convex_on_dist [intro]: | 
| 36623 | 398 | fixes s :: "'a::real_normed_vector set" | 
| 399 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 60423 | 400 | proof (auto simp: convex_on_def dist_norm) | 
| 49609 | 401 | fix x y | 
| 56796 | 402 | assume "x \<in> s" "y \<in> s" | 
| 49609 | 403 | fix u v :: real | 
| 56796 | 404 | assume "0 \<le> u" | 
| 405 | assume "0 \<le> v" | |
| 406 | assume "u + v = 1" | |
| 49609 | 407 | have "a = u *\<^sub>R a + v *\<^sub>R a" | 
| 60423 | 408 | unfolding scaleR_left_distrib[symmetric] and \<open>u + v = 1\<close> by simp | 
| 49609 | 409 | then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | 
| 60423 | 410 | by (auto simp: algebra_simps) | 
| 36623 | 411 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | 
| 412 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 60423 | 413 | using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> by auto | 
| 36623 | 414 | qed | 
| 415 | ||
| 49609 | 416 | |
| 60423 | 417 | subsection \<open>Arithmetic operations on sets preserve convexity\<close> | 
| 49609 | 418 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 419 | lemma convex_linear_image: | 
| 56796 | 420 | assumes "linear f" | 
| 421 | and "convex s" | |
| 422 | shows "convex (f ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 423 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 424 | interpret f: linear f by fact | 
| 60423 | 425 | from \<open>convex s\<close> show "convex (f ` s)" | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 426 | by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) | 
| 36623 | 427 | qed | 
| 428 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 429 | lemma convex_linear_vimage: | 
| 56796 | 430 | assumes "linear f" | 
| 431 | and "convex s" | |
| 432 | shows "convex (f -` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 433 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 434 | interpret f: linear f by fact | 
| 60423 | 435 | from \<open>convex s\<close> show "convex (f -` s)" | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 436 | by (simp add: convex_def f.add f.scaleR) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 437 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 438 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 439 | lemma convex_scaling: | 
| 56796 | 440 | assumes "convex s" | 
| 441 | shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 442 | proof - | 
| 56796 | 443 | have "linear (\<lambda>x. c *\<^sub>R x)" | 
| 444 | by (simp add: linearI scaleR_add_right) | |
| 445 | then show ?thesis | |
| 60423 | 446 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 447 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 448 | |
| 60178 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 449 | lemma convex_scaled: | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 450 | assumes "convex s" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 451 | shows "convex ((\<lambda>x. x *\<^sub>R c) ` s)" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 452 | proof - | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 453 | have "linear (\<lambda>x. x *\<^sub>R c)" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 454 | by (simp add: linearI scaleR_add_left) | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 455 | then show ?thesis | 
| 60423 | 456 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 60178 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 457 | qed | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 458 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 459 | lemma convex_negations: | 
| 56796 | 460 | assumes "convex s" | 
| 461 | shows "convex ((\<lambda>x. - x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 462 | proof - | 
| 56796 | 463 | have "linear (\<lambda>x. - x)" | 
| 464 | by (simp add: linearI) | |
| 465 | then show ?thesis | |
| 60423 | 466 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 36623 | 467 | qed | 
| 468 | ||
| 469 | lemma convex_sums: | |
| 56796 | 470 | assumes "convex s" | 
| 471 | and "convex t" | |
| 36623 | 472 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 473 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 474 | have "linear (\<lambda>(x, y). x + y)" | 
| 60423 | 475 | by (auto intro: linearI simp: scaleR_add_right) | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 476 | with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 477 | by (intro convex_linear_image convex_Times) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 478 |   also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 479 | by auto | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 480 | finally show ?thesis . | 
| 36623 | 481 | qed | 
| 482 | ||
| 483 | lemma convex_differences: | |
| 484 | assumes "convex s" "convex t" | |
| 485 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 486 | proof - | |
| 487 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | |
| 60423 | 488 | by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff) | 
| 49609 | 489 | then show ?thesis | 
| 490 | using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 36623 | 491 | qed | 
| 492 | ||
| 49609 | 493 | lemma convex_translation: | 
| 494 | assumes "convex s" | |
| 495 | shows "convex ((\<lambda>x. a + x) ` s)" | |
| 496 | proof - | |
| 56796 | 497 |   have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s"
 | 
| 498 | by auto | |
| 49609 | 499 | then show ?thesis | 
| 500 | using convex_sums[OF convex_singleton[of a] assms] by auto | |
| 501 | qed | |
| 36623 | 502 | |
| 49609 | 503 | lemma convex_affinity: | 
| 504 | assumes "convex s" | |
| 505 | shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 506 | proof - | |
| 56796 | 507 | have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" | 
| 508 | by auto | |
| 49609 | 509 | then show ?thesis | 
| 510 | using convex_translation[OF convex_scaling[OF assms], of a c] by auto | |
| 511 | qed | |
| 36623 | 512 | |
| 49609 | 513 | lemma pos_is_convex: "convex {0 :: real <..}"
 | 
| 514 | unfolding convex_alt | |
| 36623 | 515 | proof safe | 
| 516 | fix y x \<mu> :: real | |
| 60423 | 517 | assume *: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" | 
| 56796 | 518 |   {
 | 
| 519 | assume "\<mu> = 0" | |
| 49609 | 520 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp | 
| 60423 | 521 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using * by simp | 
| 56796 | 522 | } | 
| 36623 | 523 | moreover | 
| 56796 | 524 |   {
 | 
| 525 | assume "\<mu> = 1" | |
| 60423 | 526 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using * by simp | 
| 56796 | 527 | } | 
| 36623 | 528 | moreover | 
| 56796 | 529 |   {
 | 
| 530 | assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0" | |
| 60423 | 531 | then have "\<mu> > 0" "(1 - \<mu>) > 0" using * by auto | 
| 532 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using * | |
| 533 | by (auto simp: add_pos_pos) | |
| 56796 | 534 | } | 
| 535 | ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" | |
| 536 | using assms by fastforce | |
| 36623 | 537 | qed | 
| 538 | ||
| 539 | lemma convex_on_setsum: | |
| 540 | fixes a :: "'a \<Rightarrow> real" | |
| 49609 | 541 | and y :: "'a \<Rightarrow> 'b::real_vector" | 
| 542 | and f :: "'b \<Rightarrow> real" | |
| 36623 | 543 |   assumes "finite s" "s \<noteq> {}"
 | 
| 49609 | 544 | and "convex_on C f" | 
| 545 | and "convex C" | |
| 546 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 547 | and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 548 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 549 | shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" | 
| 49609 | 550 | using assms | 
| 551 | proof (induct s arbitrary: a rule: finite_ne_induct) | |
| 36623 | 552 | case (singleton i) | 
| 49609 | 553 | then have ai: "a i = 1" by auto | 
| 554 | then show ?case by auto | |
| 36623 | 555 | next | 
| 60423 | 556 | case (insert i s) | 
| 49609 | 557 | then have "convex_on C f" by simp | 
| 36623 | 558 | from this[unfolded convex_on_def, rule_format] | 
| 56796 | 559 | have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow> | 
| 560 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 561 | by simp | 
| 60423 | 562 | show ?case | 
| 563 | proof (cases "a i = 1") | |
| 564 | case True | |
| 49609 | 565 | then have "(\<Sum> j \<in> s. a j) = 0" | 
| 60423 | 566 | using insert by auto | 
| 49609 | 567 | then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" | 
| 60423 | 568 | using setsum_nonneg_0[where 'b=real] insert by fastforce | 
| 569 | then show ?thesis | |
| 570 | using insert by auto | |
| 571 | next | |
| 572 | case False | |
| 573 | from insert have yai: "y i \<in> C" "a i \<ge> 0" | |
| 574 | by auto | |
| 575 | have fis: "finite (insert i s)" | |
| 576 | using insert by auto | |
| 577 | then have ai1: "a i \<le> 1" | |
| 578 | using setsum_nonneg_leq_bound[of "insert i s" a] insert by simp | |
| 579 | then have "a i < 1" | |
| 580 | using False by auto | |
| 581 | then have i0: "1 - a i > 0" | |
| 582 | by auto | |
| 49609 | 583 | let ?a = "\<lambda>j. a j / (1 - a i)" | 
| 60423 | 584 | have a_nonneg: "?a j \<ge> 0" if "j \<in> s" for j | 
| 60449 | 585 | using i0 insert that by fastforce | 
| 60423 | 586 | have "(\<Sum> j \<in> insert i s. a j) = 1" | 
| 587 | using insert by auto | |
| 588 | then have "(\<Sum> j \<in> s. a j) = 1 - a i" | |
| 589 | using setsum.insert insert by fastforce | |
| 590 | then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" | |
| 591 | using i0 by auto | |
| 592 | then have a1: "(\<Sum> j \<in> s. ?a j) = 1" | |
| 593 | unfolding setsum_divide_distrib by simp | |
| 594 | have "convex C" using insert by auto | |
| 49609 | 595 | then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | 
| 60423 | 596 | using insert convex_setsum[OF \<open>finite s\<close> | 
| 597 | \<open>convex C\<close> a1 a_nonneg] by auto | |
| 36623 | 598 | have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" | 
| 60423 | 599 | using a_nonneg a1 insert by blast | 
| 36623 | 600 | have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 60423 | 601 | using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF \<open>finite s\<close> \<open>i \<notin> s\<close>] insert | 
| 602 | by (auto simp only: add.commute) | |
| 36623 | 603 | also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 604 | using i0 by auto | |
| 605 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 49609 | 606 | using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] | 
| 60423 | 607 | by (auto simp: algebra_simps) | 
| 36623 | 608 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 609 | by (auto simp: divide_inverse) | 
| 36623 | 610 | also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" | 
| 611 | using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] | |
| 60423 | 612 | by (auto simp: add.commute) | 
| 36623 | 613 | also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" | 
| 614 | using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", | |
| 615 | OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp | |
| 616 | also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44142diff
changeset | 617 | unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto | 
| 60423 | 618 | also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" | 
| 619 | using i0 by auto | |
| 620 | also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" | |
| 621 | using insert by auto | |
| 622 | finally show ?thesis | |
| 56796 | 623 | by simp | 
| 60423 | 624 | qed | 
| 36623 | 625 | qed | 
| 626 | ||
| 627 | lemma convex_on_alt: | |
| 628 | fixes C :: "'a::real_vector set" | |
| 629 | assumes "convex C" | |
| 56796 | 630 | shows "convex_on C f \<longleftrightarrow> | 
| 631 | (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow> | |
| 632 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" | |
| 36623 | 633 | proof safe | 
| 49609 | 634 | fix x y | 
| 635 | fix \<mu> :: real | |
| 60423 | 636 | assume *: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 36623 | 637 | from this[unfolded convex_on_def, rule_format] | 
| 56796 | 638 | have "\<And>u v. 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 639 | by auto | |
| 60423 | 640 | from this[of "\<mu>" "1 - \<mu>", simplified] * | 
| 56796 | 641 | show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 642 | by auto | |
| 36623 | 643 | next | 
| 60423 | 644 | assume *: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> | 
| 56796 | 645 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 646 |   {
 | |
| 647 | fix x y | |
| 49609 | 648 | fix u v :: real | 
| 60423 | 649 | assume **: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | 
| 49609 | 650 | then have[simp]: "1 - u = v" by auto | 
| 60423 | 651 | from *[rule_format, of x y u] | 
| 56796 | 652 | have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 60423 | 653 | using ** by auto | 
| 49609 | 654 | } | 
| 56796 | 655 | then show "convex_on C f" | 
| 656 | unfolding convex_on_def by auto | |
| 36623 | 657 | qed | 
| 658 | ||
| 43337 | 659 | lemma convex_on_diff: | 
| 660 | fixes f :: "real \<Rightarrow> real" | |
| 56796 | 661 | assumes f: "convex_on I f" | 
| 662 | and I: "x \<in> I" "y \<in> I" | |
| 663 | and t: "x < t" "t < y" | |
| 49609 | 664 | shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 56796 | 665 | and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 43337 | 666 | proof - | 
| 667 | def a \<equiv> "(t - y) / (x - y)" | |
| 56796 | 668 | with t have "0 \<le> a" "0 \<le> 1 - a" | 
| 669 | by (auto simp: field_simps) | |
| 60423 | 670 | with f \<open>x \<in> I\<close> \<open>y \<in> I\<close> have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y" | 
| 43337 | 671 | by (auto simp: convex_on_def) | 
| 56796 | 672 | have "a * x + (1 - a) * y = a * (x - y) + y" | 
| 673 | by (simp add: field_simps) | |
| 674 | also have "\<dots> = t" | |
| 60423 | 675 | unfolding a_def using \<open>x < t\<close> \<open>t < y\<close> by simp | 
| 56796 | 676 | finally have "f t \<le> a * f x + (1 - a) * f y" | 
| 677 | using cvx by simp | |
| 678 | also have "\<dots> = a * (f x - f y) + f y" | |
| 679 | by (simp add: field_simps) | |
| 680 | finally have "f t - f y \<le> a * (f x - f y)" | |
| 681 | by simp | |
| 43337 | 682 | with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 44142 | 683 | by (simp add: le_divide_eq divide_le_eq field_simps a_def) | 
| 43337 | 684 | with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 44142 | 685 | by (simp add: le_divide_eq divide_le_eq field_simps) | 
| 43337 | 686 | qed | 
| 36623 | 687 | |
| 688 | lemma pos_convex_function: | |
| 689 | fixes f :: "real \<Rightarrow> real" | |
| 690 | assumes "convex C" | |
| 56796 | 691 | and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x" | 
| 36623 | 692 | shows "convex_on C f" | 
| 49609 | 693 | unfolding convex_on_alt[OF assms(1)] | 
| 694 | using assms | |
| 36623 | 695 | proof safe | 
| 696 | fix x y \<mu> :: real | |
| 697 | let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" | |
| 60423 | 698 | assume *: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" | 
| 49609 | 699 | then have "1 - \<mu> \<ge> 0" by auto | 
| 56796 | 700 | then have xpos: "?x \<in> C" | 
| 60423 | 701 | using * unfolding convex_alt by fastforce | 
| 56796 | 702 | have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge> | 
| 703 | \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" | |
| 60423 | 704 | using add_mono[OF mult_left_mono[OF leq[OF xpos *(2)] \<open>\<mu> \<ge> 0\<close>] | 
| 705 | mult_left_mono[OF leq[OF xpos *(3)] \<open>1 - \<mu> \<ge> 0\<close>]] | |
| 56796 | 706 | by auto | 
| 49609 | 707 | then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" | 
| 60423 | 708 | by (auto simp: field_simps) | 
| 49609 | 709 | then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 36623 | 710 | using convex_on_alt by auto | 
| 711 | qed | |
| 712 | ||
| 713 | lemma atMostAtLeast_subset_convex: | |
| 714 | fixes C :: "real set" | |
| 715 | assumes "convex C" | |
| 49609 | 716 | and "x \<in> C" "y \<in> C" "x < y" | 
| 36623 | 717 |   shows "{x .. y} \<subseteq> C"
 | 
| 718 | proof safe | |
| 60423 | 719 |   fix z assume z: "z \<in> {x .. y}"
 | 
| 720 | have less: "z \<in> C" if *: "x < z" "z < y" | |
| 721 | proof - | |
| 49609 | 722 | let ?\<mu> = "(y - z) / (y - x)" | 
| 56796 | 723 | have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" | 
| 60423 | 724 | using assms * by (auto simp: field_simps) | 
| 49609 | 725 | then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" | 
| 726 | using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] | |
| 727 | by (simp add: algebra_simps) | |
| 36623 | 728 | have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" | 
| 60423 | 729 | by (auto simp: field_simps) | 
| 36623 | 730 | also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" | 
| 49609 | 731 | using assms unfolding add_divide_distrib by (auto simp: field_simps) | 
| 36623 | 732 | also have "\<dots> = z" | 
| 49609 | 733 | using assms by (auto simp: field_simps) | 
| 60423 | 734 | finally show ?thesis | 
| 56796 | 735 | using comb by auto | 
| 60423 | 736 | qed | 
| 737 | show "z \<in> C" using z less assms | |
| 36623 | 738 | unfolding atLeastAtMost_iff le_less by auto | 
| 739 | qed | |
| 740 | ||
| 741 | lemma f''_imp_f': | |
| 742 | fixes f :: "real \<Rightarrow> real" | |
| 743 | assumes "convex C" | |
| 49609 | 744 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 745 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 746 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 747 | and "x \<in> C" "y \<in> C" | |
| 36623 | 748 | shows "f' x * (y - x) \<le> f y - f x" | 
| 49609 | 749 | using assms | 
| 36623 | 750 | proof - | 
| 56796 | 751 |   {
 | 
| 752 | fix x y :: real | |
| 60423 | 753 | assume *: "x \<in> C" "y \<in> C" "y > x" | 
| 754 | then have ge: "y - x > 0" "y - x \<ge> 0" | |
| 755 | by auto | |
| 756 | from * have le: "x - y < 0" "x - y \<le> 0" | |
| 757 | by auto | |
| 36623 | 758 | then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" | 
| 60423 | 759 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>], | 
| 760 | THEN f', THEN MVT2[OF \<open>x < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] | |
| 36623 | 761 | by auto | 
| 60423 | 762 | then have "z1 \<in> C" | 
| 763 | using atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close> | |
| 764 | by fastforce | |
| 36623 | 765 | from z1 have z1': "f x - f y = (x - y) * f' z1" | 
| 60423 | 766 | by (simp add: field_simps) | 
| 36623 | 767 | obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" | 
| 60423 | 768 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>], | 
| 769 | THEN f'', THEN MVT2[OF \<open>x < z1\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 36623 | 770 | by auto | 
| 771 | obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" | |
| 60423 | 772 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>], | 
| 773 | THEN f'', THEN MVT2[OF \<open>z1 < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 36623 | 774 | by auto | 
| 775 | have "f' y - (f x - f y) / (x - y) = f' y - f' z1" | |
| 60423 | 776 | using * z1' by auto | 
| 777 | also have "\<dots> = (y - z1) * f'' z3" | |
| 778 | using z3 by auto | |
| 779 | finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" | |
| 780 | by simp | |
| 781 | have A': "y - z1 \<ge> 0" | |
| 782 | using z1 by auto | |
| 783 | have "z3 \<in> C" | |
| 784 | using z3 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close> | |
| 785 | by fastforce | |
| 786 | then have B': "f'' z3 \<ge> 0" | |
| 787 | using assms by auto | |
| 788 | from A' B' have "(y - z1) * f'' z3 \<ge> 0" | |
| 789 | by auto | |
| 790 | from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" | |
| 791 | by auto | |
| 36623 | 792 | from mult_right_mono_neg[OF this le(2)] | 
| 793 | have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 794 | by (simp add: algebra_simps) | 
| 60423 | 795 | then have "f' y * (x - y) - (f x - f y) \<le> 0" | 
| 796 | using le by auto | |
| 797 | then have res: "f' y * (x - y) \<le> f x - f y" | |
| 798 | by auto | |
| 36623 | 799 | have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" | 
| 60423 | 800 | using * z1 by auto | 
| 801 | also have "\<dots> = (z1 - x) * f'' z2" | |
| 802 | using z2 by auto | |
| 803 | finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" | |
| 804 | by simp | |
| 805 | have A: "z1 - x \<ge> 0" | |
| 806 | using z1 by auto | |
| 807 | have "z2 \<in> C" | |
| 808 | using z2 z1 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close> | |
| 809 | by fastforce | |
| 810 | then have B: "f'' z2 \<ge> 0" | |
| 811 | using assms by auto | |
| 812 | from A B have "(z1 - x) * f'' z2 \<ge> 0" | |
| 813 | by auto | |
| 814 | with cool have "(f y - f x) / (y - x) - f' x \<ge> 0" | |
| 815 | by auto | |
| 36623 | 816 | from mult_right_mono[OF this ge(2)] | 
| 817 | have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 818 | by (simp add: algebra_simps) | 
| 60423 | 819 | then have "f y - f x - f' x * (y - x) \<ge> 0" | 
| 820 | using ge by auto | |
| 49609 | 821 | then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | 
| 60423 | 822 | using res by auto | 
| 823 | } note less_imp = this | |
| 56796 | 824 |   {
 | 
| 825 | fix x y :: real | |
| 49609 | 826 | assume "x \<in> C" "y \<in> C" "x \<noteq> y" | 
| 827 | then have"f y - f x \<ge> f' x * (y - x)" | |
| 56796 | 828 | unfolding neq_iff using less_imp by auto | 
| 829 | } | |
| 36623 | 830 | moreover | 
| 56796 | 831 |   {
 | 
| 832 | fix x y :: real | |
| 60423 | 833 | assume "x \<in> C" "y \<in> C" "x = y" | 
| 56796 | 834 | then have "f y - f x \<ge> f' x * (y - x)" by auto | 
| 835 | } | |
| 36623 | 836 | ultimately show ?thesis using assms by blast | 
| 837 | qed | |
| 838 | ||
| 839 | lemma f''_ge0_imp_convex: | |
| 840 | fixes f :: "real \<Rightarrow> real" | |
| 841 | assumes conv: "convex C" | |
| 49609 | 842 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 843 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 844 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 36623 | 845 | shows "convex_on C f" | 
| 56796 | 846 | using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function | 
| 847 | by fastforce | |
| 36623 | 848 | |
| 849 | lemma minus_log_convex: | |
| 850 | fixes b :: real | |
| 851 | assumes "b > 1" | |
| 852 |   shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | |
| 853 | proof - | |
| 56796 | 854 | have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" | 
| 855 | using DERIV_log by auto | |
| 49609 | 856 | then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 857 | by (auto simp: DERIV_minus) | 
| 49609 | 858 | have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" | 
| 36623 | 859 | using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto | 
| 860 | from this[THEN DERIV_cmult, of _ "- 1 / ln b"] | |
| 49609 | 861 | have "\<And>z :: real. z > 0 \<Longrightarrow> | 
| 862 | DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" | |
| 36623 | 863 | by auto | 
| 56796 | 864 | then have f''0: "\<And>z::real. z > 0 \<Longrightarrow> | 
| 865 | DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" | |
| 60423 | 866 | unfolding inverse_eq_divide by (auto simp: mult.assoc) | 
| 56796 | 867 | have f''_ge0: "\<And>z::real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" | 
| 60423 | 868 | using \<open>b > 1\<close> by (auto intro!: less_imp_le) | 
| 36623 | 869 | from f''_ge0_imp_convex[OF pos_is_convex, | 
| 870 | unfolded greaterThan_iff, OF f' f''0 f''_ge0] | |
| 871 | show ?thesis by auto | |
| 872 | qed | |
| 873 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 874 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 875 | subsection \<open>Convexity of real functions\<close> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 876 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 877 | lemma convex_on_realI: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 878 | assumes "connected A" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 879 | assumes "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 880 | assumes "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f' x \<le> f' y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 881 | shows "convex_on A f" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 882 | proof (rule convex_on_linorderI) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 883 | fix t x y :: real | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 884 | assume t: "t > 0" "t < 1" and xy: "x \<in> A" "y \<in> A" "x < y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 885 | def z \<equiv> "(1 - t) * x + t * y" | 
| 61585 | 886 |   with \<open>connected A\<close> and xy have ivl: "{x..y} \<subseteq> A" using connected_contains_Icc by blast
 | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 887 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 888 | from xy t have xz: "z > x" by (simp add: z_def algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 889 | have "y - z = (1 - t) * (y - x)" by (simp add: z_def algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 890 | also from xy t have "... > 0" by (intro mult_pos_pos) simp_all | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 891 | finally have yz: "z < y" by simp | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 892 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 893 | from assms xz yz ivl t have "\<exists>\<xi>. \<xi> > x \<and> \<xi> < z \<and> f z - f x = (z - x) * f' \<xi>" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 894 | by (intro MVT2) (auto intro!: assms(2)) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 895 | then obtain \<xi> where \<xi>: "\<xi> > x" "\<xi> < z" "f' \<xi> = (f z - f x) / (z - x)" by auto | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 896 | from assms xz yz ivl t have "\<exists>\<eta>. \<eta> > z \<and> \<eta> < y \<and> f y - f z = (y - z) * f' \<eta>" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 897 | by (intro MVT2) (auto intro!: assms(2)) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 898 | then obtain \<eta> where \<eta>: "\<eta> > z" "\<eta> < y" "f' \<eta> = (f y - f z) / (y - z)" by auto | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 899 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 900 | from \<eta>(3) have "(f y - f z) / (y - z) = f' \<eta>" .. | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 901 | also from \<xi> \<eta> ivl have "\<xi> \<in> A" "\<eta> \<in> A" by auto | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 902 | with \<xi> \<eta> have "f' \<eta> \<ge> f' \<xi>" by (intro assms(3)) auto | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 903 | also from \<xi>(3) have "f' \<xi> = (f z - f x) / (z - x)" . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 904 | finally have "(f y - f z) * (z - x) \<ge> (f z - f x) * (y - z)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 905 | using xz yz by (simp add: field_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 906 | also have "z - x = t * (y - x)" by (simp add: z_def algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 907 | also have "y - z = (1 - t) * (y - x)" by (simp add: z_def algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 908 | finally have "(f y - f z) * t \<ge> (f z - f x) * (1 - t)" using xy by simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 909 | thus "(1 - t) * f x + t * f y \<ge> f ((1 - t) *\<^sub>R x + t *\<^sub>R y)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 910 | by (simp add: z_def algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 911 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 912 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 913 | lemma convex_on_inverse: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 914 |   assumes "A \<subseteq> {0<..}"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 915 | shows "convex_on A (inverse :: real \<Rightarrow> real)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 916 | proof (rule convex_on_subset[OF _ assms], intro convex_on_realI[of _ _ "\<lambda>x. -inverse (x^2)"]) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 917 |   fix u v :: real assume "u \<in> {0<..}" "v \<in> {0<..}" "u \<le> v"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 918 | with assms show "-inverse (u^2) \<le> -inverse (v^2)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 919 | by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 920 | qed (insert assms, auto intro!: derivative_eq_intros simp: divide_simps power2_eq_square) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 921 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 922 | lemma convex_onD_Icc': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 923 |   assumes "convex_on {x..y} f" "c \<in> {x..y}"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 924 | defines "d \<equiv> y - x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 925 | shows "f c \<le> (f y - f x) / d * (c - x) + f x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 926 | proof (cases y x rule: linorder_cases) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 927 | assume less: "x < y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 928 | hence d: "d > 0" by (simp add: d_def) | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 929 | from assms(2) less have A: "0 \<le> (c - x) / d" "(c - x) / d \<le> 1" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 930 | by (simp_all add: d_def divide_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 931 | have "f c = f (x + (c - x) * 1)" by simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 932 | also from less have "1 = ((y - x) / d)" by (simp add: d_def) | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 933 | also from d have "x + (c - x) * \<dots> = (1 - (c - x) / d) *\<^sub>R x + ((c - x) / d) *\<^sub>R y" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 934 | by (simp add: field_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 935 | also have "f \<dots> \<le> (1 - (c - x) / d) * f x + (c - x) / d * f y" using assms less | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 936 | by (intro convex_onD_Icc) simp_all | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 937 | also from d have "\<dots> = (f y - f x) / d * (c - x) + f x" by (simp add: field_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 938 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 939 | qed (insert assms(2), simp_all) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 940 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 941 | lemma convex_onD_Icc'': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 942 |   assumes "convex_on {x..y} f" "c \<in> {x..y}"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 943 | defines "d \<equiv> y - x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 944 | shows "f c \<le> (f x - f y) / d * (y - c) + f y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 945 | proof (cases y x rule: linorder_cases) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 946 | assume less: "x < y" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 947 | hence d: "d > 0" by (simp add: d_def) | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 948 | from assms(2) less have A: "0 \<le> (y - c) / d" "(y - c) / d \<le> 1" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 949 | by (simp_all add: d_def divide_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 950 | have "f c = f (y - (y - c) * 1)" by simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 951 | also from less have "1 = ((y - x) / d)" by (simp add: d_def) | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61585diff
changeset | 952 | also from d have "y - (y - c) * \<dots> = (1 - (1 - (y - c) / d)) *\<^sub>R x + (1 - (y - c) / d) *\<^sub>R y" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 953 | by (simp add: field_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 954 | also have "f \<dots> \<le> (1 - (1 - (y - c) / d)) * f x + (1 - (y - c) / d) * f y" using assms less | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 955 | by (intro convex_onD_Icc) (simp_all add: field_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 956 | also from d have "\<dots> = (f x - f y) / d * (y - c) + f y" by (simp add: field_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 957 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 958 | qed (insert assms(2), simp_all) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 959 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 960 | |
| 36623 | 961 | end |