| author | schirmer | 
| Mon, 26 Jan 2004 10:34:02 +0100 | |
| changeset 14361 | ad2f5da643b4 | 
| parent 14331 | 8dbbb7cf3637 | 
| child 14430 | 5cb24165a2e1 | 
| permissions | -rw-r--r-- | 
| 12396 | 1  | 
(* Title: HOL/Finite_Set.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel  | 
|
4  | 
License: GPL (GNU GENERAL PUBLIC LICENSE)  | 
|
5  | 
*)  | 
|
6  | 
||
7  | 
header {* Finite sets *}
 | 
|
8  | 
||
9  | 
theory Finite_Set = Divides + Power + Inductive + SetInterval:  | 
|
10  | 
||
11  | 
subsection {* Collection of finite sets *}
 | 
|
12  | 
||
13  | 
consts Finites :: "'a set set"  | 
|
| 13737 | 14  | 
syntax  | 
15  | 
finite :: "'a set => bool"  | 
|
16  | 
translations  | 
|
17  | 
"finite A" == "A : Finites"  | 
|
| 12396 | 18  | 
|
19  | 
inductive Finites  | 
|
20  | 
intros  | 
|
21  | 
    emptyI [simp, intro!]: "{} : Finites"
 | 
|
22  | 
insertI [simp, intro!]: "A : Finites ==> insert a A : Finites"  | 
|
23  | 
||
24  | 
axclass finite \<subseteq> type  | 
|
25  | 
finite: "finite UNIV"  | 
|
26  | 
||
| 13737 | 27  | 
lemma ex_new_if_finite: -- "does not depend on def of finite at all"  | 
28  | 
"\<lbrakk> ~finite(UNIV::'a set); finite A \<rbrakk> \<Longrightarrow> \<exists>a::'a. a ~: A"  | 
|
29  | 
by(subgoal_tac "A ~= UNIV", blast, blast)  | 
|
30  | 
||
| 12396 | 31  | 
|
32  | 
lemma finite_induct [case_names empty insert, induct set: Finites]:  | 
|
33  | 
"finite F ==>  | 
|
34  | 
    P {} ==> (!!F x. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
 | 
|
35  | 
  -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
 | 
|
36  | 
proof -  | 
|
| 13421 | 37  | 
  assume "P {}" and
 | 
38  | 
insert: "!!F x. finite F ==> x \<notin> F ==> P F ==> P (insert x F)"  | 
|
| 12396 | 39  | 
assume "finite F"  | 
40  | 
thus "P F"  | 
|
41  | 
proof induct  | 
|
42  | 
    show "P {}" .
 | 
|
43  | 
fix F x assume F: "finite F" and P: "P F"  | 
|
44  | 
show "P (insert x F)"  | 
|
45  | 
proof cases  | 
|
46  | 
assume "x \<in> F"  | 
|
47  | 
hence "insert x F = F" by (rule insert_absorb)  | 
|
48  | 
with P show ?thesis by (simp only:)  | 
|
49  | 
next  | 
|
50  | 
assume "x \<notin> F"  | 
|
51  | 
from F this P show ?thesis by (rule insert)  | 
|
52  | 
qed  | 
|
53  | 
qed  | 
|
54  | 
qed  | 
|
55  | 
||
56  | 
lemma finite_subset_induct [consumes 2, case_names empty insert]:  | 
|
57  | 
"finite F ==> F \<subseteq> A ==>  | 
|
58  | 
    P {} ==> (!!F a. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==>
 | 
|
59  | 
P F"  | 
|
60  | 
proof -  | 
|
| 13421 | 61  | 
  assume "P {}" and insert:
 | 
62  | 
"!!F a. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"  | 
|
| 12396 | 63  | 
assume "finite F"  | 
64  | 
thus "F \<subseteq> A ==> P F"  | 
|
65  | 
proof induct  | 
|
66  | 
    show "P {}" .
 | 
|
67  | 
fix F x assume "finite F" and "x \<notin> F"  | 
|
68  | 
and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A"  | 
|
69  | 
show "P (insert x F)"  | 
|
70  | 
proof (rule insert)  | 
|
71  | 
from i show "x \<in> A" by blast  | 
|
72  | 
from i have "F \<subseteq> A" by blast  | 
|
73  | 
with P show "P F" .  | 
|
74  | 
qed  | 
|
75  | 
qed  | 
|
76  | 
qed  | 
|
77  | 
||
78  | 
lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)"  | 
|
79  | 
  -- {* The union of two finite sets is finite. *}
 | 
|
80  | 
by (induct set: Finites) simp_all  | 
|
81  | 
||
82  | 
lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A"  | 
|
83  | 
  -- {* Every subset of a finite set is finite. *}
 | 
|
84  | 
proof -  | 
|
85  | 
assume "finite B"  | 
|
86  | 
thus "!!A. A \<subseteq> B ==> finite A"  | 
|
87  | 
proof induct  | 
|
88  | 
case empty  | 
|
89  | 
thus ?case by simp  | 
|
90  | 
next  | 
|
91  | 
case (insert F x A)  | 
|
92  | 
    have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" .
 | 
|
93  | 
show "finite A"  | 
|
94  | 
proof cases  | 
|
95  | 
assume x: "x \<in> A"  | 
|
96  | 
      with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
 | 
|
97  | 
      with r have "finite (A - {x})" .
 | 
|
98  | 
      hence "finite (insert x (A - {x}))" ..
 | 
|
99  | 
      also have "insert x (A - {x}) = A" by (rule insert_Diff)
 | 
|
100  | 
finally show ?thesis .  | 
|
101  | 
next  | 
|
102  | 
show "A \<subseteq> F ==> ?thesis" .  | 
|
103  | 
assume "x \<notin> A"  | 
|
104  | 
with A show "A \<subseteq> F" by (simp add: subset_insert_iff)  | 
|
105  | 
qed  | 
|
106  | 
qed  | 
|
107  | 
qed  | 
|
108  | 
||
109  | 
lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)"  | 
|
110  | 
by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI)  | 
|
111  | 
||
112  | 
lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)"  | 
|
113  | 
  -- {* The converse obviously fails. *}
 | 
|
114  | 
by (blast intro: finite_subset)  | 
|
115  | 
||
116  | 
lemma finite_insert [simp]: "finite (insert a A) = finite A"  | 
|
117  | 
apply (subst insert_is_Un)  | 
|
| 14208 | 118  | 
apply (simp only: finite_Un, blast)  | 
| 12396 | 119  | 
done  | 
120  | 
||
121  | 
lemma finite_empty_induct:  | 
|
122  | 
"finite A ==>  | 
|
123  | 
  P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}"
 | 
|
124  | 
proof -  | 
|
125  | 
assume "finite A"  | 
|
126  | 
    and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
 | 
|
127  | 
have "P (A - A)"  | 
|
128  | 
proof -  | 
|
129  | 
fix c b :: "'a set"  | 
|
130  | 
presume c: "finite c" and b: "finite b"  | 
|
131  | 
      and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
 | 
|
132  | 
from c show "c \<subseteq> b ==> P (b - c)"  | 
|
133  | 
proof induct  | 
|
134  | 
case empty  | 
|
135  | 
from P1 show ?case by simp  | 
|
136  | 
next  | 
|
137  | 
case (insert F x)  | 
|
138  | 
      have "P (b - F - {x})"
 | 
|
139  | 
proof (rule P2)  | 
|
140  | 
from _ b show "finite (b - F)" by (rule finite_subset) blast  | 
|
141  | 
from insert show "x \<in> b - F" by simp  | 
|
142  | 
from insert show "P (b - F)" by simp  | 
|
143  | 
qed  | 
|
144  | 
      also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
 | 
|
145  | 
finally show ?case .  | 
|
146  | 
qed  | 
|
147  | 
next  | 
|
148  | 
show "A \<subseteq> A" ..  | 
|
149  | 
qed  | 
|
150  | 
  thus "P {}" by simp
 | 
|
151  | 
qed  | 
|
152  | 
||
153  | 
lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)"  | 
|
154  | 
by (rule Diff_subset [THEN finite_subset])  | 
|
155  | 
||
156  | 
lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)"  | 
|
157  | 
apply (subst Diff_insert)  | 
|
158  | 
apply (case_tac "a : A - B")  | 
|
159  | 
apply (rule finite_insert [symmetric, THEN trans])  | 
|
| 14208 | 160  | 
apply (subst insert_Diff, simp_all)  | 
| 12396 | 161  | 
done  | 
162  | 
||
163  | 
||
| 13825 | 164  | 
subsubsection {* Image and Inverse Image over Finite Sets *}
 | 
165  | 
||
166  | 
lemma finite_imageI[simp]: "finite F ==> finite (h ` F)"  | 
|
167  | 
  -- {* The image of a finite set is finite. *}
 | 
|
168  | 
by (induct set: Finites) simp_all  | 
|
169  | 
||
170  | 
lemma finite_range_imageI:  | 
|
171  | 
"finite (range g) ==> finite (range (%x. f (g x)))"  | 
|
| 14208 | 172  | 
apply (drule finite_imageI, simp)  | 
| 13825 | 173  | 
done  | 
174  | 
||
| 12396 | 175  | 
lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A"  | 
176  | 
proof -  | 
|
177  | 
  have aux: "!!A. finite (A - {}) = finite A" by simp
 | 
|
178  | 
fix B :: "'a set"  | 
|
179  | 
assume "finite B"  | 
|
180  | 
thus "!!A. f`A = B ==> inj_on f A ==> finite A"  | 
|
181  | 
apply induct  | 
|
182  | 
apply simp  | 
|
183  | 
    apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
 | 
|
184  | 
apply clarify  | 
|
185  | 
apply (simp (no_asm_use) add: inj_on_def)  | 
|
| 14208 | 186  | 
apply (blast dest!: aux [THEN iffD1], atomize)  | 
| 12396 | 187  | 
apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl)  | 
| 14208 | 188  | 
apply (frule subsetD [OF equalityD2 insertI1], clarify)  | 
| 12396 | 189  | 
apply (rule_tac x = xa in bexI)  | 
190  | 
apply (simp_all add: inj_on_image_set_diff)  | 
|
191  | 
done  | 
|
192  | 
qed (rule refl)  | 
|
193  | 
||
194  | 
||
| 13825 | 195  | 
lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
 | 
196  | 
  -- {* The inverse image of a singleton under an injective function
 | 
|
197  | 
is included in a singleton. *}  | 
|
198  | 
apply (auto simp add: inj_on_def)  | 
|
199  | 
apply (blast intro: the_equality [symmetric])  | 
|
200  | 
done  | 
|
201  | 
||
202  | 
lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)"  | 
|
203  | 
  -- {* The inverse image of a finite set under an injective function
 | 
|
204  | 
is finite. *}  | 
|
205  | 
apply (induct set: Finites, simp_all)  | 
|
206  | 
apply (subst vimage_insert)  | 
|
207  | 
apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton])  | 
|
208  | 
done  | 
|
209  | 
||
210  | 
||
| 12396 | 211  | 
subsubsection {* The finite UNION of finite sets *}
 | 
212  | 
||
213  | 
lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)"  | 
|
214  | 
by (induct set: Finites) simp_all  | 
|
215  | 
||
216  | 
text {*
 | 
|
217  | 
Strengthen RHS to  | 
|
218  | 
  @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x ~= {}})"}?
 | 
|
219  | 
||
220  | 
We'd need to prove  | 
|
221  | 
  @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x ~= {}}"}
 | 
|
222  | 
by induction. *}  | 
|
223  | 
||
224  | 
lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))"  | 
|
225  | 
by (blast intro: finite_UN_I finite_subset)  | 
|
226  | 
||
227  | 
||
228  | 
subsubsection {* Sigma of finite sets *}
 | 
|
229  | 
||
230  | 
lemma finite_SigmaI [simp]:  | 
|
231  | 
"finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)"  | 
|
232  | 
by (unfold Sigma_def) (blast intro!: finite_UN_I)  | 
|
233  | 
||
234  | 
lemma finite_Prod_UNIV:  | 
|
235  | 
    "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
 | 
|
236  | 
  apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
 | 
|
237  | 
apply (erule ssubst)  | 
|
| 14208 | 238  | 
apply (erule finite_SigmaI, auto)  | 
| 12396 | 239  | 
done  | 
240  | 
||
241  | 
instance unit :: finite  | 
|
242  | 
proof  | 
|
243  | 
  have "finite {()}" by simp
 | 
|
244  | 
  also have "{()} = UNIV" by auto
 | 
|
245  | 
finally show "finite (UNIV :: unit set)" .  | 
|
246  | 
qed  | 
|
247  | 
||
248  | 
instance * :: (finite, finite) finite  | 
|
249  | 
proof  | 
|
250  | 
  show "finite (UNIV :: ('a \<times> 'b) set)"
 | 
|
251  | 
proof (rule finite_Prod_UNIV)  | 
|
252  | 
show "finite (UNIV :: 'a set)" by (rule finite)  | 
|
253  | 
show "finite (UNIV :: 'b set)" by (rule finite)  | 
|
254  | 
qed  | 
|
255  | 
qed  | 
|
256  | 
||
257  | 
||
258  | 
subsubsection {* The powerset of a finite set *}
 | 
|
259  | 
||
260  | 
lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A"  | 
|
261  | 
proof  | 
|
262  | 
assume "finite (Pow A)"  | 
|
263  | 
  with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
 | 
|
264  | 
thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp  | 
|
265  | 
next  | 
|
266  | 
assume "finite A"  | 
|
267  | 
thus "finite (Pow A)"  | 
|
268  | 
by induct (simp_all add: finite_UnI finite_imageI Pow_insert)  | 
|
269  | 
qed  | 
|
270  | 
||
271  | 
lemma finite_converse [iff]: "finite (r^-1) = finite r"  | 
|
272  | 
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")  | 
|
273  | 
apply simp  | 
|
274  | 
apply (rule iffI)  | 
|
275  | 
apply (erule finite_imageD [unfolded inj_on_def])  | 
|
276  | 
apply (simp split add: split_split)  | 
|
277  | 
apply (erule finite_imageI)  | 
|
| 14208 | 278  | 
apply (simp add: converse_def image_def, auto)  | 
| 12396 | 279  | 
apply (rule bexI)  | 
280  | 
prefer 2 apply assumption  | 
|
281  | 
apply simp  | 
|
282  | 
done  | 
|
283  | 
||
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
284  | 
lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..k(}"
 | 
| 12396 | 285  | 
by (induct k) (simp_all add: lessThan_Suc)  | 
286  | 
||
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
287  | 
lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | 
| 12396 | 288  | 
by (induct k) (simp_all add: atMost_Suc)  | 
289  | 
||
| 13735 | 290  | 
lemma finite_greaterThanLessThan [iff]:  | 
291  | 
  fixes l :: nat shows "finite {)l..u(}"
 | 
|
292  | 
by (simp add: greaterThanLessThan_def)  | 
|
293  | 
||
294  | 
lemma finite_atLeastLessThan [iff]:  | 
|
295  | 
  fixes l :: nat shows "finite {l..u(}"
 | 
|
296  | 
by (simp add: atLeastLessThan_def)  | 
|
297  | 
||
298  | 
lemma finite_greaterThanAtMost [iff]:  | 
|
299  | 
  fixes l :: nat shows "finite {)l..u}"
 | 
|
300  | 
by (simp add: greaterThanAtMost_def)  | 
|
301  | 
||
302  | 
lemma finite_atLeastAtMost [iff]:  | 
|
303  | 
  fixes l :: nat shows "finite {l..u}"
 | 
|
304  | 
by (simp add: atLeastAtMost_def)  | 
|
305  | 
||
| 12396 | 306  | 
lemma bounded_nat_set_is_finite:  | 
307  | 
"(ALL i:N. i < (n::nat)) ==> finite N"  | 
|
308  | 
  -- {* A bounded set of natural numbers is finite. *}
 | 
|
309  | 
apply (rule finite_subset)  | 
|
| 14208 | 310  | 
apply (rule_tac [2] finite_lessThan, auto)  | 
| 12396 | 311  | 
done  | 
312  | 
||
313  | 
||
314  | 
subsubsection {* Finiteness of transitive closure *}
 | 
|
315  | 
||
316  | 
text {* (Thanks to Sidi Ehmety) *}
 | 
|
317  | 
||
318  | 
lemma finite_Field: "finite r ==> finite (Field r)"  | 
|
319  | 
  -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
 | 
|
320  | 
apply (induct set: Finites)  | 
|
321  | 
apply (auto simp add: Field_def Domain_insert Range_insert)  | 
|
322  | 
done  | 
|
323  | 
||
324  | 
lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r"  | 
|
325  | 
apply clarify  | 
|
326  | 
apply (erule trancl_induct)  | 
|
327  | 
apply (auto simp add: Field_def)  | 
|
328  | 
done  | 
|
329  | 
||
330  | 
lemma finite_trancl: "finite (r^+) = finite r"  | 
|
331  | 
apply auto  | 
|
332  | 
prefer 2  | 
|
333  | 
apply (rule trancl_subset_Field2 [THEN finite_subset])  | 
|
334  | 
apply (rule finite_SigmaI)  | 
|
335  | 
prefer 3  | 
|
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
13595 
diff
changeset
 | 
336  | 
apply (blast intro: r_into_trancl' finite_subset)  | 
| 12396 | 337  | 
apply (auto simp add: finite_Field)  | 
338  | 
done  | 
|
339  | 
||
340  | 
||
341  | 
subsection {* Finite cardinality *}
 | 
|
342  | 
||
343  | 
text {*
 | 
|
344  | 
  This definition, although traditional, is ugly to work with: @{text
 | 
|
345  | 
  "card A == LEAST n. EX f. A = {f i | i. i < n}"}.  Therefore we have
 | 
|
346  | 
switched to an inductive one:  | 
|
347  | 
*}  | 
|
348  | 
||
349  | 
consts cardR :: "('a set \<times> nat) set"
 | 
|
350  | 
||
351  | 
inductive cardR  | 
|
352  | 
intros  | 
|
353  | 
    EmptyI: "({}, 0) : cardR"
 | 
|
354  | 
InsertI: "(A, n) : cardR ==> a \<notin> A ==> (insert a A, Suc n) : cardR"  | 
|
355  | 
||
356  | 
constdefs  | 
|
357  | 
card :: "'a set => nat"  | 
|
358  | 
"card A == THE n. (A, n) : cardR"  | 
|
359  | 
||
360  | 
inductive_cases cardR_emptyE: "({}, n) : cardR"
 | 
|
361  | 
inductive_cases cardR_insertE: "(insert a A,n) : cardR"  | 
|
362  | 
||
363  | 
lemma cardR_SucD: "(A, n) : cardR ==> a : A --> (EX m. n = Suc m)"  | 
|
364  | 
by (induct set: cardR) simp_all  | 
|
365  | 
||
366  | 
lemma cardR_determ_aux1:  | 
|
367  | 
    "(A, m): cardR ==> (!!n a. m = Suc n ==> a:A ==> (A - {a}, n) : cardR)"
 | 
|
| 14208 | 368  | 
apply (induct set: cardR, auto)  | 
369  | 
apply (simp add: insert_Diff_if, auto)  | 
|
| 12396 | 370  | 
apply (drule cardR_SucD)  | 
371  | 
apply (blast intro!: cardR.intros)  | 
|
372  | 
done  | 
|
373  | 
||
374  | 
lemma cardR_determ_aux2: "(insert a A, Suc m) : cardR ==> a \<notin> A ==> (A, m) : cardR"  | 
|
375  | 
by (drule cardR_determ_aux1) auto  | 
|
376  | 
||
377  | 
lemma cardR_determ: "(A, m): cardR ==> (!!n. (A, n) : cardR ==> n = m)"  | 
|
378  | 
apply (induct set: cardR)  | 
|
379  | 
apply (safe elim!: cardR_emptyE cardR_insertE)  | 
|
380  | 
apply (rename_tac B b m)  | 
|
381  | 
apply (case_tac "a = b")  | 
|
382  | 
apply (subgoal_tac "A = B")  | 
|
| 14208 | 383  | 
prefer 2 apply (blast elim: equalityE, blast)  | 
| 12396 | 384  | 
apply (subgoal_tac "EX C. A = insert b C & B = insert a C")  | 
385  | 
prefer 2  | 
|
386  | 
apply (rule_tac x = "A Int B" in exI)  | 
|
387  | 
apply (blast elim: equalityE)  | 
|
388  | 
apply (frule_tac A = B in cardR_SucD)  | 
|
389  | 
apply (blast intro!: cardR.intros dest!: cardR_determ_aux2)  | 
|
390  | 
done  | 
|
391  | 
||
392  | 
lemma cardR_imp_finite: "(A, n) : cardR ==> finite A"  | 
|
393  | 
by (induct set: cardR) simp_all  | 
|
394  | 
||
395  | 
lemma finite_imp_cardR: "finite A ==> EX n. (A, n) : cardR"  | 
|
396  | 
by (induct set: Finites) (auto intro!: cardR.intros)  | 
|
397  | 
||
398  | 
lemma card_equality: "(A,n) : cardR ==> card A = n"  | 
|
399  | 
by (unfold card_def) (blast intro: cardR_determ)  | 
|
400  | 
||
401  | 
lemma card_empty [simp]: "card {} = 0"
 | 
|
402  | 
by (unfold card_def) (blast intro!: cardR.intros elim!: cardR_emptyE)  | 
|
403  | 
||
404  | 
lemma card_insert_disjoint [simp]:  | 
|
405  | 
"finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)"  | 
|
406  | 
proof -  | 
|
407  | 
assume x: "x \<notin> A"  | 
|
408  | 
hence aux: "!!n. ((insert x A, n) : cardR) = (EX m. (A, m) : cardR & n = Suc m)"  | 
|
409  | 
apply (auto intro!: cardR.intros)  | 
|
410  | 
apply (rule_tac A1 = A in finite_imp_cardR [THEN exE])  | 
|
411  | 
apply (force dest: cardR_imp_finite)  | 
|
412  | 
apply (blast intro!: cardR.intros intro: cardR_determ)  | 
|
413  | 
done  | 
|
414  | 
assume "finite A"  | 
|
415  | 
thus ?thesis  | 
|
416  | 
apply (simp add: card_def aux)  | 
|
417  | 
apply (rule the_equality)  | 
|
418  | 
apply (auto intro: finite_imp_cardR  | 
|
419  | 
cong: conj_cong simp: card_def [symmetric] card_equality)  | 
|
420  | 
done  | 
|
421  | 
qed  | 
|
422  | 
||
423  | 
lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})"
 | 
|
424  | 
apply auto  | 
|
| 14208 | 425  | 
apply (drule_tac a = x in mk_disjoint_insert, clarify)  | 
426  | 
apply (rotate_tac -1, auto)  | 
|
| 12396 | 427  | 
done  | 
428  | 
||
429  | 
lemma card_insert_if:  | 
|
430  | 
"finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))"  | 
|
431  | 
by (simp add: insert_absorb)  | 
|
432  | 
||
433  | 
lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
 | 
|
| 14302 | 434  | 
apply(rule_tac t = A in insert_Diff [THEN subst], assumption)  | 
435  | 
apply(simp del:insert_Diff_single)  | 
|
436  | 
done  | 
|
| 12396 | 437  | 
|
438  | 
lemma card_Diff_singleton:  | 
|
439  | 
    "finite A ==> x: A ==> card (A - {x}) = card A - 1"
 | 
|
440  | 
by (simp add: card_Suc_Diff1 [symmetric])  | 
|
441  | 
||
442  | 
lemma card_Diff_singleton_if:  | 
|
443  | 
    "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
 | 
|
444  | 
by (simp add: card_Diff_singleton)  | 
|
445  | 
||
446  | 
lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
 | 
|
447  | 
by (simp add: card_insert_if card_Suc_Diff1)  | 
|
448  | 
||
449  | 
lemma card_insert_le: "finite A ==> card A <= card (insert x A)"  | 
|
450  | 
by (simp add: card_insert_if)  | 
|
451  | 
||
452  | 
lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"  | 
|
| 14208 | 453  | 
apply (induct set: Finites, simp, clarify)  | 
| 12396 | 454  | 
  apply (subgoal_tac "finite A & A - {x} <= F")
 | 
| 14208 | 455  | 
prefer 2 apply (blast intro: finite_subset, atomize)  | 
| 12396 | 456  | 
  apply (drule_tac x = "A - {x}" in spec)
 | 
457  | 
apply (simp add: card_Diff_singleton_if split add: split_if_asm)  | 
|
| 14208 | 458  | 
apply (case_tac "card A", auto)  | 
| 12396 | 459  | 
done  | 
460  | 
||
461  | 
lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"  | 
|
462  | 
apply (simp add: psubset_def linorder_not_le [symmetric])  | 
|
463  | 
apply (blast dest: card_seteq)  | 
|
464  | 
done  | 
|
465  | 
||
466  | 
lemma card_mono: "finite B ==> A <= B ==> card A <= card B"  | 
|
| 14208 | 467  | 
apply (case_tac "A = B", simp)  | 
| 12396 | 468  | 
apply (simp add: linorder_not_less [symmetric])  | 
469  | 
apply (blast dest: card_seteq intro: order_less_imp_le)  | 
|
470  | 
done  | 
|
471  | 
||
472  | 
lemma card_Un_Int: "finite A ==> finite B  | 
|
473  | 
==> card A + card B = card (A Un B) + card (A Int B)"  | 
|
| 14208 | 474  | 
apply (induct set: Finites, simp)  | 
| 12396 | 475  | 
apply (simp add: insert_absorb Int_insert_left)  | 
476  | 
done  | 
|
477  | 
||
478  | 
lemma card_Un_disjoint: "finite A ==> finite B  | 
|
479  | 
    ==> A Int B = {} ==> card (A Un B) = card A + card B"
 | 
|
480  | 
by (simp add: card_Un_Int)  | 
|
481  | 
||
482  | 
lemma card_Diff_subset:  | 
|
483  | 
"finite A ==> B <= A ==> card A - card B = card (A - B)"  | 
|
484  | 
apply (subgoal_tac "(A - B) Un B = A")  | 
|
485  | 
prefer 2 apply blast  | 
|
| 14331 | 486  | 
apply (rule nat_add_right_cancel [THEN iffD1])  | 
| 12396 | 487  | 
apply (rule card_Un_disjoint [THEN subst])  | 
488  | 
apply (erule_tac [4] ssubst)  | 
|
489  | 
prefer 3 apply blast  | 
|
490  | 
apply (simp_all add: add_commute not_less_iff_le  | 
|
491  | 
add_diff_inverse card_mono finite_subset)  | 
|
492  | 
done  | 
|
493  | 
||
494  | 
lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
 | 
|
495  | 
apply (rule Suc_less_SucD)  | 
|
496  | 
apply (simp add: card_Suc_Diff1)  | 
|
497  | 
done  | 
|
498  | 
||
499  | 
lemma card_Diff2_less:  | 
|
500  | 
    "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
 | 
|
501  | 
apply (case_tac "x = y")  | 
|
502  | 
apply (simp add: card_Diff1_less)  | 
|
503  | 
apply (rule less_trans)  | 
|
504  | 
prefer 2 apply (auto intro!: card_Diff1_less)  | 
|
505  | 
done  | 
|
506  | 
||
507  | 
lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
 | 
|
508  | 
apply (case_tac "x : A")  | 
|
509  | 
apply (simp_all add: card_Diff1_less less_imp_le)  | 
|
510  | 
done  | 
|
511  | 
||
512  | 
lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"  | 
|
| 14208 | 513  | 
by (erule psubsetI, blast)  | 
| 12396 | 514  | 
|
515  | 
||
516  | 
subsubsection {* Cardinality of image *}
 | 
|
517  | 
||
518  | 
lemma card_image_le: "finite A ==> card (f ` A) <= card A"  | 
|
| 14208 | 519  | 
apply (induct set: Finites, simp)  | 
| 12396 | 520  | 
apply (simp add: le_SucI finite_imageI card_insert_if)  | 
521  | 
done  | 
|
522  | 
||
523  | 
lemma card_image: "finite A ==> inj_on f A ==> card (f ` A) = card A"  | 
|
| 14208 | 524  | 
apply (induct set: Finites, simp_all, atomize)  | 
| 12396 | 525  | 
apply safe  | 
| 14208 | 526  | 
apply (unfold inj_on_def, blast)  | 
| 12396 | 527  | 
apply (subst card_insert_disjoint)  | 
| 14208 | 528  | 
apply (erule finite_imageI, blast, blast)  | 
| 12396 | 529  | 
done  | 
530  | 
||
531  | 
lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"  | 
|
532  | 
by (simp add: card_seteq card_image)  | 
|
533  | 
||
534  | 
||
535  | 
subsubsection {* Cardinality of the Powerset *}
 | 
|
536  | 
||
537  | 
lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *)  | 
|
538  | 
apply (induct set: Finites)  | 
|
539  | 
apply (simp_all add: Pow_insert)  | 
|
| 14208 | 540  | 
apply (subst card_Un_disjoint, blast)  | 
541  | 
apply (blast intro: finite_imageI, blast)  | 
|
| 12396 | 542  | 
apply (subgoal_tac "inj_on (insert x) (Pow F)")  | 
543  | 
apply (simp add: card_image Pow_insert)  | 
|
544  | 
apply (unfold inj_on_def)  | 
|
545  | 
apply (blast elim!: equalityE)  | 
|
546  | 
done  | 
|
547  | 
||
548  | 
text {*
 | 
|
549  | 
\medskip Relates to equivalence classes. Based on a theorem of  | 
|
550  | 
  F. Kammüller's.  The @{prop "finite C"} premise is redundant.
 | 
|
551  | 
*}  | 
|
552  | 
||
553  | 
lemma dvd_partition:  | 
|
554  | 
"finite C ==> finite (Union C) ==>  | 
|
555  | 
ALL c : C. k dvd card c ==>  | 
|
556  | 
    (ALL c1: C. ALL c2: C. c1 ~= c2 --> c1 Int c2 = {}) ==>
 | 
|
557  | 
k dvd card (Union C)"  | 
|
| 14208 | 558  | 
apply (induct set: Finites, simp_all, clarify)  | 
| 12396 | 559  | 
apply (subst card_Un_disjoint)  | 
560  | 
apply (auto simp add: dvd_add disjoint_eq_subset_Compl)  | 
|
561  | 
done  | 
|
562  | 
||
563  | 
||
564  | 
subsection {* A fold functional for finite sets *}
 | 
|
565  | 
||
566  | 
text {*
 | 
|
567  | 
  For @{text n} non-negative we have @{text "fold f e {x1, ..., xn} =
 | 
|
568  | 
  f x1 (... (f xn e))"} where @{text f} is at least left-commutative.
 | 
|
569  | 
*}  | 
|
570  | 
||
571  | 
consts  | 
|
572  | 
  foldSet :: "('b => 'a => 'a) => 'a => ('b set \<times> 'a) set"
 | 
|
573  | 
||
574  | 
inductive "foldSet f e"  | 
|
575  | 
intros  | 
|
576  | 
    emptyI [intro]: "({}, e) : foldSet f e"
 | 
|
577  | 
insertI [intro]: "x \<notin> A ==> (A, y) : foldSet f e ==> (insert x A, f x y) : foldSet f e"  | 
|
578  | 
||
579  | 
inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f e"
 | 
|
580  | 
||
581  | 
constdefs  | 
|
582  | 
  fold :: "('b => 'a => 'a) => 'a => 'b set => 'a"
 | 
|
583  | 
"fold f e A == THE x. (A, x) : foldSet f e"  | 
|
584  | 
||
585  | 
lemma Diff1_foldSet: "(A - {x}, y) : foldSet f e ==> x: A ==> (A, f x y) : foldSet f e"
 | 
|
| 14208 | 586  | 
by (erule insert_Diff [THEN subst], rule foldSet.intros, auto)  | 
| 12396 | 587  | 
|
588  | 
lemma foldSet_imp_finite [simp]: "(A, x) : foldSet f e ==> finite A"  | 
|
589  | 
by (induct set: foldSet) auto  | 
|
590  | 
||
591  | 
lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f e"  | 
|
592  | 
by (induct set: Finites) auto  | 
|
593  | 
||
594  | 
||
595  | 
subsubsection {* Left-commutative operations *}
 | 
|
596  | 
||
597  | 
locale LC =  | 
|
598  | 
fixes f :: "'b => 'a => 'a" (infixl "\<cdot>" 70)  | 
|
599  | 
assumes left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"  | 
|
600  | 
||
601  | 
lemma (in LC) foldSet_determ_aux:  | 
|
602  | 
"ALL A x. card A < n --> (A, x) : foldSet f e -->  | 
|
603  | 
(ALL y. (A, y) : foldSet f e --> y = x)"  | 
|
604  | 
apply (induct n)  | 
|
605  | 
apply (auto simp add: less_Suc_eq)  | 
|
| 14208 | 606  | 
apply (erule foldSet.cases, blast)  | 
607  | 
apply (erule foldSet.cases, blast, clarify)  | 
|
| 12396 | 608  | 
  txt {* force simplification of @{text "card A < card (insert ...)"}. *}
 | 
609  | 
apply (erule rev_mp)  | 
|
610  | 
apply (simp add: less_Suc_eq_le)  | 
|
611  | 
apply (rule impI)  | 
|
612  | 
apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb")  | 
|
613  | 
apply (subgoal_tac "Aa = Ab")  | 
|
| 14208 | 614  | 
prefer 2 apply (blast elim!: equalityE, blast)  | 
| 12396 | 615  | 
  txt {* case @{prop "xa \<notin> xb"}. *}
 | 
616  | 
  apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab")
 | 
|
| 14208 | 617  | 
prefer 2 apply (blast elim!: equalityE, clarify)  | 
| 12396 | 618  | 
  apply (subgoal_tac "Aa = insert xb Ab - {xa}")
 | 
619  | 
prefer 2 apply blast  | 
|
620  | 
apply (subgoal_tac "card Aa <= card Ab")  | 
|
621  | 
prefer 2  | 
|
622  | 
apply (rule Suc_le_mono [THEN subst])  | 
|
623  | 
apply (simp add: card_Suc_Diff1)  | 
|
624  | 
  apply (rule_tac A1 = "Aa - {xb}" and f1 = f in finite_imp_foldSet [THEN exE])
 | 
|
625  | 
apply (blast intro: foldSet_imp_finite finite_Diff)  | 
|
626  | 
apply (frule (1) Diff1_foldSet)  | 
|
627  | 
apply (subgoal_tac "ya = f xb x")  | 
|
628  | 
prefer 2 apply (blast del: equalityCE)  | 
|
629  | 
  apply (subgoal_tac "(Ab - {xa}, x) : foldSet f e")
 | 
|
630  | 
prefer 2 apply simp  | 
|
631  | 
apply (subgoal_tac "yb = f xa x")  | 
|
632  | 
prefer 2 apply (blast del: equalityCE dest: Diff1_foldSet)  | 
|
633  | 
apply (simp (no_asm_simp) add: left_commute)  | 
|
634  | 
done  | 
|
635  | 
||
636  | 
lemma (in LC) foldSet_determ: "(A, x) : foldSet f e ==> (A, y) : foldSet f e ==> y = x"  | 
|
637  | 
by (blast intro: foldSet_determ_aux [rule_format])  | 
|
638  | 
||
639  | 
lemma (in LC) fold_equality: "(A, y) : foldSet f e ==> fold f e A = y"  | 
|
640  | 
by (unfold fold_def) (blast intro: foldSet_determ)  | 
|
641  | 
||
642  | 
lemma fold_empty [simp]: "fold f e {} = e"
 | 
|
643  | 
by (unfold fold_def) blast  | 
|
644  | 
||
645  | 
lemma (in LC) fold_insert_aux: "x \<notin> A ==>  | 
|
646  | 
((insert x A, v) : foldSet f e) =  | 
|
647  | 
(EX y. (A, y) : foldSet f e & v = f x y)"  | 
|
648  | 
apply auto  | 
|
649  | 
apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE])  | 
|
650  | 
apply (fastsimp dest: foldSet_imp_finite)  | 
|
651  | 
apply (blast intro: foldSet_determ)  | 
|
652  | 
done  | 
|
653  | 
||
654  | 
lemma (in LC) fold_insert:  | 
|
655  | 
"finite A ==> x \<notin> A ==> fold f e (insert x A) = f x (fold f e A)"  | 
|
656  | 
apply (unfold fold_def)  | 
|
657  | 
apply (simp add: fold_insert_aux)  | 
|
658  | 
apply (rule the_equality)  | 
|
659  | 
apply (auto intro: finite_imp_foldSet  | 
|
660  | 
cong add: conj_cong simp add: fold_def [symmetric] fold_equality)  | 
|
661  | 
done  | 
|
662  | 
||
663  | 
lemma (in LC) fold_commute: "finite A ==> (!!e. f x (fold f e A) = fold f (f x e) A)"  | 
|
| 14208 | 664  | 
apply (induct set: Finites, simp)  | 
| 12396 | 665  | 
apply (simp add: left_commute fold_insert)  | 
666  | 
done  | 
|
667  | 
||
668  | 
lemma (in LC) fold_nest_Un_Int:  | 
|
669  | 
"finite A ==> finite B  | 
|
670  | 
==> fold f (fold f e B) A = fold f (fold f e (A Int B)) (A Un B)"  | 
|
| 14208 | 671  | 
apply (induct set: Finites, simp)  | 
| 12396 | 672  | 
apply (simp add: fold_insert fold_commute Int_insert_left insert_absorb)  | 
673  | 
done  | 
|
674  | 
||
675  | 
lemma (in LC) fold_nest_Un_disjoint:  | 
|
676  | 
  "finite A ==> finite B ==> A Int B = {}
 | 
|
677  | 
==> fold f e (A Un B) = fold f (fold f e B) A"  | 
|
678  | 
by (simp add: fold_nest_Un_Int)  | 
|
679  | 
||
680  | 
declare foldSet_imp_finite [simp del]  | 
|
681  | 
empty_foldSetE [rule del] foldSet.intros [rule del]  | 
|
682  | 
  -- {* Delete rules to do with @{text foldSet} relation. *}
 | 
|
683  | 
||
684  | 
||
685  | 
||
686  | 
subsubsection {* Commutative monoids *}
 | 
|
687  | 
||
688  | 
text {*
 | 
|
689  | 
  We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
 | 
|
690  | 
  instead of @{text "'b => 'a => 'a"}.
 | 
|
691  | 
*}  | 
|
692  | 
||
693  | 
locale ACe =  | 
|
694  | 
fixes f :: "'a => 'a => 'a" (infixl "\<cdot>" 70)  | 
|
695  | 
and e :: 'a  | 
|
696  | 
assumes ident [simp]: "x \<cdot> e = x"  | 
|
697  | 
and commute: "x \<cdot> y = y \<cdot> x"  | 
|
698  | 
and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"  | 
|
699  | 
||
700  | 
lemma (in ACe) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"  | 
|
701  | 
proof -  | 
|
702  | 
have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute)  | 
|
703  | 
also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc)  | 
|
704  | 
also have "z \<cdot> x = x \<cdot> z" by (simp only: commute)  | 
|
705  | 
finally show ?thesis .  | 
|
706  | 
qed  | 
|
707  | 
||
| 12718 | 708  | 
lemmas (in ACe) AC = assoc commute left_commute  | 
| 12396 | 709  | 
|
| 12693 | 710  | 
lemma (in ACe) left_ident [simp]: "e \<cdot> x = x"  | 
| 12396 | 711  | 
proof -  | 
712  | 
have "x \<cdot> e = x" by (rule ident)  | 
|
713  | 
thus ?thesis by (subst commute)  | 
|
714  | 
qed  | 
|
715  | 
||
716  | 
lemma (in ACe) fold_Un_Int:  | 
|
717  | 
"finite A ==> finite B ==>  | 
|
718  | 
fold f e A \<cdot> fold f e B = fold f e (A Un B) \<cdot> fold f e (A Int B)"  | 
|
| 14208 | 719  | 
apply (induct set: Finites, simp)  | 
| 13400 | 720  | 
apply (simp add: AC insert_absorb Int_insert_left  | 
| 13421 | 721  | 
LC.fold_insert [OF LC.intro])  | 
| 12396 | 722  | 
done  | 
723  | 
||
724  | 
lemma (in ACe) fold_Un_disjoint:  | 
|
725  | 
  "finite A ==> finite B ==> A Int B = {} ==>
 | 
|
726  | 
fold f e (A Un B) = fold f e A \<cdot> fold f e B"  | 
|
727  | 
by (simp add: fold_Un_Int)  | 
|
728  | 
||
729  | 
lemma (in ACe) fold_Un_disjoint2:  | 
|
730  | 
  "finite A ==> finite B ==> A Int B = {} ==>
 | 
|
731  | 
fold (f o g) e (A Un B) = fold (f o g) e A \<cdot> fold (f o g) e B"  | 
|
732  | 
proof -  | 
|
733  | 
assume b: "finite B"  | 
|
734  | 
assume "finite A"  | 
|
735  | 
  thus "A Int B = {} ==>
 | 
|
736  | 
fold (f o g) e (A Un B) = fold (f o g) e A \<cdot> fold (f o g) e B"  | 
|
737  | 
proof induct  | 
|
738  | 
case empty  | 
|
739  | 
thus ?case by simp  | 
|
740  | 
next  | 
|
741  | 
case (insert F x)  | 
|
| 13571 | 742  | 
have "fold (f o g) e (insert x F \<union> B) = fold (f o g) e (insert x (F \<union> B))"  | 
| 12396 | 743  | 
by simp  | 
| 13571 | 744  | 
also have "... = (f o g) x (fold (f o g) e (F \<union> B))"  | 
| 13400 | 745  | 
by (rule LC.fold_insert [OF LC.intro])  | 
| 13421 | 746  | 
(insert b insert, auto simp add: left_commute)  | 
| 13571 | 747  | 
also from insert have "fold (f o g) e (F \<union> B) =  | 
748  | 
fold (f o g) e F \<cdot> fold (f o g) e B" by blast  | 
|
749  | 
also have "(f o g) x ... = (f o g) x (fold (f o g) e F) \<cdot> fold (f o g) e B"  | 
|
| 12396 | 750  | 
by (simp add: AC)  | 
| 13571 | 751  | 
also have "(f o g) x (fold (f o g) e F) = fold (f o g) e (insert x F)"  | 
| 13400 | 752  | 
by (rule LC.fold_insert [OF LC.intro, symmetric]) (insert b insert,  | 
| 13421 | 753  | 
auto simp add: left_commute)  | 
| 12396 | 754  | 
finally show ?case .  | 
755  | 
qed  | 
|
756  | 
qed  | 
|
757  | 
||
758  | 
||
759  | 
subsection {* Generalized summation over a set *}
 | 
|
760  | 
||
761  | 
constdefs  | 
|
762  | 
  setsum :: "('a => 'b) => 'a set => 'b::plus_ac0"
 | 
|
763  | 
"setsum f A == if finite A then fold (op + o f) 0 A else 0"  | 
|
764  | 
||
765  | 
syntax  | 
|
766  | 
  "_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0"    ("\<Sum>_:_. _" [0, 51, 10] 10)
 | 
|
767  | 
syntax (xsymbols)  | 
|
768  | 
  "_setsum" :: "idt => 'a set => 'b => 'b::plus_ac0"    ("\<Sum>_\<in>_. _" [0, 51, 10] 10)
 | 
|
769  | 
translations  | 
|
770  | 
  "\<Sum>i:A. b" == "setsum (%i. b) A"  -- {* Beware of argument permutation! *}
 | 
|
771  | 
||
772  | 
||
773  | 
lemma setsum_empty [simp]: "setsum f {} = 0"
 | 
|
774  | 
by (simp add: setsum_def)  | 
|
775  | 
||
776  | 
lemma setsum_insert [simp]:  | 
|
777  | 
"finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"  | 
|
| 13365 | 778  | 
by (simp add: setsum_def  | 
| 13421 | 779  | 
LC.fold_insert [OF LC.intro] plus_ac0_left_commute)  | 
| 12396 | 780  | 
|
781  | 
lemma setsum_0: "setsum (\<lambda>i. 0) A = 0"  | 
|
782  | 
apply (case_tac "finite A")  | 
|
783  | 
prefer 2 apply (simp add: setsum_def)  | 
|
| 14208 | 784  | 
apply (erule finite_induct, auto)  | 
| 12396 | 785  | 
done  | 
786  | 
||
787  | 
lemma setsum_eq_0_iff [simp]:  | 
|
788  | 
"finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"  | 
|
789  | 
by (induct set: Finites) auto  | 
|
790  | 
||
791  | 
lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"  | 
|
792  | 
apply (case_tac "finite A")  | 
|
793  | 
prefer 2 apply (simp add: setsum_def)  | 
|
794  | 
apply (erule rev_mp)  | 
|
| 14208 | 795  | 
apply (erule finite_induct, auto)  | 
| 12396 | 796  | 
done  | 
797  | 
||
798  | 
lemma card_eq_setsum: "finite A ==> card A = setsum (\<lambda>x. 1) A"  | 
|
799  | 
  -- {* Could allow many @{text "card"} proofs to be simplified. *}
 | 
|
800  | 
by (induct set: Finites) auto  | 
|
801  | 
||
802  | 
lemma setsum_Un_Int: "finite A ==> finite B  | 
|
803  | 
==> setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"  | 
|
804  | 
  -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | 
|
| 14208 | 805  | 
apply (induct set: Finites, simp)  | 
| 12396 | 806  | 
apply (simp add: plus_ac0 Int_insert_left insert_absorb)  | 
807  | 
done  | 
|
808  | 
||
809  | 
lemma setsum_Un_disjoint: "finite A ==> finite B  | 
|
810  | 
  ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
 | 
|
| 14208 | 811  | 
apply (subst setsum_Un_Int [symmetric], auto)  | 
| 12396 | 812  | 
done  | 
813  | 
||
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
814  | 
lemma setsum_UN_disjoint:  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
815  | 
fixes f :: "'a => 'b::plus_ac0"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
816  | 
shows  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
817  | 
"finite I ==> (ALL i:I. finite (A i)) ==>  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
818  | 
        (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12718 
diff
changeset
 | 
819  | 
setsum f (UNION I A) = setsum (\<lambda>i. setsum f (A i)) I"  | 
| 14208 | 820  | 
apply (induct set: Finites, simp, atomize)  | 
| 12396 | 821  | 
apply (subgoal_tac "ALL i:F. x \<noteq> i")  | 
822  | 
prefer 2 apply blast  | 
|
823  | 
  apply (subgoal_tac "A x Int UNION F A = {}")
 | 
|
824  | 
prefer 2 apply blast  | 
|
825  | 
apply (simp add: setsum_Un_disjoint)  | 
|
826  | 
done  | 
|
827  | 
||
828  | 
lemma setsum_addf: "setsum (\<lambda>x. f x + g x) A = (setsum f A + setsum g A)"  | 
|
829  | 
apply (case_tac "finite A")  | 
|
830  | 
prefer 2 apply (simp add: setsum_def)  | 
|
| 14208 | 831  | 
apply (erule finite_induct, auto)  | 
| 12396 | 832  | 
apply (simp add: plus_ac0)  | 
833  | 
done  | 
|
834  | 
||
835  | 
lemma setsum_Un: "finite A ==> finite B ==>  | 
|
836  | 
(setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"  | 
|
837  | 
  -- {* For the natural numbers, we have subtraction. *}
 | 
|
| 14208 | 838  | 
apply (subst setsum_Un_Int [symmetric], auto)  | 
| 12396 | 839  | 
done  | 
840  | 
||
841  | 
lemma setsum_diff1: "(setsum f (A - {a}) :: nat) =
 | 
|
842  | 
(if a:A then setsum f A - f a else setsum f A)"  | 
|
843  | 
apply (case_tac "finite A")  | 
|
844  | 
prefer 2 apply (simp add: setsum_def)  | 
|
845  | 
apply (erule finite_induct)  | 
|
846  | 
apply (auto simp add: insert_Diff_if)  | 
|
| 14208 | 847  | 
apply (drule_tac a = a in mk_disjoint_insert, auto)  | 
| 12396 | 848  | 
done  | 
849  | 
||
850  | 
lemma setsum_cong:  | 
|
851  | 
"A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"  | 
|
852  | 
apply (case_tac "finite B")  | 
|
| 14208 | 853  | 
prefer 2 apply (simp add: setsum_def, simp)  | 
| 12396 | 854  | 
apply (subgoal_tac "ALL C. C <= B --> (ALL x:C. f x = g x) --> setsum f C = setsum g C")  | 
855  | 
apply simp  | 
|
| 14208 | 856  | 
apply (erule finite_induct, simp)  | 
857  | 
apply (simp add: subset_insert_iff, clarify)  | 
|
| 12396 | 858  | 
apply (subgoal_tac "finite C")  | 
859  | 
prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])  | 
|
860  | 
  apply (subgoal_tac "C = insert x (C - {x})")
 | 
|
861  | 
prefer 2 apply blast  | 
|
862  | 
apply (erule ssubst)  | 
|
863  | 
apply (drule spec)  | 
|
864  | 
apply (erule (1) notE impE)  | 
|
| 14302 | 865  | 
apply (simp add: Ball_def del:insert_Diff_single)  | 
| 12396 | 866  | 
done  | 
867  | 
||
| 
13490
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
868  | 
subsubsection{* Min and Max of finite linearly ordered sets *}
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
869  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
870  | 
text{* Seemed easier to define directly than via fold. *}
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
871  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
872  | 
lemma ex_Max: fixes S :: "('a::linorder)set"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
873  | 
  assumes fin: "finite S" shows "S \<noteq> {} \<Longrightarrow> \<exists>m\<in>S. \<forall>s \<in> S. s \<le> m"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
874  | 
using fin  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
875  | 
proof (induct)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
876  | 
case empty thus ?case by simp  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
877  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
878  | 
case (insert S x)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
879  | 
show ?case  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
880  | 
proof (cases)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
881  | 
    assume "S = {}" thus ?thesis by simp
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
882  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
883  | 
    assume nonempty: "S \<noteq> {}"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
884  | 
then obtain m where m: "m\<in>S" "\<forall>s\<in>S. s \<le> m" using insert by blast  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
885  | 
show ?thesis  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
886  | 
proof (cases)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
887  | 
assume "x \<le> m" thus ?thesis using m by blast  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
888  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
889  | 
assume "\<not> x \<le> m" thus ?thesis using m  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
890  | 
by(simp add:linorder_not_le order_less_le)(blast intro: order_trans)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
891  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
892  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
893  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
894  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
895  | 
lemma ex_Min: fixes S :: "('a::linorder)set"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
896  | 
  assumes fin: "finite S" shows "S \<noteq> {} \<Longrightarrow> \<exists>m\<in>S. \<forall>s \<in> S. m \<le> s"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
897  | 
using fin  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
898  | 
proof (induct)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
899  | 
case empty thus ?case by simp  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
900  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
901  | 
case (insert S x)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
902  | 
show ?case  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
903  | 
proof (cases)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
904  | 
    assume "S = {}" thus ?thesis by simp
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
905  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
906  | 
    assume nonempty: "S \<noteq> {}"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
907  | 
then obtain m where m: "m\<in>S" "\<forall>s\<in>S. m \<le> s" using insert by blast  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
908  | 
show ?thesis  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
909  | 
proof (cases)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
910  | 
assume "m \<le> x" thus ?thesis using m by blast  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
911  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
912  | 
assume "\<not> m \<le> x" thus ?thesis using m  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
913  | 
by(simp add:linorder_not_le order_less_le)(blast intro: order_trans)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
914  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
915  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
916  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
917  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
918  | 
constdefs  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
919  | 
 Min :: "('a::linorder)set \<Rightarrow> 'a"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
920  | 
"Min S \<equiv> THE m. m \<in> S \<and> (\<forall>s \<in> S. m \<le> s)"  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
921  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
922  | 
 Max :: "('a::linorder)set \<Rightarrow> 'a"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
923  | 
"Max S \<equiv> THE m. m \<in> S \<and> (\<forall>s \<in> S. s \<le> m)"  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
924  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
925  | 
lemma Min[simp]: assumes a: "finite S" "S \<noteq> {}"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
926  | 
shows "Min S \<in> S \<and> (\<forall>s \<in> S. Min S \<le> s)" (is "?P(Min S)")  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
927  | 
proof (unfold Min_def, rule theI')  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
928  | 
show "\<exists>!m. ?P m"  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
929  | 
proof (rule ex_ex1I)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
930  | 
show "\<exists>m. ?P m" using ex_Min[OF a] by blast  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
931  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
932  | 
fix m1 m2 assume "?P m1" "?P m2"  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
933  | 
thus "m1 = m2" by (blast dest:order_antisym)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
934  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
935  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
936  | 
|
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
937  | 
lemma Max[simp]: assumes a: "finite S" "S \<noteq> {}"
 | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
938  | 
shows "Max S \<in> S \<and> (\<forall>s \<in> S. s \<le> Max S)" (is "?P(Max S)")  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
939  | 
proof (unfold Max_def, rule theI')  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
940  | 
show "\<exists>!m. ?P m"  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
941  | 
proof (rule ex_ex1I)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
942  | 
show "\<exists>m. ?P m" using ex_Max[OF a] by blast  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
943  | 
next  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
944  | 
fix m1 m2 assume "?P m1" "?P m2"  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
945  | 
thus "m1 = m2" by (blast dest:order_antisym)  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
946  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
947  | 
qed  | 
| 
 
44bdc150211b
Added Mi and Max on sets, hid Min and Pls on numerals.
 
nipkow 
parents: 
13421 
diff
changeset
 | 
948  | 
|
| 12396 | 949  | 
|
950  | 
text {*
 | 
|
951  | 
  \medskip Basic theorem about @{text "choose"}.  By Florian
 | 
|
952  | 
Kammüller, tidied by LCP.  | 
|
953  | 
*}  | 
|
954  | 
||
955  | 
lemma card_s_0_eq_empty:  | 
|
956  | 
    "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
 | 
|
957  | 
apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])  | 
|
958  | 
apply (simp cong add: rev_conj_cong)  | 
|
959  | 
done  | 
|
960  | 
||
961  | 
lemma choose_deconstruct: "finite M ==> x \<notin> M  | 
|
962  | 
  ==> {s. s <= insert x M & card(s) = Suc k}
 | 
|
963  | 
       = {s. s <= M & card(s) = Suc k} Un
 | 
|
964  | 
         {s. EX t. t <= M & card(t) = k & s = insert x t}"
 | 
|
965  | 
apply safe  | 
|
966  | 
apply (auto intro: finite_subset [THEN card_insert_disjoint])  | 
|
967  | 
  apply (drule_tac x = "xa - {x}" in spec)
 | 
|
| 14208 | 968  | 
apply (subgoal_tac "x ~: xa", auto)  | 
| 12396 | 969  | 
apply (erule rev_mp, subst card_Diff_singleton)  | 
970  | 
apply (auto intro: finite_subset)  | 
|
971  | 
done  | 
|
972  | 
||
973  | 
lemma card_inj_on_le:  | 
|
| 13595 | 974  | 
"[|inj_on f A; f ` A \<subseteq> B; finite A; finite B |] ==> card A <= card B"  | 
| 12396 | 975  | 
by (auto intro: card_mono simp add: card_image [symmetric])  | 
976  | 
||
| 13595 | 977  | 
lemma card_bij_eq:  | 
978  | 
"[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;  | 
|
979  | 
finite A; finite B |] ==> card A = card B"  | 
|
| 12396 | 980  | 
by (auto intro: le_anti_sym card_inj_on_le)  | 
981  | 
||
| 13595 | 982  | 
text{*There are as many subsets of @{term A} having cardinality @{term k}
 | 
983  | 
as there are sets obtained from the former by inserting a fixed element  | 
|
984  | 
 @{term x} into each.*}
 | 
|
985  | 
lemma constr_bij:  | 
|
986  | 
"[|finite A; x \<notin> A|] ==>  | 
|
987  | 
    card {B. EX C. C <= A & card(C) = k & B = insert x C} =
 | 
|
| 12396 | 988  | 
    card {B. B <= A & card(B) = k}"
 | 
989  | 
  apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
 | 
|
| 13595 | 990  | 
apply (auto elim!: equalityE simp add: inj_on_def)  | 
991  | 
apply (subst Diff_insert0, auto)  | 
|
992  | 
   txt {* finiteness of the two sets *}
 | 
|
993  | 
apply (rule_tac [2] B = "Pow (A)" in finite_subset)  | 
|
994  | 
apply (rule_tac B = "Pow (insert x A)" in finite_subset)  | 
|
995  | 
apply fast+  | 
|
| 12396 | 996  | 
done  | 
997  | 
||
998  | 
text {*
 | 
|
999  | 
Main theorem: combinatorial statement about number of subsets of a set.  | 
|
1000  | 
*}  | 
|
1001  | 
||
1002  | 
lemma n_sub_lemma:  | 
|
1003  | 
  "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
 | 
|
1004  | 
apply (induct k)  | 
|
| 14208 | 1005  | 
apply (simp add: card_s_0_eq_empty, atomize)  | 
| 12396 | 1006  | 
apply (rotate_tac -1, erule finite_induct)  | 
| 13421 | 1007  | 
apply (simp_all (no_asm_simp) cong add: conj_cong  | 
1008  | 
add: card_s_0_eq_empty choose_deconstruct)  | 
|
| 12396 | 1009  | 
apply (subst card_Un_disjoint)  | 
1010  | 
prefer 4 apply (force simp add: constr_bij)  | 
|
1011  | 
prefer 3 apply force  | 
|
1012  | 
prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]  | 
|
1013  | 
finite_subset [of _ "Pow (insert x F)", standard])  | 
|
1014  | 
apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])  | 
|
1015  | 
done  | 
|
1016  | 
||
| 13421 | 1017  | 
theorem n_subsets:  | 
1018  | 
    "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
 | 
|
| 12396 | 1019  | 
by (simp add: n_sub_lemma)  | 
1020  | 
||
1021  | 
end  |