src/HOL/Library/Fundamental_Theorem_Algebra.thy
author blanchet
Fri, 04 Apr 2014 14:44:51 +0200
changeset 56403 ae4f904c98b0
parent 55735 81ba62493610
child 56544 b60d5d119489
permissions -rw-r--r--
tuned spaces
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29197
6d4cb27ed19c adapted HOL source structure to distribution layout
haftmann
parents: 28952
diff changeset
     1
(* Author: Amine Chaieb, TU Muenchen *)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
     2
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
     3
header{*Fundamental Theorem of Algebra*}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
     4
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
     5
theory Fundamental_Theorem_Algebra
51537
abcd6d5f7508 more standard imports;
wenzelm
parents: 50636
diff changeset
     6
imports Polynomial Complex_Main
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
     7
begin
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
     8
27445
0829a2c4b287 section -> subsection
huffman
parents: 27108
diff changeset
     9
subsection {* Square root of complex numbers *}
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    10
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    11
definition csqrt :: "complex \<Rightarrow> complex" where
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    12
"csqrt z = (if Im z = 0 then
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    13
            if 0 \<le> Re z then Complex (sqrt(Re z)) 0
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    14
            else Complex 0 (sqrt(- Re z))
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    15
           else Complex (sqrt((cmod z + Re z) /2))
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    16
                        ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    17
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
    18
lemma csqrt[algebra]: "(csqrt z)\<^sup>2 = z"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    19
proof-
29292
11045b88af1a avoid implicit prems -- tuned proofs;
wenzelm
parents: 29197
diff changeset
    20
  obtain x y where xy: "z = Complex x y" by (cases z)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    21
  {assume y0: "y = 0"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
    22
    {assume x0: "x \<ge> 0"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    23
      then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
    24
        by (simp add: csqrt_def power2_eq_square)}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    25
    moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    26
    {assume "\<not> x \<ge> 0" hence x0: "- x \<ge> 0" by arith
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
    27
      then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
    28
        by (simp add: csqrt_def power2_eq_square) }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    29
    ultimately have ?thesis by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    30
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    31
  {assume y0: "y\<noteq>0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    32
    {fix x y
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    33
      let ?z = "Complex x y"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    34
      from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z" by auto
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
    35
      hence "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0" by arith+
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    36
      hence "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0" by (simp_all add: power2_eq_square) }
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    37
    note th = this
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
    38
    have sq4: "\<And>x::real. x\<^sup>2 / 4 = (x / 2)\<^sup>2"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
    39
      by (simp add: power2_eq_square)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    40
    from th[of x y]
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
    41
    have sq4': "sqrt (((sqrt (x * x + y * y) + x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) + x) / 2"
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
    42
      "sqrt (((sqrt (x * x + y * y) - x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) - x) / 2"
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
    43
      unfolding sq4 by simp_all
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    44
    then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) - sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
    45
      unfolding power2_eq_square by simp
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
    46
    have "sqrt 4 = sqrt (2\<^sup>2)" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    47
    hence sqrt4: "sqrt 4 = 2" by (simp only: real_sqrt_abs)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    48
    have th2: "2 *(y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    49
      using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
    50
      unfolding power2_eq_square
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29538
diff changeset
    51
      by (simp add: algebra_simps real_sqrt_divide sqrt4)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    52
     from y0 xy have ?thesis  apply (simp add: csqrt_def power2_eq_square)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    53
       apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y] real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square] real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square] real_sqrt_mult[symmetric])
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    54
      using th1 th2  ..}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    55
  ultimately show ?thesis by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    56
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    57
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    58
lemma csqrt_Complex: "x \<ge> 0 \<Longrightarrow> csqrt (Complex x 0) = Complex (sqrt x) 0"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    59
  by (simp add: csqrt_def)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    60
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    61
lemma csqrt_0 [simp]: "csqrt 0 = 0"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    62
  by (simp add: csqrt_def)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    63
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    64
lemma csqrt_1 [simp]: "csqrt 1 = 1"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    65
  by (simp add: csqrt_def)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    66
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    67
lemma csqrt_principal: "0 < Re(csqrt(z)) | Re(csqrt(z)) = 0 & 0 \<le> Im(csqrt(z))"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    68
proof (cases z)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    69
  case (Complex x y)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    70
  then show ?thesis
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    71
    using real_sqrt_sum_squares_ge1 [of "x" y]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    72
          real_sqrt_sum_squares_ge1 [of "-x" y]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    73
          real_sqrt_sum_squares_eq_cancel [of x y]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    74
    apply (auto simp: csqrt_def intro!: Rings.ordered_ring_class.split_mult_pos_le)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    75
    apply (metis add_commute diff_add_cancel le_add_same_cancel1 real_sqrt_sum_squares_ge1)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    76
    by (metis add_commute less_eq_real_def power_minus_Bit0 real_0_less_add_iff real_sqrt_sum_squares_eq_cancel)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    77
qed
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    78
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    79
lemma Re_csqrt: "0 \<le> Re(csqrt z)"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    80
  by (metis csqrt_principal le_less)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    81
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    82
lemma csqrt_square: "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> csqrt (z^2) = z"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    83
  using csqrt [of "z^2"] csqrt_principal [of "z^2"]
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    84
  by (cases z) (auto simp: power2_eq_iff)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    85
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    86
lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    87
  by auto (metis csqrt power_eq_0_iff)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    88
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    89
lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55358
diff changeset
    90
  by auto (metis csqrt power2_eq_1_iff)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    91
27445
0829a2c4b287 section -> subsection
huffman
parents: 27108
diff changeset
    92
subsection{* More lemmas about module of complex numbers *}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    93
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    94
lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)"
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
    95
  by (rule of_real_power [symmetric])
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    96
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    97
text{* The triangle inequality for cmod *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    98
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
    99
  using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   100
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   101
subsection{* Basic lemmas about polynomials *}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   102
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   103
lemma poly_bound_exists:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   104
  fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   105
  shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z <= r \<longrightarrow> norm (poly p z) \<le> m)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   106
proof(induct p)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   107
  case 0 thus ?case by (rule exI[where x=1], simp)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   108
next
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   109
  case (pCons c cs)
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   110
  from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   111
    by blast
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   112
  let ?k = " 1 + norm c + \<bar>r * m\<bar>"
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   113
  have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   114
  {fix z :: 'a 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   115
    assume H: "norm z \<le> r"
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   116
    from m H have th: "norm (poly cs z) \<le> m" by blast
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   117
    from H have rp: "r \<ge> 0" using norm_ge_zero[of z] by arith
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   118
    have "norm (poly (pCons c cs) z) \<le> norm c + norm (z* poly cs z)"
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   119
      using norm_triangle_ineq[of c "z* poly cs z"] by simp
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   120
    also have "\<dots> \<le> norm c + r*m" using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]]
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   121
      by (simp add: norm_mult)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   122
    also have "\<dots> \<le> ?k" by simp
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   123
    finally have "norm (poly (pCons c cs) z) \<le> ?k" .}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   124
  with kp show ?case by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   125
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   126
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   127
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   128
text{* Offsetting the variable in a polynomial gives another of same degree *}
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   129
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   130
definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   131
where
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   132
  "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   133
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   134
lemma offset_poly_0: "offset_poly 0 h = 0"
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   135
  by (simp add: offset_poly_def)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   136
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   137
lemma offset_poly_pCons:
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   138
  "offset_poly (pCons a p) h =
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   139
    smult h (offset_poly p h) + pCons a (offset_poly p h)"
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   140
  by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   141
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   142
lemma offset_poly_single: "offset_poly [:a:] h = [:a:]"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   143
by (simp add: offset_poly_pCons offset_poly_0)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   144
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   145
lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   146
apply (induct p)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   147
apply (simp add: offset_poly_0)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29538
diff changeset
   148
apply (simp add: offset_poly_pCons algebra_simps)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   149
done
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   150
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   151
lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   152
by (induct p arbitrary: a, simp, force)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   153
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   154
lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   155
apply (safe intro!: offset_poly_0)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   156
apply (induct p, simp)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   157
apply (simp add: offset_poly_pCons)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   158
apply (frule offset_poly_eq_0_lemma, simp)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   159
done
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   160
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   161
lemma degree_offset_poly: "degree (offset_poly p h) = degree p"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   162
apply (induct p)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   163
apply (simp add: offset_poly_0)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   164
apply (case_tac "p = 0")
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   165
apply (simp add: offset_poly_0 offset_poly_pCons)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   166
apply (simp add: offset_poly_pCons)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   167
apply (subst degree_add_eq_right)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   168
apply (rule le_less_trans [OF degree_smult_le])
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   169
apply (simp add: offset_poly_eq_0_iff)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   170
apply (simp add: offset_poly_eq_0_iff)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   171
done
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   172
29478
4a2482e16934 code generation for polynomials
huffman
parents: 29476
diff changeset
   173
definition
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   174
  "psize p = (if p = 0 then 0 else Suc (degree p))"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   175
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   176
lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0"
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   177
  unfolding psize_def by simp
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   178
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   179
lemma poly_offset: 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   180
  fixes p:: "('a::comm_ring_1) poly" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   181
  shows "\<exists> q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   182
proof (intro exI conjI)
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   183
  show "psize (offset_poly p a) = psize p"
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   184
    unfolding psize_def
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   185
    by (simp add: offset_poly_eq_0_iff degree_offset_poly)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   186
  show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   187
    by (simp add: poly_offset_poly)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   188
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   189
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   190
text{* An alternative useful formulation of completeness of the reals *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   191
lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   192
  shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   193
proof
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   194
  from bz have "bdd_above (Collect P)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   195
    by (force intro: less_imp_le)
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   196
  then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   197
    using ex bz by (subst less_cSup_iff) auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   198
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   199
27445
0829a2c4b287 section -> subsection
huffman
parents: 27108
diff changeset
   200
subsection {* Fundamental theorem of algebra *}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   201
lemma  unimodular_reduce_norm:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   202
  assumes md: "cmod z = 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   203
  shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   204
proof-
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   205
  obtain x y where z: "z = Complex x y " by (cases z, auto)
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
   206
  from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1" by (simp add: cmod_def)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   207
  {assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   208
    from C z xy have "2*x \<le> 1" "2*x \<ge> -1" "2*y \<le> 1" "2*y \<ge> -1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29538
diff changeset
   209
      by (simp_all add: cmod_def power2_eq_square algebra_simps)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   210
    hence "abs (2*x) \<le> 1" "abs (2*y) \<le> 1" by simp_all
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
   211
    hence "(abs (2 * x))\<^sup>2 <= 1\<^sup>2" "(abs (2 * y))\<^sup>2 <= 1\<^sup>2"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   212
      by - (rule power_mono, simp, simp)+
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
   213
    hence th0: "4*x\<^sup>2 \<le> 1" "4*y\<^sup>2 \<le> 1"
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   214
      by (simp_all add: power_mult_distrib)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   215
    from add_mono[OF th0] xy have False by simp }
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   216
  thus ?thesis unfolding linorder_not_le[symmetric] by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   217
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   218
26135
01f4e5d21eaf fixed document;
wenzelm
parents: 26123
diff changeset
   219
text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   220
lemma reduce_poly_simple:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   221
 assumes b: "b \<noteq> 0" and n: "n\<noteq>0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   222
  shows "\<exists>z. cmod (1 + b * z^n) < 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   223
using n
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   224
proof(induct n rule: nat_less_induct)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   225
  fix n
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   226
  assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" and n: "n \<noteq> 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   227
  let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   228
  {assume e: "even n"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   229
    hence "\<exists>m. n = 2*m" by presburger
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   230
    then obtain m where m: "n = 2*m" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   231
    from n m have "m\<noteq>0" "m < n" by presburger+
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   232
    with IH[rule_format, of m] obtain z where z: "?P z m" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   233
    from z have "?P (csqrt z) n" by (simp add: m power_mult csqrt)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   234
    hence "\<exists>z. ?P z n" ..}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   235
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   236
  {assume o: "odd n"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   237
    have th0: "cmod (complex_of_real (cmod b) / b) = 1"
36975
fa6244be5215 simplify proof
huffman
parents: 36778
diff changeset
   238
      using b by (simp add: norm_divide)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   239
    from o have "\<exists>m. n = Suc (2*m)" by presburger+
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   240
    then obtain m where m: "n = Suc (2*m)" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   241
    from unimodular_reduce_norm[OF th0] o
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   242
    have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   243
      apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp)
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54263
diff changeset
   244
      apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   245
      apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   246
      apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   247
      apply (rule_tac x="- ii" in exI, simp add: m power_mult)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53077
diff changeset
   248
      apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult)
54489
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54263
diff changeset
   249
      apply (auto simp add: m power_mult)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54263
diff changeset
   250
      apply (rule_tac x="ii" in exI)
03ff4d1e6784 eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents: 54263
diff changeset
   251
      apply (auto simp add: m power_mult)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   252
      done
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   253
    then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   254
    let ?w = "v / complex_of_real (root n (cmod b))"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   255
    from odd_real_root_pow[OF o, of "cmod b"]
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   256
    have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   257
      by (simp add: power_divide complex_of_real_power)
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   258
    have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: norm_divide)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   259
    hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   260
    have th4: "cmod (complex_of_real (cmod b) / b) *
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   261
   cmod (1 + b * (v ^ n / complex_of_real (cmod b)))
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   262
   < cmod (complex_of_real (cmod b) / b) * 1"
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 46240
diff changeset
   263
      apply (simp only: norm_mult[symmetric] distrib_left)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   264
      using b v by (simp add: th2)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   265
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   266
    from mult_less_imp_less_left[OF th4 th3]
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   267
    have "?P ?w n" unfolding th1 .
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   268
    hence "\<exists>z. ?P z n" .. }
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   269
  ultimately show "\<exists>z. ?P z n" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   270
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   271
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   272
text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   273
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   274
lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   275
  using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   276
  unfolding cmod_def by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   277
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   278
lemma bolzano_weierstrass_complex_disc:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   279
  assumes r: "\<forall>n. cmod (s n) \<le> r"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   280
  shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   281
proof-
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   282
  from seq_monosub[of "Re o s"]
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   283
  obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   284
    unfolding o_def by blast
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   285
  from seq_monosub[of "Im o s o f"]
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   286
  obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   287
  let ?h = "f o g"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   288
  from r[rule_format, of 0] have rp: "r \<ge> 0" using norm_ge_zero[of "s 0"] by arith
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   289
  have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   290
  proof
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   291
    fix n
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   292
    from abs_Re_le_cmod[of "s n"] r[rule_format, of n]  show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   293
  qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   294
  have conv1: "convergent (\<lambda>n. Re (s ( f n)))"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   295
    apply (rule Bseq_monoseq_convergent)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   296
    apply (simp add: Bseq_def)
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   297
    apply (metis gt_ex le_less_linear less_trans order.trans th)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   298
    using f(2) .
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   299
  have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   300
  proof
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   301
    fix n
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   302
    from abs_Im_le_cmod[of "s n"] r[rule_format, of n]  show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   303
  qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   304
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   305
  have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   306
    apply (rule Bseq_monoseq_convergent)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   307
    apply (simp add: Bseq_def)
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   308
    apply (metis gt_ex le_less_linear less_trans order.trans th)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   309
    using g(2) .
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   310
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   311
  from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x"
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   312
    by blast
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   313
  hence  x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r"
31337
a9ed5fcc5e39 LIMSEQ_def -> LIMSEQ_iff
huffman
parents: 31021
diff changeset
   314
    unfolding LIMSEQ_iff real_norm_def .
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   315
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   316
  from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y"
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   317
    by blast
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   318
  hence  y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r"
31337
a9ed5fcc5e39 LIMSEQ_def -> LIMSEQ_iff
huffman
parents: 31021
diff changeset
   319
    unfolding LIMSEQ_iff real_norm_def .
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   320
  let ?w = "Complex x y"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   321
  from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   322
  {fix e assume ep: "e > (0::real)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   323
    hence e2: "e/2 > 0" by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   324
    from x[rule_format, OF e2] y[rule_format, OF e2]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   325
    obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   326
    {fix n assume nN12: "n \<ge> N1 + N2"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   327
      hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   328
      from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   329
      have "cmod (s (?h n) - ?w) < e"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   330
        using metric_bound_lemma[of "s (f (g n))" ?w] by simp }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   331
    hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast }
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   332
  with hs show ?thesis  by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   333
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   334
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   335
text{* Polynomial is continuous. *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   336
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   337
lemma poly_cont:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   338
  fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" 
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   339
  assumes ep: "e > 0"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   340
  shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   341
proof-
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   342
  obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   343
  proof
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   344
    show "degree (offset_poly p z) = degree p"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   345
      by (rule degree_offset_poly)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   346
    show "\<And>x. poly (offset_poly p z) x = poly p (z + x)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   347
      by (rule poly_offset_poly)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   348
  qed
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   349
  {fix w
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   350
    note q(2)[of "w - z", simplified]}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   351
  note th = this
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   352
  show ?thesis unfolding th[symmetric]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   353
  proof(induct q)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   354
    case 0 thus ?case  using ep by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   355
  next
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   356
    case (pCons c cs)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   357
    from poly_bound_exists[of 1 "cs"]
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   358
    obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   359
    from ep m(1) have em0: "e/m > 0" by (simp add: field_simps)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   360
    have one0: "1 > (0::real)"  by arith
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   361
    from real_lbound_gt_zero[OF one0 em0]
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   362
    obtain d where d: "d >0" "d < 1" "d < e / m" by blast
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   363
    from d(1,3) m(1) have dm: "d*m > 0" "d*m < e"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 34915
diff changeset
   364
      by (simp_all add: field_simps mult_pos_pos)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   365
    show ?case
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   366
      proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   367
        fix d w
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   368
        assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "norm (w-z) < d"
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   369
        hence d1: "norm (w-z) \<le> 1" "d \<ge> 0" by simp_all
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   370
        from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps)
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   371
        from H have th: "norm (w-z) \<le> d" by simp
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   372
        from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   373
        show "norm (w - z) * norm (poly cs (w - z)) < e" by simp
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   374
      qed
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   375
    qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   376
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   377
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   378
text{* Hence a polynomial attains minimum on a closed disc
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   379
  in the complex plane. *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   380
lemma  poly_minimum_modulus_disc:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   381
  "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   382
proof-
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   383
  {assume "\<not> r \<ge> 0" hence ?thesis
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   384
    by (metis norm_ge_zero order.trans)}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   385
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   386
  {assume rp: "r \<ge> 0"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   387
    from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   388
    hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"  by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   389
    {fix x z
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   390
      assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   391
      hence "- x < 0 " by arith
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   392
      with H(2) norm_ge_zero[of "poly p z"]  have False by simp }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   393
    then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   394
    from real_sup_exists[OF mth1 mth2] obtain s where
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   395
      s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   396
    let ?m = "-s"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   397
    {fix y
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   398
      from s[rule_format, of "-y"] have
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   399
    "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   400
        unfolding minus_less_iff[of y ] equation_minus_iff by blast }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   401
    note s1 = this[unfolded minus_minus]
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   402
    from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   403
      by auto
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   404
    {fix n::nat
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   405
      from s1[rule_format, of "?m + 1/real (Suc n)"]
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   406
      have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   407
        by simp}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   408
    hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   409
    from choice[OF th] obtain g where
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   410
      g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   411
      by blast
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   412
    from bolzano_weierstrass_complex_disc[OF g(1)]
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   413
    obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   414
      by blast
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   415
    {fix w
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   416
      assume wr: "cmod w \<le> r"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   417
      let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   418
      {assume e: "?e > 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   419
        hence e2: "?e/2 > 0" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   420
        from poly_cont[OF e2, of z p] obtain d where
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   421
          d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   422
        {fix w assume w: "cmod (w - z) < d"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   423
          have "cmod(poly p w - poly p z) < ?e / 2"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   424
            using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)}
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   425
        note th1 = this
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   426
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   427
        from fz(2)[rule_format, OF d(1)] obtain N1 where
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   428
          N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   429
        from reals_Archimedean2[of "2/?e"] obtain N2::nat where
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   430
          N2: "2/?e < real N2" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   431
        have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   432
          using N1[rule_format, of "N1 + N2"] th1 by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   433
        {fix a b e2 m :: real
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   434
        have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   435
          ==> False" by arith}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   436
      note th0 = this
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   437
      have ath:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   438
        "\<And>m x e. m <= x \<Longrightarrow>  x < m + e ==> abs(x - m::real) < e" by arith
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   439
      from s1m[OF g(1)[rule_format]]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   440
      have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   441
      from seq_suble[OF fz(1), of "N1+N2"]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   442
      have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   443
      have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   444
        using N2 by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   445
      from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   446
      from g(2)[rule_format, of "f (N1 + N2)"]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   447
      have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   448
      from order_less_le_trans[OF th01 th00]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   449
      have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   450
      from N2 have "2/?e < real (Suc (N1 + N2))" by arith
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   451
      with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   452
      have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   453
      with ath[OF th31 th32]
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   454
      have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   455
      have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   456
        by arith
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   457
      have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar>
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   458
\<le> cmod (poly p (g (f (N1 + N2))) - poly p z)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   459
        by (simp add: norm_triangle_ineq3)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   460
      from ath2[OF th22, of ?m]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   461
      have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   462
      from th0[OF th2 thc1 thc2] have False .}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   463
      hence "?e = 0" by auto
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   464
      then have "cmod (poly p z) = ?m" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   465
      with s1m[OF wr]
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   466
      have "cmod (poly p z) \<le> cmod (poly p w)" by simp }
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   467
    hence ?thesis by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   468
  ultimately show ?thesis by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   469
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   470
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
   471
lemma "(rcis (sqrt (abs r)) (a/2))\<^sup>2 = rcis (abs r) a"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   472
  unfolding power2_eq_square
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   473
  apply (simp add: rcis_mult)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   474
  apply (simp add: power2_eq_square[symmetric])
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   475
  done
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   476
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   477
lemma cispi: "cis pi = -1"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   478
  unfolding cis_def
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   479
  by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   480
53077
a1b3784f8129 more symbols;
wenzelm
parents: 52380
diff changeset
   481
lemma "(rcis (sqrt (abs r)) ((pi + a)/2))\<^sup>2 = rcis (- abs r) a"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   482
  unfolding power2_eq_square
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   483
  apply (simp add: rcis_mult add_divide_distrib)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   484
  apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric])
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   485
  done
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   486
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   487
text {* Nonzero polynomial in z goes to infinity as z does. *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   488
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   489
lemma poly_infinity:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   490
  fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" 
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   491
  assumes ex: "p \<noteq> 0"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   492
  shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   493
using ex
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   494
proof(induct p arbitrary: a d)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   495
  case (pCons c cs a d)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   496
  {assume H: "cs \<noteq> 0"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   497
    with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   498
    let ?r = "1 + \<bar>r\<bar>"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   499
    {fix z::'a assume h: "1 + \<bar>r\<bar> \<le> norm z"
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   500
      have r0: "r \<le> norm z" using h by arith
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   501
      from r[rule_format, OF r0]
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   502
      have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)" by arith
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   503
      from h have z1: "norm z \<ge> 1" by arith
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   504
      from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]]
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   505
      have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   506
        unfolding norm_mult by (simp add: algebra_simps)
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   507
      from norm_diff_ineq[of "z * poly (pCons c cs) z" a]
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   508
      have th2: "norm(z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)"
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   509
        by (simp add: algebra_simps)
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   510
      from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)"  by arith}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   511
    hence ?case by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   512
  moreover
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   513
  {assume cs0: "\<not> (cs \<noteq> 0)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   514
    with pCons.prems have c0: "c \<noteq> 0" by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   515
    from cs0 have cs0': "cs = 0" by simp
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   516
    {fix z::'a
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   517
      assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z"
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   518
      from c0 have "norm c > 0" by simp
56403
ae4f904c98b0 tuned spaces
blanchet
parents: 55735
diff changeset
   519
      from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   520
        by (simp add: field_simps norm_mult)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   521
      have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith
56403
ae4f904c98b0 tuned spaces
blanchet
parents: 55735
diff changeset
   522
      from norm_diff_ineq[of "z * c" a ]
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   523
      have th1: "norm (z * c) \<le> norm (a + z * c) + norm a"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   524
        by (simp add: algebra_simps)
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   525
      from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   526
        using cs0' by simp}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   527
    then have ?case  by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   528
  ultimately show ?case by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   529
qed simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   530
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   531
text {* Hence polynomial's modulus attains its minimum somewhere. *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   532
lemma poly_minimum_modulus:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   533
  "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   534
proof(induct p)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   535
  case (pCons c cs)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   536
  {assume cs0: "cs \<noteq> 0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   537
    from poly_infinity[OF cs0, of "cmod (poly (pCons c cs) 0)" c]
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   538
    obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   539
    have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   540
    from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"]
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   541
    obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   542
    {fix z assume z: "r \<le> cmod z"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   543
      from v[of 0] r[OF z]
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   544
      have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   545
        by simp }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   546
    note v0 = this
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   547
    from v0 v ath[of r] have ?case by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   548
  moreover
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   549
  {assume cs0: "\<not> (cs \<noteq> 0)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   550
    hence th:"cs = 0" by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   551
    from th pCons.hyps have ?case by simp}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   552
  ultimately show ?case by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   553
qed simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   554
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   555
text{* Constant function (non-syntactic characterization). *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   556
definition "constant f = (\<forall>x y. f x = f y)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   557
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   558
lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> psize p \<ge> 2"
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   559
  unfolding constant_def psize_def
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   560
  apply (induct p, auto)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   561
  done
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   562
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   563
lemma poly_replicate_append:
31021
53642251a04f farewell to class recpower
haftmann
parents: 30488
diff changeset
   564
  "poly (monom 1 n * p) (x::'a::{comm_ring_1}) = x^n * poly p x"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   565
  by (simp add: poly_monom)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   566
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   567
text {* Decomposition of polynomial, skipping zero coefficients
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   568
  after the first.  *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   569
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   570
lemma poly_decompose_lemma:
31021
53642251a04f farewell to class recpower
haftmann
parents: 30488
diff changeset
   571
 assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{idom}))"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   572
  shows "\<exists>k a q. a\<noteq>0 \<and> Suc (psize q + k) = psize p \<and>
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   573
                 (\<forall>z. poly p z = z^k * poly (pCons a q) z)"
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   574
unfolding psize_def
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   575
using nz
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   576
proof(induct p)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   577
  case 0 thus ?case by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   578
next
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   579
  case (pCons c cs)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   580
  {assume c0: "c = 0"
32456
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 31337
diff changeset
   581
    from pCons.hyps pCons.prems c0 have ?case
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 31337
diff changeset
   582
      apply (auto)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   583
      apply (rule_tac x="k+1" in exI)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   584
      apply (rule_tac x="a" in exI, clarsimp)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   585
      apply (rule_tac x="q" in exI)
32456
341c83339aeb tuned the simp rules for Int involving insert and intervals.
nipkow
parents: 31337
diff changeset
   586
      by (auto)}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   587
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   588
  {assume c0: "c\<noteq>0"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   589
    have ?case 
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   590
      apply (rule exI[where x=0])
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   591
      apply (rule exI[where x=c], auto simp add: c0)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   592
      done}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   593
  ultimately show ?case by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   594
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   595
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   596
lemma poly_decompose:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   597
  assumes nc: "~constant(poly p)"
31021
53642251a04f farewell to class recpower
haftmann
parents: 30488
diff changeset
   598
  shows "\<exists>k a q. a\<noteq>(0::'a::{idom}) \<and> k\<noteq>0 \<and>
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   599
               psize q + k + 1 = psize p \<and>
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   600
              (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   601
using nc
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   602
proof(induct p)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   603
  case 0 thus ?case by (simp add: constant_def)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   604
next
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   605
  case (pCons c cs)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   606
  {assume C:"\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   607
    {fix x y
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   608
      from C have "poly (pCons c cs) x = poly (pCons c cs) y" by (cases "x=0", auto)}
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   609
    with pCons.prems have False by (auto simp add: constant_def)}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   610
  hence th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   611
  from poly_decompose_lemma[OF th]
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   612
  show ?case
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   613
    apply clarsimp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   614
    apply (rule_tac x="k+1" in exI)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   615
    apply (rule_tac x="a" in exI)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   616
    apply simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   617
    apply (rule_tac x="q" in exI)
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   618
    apply (auto simp add: psize_def split: if_splits)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   619
    done
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   620
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   621
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   622
text{* Fundamental theorem of algebra *}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   623
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   624
lemma fundamental_theorem_of_algebra:
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   625
  assumes nc: "~constant(poly p)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   626
  shows "\<exists>z::complex. poly p z = 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   627
using nc
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   628
proof(induct "psize p" arbitrary: p rule: less_induct)
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   629
  case less
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   630
  let ?p = "poly p"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   631
  let ?ths = "\<exists>z. ?p z = 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   632
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   633
  from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" .
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   634
  from poly_minimum_modulus obtain c where
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   635
    c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   636
  {assume pc: "?p c = 0" hence ?ths by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   637
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   638
  {assume pc0: "?p c \<noteq> 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   639
    from poly_offset[of p c] obtain q where
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   640
      q: "psize q = psize p" "\<forall>x. poly q x = ?p (c+x)" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   641
    {assume h: "constant (poly q)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   642
      from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   643
      {fix x y
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   644
        from th have "?p x = poly q (x - c)" by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   645
        also have "\<dots> = poly q (y - c)"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   646
          using h unfolding constant_def by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   647
        also have "\<dots> = ?p y" using th by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   648
        finally have "?p x = ?p y" .}
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   649
      with less(2) have False unfolding constant_def by blast }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   650
    hence qnc: "\<not> constant (poly q)" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   651
    from q(2) have pqc0: "?p c = poly q 0" by simp
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   652
    from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   653
    let ?a0 = "poly q 0"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   654
    from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   655
    from a00
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   656
    have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   657
      by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   658
    let ?r = "smult (inverse ?a0) q"
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   659
    have lgqr: "psize q = psize ?r"
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   660
      using a00 unfolding psize_def degree_def
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   661
      by (simp add: poly_eq_iff)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   662
    {assume h: "\<And>x y. poly ?r x = poly ?r y"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   663
      {fix x y
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   664
        from qr[rule_format, of x]
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   665
        have "poly q x = poly ?r x * ?a0" by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   666
        also have "\<dots> = poly ?r y * ?a0" using h by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   667
        also have "\<dots> = poly q y" using qr[rule_format, of y] by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   668
        finally have "poly q x = poly q y" .}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   669
      with qnc have False unfolding constant_def by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   670
    hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   671
    from qr[rule_format, of 0] a00  have r01: "poly ?r 0 = 1" by auto
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   672
    {fix w
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   673
      have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   674
        using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   675
      also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   676
        using a00 unfolding norm_divide by (simp add: field_simps)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   677
      finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   678
    note mrmq_eq = this
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   679
    from poly_decompose[OF rnc] obtain k a s where
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   680
      kas: "a\<noteq>0" "k\<noteq>0" "psize s + k + 1 = psize ?r"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   681
      "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   682
    {assume "psize p = k + 1"
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   683
      with kas(3) lgqr[symmetric] q(1) have s0:"s=0" by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   684
      {fix w
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   685
        have "cmod (poly ?r w) = cmod (1 + a * w ^ k)"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   686
          using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   687
      note hth = this [symmetric]
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   688
        from reduce_poly_simple[OF kas(1,2)]
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   689
      have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   690
    moreover
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   691
    {assume kn: "psize p \<noteq> k+1"
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   692
      from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" by simp
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   693
      have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   694
        unfolding constant_def poly_pCons poly_monom
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   695
        using kas(1) apply simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   696
        by (rule exI[where x=0], rule exI[where x=1], simp)
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
   697
      from kas(1) kas(2) have th02: "k+1 = psize (pCons 1 (monom a (k - 1)))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   698
        by (simp add: psize_def degree_monom_eq)
34915
7894c7dab132 Adapted to changes in induct method.
berghofe
parents: 32960
diff changeset
   699
      from less(1) [OF k1n [simplified th02] th01]
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   700
      obtain w where w: "1 + w^k * a = 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   701
        unfolding poly_pCons poly_monom
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   702
        using kas(2) by (cases k, auto simp add: algebra_simps)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   703
      from poly_bound_exists[of "cmod w" s] obtain m where
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   704
        m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   705
      have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   706
      from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   707
      then have wm1: "w^k * a = - 1" by simp
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   708
      have inv0: "0 < inverse (cmod w ^ (k + 1) * m)"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   709
        using norm_ge_zero[of w] w0 m(1)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   710
          by (simp add: inverse_eq_divide zero_less_mult_iff)
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   711
      with real_lbound_gt_zero[OF zero_less_one] obtain t where
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   712
        t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   713
      let ?ct = "complex_of_real t"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   714
      let ?w = "?ct * w"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29538
diff changeset
   715
      have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: algebra_simps power_mult_distrib)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   716
      also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   717
        unfolding wm1 by (simp)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   718
      finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   719
        by metis
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   720
      with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"]
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   721
      have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding norm_of_real by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   722
      have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith
56403
ae4f904c98b0 tuned spaces
blanchet
parents: 55735
diff changeset
   723
      have "t * cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   724
      then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: norm_mult)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   725
      from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   726
        by (simp add: inverse_eq_divide field_simps)
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   727
      with zero_less_power[OF t(1), of k]
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   728
      have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   729
        by (metis comm_mult_strict_left_mono)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   730
      have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))"  using w0 t(1)
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   731
        by (simp add: algebra_simps power_mult_distrib norm_power norm_mult)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   732
      then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   733
        using t(1,2) m(2)[rule_format, OF tw] w0
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   734
        by auto
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   735
      with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   736
      from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   737
        by auto
27514
6fcf6864d703 remove redundant lemmas about cmod
huffman
parents: 27445
diff changeset
   738
      from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121]
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   739
      have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" .
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   740
      from th11 th12
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   741
      have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"  by arith
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   742
      then have "cmod (poly ?r ?w) < 1"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   743
        unfolding kas(4)[rule_format, of ?w] r01 by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   744
      then have "\<exists>w. cmod (poly ?r w) < 1" by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   745
    ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   746
    from cr0_contr cq0 q(2)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   747
    have ?ths unfolding mrmq_eq not_less[symmetric] by auto}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   748
  ultimately show ?ths by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   749
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   750
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   751
text {* Alternative version with a syntactic notion of constant polynomial. *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   752
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   753
lemma fundamental_theorem_of_algebra_alt:
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   754
  assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> l = 0 \<and> p = pCons a l)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   755
  shows "\<exists>z. poly p z = (0::complex)"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   756
using nc
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   757
proof(induct p)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   758
  case (pCons c cs)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   759
  {assume "c=0" hence ?case by auto}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   760
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   761
  {assume c0: "c\<noteq>0"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   762
    {assume nc: "constant (poly (pCons c cs))"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   763
      from nc[unfolded constant_def, rule_format, of 0]
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   764
      have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   765
      hence "cs = 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   766
        proof(induct cs)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   767
          case (pCons d ds)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   768
          {assume "d=0" hence ?case using pCons.prems pCons.hyps by simp}
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   769
          moreover
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   770
          {assume d0: "d\<noteq>0"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   771
            from poly_bound_exists[of 1 ds] obtain m where
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   772
              m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   773
            have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps)
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   774
            from real_lbound_gt_zero[OF dm zero_less_one] obtain x where
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   775
              x: "x > 0" "x < cmod d / m" "x < 1" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   776
            let ?x = "complex_of_real x"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   777
            from x have cx: "?x \<noteq> 0"  "cmod ?x \<le> 1" by simp_all
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   778
            from pCons.prems[rule_format, OF cx(1)]
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   779
            have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric])
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   780
            from m(2)[rule_format, OF cx(2)] x(1)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   781
            have th0: "cmod (?x*poly ds ?x) \<le> x*m"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   782
              by (simp add: norm_mult)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   783
            from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   784
            with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   785
            with cth  have ?case by blast}
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   786
          ultimately show ?case by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   787
        qed simp}
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   788
      then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems c0
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   789
        by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   790
      from fundamental_theorem_of_algebra[OF nc] have ?case .}
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   791
  ultimately show ?case by blast
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   792
qed simp
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   793
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   794
37093
8808a1aa12a2 Typo fixed.
webertj
parents: 36975
diff changeset
   795
subsection{* Nullstellensatz, degrees and divisibility of polynomials *}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   796
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   797
lemma nullstellensatz_lemma:
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   798
  fixes p :: "complex poly"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   799
  assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   800
  and "degree p = n" and "n \<noteq> 0"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   801
  shows "p dvd (q ^ n)"
41529
ba60efa2fd08 eliminated global prems;
wenzelm
parents: 37887
diff changeset
   802
using assms
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   803
proof(induct n arbitrary: p q rule: nat_less_induct)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   804
  fix n::nat fix p q :: "complex poly"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   805
  assume IH: "\<forall>m<n. \<forall>p q.
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   806
                 (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   807
                 degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   808
    and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   809
    and dpn: "degree p = n" and n0: "n \<noteq> 0"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   810
  from dpn n0 have pne: "p \<noteq> 0" by auto
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   811
  let ?ths = "p dvd (q ^ n)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   812
  {fix a assume a: "poly p a = 0"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   813
    {assume oa: "order a p \<noteq> 0"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   814
      let ?op = "order a p"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   815
      from pne have ap: "([:- a, 1:] ^ ?op) dvd p"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   816
        "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" using order by blast+
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   817
      note oop = order_degree[OF pne, unfolded dpn]
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   818
      {assume q0: "q = 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   819
        hence ?ths using n0
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   820
          by (simp add: power_0_left)}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   821
      moreover
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   822
      {assume q0: "q \<noteq> 0"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   823
        from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd]
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   824
        obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   825
        from ap(1) obtain s where
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   826
          s: "p = [:- a, 1:] ^ ?op * s" by (rule dvdE)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   827
        have sne: "s \<noteq> 0"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   828
          using s pne by auto
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   829
        {assume ds0: "degree s = 0"
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   830
          from ds0 obtain k where kpn: "s = [:k:]"
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   831
            by (cases s) (auto split: if_splits)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   832
          from sne kpn have k: "k \<noteq> 0" by simp
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   833
          let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   834
          have "q ^ n = p * ?w"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   835
            apply (subst r, subst s, subst kpn)
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   836
            using k oop [of a] 
29472
a63a2e46cec9 declare smult rules [simp]
huffman
parents: 29470
diff changeset
   837
            apply (subst power_mult_distrib, simp)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   838
            apply (subst power_add [symmetric], simp)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   839
            done
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   840
          hence ?ths unfolding dvd_def by blast}
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   841
        moreover
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   842
        {assume ds0: "degree s \<noteq> 0"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   843
          from ds0 sne dpn s oa
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   844
            have dsn: "degree s < n" apply auto
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   845
              apply (erule ssubst)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   846
              apply (simp add: degree_mult_eq degree_linear_power)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   847
              done
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   848
            {fix x assume h: "poly s x = 0"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   849
              {assume xa: "x = a"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   850
                from h[unfolded xa poly_eq_0_iff_dvd] obtain u where
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   851
                  u: "s = [:- a, 1:] * u" by (rule dvdE)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   852
                have "p = [:- a, 1:] ^ (Suc ?op) * u"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   853
                  by (subst s, subst u, simp only: power_Suc mult_ac)
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   854
                with ap(2)[unfolded dvd_def] have False by blast}
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   855
              note xa = this
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   856
              from h have "poly p x = 0" by (subst s, simp)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   857
              with pq0 have "poly q x = 0" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   858
              with r xa have "poly r x = 0"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   859
                by auto}
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   860
            note impth = this
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   861
            from IH[rule_format, OF dsn, of s r] impth ds0
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   862
            have "s dvd (r ^ (degree s))" by blast
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   863
            then obtain u where u: "r ^ (degree s) = s * u" ..
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   864
            hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
29470
1851088a1f87 convert Deriv.thy to use new Polynomial library (incomplete)
huffman
parents: 29464
diff changeset
   865
              by (simp only: poly_mult[symmetric] poly_power[symmetric])
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   866
            let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   867
            from oop[of a] dsn have "q ^ n = p * ?w"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   868
              apply -
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   869
              apply (subst s, subst r)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   870
              apply (simp only: power_mult_distrib)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   871
              apply (subst mult_assoc [where b=s])
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   872
              apply (subst mult_assoc [where a=u])
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   873
              apply (subst mult_assoc [where b=u, symmetric])
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   874
              apply (subst u [symmetric])
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   875
              apply (simp add: mult_ac power_add [symmetric])
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   876
              done
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   877
            hence ?ths unfolding dvd_def by blast}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   878
      ultimately have ?ths by blast }
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   879
      ultimately have ?ths by blast}
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   880
    then have ?ths using a order_root pne by blast}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   881
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   882
  {assume exa: "\<not> (\<exists>a. poly p a = 0)"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   883
    from fundamental_theorem_of_algebra_alt[of p] exa obtain c where
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   884
      ccs: "c\<noteq>0" "p = pCons c 0" by blast
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   885
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   886
    then have pp: "\<And>x. poly p x =  c" by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   887
    let ?w = "[:1/c:] * (q ^ n)"
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   888
    from ccs have "(q ^ n) = (p * ?w)" by simp
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   889
    hence ?ths unfolding dvd_def by blast}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   890
  ultimately show ?ths by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   891
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   892
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   893
lemma nullstellensatz_univariate:
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   894
  "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow>
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   895
    p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   896
proof-
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   897
  {assume pe: "p = 0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   898
    hence eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0"
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   899
      by (auto simp add: poly_all_0_iff_0)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   900
    {assume "p dvd (q ^ (degree p))"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   901
      then obtain r where r: "q ^ (degree p) = p * r" ..
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   902
      from r pe have False by simp}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   903
    with eq pe have ?thesis by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   904
  moreover
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   905
  {assume pe: "p \<noteq> 0"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   906
    {assume dp: "degree p = 0"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   907
      then obtain k where k: "p = [:k:]" "k\<noteq>0" using pe
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   908
        by (cases p) (simp split: if_splits)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   909
      hence th1: "\<forall>x. poly p x \<noteq> 0" by simp
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   910
      from k dp have "q ^ (degree p) = p * [:1/k:]"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   911
        by (simp add: one_poly_def)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   912
      hence th2: "p dvd (q ^ (degree p))" ..
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   913
      from th1 th2 pe have ?thesis by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   914
    moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   915
    {assume dp: "degree p \<noteq> 0"
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   916
      then obtain n where n: "degree p = Suc n " by (cases "degree p", auto)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   917
      {assume "p dvd (q ^ (Suc n))"
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   918
        then obtain u where u: "q ^ (Suc n) = p * u" ..
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   919
        {fix x assume h: "poly p x = 0" "poly q x \<noteq> 0"
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   920
          hence "poly (q ^ (Suc n)) x \<noteq> 0" by simp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   921
          hence False using u h(1) by (simp only: poly_mult) simp}}
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   922
        with n nullstellensatz_lemma[of p q "degree p"] dp
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 32456
diff changeset
   923
        have ?thesis by auto}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   924
    ultimately have ?thesis by blast}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   925
  ultimately show ?thesis by blast
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   926
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   927
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   928
text{* Useful lemma *}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   929
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   930
lemma constant_degree:
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   931
  fixes p :: "'a::{idom,ring_char_0} poly"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   932
  shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   933
proof
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   934
  assume l: ?lhs
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   935
  from l[unfolded constant_def, rule_format, of _ "0"]
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   936
  have th: "poly p = poly [:poly p 0:]" apply - by (rule ext, simp)
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
   937
  then have "p = [:poly p 0:]" by (simp add: poly_eq_poly_eq_iff)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   938
  then have "degree p = degree [:poly p 0:]" by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   939
  then show ?rhs by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   940
next
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   941
  assume r: ?rhs
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   942
  then obtain k where "p = [:k:]"
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
   943
    by (cases p) (simp split: if_splits)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   944
  then show ?lhs unfolding constant_def by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   945
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   946
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   947
lemma divides_degree: assumes pq: "p dvd (q:: complex poly)"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   948
  shows "degree p \<le> degree q \<or> q = 0"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
   949
by (metis dvd_imp_degree_le pq)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   950
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   951
(* Arithmetic operations on multivariate polynomials.                        *)
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   952
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   953
lemma mpoly_base_conv:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   954
  fixes x :: "'a::comm_ring_1" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   955
  shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x"
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   956
  by simp_all
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   957
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   958
lemma mpoly_norm_conv:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   959
  fixes x :: "'a::comm_ring_1" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   960
  shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x" by simp_all
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   961
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   962
lemma mpoly_sub_conv:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   963
  fixes x :: "'a::comm_ring_1" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   964
  shows "poly p x - poly q x = poly p x + -1 * poly q x"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53077
diff changeset
   965
  by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   966
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   967
lemma poly_pad_rule: "poly p x = 0 ==> poly (pCons 0 p) x = 0" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   968
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   969
lemma poly_cancel_eq_conv:
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   970
  fixes x :: "'a::field" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   971
  shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (y = 0) = (a * y - b * x = 0)" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   972
  by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   973
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   974
lemma poly_divides_pad_rule:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   975
  fixes p:: "('a::comm_ring_1) poly" 
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   976
  assumes pq: "p dvd q"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   977
shows "p dvd (pCons 0 q)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   978
proof-
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   979
  have "pCons 0 q = q * [:0,1:]" by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   980
  then have "q dvd (pCons 0 q)" ..
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   981
  with pq show ?thesis by (rule dvd_trans)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   982
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   983
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   984
lemma poly_divides_conv0:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
   985
  fixes p:: "('a::field) poly" 
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   986
  assumes lgpq: "degree q < degree p" and lq:"p \<noteq> 0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   987
  shows "p dvd q \<equiv> q = 0" (is "?lhs \<equiv> ?rhs")
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   988
proof-
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
   989
  {assume r: ?rhs
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   990
    hence "q = p * 0" by simp
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   991
    hence ?lhs ..}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   992
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   993
  {assume l: ?lhs
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   994
    {assume q0: "q = 0"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   995
      hence ?rhs by simp}
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
   996
    moreover
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   997
    {assume q0: "q \<noteq> 0"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   998
      from l q0 have "degree p \<le> degree q"
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
   999
        by (rule dvd_imp_degree_le)
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1000
      with lgpq have ?rhs by simp }
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1001
    ultimately have ?rhs by blast }
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1002
  ultimately show "?lhs \<equiv> ?rhs" by - (atomize (full), blast)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1003
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1004
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1005
lemma poly_divides_conv1:
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1006
  fixes p:: "('a::field) poly" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1007
  assumes a0: "a\<noteq> 0" and pp': "p dvd p'"
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1008
  and qrp': "smult a q - p' \<equiv> r"
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1009
  shows "p dvd q \<equiv> p dvd r" (is "?lhs \<equiv> ?rhs")
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1010
proof-
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1011
  {
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1012
  from pp' obtain t where t: "p' = p * t" ..
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1013
  {assume l: ?lhs
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1014
    then obtain u where u: "q = p * u" ..
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1015
     have "r = p * (smult a u - t)"
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
  1016
       using u qrp' [symmetric] t by (simp add: algebra_simps)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1017
     then have ?rhs ..}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1018
  moreover
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1019
  {assume r: ?rhs
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1020
    then obtain u where u: "r = p * u" ..
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1021
    from u [symmetric] t qrp' [symmetric] a0
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
  1022
    have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1023
    hence ?lhs ..}
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1024
  ultimately have "?lhs = ?rhs" by blast }
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1025
thus "?lhs \<equiv> ?rhs"  by - (atomize(full), blast)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1026
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1027
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1028
lemma basic_cqe_conv1:
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1029
  "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1030
  "(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1031
  "(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c\<noteq>0"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1032
  "(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1033
  "(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0" by simp_all
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1034
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1035
lemma basic_cqe_conv2:
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1036
  assumes l:"p \<noteq> 0"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1037
  shows "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex))"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1038
proof-
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1039
  {fix h t
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1040
    assume h: "h\<noteq>0" "t=0"  "pCons a (pCons b p) = pCons h t"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1041
    with l have False by simp}
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1042
  hence th: "\<not> (\<exists> h t. h\<noteq>0 \<and> t=0 \<and> pCons a (pCons b p) = pCons h t)"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1043
    by blast
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1044
  from fundamental_theorem_of_algebra_alt[OF th]
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1045
  show ?thesis by auto
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1046
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1047
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1048
lemma  basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> (p \<noteq> 0)"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1049
by (metis poly_all_0_iff_0)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1050
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1051
lemma basic_cqe_conv3:
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1052
  fixes p q :: "complex poly"
30488
5c4c3a9e9102 remove trailing spaces
huffman
parents: 30242
diff changeset
  1053
  assumes l: "p \<noteq> 0"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1054
  shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> ((pCons a p) dvd (q ^ (psize p)))"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1055
proof -
29538
5cc98af1398d rename plength to psize
huffman
parents: 29485
diff changeset
  1056
  from l have dp:"degree (pCons a p) = psize p" by (simp add: psize_def)
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1057
  from nullstellensatz_univariate[of "pCons a p" q] l
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1058
  show ?thesis
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1059
    by (metis dp pCons_eq_0_iff)
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1060
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1061
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1062
lemma basic_cqe_conv4:
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1063
  fixes p q :: "complex poly"
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1064
  assumes h: "\<And>x. poly (q ^ n) x = poly r x"
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1065
  shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r"
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1066
proof-
51541
e7b6b61b7be2 tuned proofs;
wenzelm
parents: 51537
diff changeset
  1067
  from h have "poly (q ^ n) = poly r" by auto
52380
3cc46b8cca5e lifting for primitive definitions;
haftmann
parents: 51541
diff changeset
  1068
  then have "(q ^ n) = r" by (simp add: poly_eq_poly_eq_iff)
55358
85d81bc281d0 Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
paulson <lp15@cam.ac.uk>
parents: 54489
diff changeset
  1069
  thus "p dvd (q ^ n) \<longleftrightarrow> p dvd r" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1070
qed
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1071
55735
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1072
lemma poly_const_conv:
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1073
  fixes x :: "'a::comm_ring_1" 
81ba62493610 generalised some results using type classes
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1074
  shows "poly [:c:] x = y \<longleftrightarrow> c = y" by simp
26123
44384b5c4fc0 A proof a the fundamental theorem of algebra
chaieb
parents:
diff changeset
  1075
29464
c0d225a7f6ff convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
huffman
parents: 29292
diff changeset
  1076
end