author | wenzelm |
Thu, 12 May 2011 17:17:57 +0200 | |
changeset 42765 | aec61b60ff7b |
parent 35416 | d8d7d1b785af |
permissions | -rw-r--r-- |
21324 | 1 |
(*<*)theory FP1 imports Main begin(*>*) |
13262 | 2 |
|
14138 | 3 |
subsection{*Quickcheck*} |
4 |
||
5 |
lemma "rev(xs @ ys) = rev xs @ rev ys" |
|
6 |
quickcheck |
|
7 |
oops |
|
8 |
||
9 |
subsection{*More Syntax*} |
|
10 |
||
13262 | 11 |
lemma "if xs = ys |
12 |
then rev xs = rev ys |
|
13 |
else rev xs \<noteq> rev ys" |
|
14 |
by auto |
|
15 |
||
16 |
lemma "case xs of |
|
17 |
[] \<Rightarrow> tl xs = xs |
|
18 |
| y#ys \<Rightarrow> tl xs \<noteq> xs" |
|
19 |
apply(case_tac xs) |
|
20 |
by auto |
|
21 |
||
22 |
||
23 |
subsection{*More Types*} |
|
24 |
||
25 |
||
26 |
subsubsection{*Natural Numbers*} |
|
27 |
||
28 |
consts sum :: "nat \<Rightarrow> nat" |
|
29 |
primrec "sum 0 = 0" |
|
30 |
"sum (Suc n) = Suc n + sum n" |
|
31 |
||
32 |
lemma "sum n + sum n = n*(Suc n)" |
|
33 |
apply(induct_tac n) |
|
34 |
apply(auto) |
|
35 |
done |
|
36 |
||
37 |
text{*Some examples of linear arithmetic:*} |
|
38 |
||
39 |
lemma "\<lbrakk> \<not> m < n; m < n+(1::int) \<rbrakk> \<Longrightarrow> m = n" |
|
40 |
by(auto) |
|
41 |
||
42 |
lemma "min i (max j k) = max (min k i) (min i (j::nat))" |
|
43 |
by(arith) |
|
44 |
||
14138 | 45 |
text{*Full Presburger arithmetic:*} |
46 |
lemma "8 \<le> (n::int) \<Longrightarrow> \<exists>i j. 0\<le>i \<and> 0\<le>j \<and> n = 3*i + 5*j" |
|
47 |
by(arith) |
|
48 |
||
13262 | 49 |
text{*Not proved automatically because it involves multiplication:*} |
50 |
lemma "n*n = n \<Longrightarrow> n=0 \<or> n=(1::int)" |
|
51 |
(*<*)oops(*>*) |
|
52 |
||
53 |
||
54 |
subsubsection{*Pairs*} |
|
55 |
||
56 |
lemma "fst(x,y) = snd(z,x)" |
|
57 |
by auto |
|
58 |
||
59 |
||
60 |
subsection{*Definitions*} |
|
61 |
||
62 |
consts xor :: "bool \<Rightarrow> bool \<Rightarrow> bool" |
|
63 |
defs xor_def: "xor x y \<equiv> x \<and> \<not>y \<or> \<not>x \<and> y" |
|
64 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
21324
diff
changeset
|
65 |
definition nand :: "bool \<Rightarrow> bool \<Rightarrow> bool" where |
13262 | 66 |
"nand x y \<equiv> \<not>(x \<and> y)" |
67 |
||
68 |
lemma "\<not> xor x x" |
|
69 |
apply(unfold xor_def) |
|
70 |
by auto |
|
71 |
||
72 |
||
73 |
||
74 |
subsection{*Simplification*} |
|
75 |
||
76 |
||
77 |
subsubsection{*Simplification Rules*} |
|
78 |
||
79 |
lemma fst_conv[simp]: "fst(x,y) = x" |
|
80 |
by auto |
|
81 |
||
82 |
text{*Setting and resetting the @{text simp} attribute:*} |
|
83 |
||
84 |
declare fst_conv[simp] |
|
85 |
declare fst_conv[simp del] |
|
86 |
||
87 |
||
88 |
subsubsection{*The Simplification Method*} |
|
89 |
||
90 |
lemma "x*(y+1) = y*(x+1::nat)" |
|
91 |
apply simp |
|
92 |
(*<*)oops(*>*) |
|
93 |
||
94 |
||
95 |
subsubsection{*Adding and Deleting Simplification Rules*} |
|
96 |
||
97 |
lemma "\<forall>x::nat. x*(y+z) = r" |
|
98 |
apply (simp add: add_mult_distrib2) |
|
99 |
(*<*)oops(*>*)text_raw{* \isanewline\isanewline *} |
|
100 |
||
101 |
lemma "rev(rev(xs @ [])) = xs" |
|
102 |
apply (simp del: rev_rev_ident) |
|
103 |
(*<*)oops(*>*) |
|
104 |
||
105 |
||
106 |
subsubsection{*Rewriting with Definitions*} |
|
107 |
||
108 |
lemma "xor A (\<not>A)" |
|
109 |
apply(simp only: xor_def) |
|
110 |
apply simp |
|
111 |
done |
|
112 |
||
113 |
||
114 |
subsubsection{*Conditional Equations*} |
|
115 |
||
13489 | 116 |
(*<*)thm hd_Cons_tl(*>*) |
117 |
text{*A pre-proved simplification rule: @{thm hd_Cons_tl[no_vars]}*} |
|
118 |
lemma "hd(xs @ [x]) # tl(xs @ [x]) = xs @ [x]" |
|
13262 | 119 |
by simp |
120 |
||
121 |
||
122 |
subsubsection{*Automatic Case Splits*} |
|
123 |
||
124 |
lemma "\<forall>xs. if xs = [] then A else B" |
|
125 |
apply simp |
|
126 |
(*<*)oops(*>*) |
|
13489 | 127 |
text{*Case-expressions are only split on demand.*} |
13262 | 128 |
|
129 |
||
130 |
subsubsection{*Arithmetic*} |
|
131 |
||
13489 | 132 |
text{*Only simple arithmetic:*} |
13262 | 133 |
lemma "\<lbrakk> \<not> m < n; m < n+(1::nat) \<rbrakk> \<Longrightarrow> m = n" |
134 |
by simp |
|
13489 | 135 |
text{*\noindent Complex goals need @{text arith}-method.*} |
13262 | 136 |
|
137 |
(*<*) |
|
138 |
subsubsection{*Tracing*} |
|
139 |
||
140 |
lemma "rev [a] = []" |
|
141 |
apply(simp) |
|
142 |
oops |
|
143 |
(*>*) |
|
144 |
||
145 |
||
146 |
subsection{*Case Study: Compiling Expressions*} |
|
147 |
||
148 |
||
149 |
subsubsection{*Expressions*} |
|
150 |
||
42765 | 151 |
type_synonym 'v binop = "'v \<Rightarrow> 'v \<Rightarrow> 'v" |
13262 | 152 |
|
153 |
datatype ('a,'v)expr = Cex 'v |
|
154 |
| Vex 'a |
|
155 |
| Bex "'v binop" "('a,'v)expr" "('a,'v)expr" |
|
156 |
||
17656 | 157 |
consts "value" :: "('a,'v)expr \<Rightarrow> ('a \<Rightarrow> 'v) \<Rightarrow> 'v" |
13262 | 158 |
primrec |
159 |
"value (Cex v) env = v" |
|
160 |
"value (Vex a) env = env a" |
|
161 |
"value (Bex f e1 e2) env = f (value e1 env) (value e2 env)" |
|
162 |
||
163 |
||
164 |
subsubsection{*The Stack Machine*} |
|
165 |
||
166 |
datatype ('a,'v) instr = Const 'v |
|
167 |
| Load 'a |
|
168 |
| Apply "'v binop" |
|
169 |
||
170 |
consts exec :: "('a,'v)instr list \<Rightarrow> ('a\<Rightarrow>'v) \<Rightarrow> 'v list \<Rightarrow> 'v list" |
|
171 |
primrec |
|
172 |
"exec [] s vs = vs" |
|
173 |
"exec (i#is) s vs = (case i of |
|
174 |
Const v \<Rightarrow> exec is s (v#vs) |
|
175 |
| Load a \<Rightarrow> exec is s ((s a)#vs) |
|
176 |
| Apply f \<Rightarrow> exec is s ((f (hd vs) (hd(tl vs)))#(tl(tl vs))))" |
|
177 |
||
178 |
||
179 |
subsubsection{*The Compiler*} |
|
180 |
||
14138 | 181 |
consts compile :: "('a,'v)expr \<Rightarrow> ('a,'v)instr list" |
13262 | 182 |
primrec |
14138 | 183 |
"compile (Cex v) = [Const v]" |
184 |
"compile (Vex a) = [Load a]" |
|
185 |
"compile (Bex f e1 e2) = (compile e2) @ (compile e1) @ [Apply f]" |
|
13262 | 186 |
|
14138 | 187 |
theorem "exec (compile e) s [] = [value e s]" |
13262 | 188 |
(*<*)oops(*>*) |
189 |
||
190 |
||
191 |
||
192 |
subsection{*Advanced Datatypes*} |
|
193 |
||
194 |
||
195 |
subsubsection{*Mutual Recursion*} |
|
196 |
||
197 |
datatype 'a aexp = IF "'a bexp" "'a aexp" "'a aexp" |
|
198 |
| Sum "'a aexp" "'a aexp" |
|
199 |
| Var 'a |
|
200 |
| Num nat |
|
201 |
and 'a bexp = Less "'a aexp" "'a aexp" |
|
202 |
| And "'a bexp" "'a bexp" |
|
203 |
| Neg "'a bexp" |
|
204 |
||
205 |
||
206 |
consts evala :: "'a aexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> nat" |
|
207 |
evalb :: "'a bexp \<Rightarrow> ('a \<Rightarrow> nat) \<Rightarrow> bool" |
|
208 |
||
209 |
primrec |
|
210 |
"evala (IF b a1 a2) env = |
|
211 |
(if evalb b env then evala a1 env else evala a2 env)" |
|
212 |
"evala (Sum a1 a2) env = evala a1 env + evala a2 env" |
|
213 |
"evala (Var v) env = env v" |
|
214 |
"evala (Num n) env = n" |
|
215 |
||
216 |
"evalb (Less a1 a2) env = (evala a1 env < evala a2 env)" |
|
217 |
"evalb (And b1 b2) env = (evalb b1 env \<and> evalb b2 env)" |
|
218 |
"evalb (Neg b) env = (\<not> evalb b env)" |
|
219 |
||
220 |
consts substa :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a aexp \<Rightarrow> 'b aexp" |
|
221 |
substb :: "('a \<Rightarrow> 'b aexp) \<Rightarrow> 'a bexp \<Rightarrow> 'b bexp" |
|
222 |
||
223 |
primrec |
|
224 |
"substa s (IF b a1 a2) = |
|
225 |
IF (substb s b) (substa s a1) (substa s a2)" |
|
226 |
"substa s (Sum a1 a2) = Sum (substa s a1) (substa s a2)" |
|
227 |
"substa s (Var v) = s v" |
|
228 |
"substa s (Num n) = Num n" |
|
229 |
||
230 |
"substb s (Less a1 a2) = Less (substa s a1) (substa s a2)" |
|
231 |
"substb s (And b1 b2) = And (substb s b1) (substb s b2)" |
|
232 |
"substb s (Neg b) = Neg (substb s b)" |
|
233 |
||
234 |
lemma substitution_lemma: |
|
235 |
"evala (substa s a) env = evala a (\<lambda>x. evala (s x) env) \<and> |
|
236 |
evalb (substb s b) env = evalb b (\<lambda>x. evala (s x) env)" |
|
237 |
apply(induct_tac a and b) |
|
238 |
by simp_all |
|
239 |
||
240 |
||
241 |
subsubsection{*Nested Recursion*} |
|
242 |
||
14138 | 243 |
datatype tree = Tree "tree list" |
13262 | 244 |
|
245 |
text{*Some trees:*} |
|
14138 | 246 |
term "Tree []" |
247 |
term "Tree [Tree [Tree []], Tree []]" |
|
13262 | 248 |
|
249 |
consts |
|
250 |
mirror :: "tree \<Rightarrow> tree" |
|
251 |
mirrors:: "tree list \<Rightarrow> tree list" |
|
252 |
||
253 |
primrec |
|
14138 | 254 |
"mirror(Tree ts) = Tree(mirrors ts)" |
13262 | 255 |
|
256 |
"mirrors [] = []" |
|
257 |
"mirrors (t # ts) = mirrors ts @ [mirror t]" |
|
258 |
||
259 |
lemma "mirror(mirror t) = t \<and> mirrors(mirrors ts) = ts" |
|
260 |
apply(induct_tac t and ts) |
|
261 |
apply simp_all |
|
262 |
(*<*)oops(*>*) |
|
263 |
||
264 |
text{* |
|
265 |
\begin{exercise} |
|
266 |
Complete the above proof. |
|
267 |
\end{exercise} |
|
268 |
*} |
|
269 |
||
270 |
subsubsection{*Datatypes Involving Functions*} |
|
271 |
||
272 |
datatype ('a,'i)bigtree = Tip | Br 'a "'i \<Rightarrow> ('a,'i)bigtree" |
|
273 |
||
274 |
text{*A big tree:*} |
|
275 |
term "Br 0 (\<lambda>i. Br i (\<lambda>n. Tip))" |
|
276 |
||
277 |
consts map_bt :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a,'i)bigtree \<Rightarrow> ('b,'i)bigtree" |
|
278 |
primrec |
|
279 |
"map_bt f Tip = Tip" |
|
280 |
"map_bt f (Br a F) = Br (f a) (\<lambda>i. map_bt f (F i))" |
|
281 |
||
282 |
lemma "map_bt (g o f) T = map_bt g (map_bt f T)" |
|
283 |
apply(induct_tac T, rename_tac[2] F) |
|
284 |
apply simp_all |
|
285 |
done |
|
286 |
||
14138 | 287 |
text{*The ordinals:*} |
288 |
datatype ord = Zero | Succ ord | Lim "nat \<Rightarrow> ord" |
|
289 |
||
290 |
thm ord.induct[no_vars] |
|
291 |
||
292 |
instance ord :: plus .. |
|
293 |
instance ord :: times .. |
|
294 |
||
295 |
primrec |
|
296 |
"a + Zero = a" |
|
297 |
"a + Succ b = Succ(a+b)" |
|
298 |
"a + Lim F = Lim(\<lambda>n. a + F n)" |
|
299 |
||
300 |
primrec |
|
301 |
"a * Zero = Zero" |
|
302 |
"a * Succ b = a*b + a" |
|
303 |
"a * Lim F = Lim(\<lambda>n. a * F n)" |
|
304 |
||
305 |
text{*An example provided by Stan Wainer:*} |
|
306 |
consts H :: "ord \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat)" |
|
307 |
primrec |
|
308 |
"H Zero f n = n" |
|
309 |
"H (Succ b) f n = H b f (f n)" |
|
310 |
"H (Lim F) f n = H (F n) f n" |
|
311 |
||
312 |
lemma [simp]: "H (a+b) f = H a f \<circ> H b f" |
|
313 |
apply(induct b) |
|
314 |
apply auto |
|
315 |
done |
|
316 |
||
317 |
lemma [simp]: "H (a*b) = H b \<circ> H a" |
|
318 |
apply(induct b) |
|
319 |
apply auto |
|
320 |
done |
|
321 |
||
13262 | 322 |
text{* This is \emph{not} allowed: |
323 |
\begin{verbatim} |
|
324 |
datatype lambda = C "lambda => lambda" |
|
325 |
\end{verbatim} |
|
326 |
||
327 |
\begin{exercise} |
|
14138 | 328 |
Define the ordinal $\Gamma_0$. |
13262 | 329 |
\end{exercise} |
330 |
*} |
|
331 |
(*<*)end(*>*) |