author | haftmann |
Tue, 16 Oct 2007 23:12:45 +0200 | |
changeset 25062 | af5ef0d4d655 |
parent 21404 | eb85850d3eb7 |
child 35762 | af3ff2ba4c54 |
permissions | -rw-r--r-- |
1474 | 1 |
(* Title: CTT/bool |
0 | 2 |
ID: $Id$ |
1474 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1991 University of Cambridge |
5 |
*) |
|
6 |
||
17441 | 7 |
header {* The two-element type (booleans and conditionals) *} |
8 |
||
9 |
theory Bool |
|
10 |
imports CTT |
|
11 |
begin |
|
0 | 12 |
|
19762 | 13 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
14 |
Bool :: "t" where |
19761 | 15 |
"Bool == T+T" |
16 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
17 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
18 |
true :: "i" where |
19761 | 19 |
"true == inl(tt)" |
20 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
21 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
22 |
false :: "i" where |
19761 | 23 |
"false == inr(tt)" |
24 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
25 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
26 |
cond :: "[i,i,i]=>i" where |
19761 | 27 |
"cond(a,b,c) == when(a, %u. b, %u. c)" |
28 |
||
29 |
lemmas bool_defs = Bool_def true_def false_def cond_def |
|
30 |
||
31 |
||
32 |
subsection {* Derivation of rules for the type Bool *} |
|
33 |
||
34 |
(*formation rule*) |
|
35 |
lemma boolF: "Bool type" |
|
36 |
apply (unfold bool_defs) |
|
37 |
apply (tactic "typechk_tac []") |
|
38 |
done |
|
39 |
||
40 |
||
41 |
(*introduction rules for true, false*) |
|
42 |
||
43 |
lemma boolI_true: "true : Bool" |
|
44 |
apply (unfold bool_defs) |
|
45 |
apply (tactic "typechk_tac []") |
|
46 |
done |
|
47 |
||
48 |
lemma boolI_false: "false : Bool" |
|
49 |
apply (unfold bool_defs) |
|
50 |
apply (tactic "typechk_tac []") |
|
51 |
done |
|
17441 | 52 |
|
19761 | 53 |
(*elimination rule: typing of cond*) |
54 |
lemma boolE: |
|
55 |
"[| p:Bool; a : C(true); b : C(false) |] ==> cond(p,a,b) : C(p)" |
|
56 |
apply (unfold bool_defs) |
|
57 |
apply (tactic "typechk_tac []") |
|
58 |
apply (erule_tac [!] TE) |
|
59 |
apply (tactic "typechk_tac []") |
|
60 |
done |
|
61 |
||
62 |
lemma boolEL: |
|
63 |
"[| p = q : Bool; a = c : C(true); b = d : C(false) |] |
|
64 |
==> cond(p,a,b) = cond(q,c,d) : C(p)" |
|
65 |
apply (unfold bool_defs) |
|
66 |
apply (rule PlusEL) |
|
67 |
apply (erule asm_rl refl_elem [THEN TEL])+ |
|
68 |
done |
|
69 |
||
70 |
(*computation rules for true, false*) |
|
71 |
||
72 |
lemma boolC_true: |
|
73 |
"[| a : C(true); b : C(false) |] ==> cond(true,a,b) = a : C(true)" |
|
74 |
apply (unfold bool_defs) |
|
75 |
apply (rule comp_rls) |
|
76 |
apply (tactic "typechk_tac []") |
|
77 |
apply (erule_tac [!] TE) |
|
78 |
apply (tactic "typechk_tac []") |
|
79 |
done |
|
80 |
||
81 |
lemma boolC_false: |
|
82 |
"[| a : C(true); b : C(false) |] ==> cond(false,a,b) = b : C(false)" |
|
83 |
apply (unfold bool_defs) |
|
84 |
apply (rule comp_rls) |
|
85 |
apply (tactic "typechk_tac []") |
|
86 |
apply (erule_tac [!] TE) |
|
87 |
apply (tactic "typechk_tac []") |
|
88 |
done |
|
17441 | 89 |
|
0 | 90 |
end |