src/HOL/Bit_Operations.thy
author haftmann
Sat, 21 Aug 2021 20:12:15 +0000
changeset 74163 afe3c8ae1624
parent 74123 7c5842b06114
child 74309 42523fbf643b
permissions -rw-r--r--
consolidation of rules for bit operations
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
     1
(*  Author:  Florian Haftmann, TUM
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
     2
*)
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
     3
71956
a4bffc0de967 bit operations as distinctive library theory
haftmann
parents: 71922
diff changeset
     4
section \<open>Bit operations in suitable algebraic structures\<close>
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
     5
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
     6
theory Bit_Operations
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
     7
  imports Presburger Groups_List
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
     8
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
     9
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    10
subsection \<open>Abstract bit structures\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    11
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    12
class semiring_bits = semiring_parity +
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    13
  assumes bits_induct [case_names stable rec]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    14
    \<open>(\<And>a. a div 2 = a \<Longrightarrow> P a)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    15
     \<Longrightarrow> (\<And>a b. P a \<Longrightarrow> (of_bool b + 2 * a) div 2 = a \<Longrightarrow> P (of_bool b + 2 * a))
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    16
        \<Longrightarrow> P a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    17
  assumes bits_div_0 [simp]: \<open>0 div a = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    18
    and bits_div_by_1 [simp]: \<open>a div 1 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    19
    and bits_mod_div_trivial [simp]: \<open>a mod b div b = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    20
    and even_succ_div_2 [simp]: \<open>even a \<Longrightarrow> (1 + a) div 2 = a div 2\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    21
    and even_mask_div_iff: \<open>even ((2 ^ m - 1) div 2 ^ n) \<longleftrightarrow> 2 ^ n = 0 \<or> m \<le> n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    22
    and exp_div_exp_eq: \<open>2 ^ m div 2 ^ n = of_bool (2 ^ m \<noteq> 0 \<and> m \<ge> n) * 2 ^ (m - n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    23
    and div_exp_eq: \<open>a div 2 ^ m div 2 ^ n = a div 2 ^ (m + n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    24
    and mod_exp_eq: \<open>a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    25
    and mult_exp_mod_exp_eq: \<open>m \<le> n \<Longrightarrow> (a * 2 ^ m) mod (2 ^ n) = (a mod 2 ^ (n - m)) * 2 ^ m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    26
    and div_exp_mod_exp_eq: \<open>a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    27
    and even_mult_exp_div_exp_iff: \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> m > n \<or> 2 ^ n = 0 \<or> (m \<le> n \<and> even (a div 2 ^ (n - m)))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    28
  fixes bit :: \<open>'a \<Rightarrow> nat \<Rightarrow> bool\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    29
  assumes bit_iff_odd: \<open>bit a n \<longleftrightarrow> odd (a div 2 ^ n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    30
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    31
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    32
text \<open>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    33
  Having \<^const>\<open>bit\<close> as definitional class operation
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    34
  takes into account that specific instances can be implemented
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    35
  differently wrt. code generation.
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    36
\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    37
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    38
lemma bits_div_by_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    39
  \<open>a div 0 = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    40
  by (metis add_cancel_right_right bits_mod_div_trivial mod_mult_div_eq mult_not_zero)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    41
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    42
lemma bits_1_div_2 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    43
  \<open>1 div 2 = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    44
  using even_succ_div_2 [of 0] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    45
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    46
lemma bits_1_div_exp [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    47
  \<open>1 div 2 ^ n = of_bool (n = 0)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    48
  using div_exp_eq [of 1 1] by (cases n) simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    49
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    50
lemma even_succ_div_exp [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    51
  \<open>(1 + a) div 2 ^ n = a div 2 ^ n\<close> if \<open>even a\<close> and \<open>n > 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    52
proof (cases n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    53
  case 0
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    54
  with that show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    55
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    56
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    57
  case (Suc n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    58
  with \<open>even a\<close> have \<open>(1 + a) div 2 ^ Suc n = a div 2 ^ Suc n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    59
  proof (induction n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    60
    case 0
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    61
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    62
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    63
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    64
    case (Suc n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    65
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    66
      using div_exp_eq [of _ 1 \<open>Suc n\<close>, symmetric]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    67
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    68
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    69
  with Suc show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    70
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    71
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    72
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    73
lemma even_succ_mod_exp [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    74
  \<open>(1 + a) mod 2 ^ n = 1 + (a mod 2 ^ n)\<close> if \<open>even a\<close> and \<open>n > 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    75
  using div_mult_mod_eq [of \<open>1 + a\<close> \<open>2 ^ n\<close>] that
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    76
  apply simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    77
  by (metis local.add.left_commute local.add_left_cancel local.div_mult_mod_eq)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    78
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    79
lemma bits_mod_by_1 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    80
  \<open>a mod 1 = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    81
  using div_mult_mod_eq [of a 1] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    82
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    83
lemma bits_mod_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    84
  \<open>0 mod a = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    85
  using div_mult_mod_eq [of 0 a] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    86
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    87
lemma bits_one_mod_two_eq_one [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    88
  \<open>1 mod 2 = 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    89
  by (simp add: mod2_eq_if)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    90
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    91
lemma bit_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    92
  \<open>bit a 0 \<longleftrightarrow> odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    93
  by (simp add: bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    94
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    95
lemma bit_Suc:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    96
  \<open>bit a (Suc n) \<longleftrightarrow> bit (a div 2) n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    97
  using div_exp_eq [of a 1 n] by (simp add: bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    98
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
    99
lemma bit_rec:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   100
  \<open>bit a n \<longleftrightarrow> (if n = 0 then odd a else bit (a div 2) (n - 1))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   101
  by (cases n) (simp_all add: bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   102
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   103
lemma bit_0_eq [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   104
  \<open>bit 0 = bot\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   105
  by (simp add: fun_eq_iff bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   106
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   107
context
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   108
  fixes a
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   109
  assumes stable: \<open>a div 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   110
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   111
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   112
lemma bits_stable_imp_add_self:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   113
  \<open>a + a mod 2 = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   114
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   115
  have \<open>a div 2 * 2 + a mod 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   116
    by (fact div_mult_mod_eq)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   117
  then have \<open>a * 2 + a mod 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   118
    by (simp add: stable)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   119
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   120
    by (simp add: mult_2_right ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   121
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   122
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   123
lemma stable_imp_bit_iff_odd:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   124
  \<open>bit a n \<longleftrightarrow> odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   125
  by (induction n) (simp_all add: stable bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   126
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   127
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   128
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   129
lemma bit_iff_idd_imp_stable:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   130
  \<open>a div 2 = a\<close> if \<open>\<And>n. bit a n \<longleftrightarrow> odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   131
using that proof (induction a rule: bits_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   132
  case (stable a)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   133
  then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   134
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   135
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   136
  case (rec a b)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   137
  from rec.prems [of 1] have [simp]: \<open>b = odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   138
    by (simp add: rec.hyps bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   139
  from rec.hyps have hyp: \<open>(of_bool (odd a) + 2 * a) div 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   140
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   141
  have \<open>bit a n \<longleftrightarrow> odd a\<close> for n
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   142
    using rec.prems [of \<open>Suc n\<close>] by (simp add: hyp bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   143
  then have \<open>a div 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   144
    by (rule rec.IH)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   145
  then have \<open>of_bool (odd a) + 2 * a = 2 * (a div 2) + of_bool (odd a)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   146
    by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   147
  also have \<open>\<dots> = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   148
    using mult_div_mod_eq [of 2 a]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   149
    by (simp add: of_bool_odd_eq_mod_2)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   150
  finally show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   151
    using \<open>a div 2 = a\<close> by (simp add: hyp)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   152
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   153
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   154
lemma exp_eq_0_imp_not_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   155
  \<open>\<not> bit a n\<close> if \<open>2 ^ n = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   156
  using that by (simp add: bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   157
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   158
lemma bit_eqI:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   159
  \<open>a = b\<close> if \<open>\<And>n. 2 ^ n \<noteq> 0 \<Longrightarrow> bit a n \<longleftrightarrow> bit b n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   160
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   161
  have \<open>bit a n \<longleftrightarrow> bit b n\<close> for n
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   162
  proof (cases \<open>2 ^ n = 0\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   163
    case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   164
    then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   165
      by (simp add: exp_eq_0_imp_not_bit)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   166
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   167
    case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   168
    then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   169
      by (rule that)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   170
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   171
  then show ?thesis proof (induction a arbitrary: b rule: bits_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   172
    case (stable a)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   173
    from stable(2) [of 0] have **: \<open>even b \<longleftrightarrow> even a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   174
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   175
    have \<open>b div 2 = b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   176
    proof (rule bit_iff_idd_imp_stable)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   177
      fix n
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   178
      from stable have *: \<open>bit b n \<longleftrightarrow> bit a n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   179
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   180
      also have \<open>bit a n \<longleftrightarrow> odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   181
        using stable by (simp add: stable_imp_bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   182
      finally show \<open>bit b n \<longleftrightarrow> odd b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   183
        by (simp add: **)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   184
    qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   185
    from ** have \<open>a mod 2 = b mod 2\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   186
      by (simp add: mod2_eq_if)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   187
    then have \<open>a mod 2 + (a + b) = b mod 2 + (a + b)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   188
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   189
    then have \<open>a + a mod 2 + b = b + b mod 2 + a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   190
      by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   191
    with \<open>a div 2 = a\<close> \<open>b div 2 = b\<close> show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   192
      by (simp add: bits_stable_imp_add_self)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   193
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   194
    case (rec a p)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   195
    from rec.prems [of 0] have [simp]: \<open>p = odd b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   196
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   197
    from rec.hyps have \<open>bit a n \<longleftrightarrow> bit (b div 2) n\<close> for n
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   198
      using rec.prems [of \<open>Suc n\<close>] by (simp add: bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   199
    then have \<open>a = b div 2\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   200
      by (rule rec.IH)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   201
    then have \<open>2 * a = 2 * (b div 2)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   202
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   203
    then have \<open>b mod 2 + 2 * a = b mod 2 + 2 * (b div 2)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   204
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   205
    also have \<open>\<dots> = b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   206
      by (fact mod_mult_div_eq)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   207
    finally show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   208
      by (auto simp add: mod2_eq_if)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   209
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   210
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   211
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   212
lemma bit_eq_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   213
  \<open>a = b \<longleftrightarrow> (\<forall>n. bit a n \<longleftrightarrow> bit b n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   214
  by (auto intro: bit_eqI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   215
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   216
named_theorems bit_simps \<open>Simplification rules for \<^const>\<open>bit\<close>\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   217
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   218
lemma bit_exp_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   219
  \<open>bit (2 ^ m) n \<longleftrightarrow> 2 ^ m \<noteq> 0 \<and> m = n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   220
  by (auto simp add: bit_iff_odd exp_div_exp_eq)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   221
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   222
lemma bit_1_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   223
  \<open>bit 1 n \<longleftrightarrow> 1 \<noteq> 0 \<and> n = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   224
  using bit_exp_iff [of 0 n] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   225
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   226
lemma bit_2_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   227
  \<open>bit 2 n \<longleftrightarrow> 2 \<noteq> 0 \<and> n = 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   228
  using bit_exp_iff [of 1 n] by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   229
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   230
lemma even_bit_succ_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   231
  \<open>bit (1 + a) n \<longleftrightarrow> bit a n \<or> n = 0\<close> if \<open>even a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   232
  using that by (cases \<open>n = 0\<close>) (simp_all add: bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   233
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   234
lemma odd_bit_iff_bit_pred:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   235
  \<open>bit a n \<longleftrightarrow> bit (a - 1) n \<or> n = 0\<close> if \<open>odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   236
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   237
  from \<open>odd a\<close> obtain b where \<open>a = 2 * b + 1\<close> ..
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   238
  moreover have \<open>bit (2 * b) n \<or> n = 0 \<longleftrightarrow> bit (1 + 2 * b) n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   239
    using even_bit_succ_iff by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   240
  ultimately show ?thesis by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   241
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   242
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   243
lemma bit_double_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   244
  \<open>bit (2 * a) n \<longleftrightarrow> bit a (n - 1) \<and> n \<noteq> 0 \<and> 2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   245
  using even_mult_exp_div_exp_iff [of a 1 n]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   246
  by (cases n, auto simp add: bit_iff_odd ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   247
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   248
lemma bit_eq_rec:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   249
  \<open>a = b \<longleftrightarrow> (even a \<longleftrightarrow> even b) \<and> a div 2 = b div 2\<close> (is \<open>?P = ?Q\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   250
proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   251
  assume ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   252
  then show ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   253
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   254
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   255
  assume ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   256
  then have \<open>even a \<longleftrightarrow> even b\<close> and \<open>a div 2 = b div 2\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   257
    by simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   258
  show ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   259
  proof (rule bit_eqI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   260
    fix n
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   261
    show \<open>bit a n \<longleftrightarrow> bit b n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   262
    proof (cases n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   263
      case 0
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   264
      with \<open>even a \<longleftrightarrow> even b\<close> show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   265
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   266
    next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   267
      case (Suc n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   268
      moreover from \<open>a div 2 = b div 2\<close> have \<open>bit (a div 2) n = bit (b div 2) n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   269
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   270
      ultimately show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   271
        by (simp add: bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   272
    qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   273
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   274
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   275
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   276
lemma bit_mod_2_iff [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   277
  \<open>bit (a mod 2) n \<longleftrightarrow> n = 0 \<and> odd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   278
  by (cases a rule: parity_cases) (simp_all add: bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   279
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   280
lemma bit_mask_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   281
  \<open>bit (2 ^ m - 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n < m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   282
  by (simp add: bit_iff_odd even_mask_div_iff not_le)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   283
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   284
lemma bit_Numeral1_iff [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   285
  \<open>bit (numeral Num.One) n \<longleftrightarrow> n = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   286
  by (simp add: bit_rec)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   287
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   288
lemma exp_add_not_zero_imp:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   289
  \<open>2 ^ m \<noteq> 0\<close> and \<open>2 ^ n \<noteq> 0\<close> if \<open>2 ^ (m + n) \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   290
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   291
  have \<open>\<not> (2 ^ m = 0 \<or> 2 ^ n = 0)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   292
  proof (rule notI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   293
    assume \<open>2 ^ m = 0 \<or> 2 ^ n = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   294
    then have \<open>2 ^ (m + n) = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   295
      by (rule disjE) (simp_all add: power_add)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   296
    with that show False ..
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   297
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   298
  then show \<open>2 ^ m \<noteq> 0\<close> and \<open>2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   299
    by simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   300
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   301
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   302
lemma bit_disjunctive_add_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   303
  \<open>bit (a + b) n \<longleftrightarrow> bit a n \<or> bit b n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   304
  if \<open>\<And>n. \<not> bit a n \<or> \<not> bit b n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   305
proof (cases \<open>2 ^ n = 0\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   306
  case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   307
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   308
    by (simp add: exp_eq_0_imp_not_bit)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   309
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   310
  case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   311
  with that show ?thesis proof (induction n arbitrary: a b)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   312
    case 0
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   313
    from "0.prems"(1) [of 0] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   314
      by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   315
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   316
    case (Suc n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   317
    from Suc.prems(1) [of 0] have even: \<open>even a \<or> even b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   318
      by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   319
    have bit: \<open>\<not> bit (a div 2) n \<or> \<not> bit (b div 2) n\<close> for n
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   320
      using Suc.prems(1) [of \<open>Suc n\<close>] by (simp add: bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   321
    from Suc.prems(2) have \<open>2 * 2 ^ n \<noteq> 0\<close> \<open>2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   322
      by (auto simp add: mult_2)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   323
    have \<open>a + b = (a div 2 * 2 + a mod 2) + (b div 2 * 2 + b mod 2)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   324
      using div_mult_mod_eq [of a 2] div_mult_mod_eq [of b 2] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   325
    also have \<open>\<dots> = of_bool (odd a \<or> odd b) + 2 * (a div 2 + b div 2)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   326
      using even by (auto simp add: algebra_simps mod2_eq_if)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   327
    finally have \<open>bit ((a + b) div 2) n \<longleftrightarrow> bit (a div 2 + b div 2) n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   328
      using \<open>2 * 2 ^ n \<noteq> 0\<close> by simp (simp_all flip: bit_Suc add: bit_double_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   329
    also have \<open>\<dots> \<longleftrightarrow> bit (a div 2) n \<or> bit (b div 2) n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   330
      using bit \<open>2 ^ n \<noteq> 0\<close> by (rule Suc.IH)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   331
    finally show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   332
      by (simp add: bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   333
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   334
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   335
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   336
lemma
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   337
  exp_add_not_zero_imp_left: \<open>2 ^ m \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   338
  and exp_add_not_zero_imp_right: \<open>2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   339
  if \<open>2 ^ (m + n) \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   340
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   341
  have \<open>\<not> (2 ^ m = 0 \<or> 2 ^ n = 0)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   342
  proof (rule notI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   343
    assume \<open>2 ^ m = 0 \<or> 2 ^ n = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   344
    then have \<open>2 ^ (m + n) = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   345
      by (rule disjE) (simp_all add: power_add)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   346
    with that show False ..
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   347
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   348
  then show \<open>2 ^ m \<noteq> 0\<close> and \<open>2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   349
    by simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   350
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   351
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   352
lemma exp_not_zero_imp_exp_diff_not_zero:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   353
  \<open>2 ^ (n - m) \<noteq> 0\<close> if \<open>2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   354
proof (cases \<open>m \<le> n\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   355
  case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   356
  moreover define q where \<open>q = n - m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   357
  ultimately have \<open>n = m + q\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   358
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   359
  with that show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   360
    by (simp add: exp_add_not_zero_imp_right)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   361
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   362
  case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   363
  with that show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   364
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   365
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   366
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   367
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   368
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   369
lemma nat_bit_induct [case_names zero even odd]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   370
  "P n" if zero: "P 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   371
    and even: "\<And>n. P n \<Longrightarrow> n > 0 \<Longrightarrow> P (2 * n)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   372
    and odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   373
proof (induction n rule: less_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   374
  case (less n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   375
  show "P n"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   376
  proof (cases "n = 0")
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   377
    case True with zero show ?thesis by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   378
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   379
    case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   380
    with less have hyp: "P (n div 2)" by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   381
    show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   382
    proof (cases "even n")
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   383
      case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   384
      then have "n \<noteq> 1"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   385
        by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   386
      with \<open>n \<noteq> 0\<close> have "n div 2 > 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   387
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   388
      with \<open>even n\<close> hyp even [of "n div 2"] show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   389
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   390
    next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   391
      case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   392
      with hyp odd [of "n div 2"] show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   393
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   394
    qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   395
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   396
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   397
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   398
instantiation nat :: semiring_bits
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   399
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   400
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   401
definition bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> bool\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   402
  where \<open>bit_nat m n \<longleftrightarrow> odd (m div 2 ^ n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   403
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   404
instance
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   405
proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   406
  show \<open>P n\<close> if stable: \<open>\<And>n. n div 2 = n \<Longrightarrow> P n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   407
    and rec: \<open>\<And>n b. P n \<Longrightarrow> (of_bool b + 2 * n) div 2 = n \<Longrightarrow> P (of_bool b + 2 * n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   408
    for P and n :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   409
  proof (induction n rule: nat_bit_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   410
    case zero
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   411
    from stable [of 0] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   412
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   413
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   414
    case (even n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   415
    with rec [of n False] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   416
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   417
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   418
    case (odd n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   419
    with rec [of n True] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   420
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   421
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   422
  show \<open>q mod 2 ^ m mod 2 ^ n = q mod 2 ^ min m n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   423
    for q m n :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   424
    apply (auto simp add: less_iff_Suc_add power_add mod_mod_cancel split: split_min_lin)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   425
    apply (metis div_mult2_eq mod_div_trivial mod_eq_self_iff_div_eq_0 mod_mult_self2_is_0 power_commutes)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   426
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   427
  show \<open>(q * 2 ^ m) mod (2 ^ n) = (q mod 2 ^ (n - m)) * 2 ^ m\<close> if \<open>m \<le> n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   428
    for q m n :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   429
    using that
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   430
    apply (auto simp add: mod_mod_cancel div_mult2_eq power_add mod_mult2_eq le_iff_add split: split_min_lin)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   431
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   432
  show \<open>even ((2 ^ m - (1::nat)) div 2 ^ n) \<longleftrightarrow> 2 ^ n = (0::nat) \<or> m \<le> n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   433
    for m n :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   434
    using even_mask_div_iff' [where ?'a = nat, of m n] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   435
  show \<open>even (q * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::nat) ^ n = 0 \<or> m \<le> n \<and> even (q div 2 ^ (n - m))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   436
    for m n q r :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   437
    apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   438
    apply (metis (full_types) dvd_mult dvd_mult_imp_div dvd_power_iff_le not_less not_less_eq order_refl power_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   439
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   440
qed (auto simp add: div_mult2_eq mod_mult2_eq power_add power_diff bit_nat_def)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   441
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   442
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   443
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   444
lemma int_bit_induct [case_names zero minus even odd]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   445
  "P k" if zero_int: "P 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   446
    and minus_int: "P (- 1)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   447
    and even_int: "\<And>k. P k \<Longrightarrow> k \<noteq> 0 \<Longrightarrow> P (k * 2)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   448
    and odd_int: "\<And>k. P k \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> P (1 + (k * 2))" for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   449
proof (cases "k \<ge> 0")
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   450
  case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   451
  define n where "n = nat k"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   452
  with True have "k = int n"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   453
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   454
  then show "P k"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   455
  proof (induction n arbitrary: k rule: nat_bit_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   456
    case zero
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   457
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   458
      by (simp add: zero_int)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   459
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   460
    case (even n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   461
    have "P (int n * 2)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   462
      by (rule even_int) (use even in simp_all)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   463
    with even show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   464
      by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   465
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   466
    case (odd n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   467
    have "P (1 + (int n * 2))"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   468
      by (rule odd_int) (use odd in simp_all)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   469
    with odd show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   470
      by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   471
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   472
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   473
  case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   474
  define n where "n = nat (- k - 1)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   475
  with False have "k = - int n - 1"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   476
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   477
  then show "P k"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   478
  proof (induction n arbitrary: k rule: nat_bit_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   479
    case zero
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   480
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   481
      by (simp add: minus_int)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   482
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   483
    case (even n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   484
    have "P (1 + (- int (Suc n) * 2))"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   485
      by (rule odd_int) (use even in \<open>simp_all add: algebra_simps\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   486
    also have "\<dots> = - int (2 * n) - 1"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   487
      by (simp add: algebra_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   488
    finally show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   489
      using even.prems by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   490
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   491
    case (odd n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   492
    have "P (- int (Suc n) * 2)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   493
      by (rule even_int) (use odd in \<open>simp_all add: algebra_simps\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   494
    also have "\<dots> = - int (Suc (2 * n)) - 1"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   495
      by (simp add: algebra_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   496
    finally show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   497
      using odd.prems by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   498
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   499
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   500
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   501
context semiring_bits
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   502
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   503
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   504
lemma bit_of_bool_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   505
  \<open>bit (of_bool b) n \<longleftrightarrow> b \<and> n = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   506
  by (simp add: bit_1_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   507
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   508
lemma even_of_nat_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   509
  \<open>even (of_nat n) \<longleftrightarrow> even n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   510
  by (induction n rule: nat_bit_induct) simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   511
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   512
lemma bit_of_nat_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   513
  \<open>bit (of_nat m) n \<longleftrightarrow> (2::'a) ^ n \<noteq> 0 \<and> bit m n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   514
proof (cases \<open>(2::'a) ^ n = 0\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   515
  case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   516
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   517
    by (simp add: exp_eq_0_imp_not_bit)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   518
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   519
  case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   520
  then have \<open>bit (of_nat m) n \<longleftrightarrow> bit m n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   521
  proof (induction m arbitrary: n rule: nat_bit_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   522
    case zero
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   523
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   524
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   525
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   526
    case (even m)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   527
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   528
      by (cases n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   529
        (auto simp add: bit_double_iff Bit_Operations.bit_double_iff dest: mult_not_zero)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   530
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   531
    case (odd m)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   532
    then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   533
      by (cases n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   534
         (auto simp add: bit_double_iff even_bit_succ_iff Bit_Operations.bit_Suc dest: mult_not_zero)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   535
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   536
  with False show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   537
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   538
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   539
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   540
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   541
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   542
instantiation int :: semiring_bits
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   543
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   544
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   545
definition bit_int :: \<open>int \<Rightarrow> nat \<Rightarrow> bool\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   546
  where \<open>bit_int k n \<longleftrightarrow> odd (k div 2 ^ n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   547
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   548
instance
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   549
proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   550
  show \<open>P k\<close> if stable: \<open>\<And>k. k div 2 = k \<Longrightarrow> P k\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   551
    and rec: \<open>\<And>k b. P k \<Longrightarrow> (of_bool b + 2 * k) div 2 = k \<Longrightarrow> P (of_bool b + 2 * k)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   552
    for P and k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   553
  proof (induction k rule: int_bit_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   554
    case zero
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   555
    from stable [of 0] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   556
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   557
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   558
    case minus
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   559
    from stable [of \<open>- 1\<close>] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   560
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   561
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   562
    case (even k)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   563
    with rec [of k False] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   564
      by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   565
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   566
    case (odd k)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   567
    with rec [of k True] show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   568
      by (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   569
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   570
  show \<open>(2::int) ^ m div 2 ^ n = of_bool ((2::int) ^ m \<noteq> 0 \<and> n \<le> m) * 2 ^ (m - n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   571
    for m n :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   572
  proof (cases \<open>m < n\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   573
    case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   574
    then have \<open>n = m + (n - m)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   575
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   576
    then have \<open>(2::int) ^ m div 2 ^ n = (2::int) ^ m div 2 ^ (m + (n - m))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   577
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   578
    also have \<open>\<dots> = (2::int) ^ m div (2 ^ m * 2 ^ (n - m))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   579
      by (simp add: power_add)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   580
    also have \<open>\<dots> = (2::int) ^ m div 2 ^ m div 2 ^ (n - m)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   581
      by (simp add: zdiv_zmult2_eq)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   582
    finally show ?thesis using \<open>m < n\<close> by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   583
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   584
    case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   585
    then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   586
      by (simp add: power_diff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   587
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   588
  show \<open>k mod 2 ^ m mod 2 ^ n = k mod 2 ^ min m n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   589
    for m n :: nat and k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   590
    using mod_exp_eq [of \<open>nat k\<close> m n]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   591
    apply (auto simp add: mod_mod_cancel zdiv_zmult2_eq power_add zmod_zmult2_eq le_iff_add split: split_min_lin)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   592
     apply (auto simp add: less_iff_Suc_add mod_mod_cancel power_add)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   593
    apply (simp only: flip: mult.left_commute [of \<open>2 ^ m\<close>])
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   594
    apply (subst zmod_zmult2_eq) apply simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   595
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   596
  show \<open>(k * 2 ^ m) mod (2 ^ n) = (k mod 2 ^ (n - m)) * 2 ^ m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   597
    if \<open>m \<le> n\<close> for m n :: nat and k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   598
    using that
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   599
    apply (auto simp add: power_add zmod_zmult2_eq le_iff_add split: split_min_lin)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   600
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   601
  show \<open>even ((2 ^ m - (1::int)) div 2 ^ n) \<longleftrightarrow> 2 ^ n = (0::int) \<or> m \<le> n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   602
    for m n :: nat
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   603
    using even_mask_div_iff' [where ?'a = int, of m n] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   604
  show \<open>even (k * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::int) ^ n = 0 \<or> m \<le> n \<and> even (k div 2 ^ (n - m))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   605
    for m n :: nat and k l :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   606
    apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   607
    apply (metis Suc_leI dvd_mult dvd_mult_imp_div dvd_power_le dvd_refl power.simps(2))
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   608
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   609
qed (auto simp add: zdiv_zmult2_eq zmod_zmult2_eq power_add power_diff not_le bit_int_def)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   610
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   611
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   612
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   613
lemma bit_not_int_iff':
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   614
  \<open>bit (- k - 1) n \<longleftrightarrow> \<not> bit k n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   615
  for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   616
proof (induction n arbitrary: k)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   617
  case 0
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   618
  show ?case
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   619
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   620
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   621
  case (Suc n)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   622
  have \<open>- k - 1 = - (k + 2) + 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   623
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   624
  also have \<open>(- (k + 2) + 1) div 2 = - (k div 2) - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   625
  proof (cases \<open>even k\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   626
    case True
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   627
    then have \<open>- k div 2 = - (k div 2)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   628
      by rule (simp flip: mult_minus_right)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   629
    with True show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   630
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   631
  next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   632
    case False
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   633
    have \<open>4 = 2 * (2::int)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   634
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   635
    also have \<open>2 * 2 div 2 = (2::int)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   636
      by (simp only: nonzero_mult_div_cancel_left)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   637
    finally have *: \<open>4 div 2 = (2::int)\<close> .
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   638
    from False obtain l where k: \<open>k = 2 * l + 1\<close> ..
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   639
    then have \<open>- k - 2 = 2 * - (l + 2) + 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   640
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   641
    then have \<open>(- k - 2) div 2 + 1 = - (k div 2) - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   642
      by (simp flip: mult_minus_right add: *) (simp add: k)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   643
    with False show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   644
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   645
  qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   646
  finally have \<open>(- k - 1) div 2 = - (k div 2) - 1\<close> .
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   647
  with Suc show ?case
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   648
    by (simp add: bit_Suc)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   649
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   650
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   651
lemma bit_nat_iff [bit_simps]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   652
  \<open>bit (nat k) n \<longleftrightarrow> k \<ge> 0 \<and> bit k n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   653
proof (cases \<open>k \<ge> 0\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   654
  case True
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   655
  moreover define m where \<open>m = nat k\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   656
  ultimately have \<open>k = int m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   657
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   658
  then show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   659
    by (simp add: bit_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   660
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   661
  case False
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   662
  then show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   663
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   664
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   665
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   666
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   667
subsection \<open>Bit operations\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   668
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   669
class semiring_bit_operations = semiring_bits +
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   670
  fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr \<open>AND\<close> 64)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   671
    and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr \<open>OR\<close> 59)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   672
    and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>  (infixr \<open>XOR\<close> 59)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   673
    and mask :: \<open>nat \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   674
    and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   675
    and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   676
    and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   677
    and push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   678
    and drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   679
    and take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   680
  assumes bit_and_iff [bit_simps]: \<open>bit (a AND b) n \<longleftrightarrow> bit a n \<and> bit b n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   681
    and bit_or_iff [bit_simps]: \<open>bit (a OR b) n \<longleftrightarrow> bit a n \<or> bit b n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   682
    and bit_xor_iff [bit_simps]: \<open>bit (a XOR b) n \<longleftrightarrow> bit a n \<noteq> bit b n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   683
    and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   684
    and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   685
    and bit_unset_bit_iff [bit_simps]: \<open>bit (unset_bit m a) n \<longleftrightarrow> bit a n \<and> m \<noteq> n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   686
    and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   687
    and push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   688
    and drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   689
    and take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close>
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
   690
begin
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
   691
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   692
text \<open>
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   693
  We want the bitwise operations to bind slightly weaker
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   694
  than \<open>+\<close> and \<open>-\<close>.
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   695
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   696
  Logically, \<^const>\<open>push_bit\<close>,
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   697
  \<^const>\<open>drop_bit\<close> and \<^const>\<open>take_bit\<close> are just aliases; having them
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   698
  as separate operations makes proofs easier, otherwise proof automation
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   699
  would fiddle with concrete expressions \<^term>\<open>2 ^ n\<close> in a way obfuscating the basic
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   700
  algebraic relationships between those operations.
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   701
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   702
  For the sake of code generation operations 
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   703
  are specified as definitional class operations,
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   704
  taking into account that specific instances of these can be implemented
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   705
  differently wrt. code generation.
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   706
\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   707
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   708
sublocale "and": semilattice \<open>(AND)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   709
  by standard (auto simp add: bit_eq_iff bit_and_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   710
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   711
sublocale or: semilattice_neutr \<open>(OR)\<close> 0
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   712
  by standard (auto simp add: bit_eq_iff bit_or_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   713
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   714
sublocale xor: comm_monoid \<open>(XOR)\<close> 0
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   715
  by standard (auto simp add: bit_eq_iff bit_xor_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   716
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   717
lemma even_and_iff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   718
  \<open>even (a AND b) \<longleftrightarrow> even a \<or> even b\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   719
  using bit_and_iff [of a b 0] by auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   720
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   721
lemma even_or_iff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   722
  \<open>even (a OR b) \<longleftrightarrow> even a \<and> even b\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   723
  using bit_or_iff [of a b 0] by auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   724
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   725
lemma even_xor_iff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   726
  \<open>even (a XOR b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   727
  using bit_xor_iff [of a b 0] by auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   728
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   729
lemma zero_and_eq [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   730
  \<open>0 AND a = 0\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   731
  by (simp add: bit_eq_iff bit_and_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   732
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   733
lemma and_zero_eq [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   734
  \<open>a AND 0 = 0\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   735
  by (simp add: bit_eq_iff bit_and_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   736
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   737
lemma one_and_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   738
  \<open>1 AND a = a mod 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   739
  by (simp add: bit_eq_iff bit_and_iff) (auto simp add: bit_1_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   740
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   741
lemma and_one_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   742
  \<open>a AND 1 = a mod 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   743
  using one_and_eq [of a] by (simp add: ac_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   744
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   745
lemma one_or_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   746
  \<open>1 OR a = a + of_bool (even a)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   747
  by (simp add: bit_eq_iff bit_or_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   748
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   749
lemma or_one_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   750
  \<open>a OR 1 = a + of_bool (even a)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   751
  using one_or_eq [of a] by (simp add: ac_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   752
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   753
lemma one_xor_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   754
  \<open>1 XOR a = a + of_bool (even a) - of_bool (odd a)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   755
  by (simp add: bit_eq_iff bit_xor_iff add.commute [of _ 1] even_bit_succ_iff) (auto simp add: bit_1_iff odd_bit_iff_bit_pred elim: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   756
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   757
lemma xor_one_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   758
  \<open>a XOR 1 = a + of_bool (even a) - of_bool (odd a)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   759
  using one_xor_eq [of a] by (simp add: ac_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
   760
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
   761
lemma xor_self_eq [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
   762
  \<open>a XOR a = 0\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
   763
  by (rule bit_eqI) (simp add: bit_simps)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
   764
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   765
lemma bit_iff_odd_drop_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   766
  \<open>bit a n \<longleftrightarrow> odd (drop_bit n a)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   767
  by (simp add: bit_iff_odd drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   768
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   769
lemma even_drop_bit_iff_not_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   770
  \<open>even (drop_bit n a) \<longleftrightarrow> \<not> bit a n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   771
  by (simp add: bit_iff_odd_drop_bit)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   772
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   773
lemma div_push_bit_of_1_eq_drop_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   774
  \<open>a div push_bit n 1 = drop_bit n a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   775
  by (simp add: push_bit_eq_mult drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   776
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   777
lemma bits_ident:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   778
  "push_bit n (drop_bit n a) + take_bit n a = a"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   779
  using div_mult_mod_eq by (simp add: push_bit_eq_mult take_bit_eq_mod drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   780
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   781
lemma push_bit_push_bit [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   782
  "push_bit m (push_bit n a) = push_bit (m + n) a"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   783
  by (simp add: push_bit_eq_mult power_add ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   784
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   785
lemma push_bit_0_id [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   786
  "push_bit 0 = id"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   787
  by (simp add: fun_eq_iff push_bit_eq_mult)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   788
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   789
lemma push_bit_of_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   790
  "push_bit n 0 = 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   791
  by (simp add: push_bit_eq_mult)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   792
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   793
lemma push_bit_of_1:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   794
  "push_bit n 1 = 2 ^ n"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   795
  by (simp add: push_bit_eq_mult)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   796
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   797
lemma push_bit_Suc [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   798
  "push_bit (Suc n) a = push_bit n (a * 2)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   799
  by (simp add: push_bit_eq_mult ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   800
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   801
lemma push_bit_double:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   802
  "push_bit n (a * 2) = push_bit n a * 2"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   803
  by (simp add: push_bit_eq_mult ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   804
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   805
lemma push_bit_add:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   806
  "push_bit n (a + b) = push_bit n a + push_bit n b"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   807
  by (simp add: push_bit_eq_mult algebra_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   808
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   809
lemma push_bit_numeral [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   810
  \<open>push_bit (numeral l) (numeral k) = push_bit (pred_numeral l) (numeral (Num.Bit0 k))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   811
  by (simp add: numeral_eq_Suc mult_2_right) (simp add: numeral_Bit0)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   812
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   813
lemma take_bit_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   814
  "take_bit 0 a = 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   815
  by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   816
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   817
lemma take_bit_Suc:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   818
  \<open>take_bit (Suc n) a = take_bit n (a div 2) * 2 + a mod 2\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   819
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   820
  have \<open>take_bit (Suc n) (a div 2 * 2 + of_bool (odd a)) = take_bit n (a div 2) * 2 + of_bool (odd a)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   821
    using even_succ_mod_exp [of \<open>2 * (a div 2)\<close> \<open>Suc n\<close>]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   822
      mult_exp_mod_exp_eq [of 1 \<open>Suc n\<close> \<open>a div 2\<close>]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   823
    by (auto simp add: take_bit_eq_mod ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   824
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   825
    using div_mult_mod_eq [of a 2] by (simp add: mod_2_eq_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   826
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   827
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   828
lemma take_bit_rec:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   829
  \<open>take_bit n a = (if n = 0 then 0 else take_bit (n - 1) (a div 2) * 2 + a mod 2)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   830
  by (cases n) (simp_all add: take_bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   831
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   832
lemma take_bit_Suc_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   833
  \<open>take_bit (Suc 0) a = a mod 2\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   834
  by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   835
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   836
lemma take_bit_of_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   837
  "take_bit n 0 = 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   838
  by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   839
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   840
lemma take_bit_of_1 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   841
  "take_bit n 1 = of_bool (n > 0)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   842
  by (cases n) (simp_all add: take_bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   843
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   844
lemma drop_bit_of_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   845
  "drop_bit n 0 = 0"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   846
  by (simp add: drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   847
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   848
lemma drop_bit_of_1 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   849
  "drop_bit n 1 = of_bool (n = 0)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   850
  by (simp add: drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   851
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   852
lemma drop_bit_0 [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   853
  "drop_bit 0 = id"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   854
  by (simp add: fun_eq_iff drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   855
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   856
lemma drop_bit_Suc:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   857
  "drop_bit (Suc n) a = drop_bit n (a div 2)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   858
  using div_exp_eq [of a 1] by (simp add: drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   859
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   860
lemma drop_bit_rec:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   861
  "drop_bit n a = (if n = 0 then a else drop_bit (n - 1) (a div 2))"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   862
  by (cases n) (simp_all add: drop_bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   863
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   864
lemma drop_bit_half:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   865
  "drop_bit n (a div 2) = drop_bit n a div 2"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   866
  by (induction n arbitrary: a) (simp_all add: drop_bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   867
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   868
lemma drop_bit_of_bool [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   869
  "drop_bit n (of_bool b) = of_bool (n = 0 \<and> b)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   870
  by (cases n) simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   871
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   872
lemma even_take_bit_eq [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   873
  \<open>even (take_bit n a) \<longleftrightarrow> n = 0 \<or> even a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   874
  by (simp add: take_bit_rec [of n a])
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   875
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   876
lemma take_bit_take_bit [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   877
  "take_bit m (take_bit n a) = take_bit (min m n) a"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   878
  by (simp add: take_bit_eq_mod mod_exp_eq ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   879
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   880
lemma drop_bit_drop_bit [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   881
  "drop_bit m (drop_bit n a) = drop_bit (m + n) a"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   882
  by (simp add: drop_bit_eq_div power_add div_exp_eq ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   883
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   884
lemma push_bit_take_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   885
  "push_bit m (take_bit n a) = take_bit (m + n) (push_bit m a)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   886
  apply (simp add: push_bit_eq_mult take_bit_eq_mod power_add ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   887
  using mult_exp_mod_exp_eq [of m \<open>m + n\<close> a] apply (simp add: ac_simps power_add)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   888
  done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   889
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   890
lemma take_bit_push_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   891
  "take_bit m (push_bit n a) = push_bit n (take_bit (m - n) a)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   892
proof (cases "m \<le> n")
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   893
  case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   894
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   895
    apply (simp add:)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   896
    apply (simp_all add: push_bit_eq_mult take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   897
    apply (auto dest!: le_Suc_ex simp add: power_add ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   898
    using mult_exp_mod_exp_eq [of m m \<open>a * 2 ^ n\<close> for n]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   899
    apply (simp add: ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   900
    done
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   901
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   902
  case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   903
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   904
    using push_bit_take_bit [of n "m - n" a]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   905
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   906
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   907
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   908
lemma take_bit_drop_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   909
  "take_bit m (drop_bit n a) = drop_bit n (take_bit (m + n) a)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   910
  by (simp add: drop_bit_eq_div take_bit_eq_mod ac_simps div_exp_mod_exp_eq)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   911
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   912
lemma drop_bit_take_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   913
  "drop_bit m (take_bit n a) = take_bit (n - m) (drop_bit m a)"
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   914
proof (cases "m \<le> n")
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   915
  case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   916
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   917
    using take_bit_drop_bit [of "n - m" m a] by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   918
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   919
  case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   920
  then obtain q where \<open>m = n + q\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   921
    by (auto simp add: not_le dest: less_imp_Suc_add)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   922
  then have \<open>drop_bit m (take_bit n a) = 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   923
    using div_exp_eq [of \<open>a mod 2 ^ n\<close> n q]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   924
    by (simp add: take_bit_eq_mod drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   925
  with False show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   926
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   927
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   928
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   929
lemma even_push_bit_iff [simp]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   930
  \<open>even (push_bit n a) \<longleftrightarrow> n \<noteq> 0 \<or> even a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   931
  by (simp add: push_bit_eq_mult) auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   932
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   933
lemma bit_push_bit_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   934
  \<open>bit (push_bit m a) n \<longleftrightarrow> m \<le> n \<and> 2 ^ n \<noteq> 0 \<and> bit a (n - m)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   935
  by (auto simp add: bit_iff_odd push_bit_eq_mult even_mult_exp_div_exp_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   936
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   937
lemma bit_drop_bit_eq [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   938
  \<open>bit (drop_bit n a) = bit a \<circ> (+) n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   939
  by (simp add: bit_iff_odd fun_eq_iff ac_simps flip: drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   940
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   941
lemma bit_take_bit_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   942
  \<open>bit (take_bit m a) n \<longleftrightarrow> n < m \<and> bit a n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   943
  by (simp add: bit_iff_odd drop_bit_take_bit not_le flip: drop_bit_eq_div)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   944
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   945
lemma stable_imp_drop_bit_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   946
  \<open>drop_bit n a = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   947
  if \<open>a div 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   948
  by (induction n) (simp_all add: that drop_bit_Suc)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   949
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   950
lemma stable_imp_take_bit_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   951
  \<open>take_bit n a = (if even a then 0 else 2 ^ n - 1)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   952
    if \<open>a div 2 = a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   953
proof (rule bit_eqI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   954
  fix m
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   955
  assume \<open>2 ^ m \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   956
  with that show \<open>bit (take_bit n a) m \<longleftrightarrow> bit (if even a then 0 else 2 ^ n - 1) m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   957
    by (simp add: bit_take_bit_iff bit_mask_iff stable_imp_bit_iff_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   958
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   959
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   960
lemma exp_dvdE:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   961
  assumes \<open>2 ^ n dvd a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   962
  obtains b where \<open>a = push_bit n b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   963
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   964
  from assms obtain b where \<open>a = 2 ^ n * b\<close> ..
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   965
  then have \<open>a = push_bit n b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   966
    by (simp add: push_bit_eq_mult ac_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   967
  with that show thesis .
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   968
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   969
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   970
lemma take_bit_eq_0_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   971
  \<open>take_bit n a = 0 \<longleftrightarrow> 2 ^ n dvd a\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   972
proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   973
  assume ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   974
  then show ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   975
    by (simp add: take_bit_eq_mod mod_0_imp_dvd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   976
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   977
  assume ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   978
  then obtain b where \<open>a = push_bit n b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   979
    by (rule exp_dvdE)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   980
  then show ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   981
    by (simp add: take_bit_push_bit)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   982
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   983
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   984
lemma take_bit_tightened:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   985
  \<open>take_bit m a = take_bit m b\<close> if \<open>take_bit n a = take_bit n b\<close> and \<open>m \<le> n\<close> 
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   986
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   987
  from that have \<open>take_bit m (take_bit n a) = take_bit m (take_bit n b)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   988
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   989
  then have \<open>take_bit (min m n) a = take_bit (min m n) b\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   990
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   991
  with that show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   992
    by (simp add: min_def)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   993
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   994
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   995
lemma take_bit_eq_self_iff_drop_bit_eq_0:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   996
  \<open>take_bit n a = a \<longleftrightarrow> drop_bit n a = 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   997
proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   998
  assume ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
   999
  show ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1000
  proof (rule bit_eqI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1001
    fix m
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1002
    from \<open>?P\<close> have \<open>a = take_bit n a\<close> ..
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1003
    also have \<open>\<not> bit (take_bit n a) (n + m)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1004
      unfolding bit_simps
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1005
      by (simp add: bit_simps) 
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1006
    finally show \<open>bit (drop_bit n a) m \<longleftrightarrow> bit 0 m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1007
      by (simp add: bit_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1008
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1009
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1010
  assume ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1011
  show ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1012
  proof (rule bit_eqI)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1013
    fix m
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1014
    from \<open>?Q\<close> have \<open>\<not> bit (drop_bit n a) (m - n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1015
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1016
    then have \<open> \<not> bit a (n + (m - n))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1017
      by (simp add: bit_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1018
    then show \<open>bit (take_bit n a) m \<longleftrightarrow> bit a m\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1019
      by (cases \<open>m < n\<close>) (auto simp add: bit_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1020
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1021
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1022
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1023
lemma drop_bit_exp_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1024
  \<open>drop_bit m (2 ^ n) = of_bool (m \<le> n \<and> 2 ^ n \<noteq> 0) * 2 ^ (n - m)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1025
  by (rule bit_eqI) (auto simp add: bit_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1026
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1027
lemma take_bit_and [simp]:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1028
  \<open>take_bit n (a AND b) = take_bit n a AND take_bit n b\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1029
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_and_iff)
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1030
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1031
lemma take_bit_or [simp]:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1032
  \<open>take_bit n (a OR b) = take_bit n a OR take_bit n b\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1033
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_or_iff)
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1034
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1035
lemma take_bit_xor [simp]:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1036
  \<open>take_bit n (a XOR b) = take_bit n a XOR take_bit n b\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1037
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff)
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1038
72239
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1039
lemma push_bit_and [simp]:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1040
  \<open>push_bit n (a AND b) = push_bit n a AND push_bit n b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1041
  by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_and_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1042
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1043
lemma push_bit_or [simp]:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1044
  \<open>push_bit n (a OR b) = push_bit n a OR push_bit n b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1045
  by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_or_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1046
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1047
lemma push_bit_xor [simp]:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1048
  \<open>push_bit n (a XOR b) = push_bit n a XOR push_bit n b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1049
  by (rule bit_eqI) (auto simp add: bit_push_bit_iff bit_xor_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1050
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1051
lemma drop_bit_and [simp]:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1052
  \<open>drop_bit n (a AND b) = drop_bit n a AND drop_bit n b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1053
  by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_and_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1054
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1055
lemma drop_bit_or [simp]:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1056
  \<open>drop_bit n (a OR b) = drop_bit n a OR drop_bit n b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1057
  by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_or_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1058
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1059
lemma drop_bit_xor [simp]:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1060
  \<open>drop_bit n (a XOR b) = drop_bit n a XOR drop_bit n b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1061
  by (rule bit_eqI) (auto simp add: bit_drop_bit_eq bit_xor_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1062
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  1063
lemma bit_mask_iff [bit_simps]:
71823
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1064
  \<open>bit (mask m) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n < m\<close>
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1065
  by (simp add: mask_eq_exp_minus_1 bit_mask_iff)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1066
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1067
lemma even_mask_iff:
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1068
  \<open>even (mask n) \<longleftrightarrow> n = 0\<close>
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1069
  using bit_mask_iff [of n 0] by auto
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1070
72082
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1071
lemma mask_0 [simp]:
71823
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1072
  \<open>mask 0 = 0\<close>
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1073
  by (simp add: mask_eq_exp_minus_1)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1074
72082
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1075
lemma mask_Suc_0 [simp]:
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1076
  \<open>mask (Suc 0) = 1\<close>
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1077
  by (simp add: mask_eq_exp_minus_1 add_implies_diff sym)
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1078
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1079
lemma mask_Suc_exp:
71823
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1080
  \<open>mask (Suc n) = 2 ^ n OR mask n\<close>
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1081
  by (rule bit_eqI)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1082
    (auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1083
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1084
lemma mask_Suc_double:
72082
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1085
  \<open>mask (Suc n) = 1 OR 2 * mask n\<close>
71823
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1086
proof (rule bit_eqI)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1087
  fix q
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1088
  assume \<open>2 ^ q \<noteq> 0\<close>
72082
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1089
  show \<open>bit (mask (Suc n)) q \<longleftrightarrow> bit (1 OR 2 * mask n) q\<close>
71823
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1090
    by (cases q)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1091
      (simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1092
qed
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1093
72082
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1094
lemma mask_numeral:
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1095
  \<open>mask (numeral n) = 1 + 2 * mask (pred_numeral n)\<close>
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1096
  by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps)
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1097
72830
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  1098
lemma take_bit_mask [simp]:
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  1099
  \<open>take_bit m (mask n) = mask (min m n)\<close>
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  1100
  by (rule bit_eqI) (simp add: bit_simps)
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  1101
71965
d45f5d4c41bd more class operations for the sake of efficient generated code
haftmann
parents: 71956
diff changeset
  1102
lemma take_bit_eq_mask:
71823
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1103
  \<open>take_bit n a = a AND mask n\<close>
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1104
  by (rule bit_eqI)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1105
    (auto simp add: bit_take_bit_iff bit_and_iff bit_mask_iff)
214b48a1937b explicit mask operation for bits
haftmann
parents: 71822
diff changeset
  1106
72281
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1107
lemma or_eq_0_iff:
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1108
  \<open>a OR b = 0 \<longleftrightarrow> a = 0 \<and> b = 0\<close>
72792
26492b600d78 tuned whitespace --- avoid TABs;
wenzelm
parents: 72611
diff changeset
  1109
  by (auto simp add: bit_eq_iff bit_or_iff)
72281
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1110
72239
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1111
lemma disjunctive_add:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1112
  \<open>a + b = a OR b\<close> if \<open>\<And>n. \<not> bit a n \<or> \<not> bit b n\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1113
  by (rule bit_eqI) (use that in \<open>simp add: bit_disjunctive_add_iff bit_or_iff\<close>)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1114
72508
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1115
lemma bit_iff_and_drop_bit_eq_1:
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1116
  \<open>bit a n \<longleftrightarrow> drop_bit n a AND 1 = 1\<close>
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1117
  by (simp add: bit_iff_odd_drop_bit and_one_eq odd_iff_mod_2_eq_one)
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1118
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1119
lemma bit_iff_and_push_bit_not_eq_0:
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1120
  \<open>bit a n \<longleftrightarrow> a AND push_bit n 1 \<noteq> 0\<close>
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1121
  apply (cases \<open>2 ^ n = 0\<close>)
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1122
  apply (simp_all add: push_bit_of_1 bit_eq_iff bit_and_iff bit_push_bit_iff exp_eq_0_imp_not_bit)
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1123
  apply (simp_all add: bit_exp_iff)
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1124
  done
c89d8e8bd8c7 factored out theory Traditional_Syntax
haftmann
parents: 72488
diff changeset
  1125
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1126
lemmas set_bit_def = set_bit_eq_or
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1127
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1128
lemma bit_set_bit_iff [bit_simps]:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1129
  \<open>bit (set_bit m a) n \<longleftrightarrow> bit a n \<or> (m = n \<and> 2 ^ n \<noteq> 0)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1130
  by (auto simp add: set_bit_def push_bit_of_1 bit_or_iff bit_exp_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1131
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1132
lemma even_set_bit_iff:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1133
  \<open>even (set_bit m a) \<longleftrightarrow> even a \<and> m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1134
  using bit_set_bit_iff [of m a 0] by auto
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1135
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1136
lemma even_unset_bit_iff:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1137
  \<open>even (unset_bit m a) \<longleftrightarrow> even a \<or> m = 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1138
  using bit_unset_bit_iff [of m a 0] by auto
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1139
73789
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1140
lemma and_exp_eq_0_iff_not_bit:
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1141
  \<open>a AND 2 ^ n = 0 \<longleftrightarrow> \<not> bit a n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1142
proof
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1143
  assume ?Q
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1144
  then show ?P
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1145
    by (auto intro: bit_eqI simp add: bit_simps)
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1146
next
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1147
  assume ?P
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1148
  show ?Q
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1149
  proof (rule notI)
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1150
    assume \<open>bit a n\<close>
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1151
    then have \<open>a AND 2 ^ n = 2 ^ n\<close>
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1152
      by (auto intro: bit_eqI simp add: bit_simps)
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1153
    with \<open>?P\<close> show False
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1154
      using \<open>bit a n\<close> exp_eq_0_imp_not_bit by auto
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1155
  qed
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1156
qed
aab7975fa070 more lemmas
haftmann
parents: 73682
diff changeset
  1157
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1158
lemmas flip_bit_def = flip_bit_eq_xor
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1159
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1160
lemma bit_flip_bit_iff [bit_simps]:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1161
  \<open>bit (flip_bit m a) n \<longleftrightarrow> (m = n \<longleftrightarrow> \<not> bit a n) \<and> 2 ^ n \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1162
  by (auto simp add: flip_bit_def push_bit_of_1 bit_xor_iff bit_exp_iff exp_eq_0_imp_not_bit)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1163
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1164
lemma even_flip_bit_iff:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1165
  \<open>even (flip_bit m a) \<longleftrightarrow> \<not> (even a \<longleftrightarrow> m = 0)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1166
  using bit_flip_bit_iff [of m a 0] by auto
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1167
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1168
lemma set_bit_0 [simp]:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1169
  \<open>set_bit 0 a = 1 + 2 * (a div 2)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1170
proof (rule bit_eqI)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1171
  fix m
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1172
  assume *: \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1173
  then show \<open>bit (set_bit 0 a) m = bit (1 + 2 * (a div 2)) m\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1174
    by (simp add: bit_set_bit_iff bit_double_iff even_bit_succ_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1175
      (cases m, simp_all add: bit_Suc)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1176
qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1177
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1178
lemma set_bit_Suc:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1179
  \<open>set_bit (Suc n) a = a mod 2 + 2 * set_bit n (a div 2)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1180
proof (rule bit_eqI)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1181
  fix m
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1182
  assume *: \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1183
  show \<open>bit (set_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * set_bit n (a div 2)) m\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1184
  proof (cases m)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1185
    case 0
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1186
    then show ?thesis
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1187
      by (simp add: even_set_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1188
  next
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1189
    case (Suc m)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1190
    with * have \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1191
      using mult_2 by auto
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1192
    show ?thesis
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1193
      by (cases a rule: parity_cases)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1194
        (simp_all add: bit_set_bit_iff bit_double_iff even_bit_succ_iff *,
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1195
        simp_all add: Suc \<open>2 ^ m \<noteq> 0\<close> bit_Suc)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1196
  qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1197
qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1198
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1199
lemma unset_bit_0 [simp]:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1200
  \<open>unset_bit 0 a = 2 * (a div 2)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1201
proof (rule bit_eqI)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1202
  fix m
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1203
  assume *: \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1204
  then show \<open>bit (unset_bit 0 a) m = bit (2 * (a div 2)) m\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1205
    by (simp add: bit_unset_bit_iff bit_double_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1206
      (cases m, simp_all add: bit_Suc)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1207
qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1208
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1209
lemma unset_bit_Suc:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1210
  \<open>unset_bit (Suc n) a = a mod 2 + 2 * unset_bit n (a div 2)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1211
proof (rule bit_eqI)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1212
  fix m
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1213
  assume *: \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1214
  then show \<open>bit (unset_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * unset_bit n (a div 2)) m\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1215
  proof (cases m)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1216
    case 0
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1217
    then show ?thesis
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1218
      by (simp add: even_unset_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1219
  next
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1220
    case (Suc m)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1221
    show ?thesis
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1222
      by (cases a rule: parity_cases)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1223
        (simp_all add: bit_unset_bit_iff bit_double_iff even_bit_succ_iff *,
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1224
         simp_all add: Suc bit_Suc)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1225
  qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1226
qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1227
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1228
lemma flip_bit_0 [simp]:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1229
  \<open>flip_bit 0 a = of_bool (even a) + 2 * (a div 2)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1230
proof (rule bit_eqI)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1231
  fix m
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1232
  assume *: \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1233
  then show \<open>bit (flip_bit 0 a) m = bit (of_bool (even a) + 2 * (a div 2)) m\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1234
    by (simp add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1235
      (cases m, simp_all add: bit_Suc)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1236
qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1237
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1238
lemma flip_bit_Suc:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1239
  \<open>flip_bit (Suc n) a = a mod 2 + 2 * flip_bit n (a div 2)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1240
proof (rule bit_eqI)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1241
  fix m
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1242
  assume *: \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1243
  show \<open>bit (flip_bit (Suc n) a) m \<longleftrightarrow> bit (a mod 2 + 2 * flip_bit n (a div 2)) m\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1244
  proof (cases m)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1245
    case 0
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1246
    then show ?thesis
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1247
      by (simp add: even_flip_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1248
  next
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1249
    case (Suc m)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1250
    with * have \<open>2 ^ m \<noteq> 0\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1251
      using mult_2 by auto
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1252
    show ?thesis
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1253
      by (cases a rule: parity_cases)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1254
        (simp_all add: bit_flip_bit_iff bit_double_iff even_bit_succ_iff,
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1255
        simp_all add: Suc \<open>2 ^ m \<noteq> 0\<close> bit_Suc)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1256
  qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1257
qed
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1258
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1259
lemma flip_bit_eq_if:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1260
  \<open>flip_bit n a = (if bit a n then unset_bit else set_bit) n a\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1261
  by (rule bit_eqI) (auto simp add: bit_set_bit_iff bit_unset_bit_iff bit_flip_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1262
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1263
lemma take_bit_set_bit_eq:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1264
  \<open>take_bit n (set_bit m a) = (if n \<le> m then take_bit n a else set_bit m (take_bit n a))\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1265
  by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_set_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1266
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1267
lemma take_bit_unset_bit_eq:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1268
  \<open>take_bit n (unset_bit m a) = (if n \<le> m then take_bit n a else unset_bit m (take_bit n a))\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1269
  by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_unset_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1270
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1271
lemma take_bit_flip_bit_eq:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1272
  \<open>take_bit n (flip_bit m a) = (if n \<le> m then take_bit n a else flip_bit m (take_bit n a))\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1273
  by (rule bit_eqI) (auto simp add: bit_take_bit_iff bit_flip_bit_iff)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1274
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1275
end
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1276
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1277
class ring_bit_operations = semiring_bit_operations + ring_parity +
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1278
  fixes not :: \<open>'a \<Rightarrow> 'a\<close>  (\<open>NOT\<close>)
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  1279
  assumes bit_not_iff [bit_simps]: \<open>\<And>n. bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close>
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1280
  assumes minus_eq_not_minus_1: \<open>- a = NOT (a - 1)\<close>
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1281
begin
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1282
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1283
text \<open>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1284
  For the sake of code generation \<^const>\<open>not\<close> is specified as
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1285
  definitional class operation.  Note that \<^const>\<open>not\<close> has no
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1286
  sensible definition for unlimited but only positive bit strings
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1287
  (type \<^typ>\<open>nat\<close>).
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1288
\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1289
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1290
lemma bits_minus_1_mod_2_eq [simp]:
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1291
  \<open>(- 1) mod 2 = 1\<close>
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1292
  by (simp add: mod_2_eq_odd)
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1293
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1294
lemma not_eq_complement:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1295
  \<open>NOT a = - a - 1\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1296
  using minus_eq_not_minus_1 [of \<open>a + 1\<close>] by simp
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1297
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1298
lemma minus_eq_not_plus_1:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1299
  \<open>- a = NOT a + 1\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1300
  using not_eq_complement [of a] by simp
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1301
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  1302
lemma bit_minus_iff [bit_simps]:
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1303
  \<open>bit (- a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit (a - 1) n\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1304
  by (simp add: minus_eq_not_minus_1 bit_not_iff)
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1305
71418
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1306
lemma even_not_iff [simp]:
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1307
  \<open>even (NOT a) \<longleftrightarrow> odd a\<close>
71418
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1308
  using bit_not_iff [of a 0] by auto
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1309
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  1310
lemma bit_not_exp_iff [bit_simps]:
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1311
  \<open>bit (NOT (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<noteq> m\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1312
  by (auto simp add: bit_not_iff bit_exp_iff)
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1313
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1314
lemma bit_minus_1_iff [simp]:
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1315
  \<open>bit (- 1) n \<longleftrightarrow> 2 ^ n \<noteq> 0\<close>
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1316
  by (simp add: bit_minus_iff)
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1317
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  1318
lemma bit_minus_exp_iff [bit_simps]:
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1319
  \<open>bit (- (2 ^ m)) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n \<ge> m\<close>
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  1320
  by (auto simp add: bit_simps simp flip: mask_eq_exp_minus_1)
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1321
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1322
lemma bit_minus_2_iff [simp]:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1323
  \<open>bit (- 2) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> n > 0\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1324
  by (simp add: bit_minus_iff bit_1_iff)
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1325
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  1326
lemma not_one_eq:
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1327
  \<open>NOT 1 = - 2\<close>
71418
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1328
  by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff)
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1329
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1330
sublocale "and": semilattice_neutr \<open>(AND)\<close> \<open>- 1\<close>
72239
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1331
  by standard (rule bit_eqI, simp add: bit_and_iff)
71418
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1332
74123
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1333
sublocale bit: abstract_boolean_algebra \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close>
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1334
  by standard (auto simp add: bit_and_iff bit_or_iff bit_not_iff intro: bit_eqI)
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1335
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1336
sublocale bit: abstract_boolean_algebra_sym_diff \<open>(AND)\<close> \<open>(OR)\<close> NOT 0 \<open>- 1\<close> \<open>(XOR)\<close>
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1337
  apply standard
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1338
  apply (rule bit_eqI)
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1339
  apply (auto simp add: bit_simps)
7c5842b06114 clarified abstract and concrete boolean algebras
haftmann
parents: 74108
diff changeset
  1340
  done
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1341
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1342
lemma and_eq_not_not_or:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1343
  \<open>a AND b = NOT (NOT a OR NOT b)\<close>
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1344
  by simp
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1345
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1346
lemma or_eq_not_not_and:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1347
  \<open>a OR b = NOT (NOT a AND NOT b)\<close>
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1348
  by simp
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1349
72009
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1350
lemma not_add_distrib:
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1351
  \<open>NOT (a + b) = NOT a - b\<close>
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1352
  by (simp add: not_eq_complement algebra_simps)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1353
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1354
lemma not_diff_distrib:
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1355
  \<open>NOT (a - b) = NOT a + b\<close>
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1356
  using not_add_distrib [of a \<open>- b\<close>] by simp
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1357
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1358
lemma and_eq_minus_1_iff:
72281
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1359
  \<open>a AND b = - 1 \<longleftrightarrow> a = - 1 \<and> b = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1360
proof
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1361
  assume \<open>a = - 1 \<and> b = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1362
  then show \<open>a AND b = - 1\<close>
72792
26492b600d78 tuned whitespace --- avoid TABs;
wenzelm
parents: 72611
diff changeset
  1363
    by simp
72281
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1364
next
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1365
  assume \<open>a AND b = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1366
  have *: \<open>bit a n\<close> \<open>bit b n\<close> if \<open>2 ^ n \<noteq> 0\<close> for n
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1367
  proof -
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1368
    from \<open>a AND b = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1369
    have \<open>bit (a AND b) n = bit (- 1) n\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1370
      by (simp add: bit_eq_iff)
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1371
    then show \<open>bit a n\<close> \<open>bit b n\<close>
72792
26492b600d78 tuned whitespace --- avoid TABs;
wenzelm
parents: 72611
diff changeset
  1372
      using that by (simp_all add: bit_and_iff)
72281
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1373
  qed
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1374
  have \<open>a = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1375
    by (rule bit_eqI) (simp add: *)
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1376
  moreover have \<open>b = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1377
    by (rule bit_eqI) (simp add: *)
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1378
  ultimately show \<open>a = - 1 \<and> b = - 1\<close>
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1379
    by simp
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1380
qed
beeadb35e357 more thorough treatment of division, particularly signed division on int and word
haftmann
parents: 72262
diff changeset
  1381
72239
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1382
lemma disjunctive_diff:
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1383
  \<open>a - b = a AND NOT b\<close> if \<open>\<And>n. bit b n \<Longrightarrow> bit a n\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1384
proof -
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1385
  have \<open>NOT a + b = NOT a OR b\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1386
    by (rule disjunctive_add) (auto simp add: bit_not_iff dest: that)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1387
  then have \<open>NOT (NOT a + b) = NOT (NOT a OR b)\<close>
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1388
    by simp
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1389
  then show ?thesis
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1390
    by (simp add: not_add_distrib)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1391
qed
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1392
71412
96d126844adc more theorems
haftmann
parents: 71409
diff changeset
  1393
lemma push_bit_minus:
96d126844adc more theorems
haftmann
parents: 71409
diff changeset
  1394
  \<open>push_bit n (- a) = - push_bit n a\<close>
96d126844adc more theorems
haftmann
parents: 71409
diff changeset
  1395
  by (simp add: push_bit_eq_mult)
96d126844adc more theorems
haftmann
parents: 71409
diff changeset
  1396
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1397
lemma take_bit_not_take_bit:
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1398
  \<open>take_bit n (NOT (take_bit n a)) = take_bit n (NOT a)\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1399
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_not_iff)
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1400
71418
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1401
lemma take_bit_not_iff:
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1402
  \<open>take_bit n (NOT a) = take_bit n (NOT b) \<longleftrightarrow> take_bit n a = take_bit n b\<close>
72239
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1403
  apply (simp add: bit_eq_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1404
  apply (simp add: bit_not_iff bit_take_bit_iff bit_exp_iff)
12e94c2ff6c5 generalized
haftmann
parents: 72227
diff changeset
  1405
  apply (use exp_eq_0_imp_not_bit in blast)
71418
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1406
  done
bd9d27ccb3a3 more theorems
haftmann
parents: 71413
diff changeset
  1407
72262
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1408
lemma take_bit_not_eq_mask_diff:
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1409
  \<open>take_bit n (NOT a) = mask n - take_bit n a\<close>
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1410
proof -
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1411
  have \<open>take_bit n (NOT a) = take_bit n (NOT (take_bit n a))\<close>
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1412
    by (simp add: take_bit_not_take_bit)
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1413
  also have \<open>\<dots> = mask n AND NOT (take_bit n a)\<close>
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1414
    by (simp add: take_bit_eq_mask ac_simps)
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1415
  also have \<open>\<dots> = mask n - take_bit n a\<close>
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1416
    by (subst disjunctive_diff)
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1417
      (auto simp add: bit_take_bit_iff bit_mask_iff exp_eq_0_imp_not_bit)
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1418
  finally show ?thesis
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1419
    by simp
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1420
qed
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  1421
72079
8c355e2dd7db more consequent transferability
haftmann
parents: 72028
diff changeset
  1422
lemma mask_eq_take_bit_minus_one:
8c355e2dd7db more consequent transferability
haftmann
parents: 72028
diff changeset
  1423
  \<open>mask n = take_bit n (- 1)\<close>
8c355e2dd7db more consequent transferability
haftmann
parents: 72028
diff changeset
  1424
  by (simp add: bit_eq_iff bit_mask_iff bit_take_bit_iff conj_commute)
8c355e2dd7db more consequent transferability
haftmann
parents: 72028
diff changeset
  1425
71922
2c6a5c709f22 more theorems
haftmann
parents: 71921
diff changeset
  1426
lemma take_bit_minus_one_eq_mask:
2c6a5c709f22 more theorems
haftmann
parents: 71921
diff changeset
  1427
  \<open>take_bit n (- 1) = mask n\<close>
72079
8c355e2dd7db more consequent transferability
haftmann
parents: 72028
diff changeset
  1428
  by (simp add: mask_eq_take_bit_minus_one)
71922
2c6a5c709f22 more theorems
haftmann
parents: 71921
diff changeset
  1429
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1430
lemma minus_exp_eq_not_mask:
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1431
  \<open>- (2 ^ n) = NOT (mask n)\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1432
  by (rule bit_eqI) (simp add: bit_minus_iff bit_not_iff flip: mask_eq_exp_minus_1)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1433
71922
2c6a5c709f22 more theorems
haftmann
parents: 71921
diff changeset
  1434
lemma push_bit_minus_one_eq_not_mask:
2c6a5c709f22 more theorems
haftmann
parents: 71921
diff changeset
  1435
  \<open>push_bit n (- 1) = NOT (mask n)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1436
  by (simp add: push_bit_eq_mult minus_exp_eq_not_mask)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1437
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1438
lemma take_bit_not_mask_eq_0:
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1439
  \<open>take_bit m (NOT (mask n)) = 0\<close> if \<open>n \<ge> m\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  1440
  by (rule bit_eqI) (use that in \<open>simp add: bit_take_bit_iff bit_not_iff bit_mask_iff\<close>)
71922
2c6a5c709f22 more theorems
haftmann
parents: 71921
diff changeset
  1441
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1442
lemma unset_bit_eq_and_not:
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1443
  \<open>unset_bit n a = a AND NOT (push_bit n 1)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1444
  by (rule bit_eqI) (auto simp add: bit_simps)
71426
745e518d3d0b easy abstraction over pointwise bit operations
haftmann
parents: 71424
diff changeset
  1445
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1446
lemmas unset_bit_def = unset_bit_eq_and_not
71986
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  1447
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1448
end
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1449
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1450
71956
a4bffc0de967 bit operations as distinctive library theory
haftmann
parents: 71922
diff changeset
  1451
subsection \<open>Instance \<^typ>\<open>int\<close>\<close>
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1452
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1453
instantiation int :: ring_bit_operations
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1454
begin
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1455
71420
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1456
definition not_int :: \<open>int \<Rightarrow> int\<close>
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1457
  where \<open>not_int k = - k - 1\<close>
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1458
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1459
lemma not_int_rec:
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1460
  \<open>NOT k = of_bool (even k) + 2 * NOT (k div 2)\<close> for k :: int
71420
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1461
  by (auto simp add: not_int_def elim: oddE)
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1462
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1463
lemma even_not_iff_int:
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1464
  \<open>even (NOT k) \<longleftrightarrow> odd k\<close> for k :: int
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1465
  by (simp add: not_int_def)
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1466
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1467
lemma not_int_div_2:
572ab9e64e18 simplified logical constructions
haftmann
parents: 71419
diff changeset
  1468
  \<open>NOT k div 2 = NOT (k div 2)\<close> for k :: int
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1469
  by (cases k) (simp_all add: not_int_def divide_int_def nat_add_distrib)
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1470
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  1471
lemma bit_not_int_iff:
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1472
  \<open>bit (NOT k) n \<longleftrightarrow> \<not> bit k n\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1473
  for k :: int
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1474
  by (simp add: bit_not_int_iff' not_int_def)
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1475
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1476
function and_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1477
  where \<open>(k::int) AND l = (if k \<in> {0, - 1} \<and> l \<in> {0, - 1}
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1478
    then - of_bool (odd k \<and> odd l)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1479
    else of_bool (odd k \<and> odd l) + 2 * ((k div 2) AND (l div 2)))\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1480
  by auto
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1481
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1482
termination proof (relation \<open>measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1483
  show \<open>wf (measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>)))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1484
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1485
  show \<open>((k div 2, l div 2), k, l) \<in> measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1486
    if \<open>\<not> (k \<in> {0, - 1} \<and> l \<in> {0, - 1})\<close> for k l
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1487
  proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1488
    have less_eq: \<open>\<bar>k div 2\<bar> \<le> \<bar>k\<bar>\<close> for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1489
      by (cases k) (simp_all add: divide_int_def nat_add_distrib)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1490
    have less: \<open>\<bar>k div 2\<bar> < \<bar>k\<bar>\<close> if \<open>k \<notin> {0, - 1}\<close> for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1491
    proof (cases k)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1492
      case (nonneg n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1493
      with that show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1494
        by (simp add: int_div_less_self)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1495
    next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1496
      case (neg n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1497
      with that have \<open>n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1498
        by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1499
      then have \<open>n div 2 < n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1500
        by (simp add: div_less_iff_less_mult)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1501
      with neg that show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1502
        by (simp add: divide_int_def nat_add_distrib)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1503
    qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1504
    from that have *: \<open>k \<notin> {0, - 1} \<or> l \<notin> {0, - 1}\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1505
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1506
    then have \<open>0 < \<bar>k\<bar> + \<bar>l\<bar>\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1507
      by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1508
    moreover from * have \<open>\<bar>k div 2\<bar> + \<bar>l div 2\<bar> < \<bar>k\<bar> + \<bar>l\<bar>\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1509
    proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1510
      assume \<open>k \<notin> {0, - 1}\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1511
      then have \<open>\<bar>k div 2\<bar> < \<bar>k\<bar>\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1512
        by (rule less)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1513
      with less_eq [of l] show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1514
        by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1515
    next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1516
      assume \<open>l \<notin> {0, - 1}\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1517
      then have \<open>\<bar>l div 2\<bar> < \<bar>l\<bar>\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1518
        by (rule less)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1519
      with less_eq [of k] show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1520
        by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1521
    qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1522
    ultimately show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1523
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1524
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1525
qed
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1526
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1527
declare and_int.simps [simp del]
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1528
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1529
lemma and_int_rec:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1530
  \<open>k AND l = of_bool (odd k \<and> odd l) + 2 * ((k div 2) AND (l div 2))\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1531
    for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1532
proof (cases \<open>k \<in> {0, - 1} \<and> l \<in> {0, - 1}\<close>)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1533
  case True
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1534
  then show ?thesis
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1535
    by auto (simp_all add: and_int.simps)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1536
next
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1537
  case False
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1538
  then show ?thesis
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1539
    by (auto simp add: ac_simps and_int.simps [of k l])
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1540
qed
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1541
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1542
lemma bit_and_int_iff:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1543
  \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close> for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1544
proof (induction n arbitrary: k l)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1545
  case 0
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1546
  then show ?case
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1547
    by (simp add: and_int_rec [of k l])
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1548
next
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1549
  case (Suc n)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1550
  then show ?case
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1551
    by (simp add: and_int_rec [of k l] bit_Suc)
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1552
qed
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1553
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1554
lemma even_and_iff_int:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1555
  \<open>even (k AND l) \<longleftrightarrow> even k \<or> even l\<close> for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1556
  using bit_and_int_iff [of k l 0] by auto
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1557
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1558
definition or_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1559
  where \<open>k OR l = NOT (NOT k AND NOT l)\<close> for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1560
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1561
lemma or_int_rec:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1562
  \<open>k OR l = of_bool (odd k \<or> odd l) + 2 * ((k div 2) OR (l div 2))\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1563
  for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1564
  using and_int_rec [of \<open>NOT k\<close> \<open>NOT l\<close>]
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1565
  by (simp add: or_int_def even_not_iff_int not_int_div_2)
73535
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1566
    (simp_all add: not_int_def)
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1567
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1568
lemma bit_or_int_iff:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1569
  \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close> for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1570
  by (simp add: or_int_def bit_not_int_iff bit_and_int_iff)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1571
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1572
definition xor_int :: \<open>int \<Rightarrow> int \<Rightarrow> int\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1573
  where \<open>k XOR l = k AND NOT l OR NOT k AND l\<close> for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1574
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1575
lemma xor_int_rec:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1576
  \<open>k XOR l = of_bool (odd k \<noteq> odd l) + 2 * ((k div 2) XOR (l div 2))\<close>
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1577
  for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1578
  by (simp add: xor_int_def or_int_rec [of \<open>k AND NOT l\<close> \<open>NOT k AND l\<close>] even_and_iff_int even_not_iff_int)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1579
    (simp add: and_int_rec [of \<open>NOT k\<close> \<open>l\<close>] and_int_rec [of \<open>k\<close> \<open>NOT l\<close>] not_int_div_2)
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1580
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1581
lemma bit_xor_int_iff:
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1582
  \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close> for k l :: int
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1583
  by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff)
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1584
72082
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1585
definition mask_int :: \<open>nat \<Rightarrow> int\<close>
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1586
  where \<open>mask n = (2 :: int) ^ n - 1\<close>
41393ecb57ac uniform mask operation
haftmann
parents: 72079
diff changeset
  1587
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1588
definition push_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1589
  where \<open>push_bit_int n k = k * 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1590
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1591
definition drop_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1592
  where \<open>drop_bit_int n k = k div 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1593
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1594
definition take_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1595
  where \<open>take_bit_int n k = k mod 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1596
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1597
definition set_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1598
  where \<open>set_bit n k = k OR push_bit n 1\<close> for k :: int
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1599
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1600
definition unset_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1601
  where \<open>unset_bit n k = k AND NOT (push_bit n 1)\<close> for k :: int
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1602
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1603
definition flip_bit_int :: \<open>nat \<Rightarrow> int \<Rightarrow> int\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1604
  where \<open>flip_bit n k = k XOR push_bit n 1\<close> for k :: int
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1605
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1606
instance proof
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1607
  fix k l :: int and m n :: nat
71409
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1608
  show \<open>- k = NOT (k - 1)\<close>
0bb0cb558bf9 sketches of ideas still to come
haftmann
parents: 71195
diff changeset
  1609
    by (simp add: not_int_def)
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1610
  show \<open>bit (k AND l) n \<longleftrightarrow> bit k n \<and> bit l n\<close>
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1611
    by (fact bit_and_int_iff)
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1612
  show \<open>bit (k OR l) n \<longleftrightarrow> bit k n \<or> bit l n\<close>
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1613
    by (fact bit_or_int_iff)
71186
3d35e12999ba characterization of typical bit operations
haftmann
parents: 71181
diff changeset
  1614
  show \<open>bit (k XOR l) n \<longleftrightarrow> bit k n \<noteq> bit l n\<close>
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1615
    by (fact bit_xor_int_iff)
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1616
  show \<open>bit (unset_bit m k) n \<longleftrightarrow> bit k n \<and> m \<noteq> n\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1617
  proof -
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1618
    have \<open>unset_bit m k = k AND NOT (push_bit m 1)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1619
      by (simp add: unset_bit_int_def)
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1620
    also have \<open>NOT (push_bit m 1 :: int) = - (push_bit m 1 + 1)\<close>
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1621
      by (simp add: not_int_def)
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1622
    finally show ?thesis by (simp only: bit_simps bit_and_int_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1623
      (auto simp add: bit_simps bit_not_int_iff' push_bit_int_def)
73682
78044b2f001c explicit type class operations for type-specific implementations
haftmann
parents: 73535
diff changeset
  1624
  qed
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1625
qed (simp_all add: bit_not_int_iff mask_int_def set_bit_int_def flip_bit_int_def
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1626
  push_bit_int_def drop_bit_int_def take_bit_int_def)
71042
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1627
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1628
end
400e9512f1d3 proof-of-concept theory for bit operations without a constructivistic representation and a minimal common logical foundation
haftmann
parents:
diff changeset
  1629
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1630
lemma bit_push_bit_iff_int:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1631
  \<open>bit (push_bit m k) n \<longleftrightarrow> m \<le> n \<and> bit k (n - m)\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1632
  by (auto simp add: bit_push_bit_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1633
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1634
lemma take_bit_nonnegative [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1635
  \<open>take_bit n k \<ge> 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1636
  by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1637
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1638
lemma not_take_bit_negative [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1639
  \<open>\<not> take_bit n k < 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1640
  by (simp add: not_less)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1641
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1642
lemma take_bit_int_less_exp [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1643
  \<open>take_bit n k < 2 ^ n\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1644
  by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1645
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1646
lemma take_bit_int_eq_self_iff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1647
  \<open>take_bit n k = k \<longleftrightarrow> 0 \<le> k \<and> k < 2 ^ n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1648
  for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1649
proof
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1650
  assume ?P
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1651
  moreover note take_bit_int_less_exp [of n k] take_bit_nonnegative [of n k]
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1652
  ultimately show ?Q
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1653
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1654
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1655
  assume ?Q
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1656
  then show ?P
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1657
    by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1658
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1659
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1660
lemma take_bit_int_eq_self:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1661
  \<open>take_bit n k = k\<close> if \<open>0 \<le> k\<close> \<open>k < 2 ^ n\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1662
  using that by (simp add: take_bit_int_eq_self_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1663
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  1664
lemma mask_half_int:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  1665
  \<open>mask n div 2 = (mask (n - 1) :: int)\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  1666
  by (cases n) (simp_all add: mask_eq_exp_minus_1 algebra_simps)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  1667
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1668
lemma mask_nonnegative_int [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1669
  \<open>mask n \<ge> (0::int)\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1670
  by (simp add: mask_eq_exp_minus_1)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1671
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1672
lemma not_mask_negative_int [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1673
  \<open>\<not> mask n < (0::int)\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1674
  by (simp add: not_less)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  1675
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1676
lemma not_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1677
  \<open>NOT k \<ge> 0 \<longleftrightarrow> k < 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1678
  by (simp add: not_int_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1679
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1680
lemma not_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1681
  \<open>NOT k < 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1682
  by (subst Not_eq_iff [symmetric]) (simp add: not_less not_le)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1683
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1684
lemma and_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1685
  \<open>k AND l \<ge> 0 \<longleftrightarrow> k \<ge> 0 \<or> l \<ge> 0\<close> for k l :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1686
proof (induction k arbitrary: l rule: int_bit_induct)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1687
  case zero
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1688
  then show ?case
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1689
    by simp
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1690
next
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1691
  case minus
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1692
  then show ?case
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1693
    by simp
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1694
next
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1695
  case (even k)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1696
  then show ?case
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1697
    using and_int_rec [of \<open>k * 2\<close> l]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1698
    by (simp add: pos_imp_zdiv_nonneg_iff zero_le_mult_iff)
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1699
next
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1700
  case (odd k)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1701
  from odd have \<open>0 \<le> k AND l div 2 \<longleftrightarrow> 0 \<le> k \<or> 0 \<le> l div 2\<close>
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1702
    by simp
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1703
  then have \<open>0 \<le> (1 + k * 2) div 2 AND l div 2 \<longleftrightarrow> 0 \<le> (1 + k * 2) div 2 \<or> 0 \<le> l div 2\<close>
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1704
    by simp
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  1705
  with and_int_rec [of \<open>1 + k * 2\<close> l]
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1706
  show ?case
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  1707
    by (auto simp add: zero_le_mult_iff not_le)
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1708
qed
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1709
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1710
lemma and_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1711
  \<open>k AND l < 0 \<longleftrightarrow> k < 0 \<and> l < 0\<close> for k l :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1712
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1713
72009
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1714
lemma and_less_eq:
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1715
  \<open>k AND l \<le> k\<close> if \<open>l < 0\<close> for k l :: int
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1716
using that proof (induction k arbitrary: l rule: int_bit_induct)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1717
  case zero
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1718
  then show ?case
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1719
    by simp
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1720
next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1721
  case minus
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1722
  then show ?case
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1723
    by simp
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1724
next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1725
  case (even k)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1726
  from even.IH [of \<open>l div 2\<close>] even.hyps even.prems
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1727
  show ?case
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1728
    by (simp add: and_int_rec [of _ l])
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1729
next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1730
  case (odd k)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1731
  from odd.IH [of \<open>l div 2\<close>] odd.hyps odd.prems
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1732
  show ?case
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1733
    by (simp add: and_int_rec [of _ l]) linarith
72009
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1734
qed
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1735
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1736
lemma or_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1737
  \<open>k OR l \<ge> 0 \<longleftrightarrow> k \<ge> 0 \<and> l \<ge> 0\<close> for k l :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1738
  by (simp only: or_eq_not_not_and not_nonnegative_int_iff) simp
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1739
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1740
lemma or_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1741
  \<open>k OR l < 0 \<longleftrightarrow> k < 0 \<or> l < 0\<close> for k l :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1742
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1743
72009
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1744
lemma or_greater_eq:
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1745
  \<open>k OR l \<ge> k\<close> if \<open>l \<ge> 0\<close> for k l :: int
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1746
using that proof (induction k arbitrary: l rule: int_bit_induct)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1747
  case zero
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1748
  then show ?case
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1749
    by simp
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1750
next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1751
  case minus
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1752
  then show ?case
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1753
    by simp
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1754
next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1755
  case (even k)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1756
  from even.IH [of \<open>l div 2\<close>] even.hyps even.prems
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1757
  show ?case
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1758
    by (simp add: or_int_rec [of _ l]) linarith
72009
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1759
next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1760
  case (odd k)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1761
  from odd.IH [of \<open>l div 2\<close>] odd.hyps odd.prems
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1762
  show ?case
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1763
    by (simp add: or_int_rec [of _ l])
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1764
qed
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  1765
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1766
lemma xor_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1767
  \<open>k XOR l \<ge> 0 \<longleftrightarrow> (k \<ge> 0 \<longleftrightarrow> l \<ge> 0)\<close> for k l :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1768
  by (simp only: bit.xor_def or_nonnegative_int_iff) auto
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1769
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1770
lemma xor_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1771
  \<open>k XOR l < 0 \<longleftrightarrow> (k < 0) \<noteq> (l < 0)\<close> for k l :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1772
  by (subst Not_eq_iff [symmetric]) (auto simp add: not_less)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1773
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1774
lemma OR_upper: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1775
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1776
  assumes \<open>0 \<le> x\<close> \<open>x < 2 ^ n\<close> \<open>y < 2 ^ n\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1777
  shows \<open>x OR y < 2 ^ n\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1778
using assms proof (induction x arbitrary: y n rule: int_bit_induct)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1779
  case zero
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1780
  then show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1781
    by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1782
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1783
  case minus
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1784
  then show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1785
    by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1786
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1787
  case (even x)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1788
  from even.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] even.prems even.hyps
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1789
  show ?case 
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1790
    by (cases n) (auto simp add: or_int_rec [of \<open>_ * 2\<close>] elim: oddE)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1791
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1792
  case (odd x)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1793
  from odd.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] odd.prems odd.hyps
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1794
  show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1795
    by (cases n) (auto simp add: or_int_rec [of \<open>1 + _ * 2\<close>], linarith)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1796
qed
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1797
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1798
lemma XOR_upper: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1799
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1800
  assumes \<open>0 \<le> x\<close> \<open>x < 2 ^ n\<close> \<open>y < 2 ^ n\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1801
  shows \<open>x XOR y < 2 ^ n\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1802
using assms proof (induction x arbitrary: y n rule: int_bit_induct)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1803
  case zero
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1804
  then show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1805
    by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1806
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1807
  case minus
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1808
  then show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1809
    by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1810
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1811
  case (even x)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1812
  from even.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] even.prems even.hyps
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1813
  show ?case 
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1814
    by (cases n) (auto simp add: xor_int_rec [of \<open>_ * 2\<close>] elim: oddE)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1815
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1816
  case (odd x)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1817
  from odd.IH [of \<open>n - 1\<close> \<open>y div 2\<close>] odd.prems odd.hyps
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1818
  show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1819
    by (cases n) (auto simp add: xor_int_rec [of \<open>1 + _ * 2\<close>])
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1820
qed
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1821
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1822
lemma AND_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1823
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1824
  assumes \<open>0 \<le> x\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1825
  shows \<open>0 \<le> x AND y\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1826
  using assms by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1827
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1828
lemma OR_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1829
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1830
  assumes \<open>0 \<le> x\<close> \<open>0 \<le> y\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1831
  shows \<open>0 \<le> x OR y\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1832
  using assms by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1833
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1834
lemma XOR_lower [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1835
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1836
  assumes \<open>0 \<le> x\<close> \<open>0 \<le> y\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1837
  shows \<open>0 \<le> x XOR y\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1838
  using assms by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1839
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1840
lemma AND_upper1 [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1841
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1842
  assumes \<open>0 \<le> x\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1843
  shows \<open>x AND y \<le> x\<close>
73535
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1844
using assms proof (induction x arbitrary: y rule: int_bit_induct)
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1845
  case (odd k)
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1846
  then have \<open>k AND y div 2 \<le> k\<close>
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1847
    by simp
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1848
  then show ?case 
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1849
    by (simp add: and_int_rec [of \<open>1 + _ * 2\<close>])
0f33c7031ec9 new lemmas
haftmann
parents: 72830
diff changeset
  1850
qed (simp_all add: and_int_rec [of \<open>_ * 2\<close>])
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1851
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1852
lemmas AND_upper1' [simp] = order_trans [OF AND_upper1] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1853
lemmas AND_upper1'' [simp] = order_le_less_trans [OF AND_upper1] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1854
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1855
lemma AND_upper2 [simp]: \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1856
  fixes x y :: int
73969
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1857
  assumes \<open>0 \<le> y\<close>
ca2a35c0fe6e operations for symbolic computation of bit operations
haftmann
parents: 73871
diff changeset
  1858
  shows \<open>x AND y \<le> y\<close>
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1859
  using assms AND_upper1 [of y x] by (simp add: ac_simps)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1860
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1861
lemmas AND_upper2' [simp] = order_trans [OF AND_upper2] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1862
lemmas AND_upper2'' [simp] = order_le_less_trans [OF AND_upper2] \<^marker>\<open>contributor \<open>Stefan Berghofer\<close>\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1863
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1864
lemma plus_and_or: \<open>(x AND y) + (x OR y) = x + y\<close> for x y :: int
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1865
proof (induction x arbitrary: y rule: int_bit_induct)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1866
  case zero
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1867
  then show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1868
    by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1869
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1870
  case minus
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1871
  then show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1872
    by simp
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1873
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1874
  case (even x)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1875
  from even.IH [of \<open>y div 2\<close>]
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1876
  show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1877
    by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1878
next
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1879
  case (odd x)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1880
  from odd.IH [of \<open>y div 2\<close>]
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1881
  show ?case
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1882
    by (auto simp add: and_int_rec [of _ y] or_int_rec [of _ y] elim: oddE)
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1883
qed
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  1884
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1885
lemma push_bit_minus_one:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1886
  "push_bit n (- 1 :: int) = - (2 ^ n)"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1887
  by (simp add: push_bit_eq_mult)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1888
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1889
lemma minus_1_div_exp_eq_int:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1890
  \<open>- 1 div (2 :: int) ^ n = - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1891
  by (induction n) (use div_exp_eq [symmetric, of \<open>- 1 :: int\<close> 1] in \<open>simp_all add: ac_simps\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1892
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1893
lemma drop_bit_minus_one [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1894
  \<open>drop_bit n (- 1 :: int) = - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1895
  by (simp add: drop_bit_eq_div minus_1_div_exp_eq_int)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1896
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1897
lemma take_bit_Suc_from_most:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1898
  \<open>take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1899
  by (simp only: take_bit_eq_mod power_Suc2) (simp_all add: bit_iff_odd odd_iff_mod_2_eq_one zmod_zmult2_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1900
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1901
lemma take_bit_minus:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1902
  \<open>take_bit n (- take_bit n k) = take_bit n (- k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1903
    for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1904
  by (simp add: take_bit_eq_mod mod_minus_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1905
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1906
lemma take_bit_diff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1907
  \<open>take_bit n (take_bit n k - take_bit n l) = take_bit n (k - l)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1908
    for k l :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1909
  by (simp add: take_bit_eq_mod mod_diff_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1910
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1911
lemma bit_imp_take_bit_positive:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1912
  \<open>0 < take_bit m k\<close> if \<open>n < m\<close> and \<open>bit k n\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1913
proof (rule ccontr)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1914
  assume \<open>\<not> 0 < take_bit m k\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1915
  then have \<open>take_bit m k = 0\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1916
    by (auto simp add: not_less intro: order_antisym)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1917
  then have \<open>bit (take_bit m k) n = bit 0 n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1918
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1919
  with that show False
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1920
    by (simp add: bit_take_bit_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1921
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1922
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1923
lemma take_bit_mult:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1924
  \<open>take_bit n (take_bit n k * take_bit n l) = take_bit n (k * l)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1925
  for k l :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1926
  by (simp add: take_bit_eq_mod mod_mult_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1927
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1928
lemma (in ring_1) of_nat_nat_take_bit_eq [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1929
  \<open>of_nat (nat (take_bit n k)) = of_int (take_bit n k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1930
  by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1931
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1932
lemma take_bit_minus_small_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1933
  \<open>take_bit n (- k) = 2 ^ n - k\<close> if \<open>0 < k\<close> \<open>k \<le> 2 ^ n\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1934
proof -
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1935
  define m where \<open>m = nat k\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1936
  with that have \<open>k = int m\<close> and \<open>0 < m\<close> and \<open>m \<le> 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1937
    by simp_all
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1938
  have \<open>(2 ^ n - m) mod 2 ^ n = 2 ^ n - m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1939
    using \<open>0 < m\<close> by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1940
  then have \<open>int ((2 ^ n - m) mod 2 ^ n) = int (2 ^ n - m)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1941
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1942
  then have \<open>(2 ^ n - int m) mod 2 ^ n = 2 ^ n - int m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1943
    using \<open>m \<le> 2 ^ n\<close> by (simp only: of_nat_mod of_nat_diff) simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1944
  with \<open>k = int m\<close> have \<open>(2 ^ n - k) mod 2 ^ n = 2 ^ n - k\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1945
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1946
  then show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1947
    by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1948
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1949
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1950
lemma drop_bit_push_bit_int:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1951
  \<open>drop_bit m (push_bit n k) = drop_bit (m - n) (push_bit (n - m) k)\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1952
  by (cases \<open>m \<le> n\<close>) (auto simp add: mult.left_commute [of _ \<open>2 ^ n\<close>] mult.commute [of _ \<open>2 ^ n\<close>] mult.assoc
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1953
    mult.commute [of k] drop_bit_eq_div push_bit_eq_mult not_le power_add dest!: le_Suc_ex less_imp_Suc_add)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1954
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1955
lemma push_bit_nonnegative_int_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1956
  \<open>push_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1957
  by (simp add: push_bit_eq_mult zero_le_mult_iff power_le_zero_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1958
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1959
lemma push_bit_negative_int_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1960
  \<open>push_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1961
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1962
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1963
lemma drop_bit_nonnegative_int_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1964
  \<open>drop_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1965
  by (induction n) (auto simp add: drop_bit_Suc drop_bit_half)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1966
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1967
lemma drop_bit_negative_int_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1968
  \<open>drop_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1969
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  1970
71802
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1971
lemma set_bit_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1972
  \<open>set_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1973
  by (simp add: set_bit_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1974
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1975
lemma set_bit_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1976
  \<open>set_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1977
  by (simp add: set_bit_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1978
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1979
lemma unset_bit_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1980
  \<open>unset_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1981
  by (simp add: unset_bit_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1982
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1983
lemma unset_bit_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1984
  \<open>unset_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1985
  by (simp add: unset_bit_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1986
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1987
lemma flip_bit_nonnegative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1988
  \<open>flip_bit n k \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1989
  by (simp add: flip_bit_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1990
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1991
lemma flip_bit_negative_int_iff [simp]:
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1992
  \<open>flip_bit n k < 0 \<longleftrightarrow> k < 0\<close> for k :: int
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1993
  by (simp add: flip_bit_def)
ab3cecb836b5 more rules
haftmann
parents: 71800
diff changeset
  1994
71986
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  1995
lemma set_bit_greater_eq:
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  1996
  \<open>set_bit n k \<ge> k\<close> for k :: int
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  1997
  by (simp add: set_bit_def or_greater_eq)
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  1998
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  1999
lemma unset_bit_less_eq:
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  2000
  \<open>unset_bit n k \<le> k\<close> for k :: int
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  2001
  by (simp add: unset_bit_def and_less_eq)
76193dd4aec8 factored out ancient numeral representation
haftmann
parents: 71965
diff changeset
  2002
72009
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2003
lemma set_bit_eq:
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2004
  \<open>set_bit n k = k + of_bool (\<not> bit k n) * 2 ^ n\<close> for k :: int
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2005
proof (rule bit_eqI)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2006
  fix m
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2007
  show \<open>bit (set_bit n k) m \<longleftrightarrow> bit (k + of_bool (\<not> bit k n) * 2 ^ n) m\<close>
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2008
  proof (cases \<open>m = n\<close>)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2009
    case True
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2010
    then show ?thesis
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2011
      apply (simp add: bit_set_bit_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2012
      apply (simp add: bit_iff_odd div_plus_div_distrib_dvd_right)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2013
      done
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2014
  next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2015
    case False
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2016
    then show ?thesis
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2017
      apply (clarsimp simp add: bit_set_bit_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2018
      apply (subst disjunctive_add)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2019
      apply (clarsimp simp add: bit_exp_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2020
      apply (clarsimp simp add: bit_or_iff bit_exp_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2021
      done
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2022
  qed
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2023
qed
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2024
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2025
lemma unset_bit_eq:
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2026
  \<open>unset_bit n k = k - of_bool (bit k n) * 2 ^ n\<close> for k :: int
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2027
proof (rule bit_eqI)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2028
  fix m
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2029
  show \<open>bit (unset_bit n k) m \<longleftrightarrow> bit (k - of_bool (bit k n) * 2 ^ n) m\<close>
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2030
  proof (cases \<open>m = n\<close>)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2031
    case True
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2032
    then show ?thesis
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2033
      apply (simp add: bit_unset_bit_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2034
      apply (simp add: bit_iff_odd)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2035
      using div_plus_div_distrib_dvd_right [of \<open>2 ^ n\<close> \<open>- (2 ^ n)\<close> k]
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2036
      apply (simp add: dvd_neg_div)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2037
      done
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2038
  next
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2039
    case False
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2040
    then show ?thesis
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2041
      apply (clarsimp simp add: bit_unset_bit_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2042
      apply (subst disjunctive_diff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2043
      apply (clarsimp simp add: bit_exp_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2044
      apply (clarsimp simp add: bit_and_iff bit_not_iff bit_exp_iff)
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2045
      done
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2046
  qed
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2047
qed
febdd4eead56 more on single-bit operations
haftmann
parents: 71991
diff changeset
  2048
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2049
lemma and_int_unfold [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2050
  \<open>k AND l = (if k = 0 \<or> l = 0 then 0 else if k = - 1 then l else if l = - 1 then k
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2051
    else (k mod 2) * (l mod 2) + 2 * ((k div 2) AND (l div 2)))\<close> for k l :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2052
  by (auto simp add: and_int_rec [of k l] zmult_eq_1_iff elim: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2053
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2054
lemma or_int_unfold [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2055
  \<open>k OR l = (if k = - 1 \<or> l = - 1 then - 1 else if k = 0 then l else if l = 0 then k
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2056
    else max (k mod 2) (l mod 2) + 2 * ((k div 2) OR (l div 2)))\<close> for k l :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2057
  by (auto simp add: or_int_rec [of k l] elim: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2058
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2059
lemma xor_int_unfold [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2060
  \<open>k XOR l = (if k = - 1 then NOT l else if l = - 1 then NOT k else if k = 0 then l else if l = 0 then k
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2061
    else \<bar>k mod 2 - l mod 2\<bar> + 2 * ((k div 2) XOR (l div 2)))\<close> for k l :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2062
  by (auto simp add: xor_int_rec [of k l] not_int_def elim!: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2063
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2064
lemma bit_minus_int_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2065
  \<open>bit (- k) n \<longleftrightarrow> bit (NOT (k - 1)) n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2066
  for k :: int
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2067
  by (simp add: bit_simps)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2068
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2069
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2070
subsection \<open>Instance \<^typ>\<open>nat\<close>\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2071
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2072
instantiation nat :: semiring_bit_operations
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2073
begin
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2074
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2075
definition and_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2076
  where \<open>m AND n = nat (int m AND int n)\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2077
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2078
definition or_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2079
  where \<open>m OR n = nat (int m OR int n)\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2080
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2081
definition xor_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2082
  where \<open>m XOR n = nat (int m XOR int n)\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2083
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2084
definition mask_nat :: \<open>nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2085
  where \<open>mask n = (2 :: nat) ^ n - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2086
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2087
definition push_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2088
  where \<open>push_bit_nat n m = m * 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2089
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2090
definition drop_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2091
  where \<open>drop_bit_nat n m = m div 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2092
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2093
definition take_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2094
  where \<open>take_bit_nat n m = m mod 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2095
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2096
definition set_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2097
  where \<open>set_bit m n = n OR push_bit m 1\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2098
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2099
definition unset_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2100
  where \<open>unset_bit m n = nat (unset_bit m (int n))\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2101
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2102
definition flip_bit_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> nat\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2103
  where \<open>flip_bit m n = n XOR push_bit m 1\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2104
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2105
instance proof
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2106
  fix m n q :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2107
  show \<open>bit (m AND n) q \<longleftrightarrow> bit m q \<and> bit n q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2108
    by (simp add: and_nat_def bit_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2109
  show \<open>bit (m OR n) q \<longleftrightarrow> bit m q \<or> bit n q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2110
    by (simp add: or_nat_def bit_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2111
  show \<open>bit (m XOR n) q \<longleftrightarrow> bit m q \<noteq> bit n q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2112
    by (simp add: xor_nat_def bit_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2113
  show \<open>bit (unset_bit m n) q \<longleftrightarrow> bit n q \<and> m \<noteq> q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2114
    by (simp add: unset_bit_nat_def bit_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2115
qed (simp_all add: mask_nat_def set_bit_nat_def flip_bit_nat_def push_bit_nat_def drop_bit_nat_def take_bit_nat_def)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2116
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2117
end
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2118
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2119
lemma take_bit_nat_less_exp [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2120
  \<open>take_bit n m < 2 ^ n\<close> for n m ::nat 
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2121
  by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2122
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2123
lemma take_bit_nat_eq_self_iff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2124
  \<open>take_bit n m = m \<longleftrightarrow> m < 2 ^ n\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2125
  for n m :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2126
proof
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2127
  assume ?P
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2128
  moreover note take_bit_nat_less_exp [of n m]
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2129
  ultimately show ?Q
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2130
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2131
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2132
  assume ?Q
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2133
  then show ?P
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2134
    by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2135
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2136
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2137
lemma take_bit_nat_eq_self:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2138
  \<open>take_bit n m = m\<close> if \<open>m < 2 ^ n\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2139
  using that by (simp add: take_bit_nat_eq_self_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2140
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2141
lemma take_bit_nat_less_eq_self [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2142
  \<open>take_bit n m \<le> m\<close> for n m :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2143
  by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2144
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2145
lemma take_bit_nat_less_self_iff:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2146
  \<open>take_bit n m < m \<longleftrightarrow> 2 ^ n \<le> m\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2147
  for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2148
proof
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2149
  assume ?P
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2150
  then have \<open>take_bit n m \<noteq> m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2151
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2152
  then show \<open>?Q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2153
    by (simp add: take_bit_nat_eq_self_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2154
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2155
  have \<open>take_bit n m < 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2156
    by (fact take_bit_nat_less_exp)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2157
  also assume ?Q
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2158
  finally show ?P .
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2159
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2160
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2161
lemma bit_push_bit_iff_nat:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2162
  \<open>bit (push_bit m q) n \<longleftrightarrow> m \<le> n \<and> bit q (n - m)\<close> for q :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2163
  by (auto simp add: bit_push_bit_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2164
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2165
lemma and_nat_rec:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2166
  \<open>m AND n = of_bool (odd m \<and> odd n) + 2 * ((m div 2) AND (n div 2))\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2167
  apply (simp add: and_nat_def and_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2168
  apply (subst nat_add_distrib)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2169
    apply auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2170
  done
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2171
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2172
lemma or_nat_rec:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2173
  \<open>m OR n = of_bool (odd m \<or> odd n) + 2 * ((m div 2) OR (n div 2))\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2174
  apply (simp add: or_nat_def or_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2175
  apply (subst nat_add_distrib)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2176
    apply auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2177
  done
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2178
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2179
lemma xor_nat_rec:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2180
  \<open>m XOR n = of_bool (odd m \<noteq> odd n) + 2 * ((m div 2) XOR (n div 2))\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2181
  apply (simp add: xor_nat_def xor_int_rec [of \<open>int m\<close> \<open>int n\<close>] zdiv_int nat_add_distrib nat_mult_distrib)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2182
  apply (subst nat_add_distrib)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2183
    apply auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2184
  done
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2185
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2186
lemma Suc_0_and_eq [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2187
  \<open>Suc 0 AND n = n mod 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2188
  using one_and_eq [of n] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2189
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2190
lemma and_Suc_0_eq [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2191
  \<open>n AND Suc 0 = n mod 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2192
  using and_one_eq [of n] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2193
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2194
lemma Suc_0_or_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2195
  \<open>Suc 0 OR n = n + of_bool (even n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2196
  using one_or_eq [of n] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2197
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2198
lemma or_Suc_0_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2199
  \<open>n OR Suc 0 = n + of_bool (even n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2200
  using or_one_eq [of n] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2201
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2202
lemma Suc_0_xor_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2203
  \<open>Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2204
  using one_xor_eq [of n] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2205
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2206
lemma xor_Suc_0_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2207
  \<open>n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2208
  using xor_one_eq [of n] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2209
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2210
lemma and_nat_unfold [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2211
  \<open>m AND n = (if m = 0 \<or> n = 0 then 0 else (m mod 2) * (n mod 2) + 2 * ((m div 2) AND (n div 2)))\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2212
    for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2213
  by (auto simp add: and_nat_rec [of m n] elim: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2214
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2215
lemma or_nat_unfold [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2216
  \<open>m OR n = (if m = 0 then n else if n = 0 then m
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2217
    else max (m mod 2) (n mod 2) + 2 * ((m div 2) OR (n div 2)))\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2218
  by (auto simp add: or_nat_rec [of m n] elim: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2219
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2220
lemma xor_nat_unfold [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2221
  \<open>m XOR n = (if m = 0 then n else if n = 0 then m
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2222
    else (m mod 2 + n mod 2) mod 2 + 2 * ((m div 2) XOR (n div 2)))\<close> for m n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2223
  by (auto simp add: xor_nat_rec [of m n] elim!: oddE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2224
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2225
lemma [code]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2226
  \<open>unset_bit 0 m = 2 * (m div 2)\<close>
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2227
  \<open>unset_bit (Suc n) m = m mod 2 + 2 * unset_bit n (m div 2)\<close> for m n :: nat
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2228
  by (simp_all add: unset_bit_Suc)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2229
  
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2230
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2231
subsection \<open>Common algebraic structure\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2232
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2233
class unique_euclidean_semiring_with_bit_operations =
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2234
  unique_euclidean_semiring_with_nat + semiring_bit_operations
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2235
begin
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2236
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2237
lemma take_bit_of_exp [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2238
  \<open>take_bit m (2 ^ n) = of_bool (n < m) * 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2239
  by (simp add: take_bit_eq_mod exp_mod_exp)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2240
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2241
lemma take_bit_of_2 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2242
  \<open>take_bit n 2 = of_bool (2 \<le> n) * 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2243
  using take_bit_of_exp [of n 1] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2244
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2245
lemma take_bit_of_mask:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2246
  \<open>take_bit m (2 ^ n - 1) = 2 ^ min m n - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2247
  by (simp add: take_bit_eq_mod mask_mod_exp)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2248
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2249
lemma push_bit_eq_0_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2250
  "push_bit n a = 0 \<longleftrightarrow> a = 0"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2251
  by (simp add: push_bit_eq_mult)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2252
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2253
lemma take_bit_add:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2254
  "take_bit n (take_bit n a + take_bit n b) = take_bit n (a + b)"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2255
  by (simp add: take_bit_eq_mod mod_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2256
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2257
lemma take_bit_of_1_eq_0_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2258
  "take_bit n 1 = 0 \<longleftrightarrow> n = 0"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2259
  by (simp add: take_bit_eq_mod)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2260
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2261
lemma take_bit_Suc_1 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2262
  \<open>take_bit (Suc n) 1 = 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2263
  by (simp add: take_bit_Suc)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2264
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2265
lemma take_bit_Suc_bit0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2266
  \<open>take_bit (Suc n) (numeral (Num.Bit0 k)) = take_bit n (numeral k) * 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2267
  by (simp add: take_bit_Suc numeral_Bit0_div_2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2268
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2269
lemma take_bit_Suc_bit1 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2270
  \<open>take_bit (Suc n) (numeral (Num.Bit1 k)) = take_bit n (numeral k) * 2 + 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2271
  by (simp add: take_bit_Suc numeral_Bit1_div_2 mod_2_eq_odd)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2272
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2273
lemma take_bit_numeral_1 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2274
  \<open>take_bit (numeral l) 1 = 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2275
  by (simp add: take_bit_rec [of \<open>numeral l\<close> 1])
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2276
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2277
lemma take_bit_numeral_bit0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2278
  \<open>take_bit (numeral l) (numeral (Num.Bit0 k)) = take_bit (pred_numeral l) (numeral k) * 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2279
  by (simp add: take_bit_rec numeral_Bit0_div_2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2280
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2281
lemma take_bit_numeral_bit1 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2282
  \<open>take_bit (numeral l) (numeral (Num.Bit1 k)) = take_bit (pred_numeral l) (numeral k) * 2 + 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2283
  by (simp add: take_bit_rec numeral_Bit1_div_2 mod_2_eq_odd)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2284
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2285
lemma drop_bit_Suc_bit0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2286
  \<open>drop_bit (Suc n) (numeral (Num.Bit0 k)) = drop_bit n (numeral k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2287
  by (simp add: drop_bit_Suc numeral_Bit0_div_2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2288
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2289
lemma drop_bit_Suc_bit1 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2290
  \<open>drop_bit (Suc n) (numeral (Num.Bit1 k)) = drop_bit n (numeral k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2291
  by (simp add: drop_bit_Suc numeral_Bit1_div_2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2292
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2293
lemma drop_bit_numeral_bit0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2294
  \<open>drop_bit (numeral l) (numeral (Num.Bit0 k)) = drop_bit (pred_numeral l) (numeral k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2295
  by (simp add: drop_bit_rec numeral_Bit0_div_2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2296
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2297
lemma drop_bit_numeral_bit1 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2298
  \<open>drop_bit (numeral l) (numeral (Num.Bit1 k)) = drop_bit (pred_numeral l) (numeral k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2299
  by (simp add: drop_bit_rec numeral_Bit1_div_2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2300
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2301
lemma drop_bit_of_nat:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2302
  "drop_bit n (of_nat m) = of_nat (drop_bit n m)"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2303
  by (simp add: drop_bit_eq_div Bit_Operations.drop_bit_eq_div of_nat_div [of m "2 ^ n"])
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2304
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2305
lemma bit_of_nat_iff_bit [bit_simps]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2306
  \<open>bit (of_nat m) n \<longleftrightarrow> bit m n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2307
proof -
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2308
  have \<open>even (m div 2 ^ n) \<longleftrightarrow> even (of_nat (m div 2 ^ n))\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2309
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2310
  also have \<open>of_nat (m div 2 ^ n) = of_nat m div of_nat (2 ^ n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2311
    by (simp add: of_nat_div)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2312
  finally show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2313
    by (simp add: bit_iff_odd semiring_bits_class.bit_iff_odd)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2314
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2315
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2316
lemma of_nat_drop_bit:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2317
  \<open>of_nat (drop_bit m n) = drop_bit m (of_nat n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2318
  by (simp add: drop_bit_eq_div Bit_Operations.drop_bit_eq_div of_nat_div)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2319
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2320
lemma take_bit_sum:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2321
  "take_bit n a = (\<Sum>k = 0..<n. push_bit k (of_bool (bit a k)))"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2322
  for n :: nat
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2323
proof (induction n arbitrary: a)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2324
  case 0
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2325
  then show ?case
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2326
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2327
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2328
  case (Suc n)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2329
  have "(\<Sum>k = 0..<Suc n. push_bit k (of_bool (bit a k))) = 
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2330
    of_bool (odd a) + (\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (bit a k)))"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2331
    by (simp add: sum.atLeast_Suc_lessThan ac_simps)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2332
  also have "(\<Sum>k = Suc 0..<Suc n. push_bit k (of_bool (bit a k)))
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2333
    = (\<Sum>k = 0..<n. push_bit k (of_bool (bit (a div 2) k))) * 2"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2334
    by (simp only: sum.atLeast_Suc_lessThan_Suc_shift) (simp add: sum_distrib_right push_bit_double drop_bit_Suc bit_Suc)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2335
  finally show ?case
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2336
    using Suc [of "a div 2"] by (simp add: ac_simps take_bit_Suc mod_2_eq_odd)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2337
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2338
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2339
end
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2340
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2341
instance nat :: unique_euclidean_semiring_with_bit_operations ..
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2342
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2343
instance int :: unique_euclidean_semiring_with_bit_operations ..
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2344
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2345
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2346
subsection \<open>Symbolic computations on numeral expressions\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2347
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2348
context unique_euclidean_semiring_with_bit_operations
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2349
begin
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2350
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2351
lemma bit_numeral_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2352
  \<open>bit (numeral m) n \<longleftrightarrow> bit (numeral m :: nat) n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2353
  using bit_of_nat_iff_bit [of \<open>numeral m\<close> n] by simp
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2354
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2355
lemma bit_numeral_Bit0_Suc_iff [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2356
  \<open>bit (numeral (Num.Bit0 m)) (Suc n) \<longleftrightarrow> bit (numeral m) n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2357
  by (simp add: bit_Suc numeral_Bit0_div_2)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2358
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2359
lemma bit_numeral_Bit1_Suc_iff [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2360
  \<open>bit (numeral (Num.Bit1 m)) (Suc n) \<longleftrightarrow> bit (numeral m) n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2361
  by (simp add: bit_Suc numeral_Bit1_div_2)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2362
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2363
lemma bit_numeral_rec:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2364
  \<open>bit (numeral (Num.Bit0 w)) n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc m \<Rightarrow> bit (numeral w) m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2365
  \<open>bit (numeral (Num.Bit1 w)) n \<longleftrightarrow> (case n of 0 \<Rightarrow> True | Suc m \<Rightarrow> bit (numeral w) m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2366
  by (cases n; simp)+
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2367
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2368
lemma bit_numeral_simps [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2369
  \<open>\<not> bit 1 (numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2370
  \<open>bit (numeral (Num.Bit0 w)) (numeral n) \<longleftrightarrow> bit (numeral w) (pred_numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2371
  \<open>bit (numeral (Num.Bit1 w)) (numeral n) \<longleftrightarrow> bit (numeral w) (pred_numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2372
  by (simp_all add: bit_1_iff numeral_eq_Suc)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2373
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2374
lemma and_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2375
  \<open>1 AND numeral (Num.Bit0 y) = 0\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2376
  \<open>1 AND numeral (Num.Bit1 y) = 1\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2377
  \<open>numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = 2 * (numeral x AND numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2378
  \<open>numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = 2 * (numeral x AND numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2379
  \<open>numeral (Num.Bit0 x) AND 1 = 0\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2380
  \<open>numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = 2 * (numeral x AND numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2381
  \<open>numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = 1 + 2 * (numeral x AND numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2382
  \<open>numeral (Num.Bit1 x) AND 1 = 1\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2383
  by (simp_all add: bit_eq_iff) (simp_all add: bit_simps bit_Suc bit_numeral_rec split: nat.splits)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2384
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2385
fun and_num :: \<open>num \<Rightarrow> num \<Rightarrow> num option\<close> \<^marker>\<open>contributor \<open>Andreas Lochbihler\<close>\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2386
where
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2387
  \<open>and_num num.One num.One = Some num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2388
| \<open>and_num num.One (num.Bit0 n) = None\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2389
| \<open>and_num num.One (num.Bit1 n) = Some num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2390
| \<open>and_num (num.Bit0 m) num.One = None\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2391
| \<open>and_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (and_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2392
| \<open>and_num (num.Bit0 m) (num.Bit1 n) = map_option num.Bit0 (and_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2393
| \<open>and_num (num.Bit1 m) num.One = Some num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2394
| \<open>and_num (num.Bit1 m) (num.Bit0 n) = map_option num.Bit0 (and_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2395
| \<open>and_num (num.Bit1 m) (num.Bit1 n) = (case and_num m n of None \<Rightarrow> Some num.One | Some n' \<Rightarrow> Some (num.Bit1 n'))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2396
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2397
lemma numeral_and_num:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2398
  \<open>numeral m AND numeral n = (case and_num m n of None \<Rightarrow> 0 | Some n' \<Rightarrow> numeral n')\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2399
  by (induction m n rule: and_num.induct) (simp_all add: split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2400
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2401
lemma and_num_eq_None_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2402
  \<open>and_num m n = None \<longleftrightarrow> numeral m AND numeral n = 0\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2403
  by (simp add: numeral_and_num split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2404
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2405
lemma and_num_eq_Some_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2406
  \<open>and_num m n = Some q \<longleftrightarrow> numeral m AND numeral n = numeral q\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2407
  by (simp add: numeral_and_num split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2408
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2409
lemma or_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2410
  \<open>1 OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2411
  \<open>1 OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2412
  \<open>numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = 2 * (numeral x OR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2413
  \<open>numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = 1 + 2 * (numeral x OR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2414
  \<open>numeral (Num.Bit0 x) OR 1 = numeral (Num.Bit1 x)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2415
  \<open>numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = 1 + 2 * (numeral x OR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2416
  \<open>numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = 1 + 2 * (numeral x OR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2417
  \<open>numeral (Num.Bit1 x) OR 1 = numeral (Num.Bit1 x)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2418
  by (simp_all add: bit_eq_iff) (simp_all add: bit_simps bit_Suc bit_numeral_rec split: nat.splits)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2419
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2420
fun or_num :: \<open>num \<Rightarrow> num \<Rightarrow> num\<close> \<^marker>\<open>contributor \<open>Andreas Lochbihler\<close>\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2421
where
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2422
  \<open>or_num num.One num.One = num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2423
| \<open>or_num num.One (num.Bit0 n) = num.Bit1 n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2424
| \<open>or_num num.One (num.Bit1 n) = num.Bit1 n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2425
| \<open>or_num (num.Bit0 m) num.One = num.Bit1 m\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2426
| \<open>or_num (num.Bit0 m) (num.Bit0 n) = num.Bit0 (or_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2427
| \<open>or_num (num.Bit0 m) (num.Bit1 n) = num.Bit1 (or_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2428
| \<open>or_num (num.Bit1 m) num.One = num.Bit1 m\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2429
| \<open>or_num (num.Bit1 m) (num.Bit0 n) = num.Bit1 (or_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2430
| \<open>or_num (num.Bit1 m) (num.Bit1 n) = num.Bit1 (or_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2431
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2432
lemma numeral_or_num:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2433
  \<open>numeral m OR numeral n = numeral (or_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2434
  by (induction m n rule: or_num.induct) simp_all
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2435
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2436
lemma numeral_or_num_eq:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2437
  \<open>numeral (or_num m n) = numeral m OR numeral n\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2438
  by (simp add: numeral_or_num)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2439
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2440
lemma xor_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2441
  \<open>1 XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2442
  \<open>1 XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2443
  \<open>numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = 2 * (numeral x XOR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2444
  \<open>numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = 1 + 2 * (numeral x XOR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2445
  \<open>numeral (Num.Bit0 x) XOR 1 = numeral (Num.Bit1 x)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2446
  \<open>numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = 1 + 2 * (numeral x XOR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2447
  \<open>numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = 2 * (numeral x XOR numeral y)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2448
  \<open>numeral (Num.Bit1 x) XOR 1 = numeral (Num.Bit0 x)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2449
  by (simp_all add: bit_eq_iff) (simp_all add: bit_simps bit_Suc bit_numeral_rec split: nat.splits)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2450
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2451
fun xor_num :: \<open>num \<Rightarrow> num \<Rightarrow> num option\<close> \<^marker>\<open>contributor \<open>Andreas Lochbihler\<close>\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2452
where
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2453
  \<open>xor_num num.One num.One = None\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2454
| \<open>xor_num num.One (num.Bit0 n) = Some (num.Bit1 n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2455
| \<open>xor_num num.One (num.Bit1 n) = Some (num.Bit0 n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2456
| \<open>xor_num (num.Bit0 m) num.One = Some (num.Bit1 m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2457
| \<open>xor_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (xor_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2458
| \<open>xor_num (num.Bit0 m) (num.Bit1 n) = Some (case xor_num m n of None \<Rightarrow> num.One | Some n' \<Rightarrow> num.Bit1 n')\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2459
| \<open>xor_num (num.Bit1 m) num.One = Some (num.Bit0 m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2460
| \<open>xor_num (num.Bit1 m) (num.Bit0 n) = Some (case xor_num m n of None \<Rightarrow> num.One | Some n' \<Rightarrow> num.Bit1 n')\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2461
| \<open>xor_num (num.Bit1 m) (num.Bit1 n) = map_option num.Bit0 (xor_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2462
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2463
lemma numeral_xor_num:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2464
  \<open>numeral m XOR numeral n = (case xor_num m n of None \<Rightarrow> 0 | Some n' \<Rightarrow> numeral n')\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2465
  by (induction m n rule: xor_num.induct) (simp_all split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2466
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2467
lemma xor_num_eq_None_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2468
  \<open>xor_num m n = None \<longleftrightarrow> numeral m XOR numeral n = 0\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2469
  by (simp add: numeral_xor_num split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2470
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2471
lemma xor_num_eq_Some_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2472
  \<open>xor_num m n = Some q \<longleftrightarrow> numeral m XOR numeral n = numeral q\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2473
  by (simp add: numeral_xor_num split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2474
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2475
end
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2476
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2477
context ring_bit_operations
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2478
begin
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2479
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2480
lemma minus_numeral_inc_eq:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2481
  \<open>- numeral (Num.inc n) = NOT (numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2482
  by (simp add: not_eq_complement sub_inc_One_eq add_One)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2483
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2484
lemma sub_one_eq_not_neg:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2485
  \<open>Num.sub n num.One = NOT (- numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2486
  by (simp add: not_eq_complement)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2487
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2488
lemma minus_numeral_eq_not_sub_one:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2489
  \<open>- numeral n = NOT (Num.sub n num.One)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2490
  by (simp add: not_eq_complement)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2491
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2492
lemma not_numeral_eq:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2493
  \<open>NOT (numeral n) = - numeral (Num.inc n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2494
  by (simp add: minus_numeral_inc_eq)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2495
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2496
lemma not_minus_numeral_eq [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2497
  \<open>NOT (- numeral n) = Num.sub n num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2498
  by (simp add: sub_one_eq_not_neg)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2499
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2500
lemma minus_not_numeral_eq [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2501
  \<open>- (NOT (numeral n)) = numeral (Num.inc n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2502
  by (simp add: not_numeral_eq)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2503
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2504
end
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2505
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2506
lemma bit_minus_numeral_int [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2507
  \<open>bit (- numeral (num.Bit0 w) :: int) (numeral n) \<longleftrightarrow> bit (- numeral w :: int) (pred_numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2508
  \<open>bit (- numeral (num.Bit1 w) :: int) (numeral n) \<longleftrightarrow> \<not> bit (numeral w :: int) (pred_numeral n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2509
  by (simp_all add: bit_minus_iff bit_not_iff numeral_eq_Suc bit_Suc add_One sub_inc_One_eq)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2510
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2511
lemma and_not_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2512
  \<open>1 AND NOT 1 = (0 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2513
  \<open>1 AND NOT (numeral (Num.Bit0 n)) = (1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2514
  \<open>1 AND NOT (numeral (Num.Bit1 n)) = (0 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2515
  \<open>numeral (Num.Bit0 m) AND NOT (1 :: int) = numeral (Num.Bit0 m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2516
  \<open>numeral (Num.Bit0 m) AND NOT (numeral (Num.Bit0 n)) = (2 :: int) * (numeral m AND NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2517
  \<open>numeral (Num.Bit0 m) AND NOT (numeral (Num.Bit1 n)) = (2 :: int) * (numeral m AND NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2518
  \<open>numeral (Num.Bit1 m) AND NOT (1 :: int) = numeral (Num.Bit0 m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2519
  \<open>numeral (Num.Bit1 m) AND NOT (numeral (Num.Bit0 n)) = 1 + (2 :: int) * (numeral m AND NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2520
  \<open>numeral (Num.Bit1 m) AND NOT (numeral (Num.Bit1 n)) = (2 :: int) * (numeral m AND NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2521
  by (simp_all add: bit_eq_iff) (auto simp add: bit_simps bit_Suc bit_numeral_rec BitM_inc_eq split: nat.splits)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2522
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2523
lemma and_not_not_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2524
  \<open>NOT 1 AND NOT 1 = NOT (1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2525
  \<open>NOT 1 AND NOT (numeral n) = NOT (1 OR numeral n :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2526
  \<open>NOT (numeral m) AND NOT 1 = NOT (numeral m OR 1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2527
  \<open>NOT (numeral m) AND NOT (numeral n) = NOT (numeral m OR numeral n :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2528
  by simp_all
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2529
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2530
lemma and_minus_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2531
  \<open>- 1 AND k = k\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2532
  \<open>k AND - 1 = k\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2533
  \<open>- numeral n AND k = NOT (neg_numeral_class.sub n num.One) AND k\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2534
  \<open>k AND - numeral n = k AND NOT (neg_numeral_class.sub n num.One)\<close> for k :: int
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2535
  by (simp_all add: minus_numeral_eq_not_sub_one)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2536
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2537
fun and_not_num :: \<open>num \<Rightarrow> num \<Rightarrow> num option\<close> \<^marker>\<open>contributor \<open>Andreas Lochbihler\<close>\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2538
where
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2539
  \<open>and_not_num num.One num.One = None\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2540
| \<open>and_not_num num.One (num.Bit0 n) = Some num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2541
| \<open>and_not_num num.One (num.Bit1 n) = None\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2542
| \<open>and_not_num (num.Bit0 m) num.One = Some (num.Bit0 m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2543
| \<open>and_not_num (num.Bit0 m) (num.Bit0 n) = map_option num.Bit0 (and_not_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2544
| \<open>and_not_num (num.Bit0 m) (num.Bit1 n) = map_option num.Bit0 (and_not_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2545
| \<open>and_not_num (num.Bit1 m) num.One = Some (num.Bit0 m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2546
| \<open>and_not_num (num.Bit1 m) (num.Bit0 n) = (case and_not_num m n of None \<Rightarrow> Some num.One | Some n' \<Rightarrow> Some (num.Bit1 n'))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2547
| \<open>and_not_num (num.Bit1 m) (num.Bit1 n) = map_option num.Bit0 (and_not_num m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2548
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2549
lemma int_numeral_and_not_num:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2550
  \<open>numeral m AND NOT (numeral n) = (case and_not_num m n of None \<Rightarrow> 0 :: int | Some n' \<Rightarrow> numeral n')\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2551
  by (induction m n rule: and_not_num.induct) (simp_all split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2552
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2553
lemma int_numeral_not_and_num:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2554
  \<open>NOT (numeral m) AND numeral n = (case and_not_num n m of None \<Rightarrow> 0 :: int | Some n' \<Rightarrow> numeral n')\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2555
  using int_numeral_and_not_num [of n m] by (simp add: ac_simps)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2556
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2557
lemma and_not_num_eq_None_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2558
  \<open>and_not_num m n = None \<longleftrightarrow> numeral m AND NOT (numeral n) = (0 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2559
  by (simp add: int_numeral_and_not_num split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2560
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2561
lemma and_not_num_eq_Some_iff:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2562
  \<open>and_not_num m n = Some q \<longleftrightarrow> numeral m AND NOT (numeral n) = (numeral q :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2563
  by (simp add: int_numeral_and_not_num split: option.split)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2564
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2565
lemma or_not_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2566
  \<open>1 OR NOT 1 = NOT (0 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2567
  \<open>1 OR NOT (numeral (Num.Bit0 n)) = NOT (numeral (Num.Bit0 n) :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2568
  \<open>1 OR NOT (numeral (Num.Bit1 n)) = NOT (numeral (Num.Bit0 n) :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2569
  \<open>numeral (Num.Bit0 m) OR NOT (1 :: int) = NOT (1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2570
  \<open>numeral (Num.Bit0 m) OR NOT (numeral (Num.Bit0 n)) = 1 + (2 :: int) * (numeral m OR NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2571
  \<open>numeral (Num.Bit0 m) OR NOT (numeral (Num.Bit1 n)) = (2 :: int) * (numeral m OR NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2572
  \<open>numeral (Num.Bit1 m) OR NOT (1 :: int) = NOT (0 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2573
  \<open>numeral (Num.Bit1 m) OR NOT (numeral (Num.Bit0 n)) = 1 + (2 :: int) * (numeral m OR NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2574
  \<open>numeral (Num.Bit1 m) OR NOT (numeral (Num.Bit1 n)) = 1 + (2 :: int) * (numeral m OR NOT (numeral n))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2575
  by (simp_all add: bit_eq_iff) (simp_all add: bit_simps bit_Suc bit_numeral_rec split: nat.splits)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2576
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2577
lemma or_and_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2578
  \<open>NOT 1 OR 1 = NOT (0 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2579
  \<open>NOT 1 OR numeral n = numeral n OR NOT (1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2580
  \<open>NOT (numeral m) OR 1 = 1 OR NOT (numeral m :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2581
  \<open>NOT (numeral m) OR (numeral n) = numeral n OR NOT (numeral m :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2582
  by (simp_all add: ac_simps)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2583
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2584
lemma or_not_not_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2585
  \<open>NOT 1 OR NOT 1 = NOT (1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2586
  \<open>NOT 1 OR NOT (numeral n) = NOT (1 AND numeral n :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2587
  \<open>NOT (numeral m) OR NOT 1 = NOT (numeral m AND 1 :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2588
  \<open>NOT (numeral m) OR NOT (numeral n) = NOT (numeral m AND numeral n :: int)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2589
  by simp_all
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2590
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2591
lemma or_minus_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2592
  \<open>- 1 OR k = - 1\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2593
  \<open>k OR - 1 = - 1\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2594
  \<open>- numeral n OR k = NOT (neg_numeral_class.sub n num.One) OR k\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2595
  \<open>k OR - numeral n = k OR NOT (neg_numeral_class.sub n num.One)\<close> for k :: int
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2596
  by (simp_all add: minus_numeral_eq_not_sub_one)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2597
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2598
fun or_not_num_neg :: \<open>num \<Rightarrow> num \<Rightarrow> num\<close> \<^marker>\<open>contributor \<open>Andreas Lochbihler\<close>\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2599
where
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2600
  \<open>or_not_num_neg num.One num.One = num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2601
| \<open>or_not_num_neg num.One (num.Bit0 m) = num.Bit1 m\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2602
| \<open>or_not_num_neg num.One (num.Bit1 m) = num.Bit1 m\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2603
| \<open>or_not_num_neg (num.Bit0 n) num.One = num.Bit0 num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2604
| \<open>or_not_num_neg (num.Bit0 n) (num.Bit0 m) = Num.BitM (or_not_num_neg n m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2605
| \<open>or_not_num_neg (num.Bit0 n) (num.Bit1 m) = num.Bit0 (or_not_num_neg n m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2606
| \<open>or_not_num_neg (num.Bit1 n) num.One = num.One\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2607
| \<open>or_not_num_neg (num.Bit1 n) (num.Bit0 m) = Num.BitM (or_not_num_neg n m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2608
| \<open>or_not_num_neg (num.Bit1 n) (num.Bit1 m) = Num.BitM (or_not_num_neg n m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2609
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2610
lemma int_numeral_or_not_num_neg:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2611
  \<open>numeral m OR NOT (numeral n :: int) = - numeral (or_not_num_neg m n)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2612
  apply (induction m n rule: or_not_num_neg.induct)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2613
  apply simp_all
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2614
    apply (simp_all add: not_one_eq not_numeral_eq)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2615
  done
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2616
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2617
lemma int_numeral_not_or_num_neg:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2618
  \<open>NOT (numeral m) OR (numeral n :: int) = - numeral (or_not_num_neg n m)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2619
  using int_numeral_or_not_num_neg [of n m] by (simp add: ac_simps)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2620
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2621
lemma numeral_or_not_num_eq:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2622
  \<open>numeral (or_not_num_neg m n) = - (numeral m OR NOT (numeral n :: int))\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2623
  using int_numeral_or_not_num_neg [of m n] by simp
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2624
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2625
lemma xor_minus_numerals [simp]:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2626
  \<open>- 1 XOR k = NOT k\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2627
  \<open>k XOR - 1 = NOT k\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2628
  \<open>- numeral n XOR k = NOT (neg_numeral_class.sub n num.One XOR k)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2629
  \<open>k XOR - numeral n = NOT (k XOR (neg_numeral_class.sub n num.One))\<close> for k :: int
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2630
  by (simp_all add: minus_numeral_eq_not_sub_one)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2631
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2632
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2633
subsection \<open>More properties\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2634
72830
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2635
lemma take_bit_eq_mask_iff:
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2636
  \<open>take_bit n k = mask n \<longleftrightarrow> take_bit n (k + 1) = 0\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2637
  for k :: int
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2638
proof
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2639
  assume ?P
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2640
  then have \<open>take_bit n (take_bit n k + take_bit n 1) = 0\<close>
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2641
    by (simp add: mask_eq_exp_minus_1 take_bit_eq_0_iff)
72830
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2642
  then show ?Q
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2643
    by (simp only: take_bit_add)
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2644
next
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2645
  assume ?Q
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2646
  then have \<open>take_bit n (k + 1) - 1 = - 1\<close>
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2647
    by simp
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2648
  then have \<open>take_bit n (take_bit n (k + 1) - 1) = take_bit n (- 1)\<close>
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2649
    by simp
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2650
  moreover have \<open>take_bit n (take_bit n (k + 1) - 1) = take_bit n k\<close>
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2651
    by (simp add: take_bit_eq_mod mod_simps)
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2652
  ultimately show ?P
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2653
    by (simp add: take_bit_minus_one_eq_mask)
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2654
qed
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2655
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2656
lemma take_bit_eq_mask_iff_exp_dvd:
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2657
  \<open>take_bit n k = mask n \<longleftrightarrow> 2 ^ n dvd k + 1\<close>
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2658
  for k :: int
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2659
  by (simp add: take_bit_eq_mask_iff flip: take_bit_eq_0_iff)
ec0d3a62bb3b moved some lemmas from AFP to distribution
haftmann
parents: 72792
diff changeset
  2660
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2661
context ring_bit_operations
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2662
begin
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2663
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2664
lemma even_of_int_iff:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2665
  \<open>even (of_int k) \<longleftrightarrow> even k\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2666
  by (induction k rule: int_bit_induct) simp_all
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2667
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  2668
lemma bit_of_int_iff [bit_simps]:
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2669
  \<open>bit (of_int k) n \<longleftrightarrow> (2::'a) ^ n \<noteq> 0 \<and> bit k n\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2670
proof (cases \<open>(2::'a) ^ n = 0\<close>)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2671
  case True
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2672
  then show ?thesis
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2673
    by (simp add: exp_eq_0_imp_not_bit)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2674
next
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2675
  case False
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2676
  then have \<open>bit (of_int k) n \<longleftrightarrow> bit k n\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2677
  proof (induction k arbitrary: n rule: int_bit_induct)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2678
    case zero
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2679
    then show ?case
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2680
      by simp
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2681
  next
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2682
    case minus
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2683
    then show ?case
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2684
      by simp
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2685
  next
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2686
    case (even k)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2687
    then show ?case
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2688
      using bit_double_iff [of \<open>of_int k\<close> n] Bit_Operations.bit_double_iff [of k n]
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2689
      by (cases n) (auto simp add: ac_simps dest: mult_not_zero)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2690
  next
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2691
    case (odd k)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2692
    then show ?case
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2693
      using bit_double_iff [of \<open>of_int k\<close> n]
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2694
      by (cases n) (auto simp add: ac_simps bit_double_iff even_bit_succ_iff Bit_Operations.bit_Suc dest: mult_not_zero)
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2695
  qed
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2696
  with False show ?thesis
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2697
    by simp
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2698
qed
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2699
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2700
lemma push_bit_of_int:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2701
  \<open>push_bit n (of_int k) = of_int (push_bit n k)\<close>
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2702
  by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult)
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2703
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2704
lemma of_int_push_bit:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2705
  \<open>of_int (push_bit n k) = push_bit n (of_int k)\<close>
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2706
  by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult)
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2707
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2708
lemma take_bit_of_int:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2709
  \<open>take_bit n (of_int k) = of_int (take_bit n k)\<close>
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2710
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_int_iff)
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2711
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2712
lemma of_int_take_bit:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2713
  \<open>of_int (take_bit n k) = take_bit n (of_int k)\<close>
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2714
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_int_iff)
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2715
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2716
lemma of_int_not_eq:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2717
  \<open>of_int (NOT k) = NOT (of_int k)\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2718
  by (rule bit_eqI) (simp add: bit_not_iff Bit_Operations.bit_not_iff bit_of_int_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2719
74163
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2720
lemma of_int_not_numeral:
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2721
  \<open>of_int (NOT (numeral k)) = NOT (numeral k)\<close>
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2722
  by (simp add: local.of_int_not_eq)
afe3c8ae1624 consolidation of rules for bit operations
haftmann
parents: 74123
diff changeset
  2723
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2724
lemma of_int_and_eq:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2725
  \<open>of_int (k AND l) = of_int k AND of_int l\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2726
  by (rule bit_eqI) (simp add: bit_of_int_iff bit_and_iff Bit_Operations.bit_and_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2727
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2728
lemma of_int_or_eq:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2729
  \<open>of_int (k OR l) = of_int k OR of_int l\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2730
  by (rule bit_eqI) (simp add: bit_of_int_iff bit_or_iff Bit_Operations.bit_or_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2731
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2732
lemma of_int_xor_eq:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2733
  \<open>of_int (k XOR l) = of_int k XOR of_int l\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2734
  by (rule bit_eqI) (simp add: bit_of_int_iff bit_xor_iff Bit_Operations.bit_xor_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2735
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2736
lemma of_int_mask_eq:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2737
  \<open>of_int (mask n) = mask n\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2738
  by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_int_or_eq)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2739
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2740
end
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  2741
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2742
lemma take_bit_incr_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2743
  \<open>take_bit n (k + 1) = 1 + take_bit n k\<close> if \<open>take_bit n k \<noteq> 2 ^ n - 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2744
  for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2745
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2746
  from that have \<open>2 ^ n \<noteq> k mod 2 ^ n + 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2747
    by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2748
  moreover have \<open>k mod 2 ^ n < 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2749
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2750
  ultimately have *: \<open>k mod 2 ^ n + 1 < 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2751
    by linarith
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2752
  have \<open>(k + 1) mod 2 ^ n = (k mod 2 ^ n + 1) mod 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2753
    by (simp add: mod_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2754
  also have \<open>\<dots> = k mod 2 ^ n + 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2755
    using * by (simp add: zmod_trivial_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2756
  finally have \<open>(k + 1) mod 2 ^ n = k mod 2 ^ n + 1\<close> .
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2757
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2758
    by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2759
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2760
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2761
lemma take_bit_decr_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2762
  \<open>take_bit n (k - 1) = take_bit n k - 1\<close> if \<open>take_bit n k \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2763
  for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2764
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2765
  from that have \<open>k mod 2 ^ n \<noteq> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2766
    by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2767
  moreover have \<open>k mod 2 ^ n \<ge> 0\<close> \<open>k mod 2 ^ n < 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2768
    by simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2769
  ultimately have *: \<open>k mod 2 ^ n > 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2770
    by linarith
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2771
  have \<open>(k - 1) mod 2 ^ n = (k mod 2 ^ n - 1) mod 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2772
    by (simp add: mod_simps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2773
  also have \<open>\<dots> = k mod 2 ^ n - 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2774
    by (simp add: zmod_trivial_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2775
      (use \<open>k mod 2 ^ n < 2 ^ n\<close> * in linarith)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2776
  finally have \<open>(k - 1) mod 2 ^ n = k mod 2 ^ n - 1\<close> .
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2777
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2778
    by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2779
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2780
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2781
lemma take_bit_int_greater_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2782
  \<open>k + 2 ^ n \<le> take_bit n k\<close> if \<open>k < 0\<close> for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2783
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2784
  have \<open>k + 2 ^ n \<le> take_bit n (k + 2 ^ n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2785
  proof (cases \<open>k > - (2 ^ n)\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2786
    case False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2787
    then have \<open>k + 2 ^ n \<le> 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2788
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2789
    also note take_bit_nonnegative
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2790
    finally show ?thesis .
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2791
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2792
    case True
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2793
    with that have \<open>0 \<le> k + 2 ^ n\<close> and \<open>k + 2 ^ n < 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2794
      by simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2795
    then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2796
      by (simp only: take_bit_eq_mod mod_pos_pos_trivial)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2797
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2798
  then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2799
    by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2800
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2801
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2802
lemma take_bit_int_less_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2803
  \<open>take_bit n k \<le> k - 2 ^ n\<close> if \<open>2 ^ n \<le> k\<close> and \<open>n > 0\<close> for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2804
  using that zmod_le_nonneg_dividend [of \<open>k - 2 ^ n\<close> \<open>2 ^ n\<close>]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2805
  by (simp add: take_bit_eq_mod)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2806
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2807
lemma take_bit_int_less_eq_self_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2808
  \<open>take_bit n k \<le> k \<longleftrightarrow> 0 \<le> k\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2809
  for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2810
proof
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2811
  assume ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2812
  show ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2813
  proof (rule ccontr)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2814
    assume \<open>\<not> 0 \<le> k\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2815
    then have \<open>k < 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2816
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2817
    with \<open>?P\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2818
    have \<open>take_bit n k < 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2819
      by (rule le_less_trans)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2820
    then show False
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2821
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2822
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2823
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2824
  assume ?Q
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2825
  then show ?P
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2826
    by (simp add: take_bit_eq_mod zmod_le_nonneg_dividend)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2827
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2828
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2829
lemma take_bit_int_less_self_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2830
  \<open>take_bit n k < k \<longleftrightarrow> 2 ^ n \<le> k\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2831
  for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2832
  by (auto simp add: less_le take_bit_int_less_eq_self_iff take_bit_int_eq_self_iff
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2833
    intro: order_trans [of 0 \<open>2 ^ n\<close> k])
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2834
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2835
lemma take_bit_int_greater_self_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2836
  \<open>k < take_bit n k \<longleftrightarrow> k < 0\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2837
  for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2838
  using take_bit_int_less_eq_self_iff [of n k] by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2839
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2840
lemma take_bit_int_greater_eq_self_iff:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2841
  \<open>k \<le> take_bit n k \<longleftrightarrow> k < 2 ^ n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2842
  for k :: int
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2843
  by (auto simp add: le_less take_bit_int_greater_self_iff take_bit_int_eq_self_iff
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2844
    dest: sym not_sym intro: less_trans [of k 0 \<open>2 ^ n\<close>])
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  2845
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2846
context semiring_bit_operations
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2847
begin
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2848
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2849
lemma push_bit_of_nat:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2850
  \<open>push_bit n (of_nat m) = of_nat (push_bit n m)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2851
  by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2852
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2853
lemma of_nat_push_bit:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2854
  \<open>of_nat (push_bit m n) = push_bit m (of_nat n)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2855
  by (simp add: push_bit_eq_mult Bit_Operations.push_bit_eq_mult)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2856
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2857
lemma take_bit_of_nat:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2858
  \<open>take_bit n (of_nat m) = of_nat (take_bit n m)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2859
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_nat_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2860
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2861
lemma of_nat_take_bit:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2862
  \<open>of_nat (take_bit n m) = take_bit n (of_nat m)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2863
  by (rule bit_eqI) (simp add: bit_take_bit_iff Bit_Operations.bit_take_bit_iff bit_of_nat_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2864
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2865
end
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2866
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2867
lemma push_bit_nat_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2868
  \<open>push_bit n (nat k) = nat (push_bit n k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2869
  by (cases \<open>k \<ge> 0\<close>) (simp_all add: push_bit_eq_mult nat_mult_distrib not_le mult_nonneg_nonpos2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2870
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2871
lemma drop_bit_nat_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2872
  \<open>drop_bit n (nat k) = nat (drop_bit n k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2873
  apply (cases \<open>k \<ge> 0\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2874
   apply (simp_all add: drop_bit_eq_div nat_div_distrib nat_power_eq not_le)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2875
  apply (simp add: divide_int_def)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2876
  done
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2877
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2878
lemma take_bit_nat_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2879
  \<open>take_bit n (nat k) = nat (take_bit n k)\<close> if \<open>k \<ge> 0\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2880
  using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2881
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2882
lemma nat_take_bit_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2883
  \<open>nat (take_bit n k) = take_bit n (nat k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2884
  if \<open>k \<ge> 0\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2885
  using that by (simp add: take_bit_eq_mod nat_mod_distrib nat_power_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2886
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2887
lemma not_exp_less_eq_0_int [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2888
  \<open>\<not> 2 ^ n \<le> (0::int)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2889
  by (simp add: power_le_zero_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2890
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2891
lemma half_nonnegative_int_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2892
  \<open>k div 2 \<ge> 0 \<longleftrightarrow> k \<ge> 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2893
proof (cases \<open>k \<ge> 0\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2894
  case True
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2895
  then show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2896
    by (auto simp add: divide_int_def sgn_1_pos)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2897
next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2898
  case False
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2899
  then show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2900
    by (auto simp add: divide_int_def not_le elim!: evenE)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2901
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2902
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2903
lemma half_negative_int_iff [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2904
  \<open>k div 2 < 0 \<longleftrightarrow> k < 0\<close> for k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2905
  by (subst Not_eq_iff [symmetric]) (simp add: not_less)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2906
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2907
lemma push_bit_of_Suc_0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2908
  "push_bit n (Suc 0) = 2 ^ n"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2909
  using push_bit_of_1 [where ?'a = nat] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2910
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2911
lemma take_bit_of_Suc_0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2912
  "take_bit n (Suc 0) = of_bool (0 < n)"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2913
  using take_bit_of_1 [where ?'a = nat] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2914
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2915
lemma drop_bit_of_Suc_0 [simp]:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2916
  "drop_bit n (Suc 0) = of_bool (n = 0)"
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2917
  using drop_bit_of_1 [where ?'a = nat] by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2918
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2919
lemma int_bit_bound:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2920
  fixes k :: int
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2921
  obtains n where \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2922
    and \<open>n > 0 \<Longrightarrow> bit k (n - 1) \<noteq> bit k n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2923
proof -
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2924
  obtain q where *: \<open>\<And>m. q \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2925
  proof (cases \<open>k \<ge> 0\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2926
    case True
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2927
    moreover from power_gt_expt [of 2 \<open>nat k\<close>]
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2928
    have \<open>nat k < 2 ^ nat k\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2929
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2930
    then have \<open>int (nat k) < int (2 ^ nat k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2931
      by (simp only: of_nat_less_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2932
    ultimately have *: \<open>k div 2 ^ nat k = 0\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2933
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2934
    show thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2935
    proof (rule that [of \<open>nat k\<close>])
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2936
      fix m
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2937
      assume \<open>nat k \<le> m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2938
      then show \<open>bit k m \<longleftrightarrow> bit k (nat k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2939
        by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq dest!: le_Suc_ex)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2940
    qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2941
  next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2942
    case False
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2943
    moreover from power_gt_expt [of 2 \<open>nat (- k)\<close>]
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2944
    have \<open>nat (- k) < 2 ^ nat (- k)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2945
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2946
    then have \<open>int (nat (- k)) < int (2 ^ nat (- k))\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2947
      by (simp only: of_nat_less_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2948
    ultimately have \<open>- k div - (2 ^ nat (- k)) = - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2949
      by (subst div_pos_neg_trivial) simp_all
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2950
    then have *: \<open>k div 2 ^ nat (- k) = - 1\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2951
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2952
    show thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2953
    proof (rule that [of \<open>nat (- k)\<close>])
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2954
      fix m
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2955
      assume \<open>nat (- k) \<le> m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2956
      then show \<open>bit k m \<longleftrightarrow> bit k (nat (- k))\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2957
        by (auto simp add: * bit_iff_odd power_add zdiv_zmult2_eq minus_1_div_exp_eq_int dest!: le_Suc_ex)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2958
    qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2959
  qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2960
  show thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2961
  proof (cases \<open>\<forall>m. bit k m \<longleftrightarrow> bit k q\<close>)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2962
    case True
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2963
    then have \<open>bit k 0 \<longleftrightarrow> bit k q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2964
      by blast
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2965
    with True that [of 0] show thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2966
      by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2967
  next
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2968
    case False
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2969
    then obtain r where **: \<open>bit k r \<noteq> bit k q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2970
      by blast
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2971
    have \<open>r < q\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2972
      by (rule ccontr) (use * [of r] ** in simp)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2973
    define N where \<open>N = {n. n < q \<and> bit k n \<noteq> bit k q}\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2974
    moreover have \<open>finite N\<close> \<open>r \<in> N\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2975
      using ** N_def \<open>r < q\<close> by auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2976
    moreover define n where \<open>n = Suc (Max N)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2977
    ultimately have \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m \<longleftrightarrow> bit k n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2978
      apply auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2979
         apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \<open>finite N\<close> all_not_in_conv mem_Collect_eq not_le)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2980
        apply (metis "*" Max_ge Suc_n_not_le_n \<open>finite N\<close> linorder_not_less mem_Collect_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2981
        apply (metis "*" Max_ge Suc_n_not_le_n \<open>finite N\<close> linorder_not_less mem_Collect_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2982
      apply (metis (full_types, lifting) "*" Max_ge_iff Suc_n_not_le_n \<open>finite N\<close> all_not_in_conv mem_Collect_eq not_le)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2983
      done
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2984
    have \<open>bit k (Max N) \<noteq> bit k n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2985
      by (metis (mono_tags, lifting) "*" Max_in N_def \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m = bit k n\<close> \<open>finite N\<close> \<open>r \<in> N\<close> empty_iff le_cases mem_Collect_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2986
    show thesis apply (rule that [of n])
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2987
      using \<open>\<And>m. n \<le> m \<Longrightarrow> bit k m = bit k n\<close> apply blast
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2988
      using \<open>bit k (Max N) \<noteq> bit k n\<close> n_def by auto
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2989
  qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2990
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2991
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2992
context semiring_bit_operations
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2993
begin
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2994
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2995
lemma of_nat_and_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2996
  \<open>of_nat (m AND n) = of_nat m AND of_nat n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2997
  by (rule bit_eqI) (simp add: bit_of_nat_iff bit_and_iff Bit_Operations.bit_and_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2998
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  2999
lemma of_nat_or_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3000
  \<open>of_nat (m OR n) = of_nat m OR of_nat n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3001
  by (rule bit_eqI) (simp add: bit_of_nat_iff bit_or_iff Bit_Operations.bit_or_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3002
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3003
lemma of_nat_xor_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3004
  \<open>of_nat (m XOR n) = of_nat m XOR of_nat n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3005
  by (rule bit_eqI) (simp add: bit_of_nat_iff bit_xor_iff Bit_Operations.bit_xor_iff)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3006
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3007
end
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3008
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3009
context ring_bit_operations
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3010
begin
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3011
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3012
lemma of_nat_mask_eq:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3013
  \<open>of_nat (mask n) = mask n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3014
  by (induction n) (simp_all add: mask_Suc_double Bit_Operations.mask_Suc_double of_nat_or_eq)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3015
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3016
end
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3017
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3018
lemma Suc_mask_eq_exp:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3019
  \<open>Suc (mask n) = 2 ^ n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3020
  by (simp add: mask_eq_exp_minus_1)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3021
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3022
lemma less_eq_mask:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3023
  \<open>n \<le> mask n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3024
  by (simp add: mask_eq_exp_minus_1 le_diff_conv2)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3025
    (metis Suc_mask_eq_exp diff_Suc_1 diff_le_diff_pow diff_zero le_refl not_less_eq_eq power_0)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3026
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3027
lemma less_mask:
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3028
  \<open>n < mask n\<close> if \<open>Suc 0 < n\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3029
proof -
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3030
  define m where \<open>m = n - 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3031
  with that have *: \<open>n = m + 2\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3032
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3033
  have \<open>Suc (Suc (Suc m)) < 4 * 2 ^ m\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3034
    by (induction m) simp_all
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3035
  then have \<open>Suc (m + 2) < Suc (mask (m + 2))\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3036
    by (simp add: Suc_mask_eq_exp)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3037
  then have \<open>m + 2 < mask (m + 2)\<close>
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3038
    by (simp add: less_le)
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3039
  with * show ?thesis
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3040
    by simp
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3041
qed
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3042
71442
d45495e897f4 more instances
haftmann
parents: 71426
diff changeset
  3043
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3044
subsection \<open>Bit concatenation\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3045
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3046
definition concat_bit :: \<open>nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> int\<close>
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3047
  where \<open>concat_bit n k l = take_bit n k OR push_bit n l\<close>
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3048
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  3049
lemma bit_concat_bit_iff [bit_simps]:
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3050
  \<open>bit (concat_bit m k l) n \<longleftrightarrow> n < m \<and> bit k n \<or> m \<le> n \<and> bit l (n - m)\<close>
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3051
  by (simp add: concat_bit_def bit_or_iff bit_and_iff bit_take_bit_iff bit_push_bit_iff ac_simps)
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3052
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3053
lemma concat_bit_eq:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3054
  \<open>concat_bit n k l = take_bit n k + push_bit n l\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3055
  by (simp add: concat_bit_def take_bit_eq_mask
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3056
    bit_and_iff bit_mask_iff bit_push_bit_iff disjunctive_add)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3057
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3058
lemma concat_bit_0 [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3059
  \<open>concat_bit 0 k l = l\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3060
  by (simp add: concat_bit_def)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3061
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3062
lemma concat_bit_Suc:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3063
  \<open>concat_bit (Suc n) k l = k mod 2 + 2 * concat_bit n (k div 2) l\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3064
  by (simp add: concat_bit_eq take_bit_Suc push_bit_double)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3065
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3066
lemma concat_bit_of_zero_1 [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3067
  \<open>concat_bit n 0 l = push_bit n l\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3068
  by (simp add: concat_bit_def)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3069
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3070
lemma concat_bit_of_zero_2 [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3071
  \<open>concat_bit n k 0 = take_bit n k\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3072
  by (simp add: concat_bit_def take_bit_eq_mask)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3073
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3074
lemma concat_bit_nonnegative_iff [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3075
  \<open>concat_bit n k l \<ge> 0 \<longleftrightarrow> l \<ge> 0\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3076
  by (simp add: concat_bit_def)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3077
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3078
lemma concat_bit_negative_iff [simp]:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3079
  \<open>concat_bit n k l < 0 \<longleftrightarrow> l < 0\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3080
  by (simp add: concat_bit_def)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3081
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3082
lemma concat_bit_assoc:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3083
  \<open>concat_bit n k (concat_bit m l r) = concat_bit (m + n) (concat_bit n k l) r\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3084
  by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3085
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3086
lemma concat_bit_assoc_sym:
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3087
  \<open>concat_bit m (concat_bit n k l) r = concat_bit (min m n) k (concat_bit (m - n) l r)\<close>
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3088
  by (rule bit_eqI) (auto simp add: bit_concat_bit_iff ac_simps min_def)
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3089
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3090
lemma concat_bit_eq_iff:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3091
  \<open>concat_bit n k l = concat_bit n r s
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3092
    \<longleftrightarrow> take_bit n k = take_bit n r \<and> l = s\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3093
proof
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3094
  assume ?Q
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3095
  then show ?P
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3096
    by (simp add: concat_bit_def)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3097
next
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3098
  assume ?P
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3099
  then have *: \<open>bit (concat_bit n k l) m = bit (concat_bit n r s) m\<close> for m
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3100
    by (simp add: bit_eq_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3101
  have \<open>take_bit n k = take_bit n r\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3102
  proof (rule bit_eqI)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3103
    fix m
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3104
    from * [of m]
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3105
    show \<open>bit (take_bit n k) m \<longleftrightarrow> bit (take_bit n r) m\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3106
      by (auto simp add: bit_take_bit_iff bit_concat_bit_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3107
  qed
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3108
  moreover have \<open>push_bit n l = push_bit n s\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3109
  proof (rule bit_eqI)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3110
    fix m
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3111
    from * [of m]
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3112
    show \<open>bit (push_bit n l) m \<longleftrightarrow> bit (push_bit n s) m\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3113
      by (auto simp add: bit_push_bit_iff bit_concat_bit_iff)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3114
  qed
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3115
  then have \<open>l = s\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3116
    by (simp add: push_bit_eq_mult)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3117
  ultimately show ?Q
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3118
    by (simp add: concat_bit_def)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3119
qed
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3120
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3121
lemma take_bit_concat_bit_eq:
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3122
  \<open>take_bit m (concat_bit n k l) = concat_bit (min m n) k (take_bit (m - n) l)\<close>
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3123
  by (rule bit_eqI)
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3124
    (auto simp add: bit_take_bit_iff bit_concat_bit_iff min_def)  
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3125
72488
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  3126
lemma concat_bit_take_bit_eq:
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  3127
  \<open>concat_bit n (take_bit n b) = concat_bit n b\<close>
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  3128
  by (simp add: concat_bit_def [abs_def])
ee659bca8955 factored out theory Bits_Int
haftmann
parents: 72397
diff changeset
  3129
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3130
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3131
subsection \<open>Taking bits with sign propagation\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3132
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3133
context ring_bit_operations
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3134
begin
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3135
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3136
definition signed_take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3137
  where \<open>signed_take_bit n a = take_bit n a OR (of_bool (bit a n) * NOT (mask n))\<close>
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3138
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3139
lemma signed_take_bit_eq_if_positive:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3140
  \<open>signed_take_bit n a = take_bit n a\<close> if \<open>\<not> bit a n\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3141
  using that by (simp add: signed_take_bit_def)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3142
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3143
lemma signed_take_bit_eq_if_negative:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3144
  \<open>signed_take_bit n a = take_bit n a OR NOT (mask n)\<close> if \<open>bit a n\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3145
  using that by (simp add: signed_take_bit_def)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3146
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3147
lemma even_signed_take_bit_iff:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3148
  \<open>even (signed_take_bit m a) \<longleftrightarrow> even a\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3149
  by (auto simp add: signed_take_bit_def even_or_iff even_mask_iff bit_double_iff)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3150
72611
c7bc3e70a8c7 official collection for bit projection simplifications
haftmann
parents: 72512
diff changeset
  3151
lemma bit_signed_take_bit_iff [bit_simps]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3152
  \<open>bit (signed_take_bit m a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> bit a (min m n)\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3153
  by (simp add: signed_take_bit_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff min_def not_le)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3154
    (use exp_eq_0_imp_not_bit in blast)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3155
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3156
lemma signed_take_bit_0 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3157
  \<open>signed_take_bit 0 a = - (a mod 2)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3158
  by (simp add: signed_take_bit_def odd_iff_mod_2_eq_one)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3159
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3160
lemma signed_take_bit_Suc:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3161
  \<open>signed_take_bit (Suc n) a = a mod 2 + 2 * signed_take_bit n (a div 2)\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3162
proof (rule bit_eqI)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3163
  fix m
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3164
  assume *: \<open>2 ^ m \<noteq> 0\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3165
  show \<open>bit (signed_take_bit (Suc n) a) m \<longleftrightarrow>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3166
    bit (a mod 2 + 2 * signed_take_bit n (a div 2)) m\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3167
  proof (cases m)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3168
    case 0
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3169
    then show ?thesis
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3170
      by (simp add: even_signed_take_bit_iff)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3171
  next
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3172
    case (Suc m)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3173
    with * have \<open>2 ^ m \<noteq> 0\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3174
      by (metis mult_not_zero power_Suc)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3175
    with Suc show ?thesis
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3176
      by (simp add: bit_signed_take_bit_iff mod2_eq_if bit_double_iff even_bit_succ_iff
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3177
        ac_simps flip: bit_Suc)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3178
  qed
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3179
qed
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3180
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3181
lemma signed_take_bit_of_0 [simp]:
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3182
  \<open>signed_take_bit n 0 = 0\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3183
  by (simp add: signed_take_bit_def)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3184
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3185
lemma signed_take_bit_of_minus_1 [simp]:
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3186
  \<open>signed_take_bit n (- 1) = - 1\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3187
  by (simp add: signed_take_bit_def take_bit_minus_one_eq_mask mask_eq_exp_minus_1)
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3188
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3189
lemma signed_take_bit_Suc_1 [simp]:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3190
  \<open>signed_take_bit (Suc n) 1 = 1\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3191
  by (simp add: signed_take_bit_Suc)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3192
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3193
lemma signed_take_bit_rec:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3194
  \<open>signed_take_bit n a = (if n = 0 then - (a mod 2) else a mod 2 + 2 * signed_take_bit (n - 1) (a div 2))\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3195
  by (cases n) (simp_all add: signed_take_bit_Suc)
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3196
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3197
lemma signed_take_bit_eq_iff_take_bit_eq:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3198
  \<open>signed_take_bit n a = signed_take_bit n b \<longleftrightarrow> take_bit (Suc n) a = take_bit (Suc n) b\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3199
proof -
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3200
  have \<open>bit (signed_take_bit n a) = bit (signed_take_bit n b) \<longleftrightarrow> bit (take_bit (Suc n) a) = bit (take_bit (Suc n) b)\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3201
    by (simp add: fun_eq_iff bit_signed_take_bit_iff bit_take_bit_iff not_le less_Suc_eq_le min_def)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3202
      (use exp_eq_0_imp_not_bit in fastforce)
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3203
  then show ?thesis
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3204
    by (simp add: bit_eq_iff fun_eq_iff)
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3205
qed
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3206
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3207
lemma signed_take_bit_signed_take_bit [simp]:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3208
  \<open>signed_take_bit m (signed_take_bit n a) = signed_take_bit (min m n) a\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3209
proof (rule bit_eqI)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3210
  fix q
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3211
  show \<open>bit (signed_take_bit m (signed_take_bit n a)) q \<longleftrightarrow>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3212
    bit (signed_take_bit (min m n) a) q\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3213
    by (simp add: bit_signed_take_bit_iff min_def bit_or_iff bit_not_iff bit_mask_iff bit_take_bit_iff)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3214
      (use le_Suc_ex exp_add_not_zero_imp in blast)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3215
qed
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3216
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3217
lemma signed_take_bit_take_bit:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3218
  \<open>signed_take_bit m (take_bit n a) = (if n \<le> m then take_bit n else signed_take_bit m) a\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3219
  by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3220
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3221
lemma take_bit_signed_take_bit:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3222
  \<open>take_bit m (signed_take_bit n a) = take_bit m a\<close> if \<open>m \<le> Suc n\<close>
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3223
  using that by (rule le_SucE; intro bit_eqI)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3224
   (auto simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def less_Suc_eq)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3225
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3226
end
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3227
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3228
text \<open>Modulus centered around 0\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3229
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3230
lemma signed_take_bit_eq_concat_bit:
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3231
  \<open>signed_take_bit n k = concat_bit n k (- of_bool (bit k n))\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3232
  by (simp add: concat_bit_def signed_take_bit_def push_bit_minus_one_eq_not_mask)
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3233
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3234
lemma signed_take_bit_add:
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3235
  \<open>signed_take_bit n (signed_take_bit n k + signed_take_bit n l) = signed_take_bit n (k + l)\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3236
  for k l :: int
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3237
proof -
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3238
  have \<open>take_bit (Suc n)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3239
     (take_bit (Suc n) (signed_take_bit n k) +
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3240
      take_bit (Suc n) (signed_take_bit n l)) =
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3241
    take_bit (Suc n) (k + l)\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3242
    by (simp add: take_bit_signed_take_bit take_bit_add)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3243
  then show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3244
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_add)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3245
qed
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3246
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3247
lemma signed_take_bit_diff:
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3248
  \<open>signed_take_bit n (signed_take_bit n k - signed_take_bit n l) = signed_take_bit n (k - l)\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3249
  for k l :: int
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3250
proof -
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3251
  have \<open>take_bit (Suc n)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3252
     (take_bit (Suc n) (signed_take_bit n k) -
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3253
      take_bit (Suc n) (signed_take_bit n l)) =
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3254
    take_bit (Suc n) (k - l)\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3255
    by (simp add: take_bit_signed_take_bit take_bit_diff)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3256
  then show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3257
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_diff)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3258
qed
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3259
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3260
lemma signed_take_bit_minus:
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3261
  \<open>signed_take_bit n (- signed_take_bit n k) = signed_take_bit n (- k)\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3262
  for k :: int
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3263
proof -
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3264
  have \<open>take_bit (Suc n)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3265
     (- take_bit (Suc n) (signed_take_bit n k)) =
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3266
    take_bit (Suc n) (- k)\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3267
    by (simp add: take_bit_signed_take_bit take_bit_minus)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3268
  then show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3269
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_minus)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3270
qed
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3271
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3272
lemma signed_take_bit_mult:
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3273
  \<open>signed_take_bit n (signed_take_bit n k * signed_take_bit n l) = signed_take_bit n (k * l)\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3274
  for k l :: int
72187
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3275
proof -
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3276
  have \<open>take_bit (Suc n)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3277
     (take_bit (Suc n) (signed_take_bit n k) *
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3278
      take_bit (Suc n) (signed_take_bit n l)) =
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3279
    take_bit (Suc n) (k * l)\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3280
    by (simp add: take_bit_signed_take_bit take_bit_mult)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3281
  then show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3282
    by (simp only: signed_take_bit_eq_iff_take_bit_eq take_bit_mult)
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3283
qed
e4aecb0c7296 more lemmas
haftmann
parents: 72130
diff changeset
  3284
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3285
lemma signed_take_bit_eq_take_bit_minus:
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3286
  \<open>signed_take_bit n k = take_bit (Suc n) k - 2 ^ Suc n * of_bool (bit k n)\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3287
  for k :: int
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3288
proof (cases \<open>bit k n\<close>)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3289
  case True
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3290
  have \<open>signed_take_bit n k = take_bit (Suc n) k OR NOT (mask (Suc n))\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3291
    by (rule bit_eqI) (auto simp add: bit_signed_take_bit_iff min_def bit_take_bit_iff bit_or_iff bit_not_iff bit_mask_iff less_Suc_eq True)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3292
  then have \<open>signed_take_bit n k = take_bit (Suc n) k + NOT (mask (Suc n))\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3293
    by (simp add: disjunctive_add bit_take_bit_iff bit_not_iff bit_mask_iff)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3294
  with True show ?thesis
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3295
    by (simp flip: minus_exp_eq_not_mask)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3296
next
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3297
  case False
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3298
  show ?thesis
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3299
    by (rule bit_eqI) (simp add: False bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3300
qed
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3301
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3302
lemma signed_take_bit_eq_take_bit_shift:
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3303
  \<open>signed_take_bit n k = take_bit (Suc n) (k + 2 ^ n) - 2 ^ n\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3304
  for k :: int
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3305
proof -
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3306
  have *: \<open>take_bit n k OR 2 ^ n = take_bit n k + 2 ^ n\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3307
    by (simp add: disjunctive_add bit_exp_iff bit_take_bit_iff)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3308
  have \<open>take_bit n k - 2 ^ n = take_bit n k + NOT (mask n)\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3309
    by (simp add: minus_exp_eq_not_mask)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3310
  also have \<open>\<dots> = take_bit n k OR NOT (mask n)\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3311
    by (rule disjunctive_add)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3312
      (simp add: bit_exp_iff bit_take_bit_iff bit_not_iff bit_mask_iff)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3313
  finally have **: \<open>take_bit n k - 2 ^ n = take_bit n k OR NOT (mask n)\<close> .
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3314
  have \<open>take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (take_bit (Suc n) k + take_bit (Suc n) (2 ^ n))\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3315
    by (simp only: take_bit_add)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3316
  also have \<open>take_bit (Suc n) k = 2 ^ n * of_bool (bit k n) + take_bit n k\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3317
    by (simp add: take_bit_Suc_from_most)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3318
  finally have \<open>take_bit (Suc n) (k + 2 ^ n) = take_bit (Suc n) (2 ^ (n + of_bool (bit k n)) + take_bit n k)\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3319
    by (simp add: ac_simps)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3320
  also have \<open>2 ^ (n + of_bool (bit k n)) + take_bit n k = 2 ^ (n + of_bool (bit k n)) OR take_bit n k\<close>
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3321
    by (rule disjunctive_add)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3322
      (auto simp add: disjunctive_add bit_take_bit_iff bit_double_iff bit_exp_iff)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3323
  finally show ?thesis
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3324
    using * ** by (simp add: signed_take_bit_def concat_bit_Suc min_def ac_simps)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3325
qed
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3326
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3327
lemma signed_take_bit_nonnegative_iff [simp]:
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3328
  \<open>0 \<le> signed_take_bit n k \<longleftrightarrow> \<not> bit k n\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3329
  for k :: int
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3330
  by (simp add: signed_take_bit_def not_less concat_bit_def)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3331
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3332
lemma signed_take_bit_negative_iff [simp]:
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3333
  \<open>signed_take_bit n k < 0 \<longleftrightarrow> bit k n\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3334
  for k :: int
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3335
  by (simp add: signed_take_bit_def not_less concat_bit_def)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3336
73868
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3337
lemma signed_take_bit_int_greater_eq_minus_exp [simp]:
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3338
  \<open>- (2 ^ n) \<le> signed_take_bit n k\<close>
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3339
  for k :: int
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3340
  by (simp add: signed_take_bit_eq_take_bit_shift)
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3341
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3342
lemma signed_take_bit_int_less_exp [simp]:
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3343
  \<open>signed_take_bit n k < 2 ^ n\<close>
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3344
  for k :: int
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3345
  using take_bit_int_less_exp [of \<open>Suc n\<close>]
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3346
  by (simp add: signed_take_bit_eq_take_bit_shift)
465846b611d5 some word streamlining
haftmann
parents: 73816
diff changeset
  3347
72261
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3348
lemma signed_take_bit_int_eq_self_iff:
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3349
  \<open>signed_take_bit n k = k \<longleftrightarrow> - (2 ^ n) \<le> k \<and> k < 2 ^ n\<close>
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3350
  for k :: int
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3351
  by (auto simp add: signed_take_bit_eq_take_bit_shift take_bit_int_eq_self_iff algebra_simps)
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3352
72262
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3353
lemma signed_take_bit_int_eq_self:
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3354
  \<open>signed_take_bit n k = k\<close> if \<open>- (2 ^ n) \<le> k\<close> \<open>k < 2 ^ n\<close>
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3355
  for k :: int
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3356
  using that by (simp add: signed_take_bit_int_eq_self_iff)
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3357
72261
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3358
lemma signed_take_bit_int_less_eq_self_iff:
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3359
  \<open>signed_take_bit n k \<le> k \<longleftrightarrow> - (2 ^ n) \<le> k\<close>
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3360
  for k :: int
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3361
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_eq_self_iff algebra_simps)
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3362
    linarith
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3363
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3364
lemma signed_take_bit_int_less_self_iff:
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3365
  \<open>signed_take_bit n k < k \<longleftrightarrow> 2 ^ n \<le> k\<close>
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3366
  for k :: int
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3367
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_less_self_iff algebra_simps)
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3368
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3369
lemma signed_take_bit_int_greater_self_iff:
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3370
  \<open>k < signed_take_bit n k \<longleftrightarrow> k < - (2 ^ n)\<close>
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3371
  for k :: int
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3372
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_self_iff algebra_simps)
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3373
    linarith
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3374
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3375
lemma signed_take_bit_int_greater_eq_self_iff:
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3376
  \<open>k \<le> signed_take_bit n k \<longleftrightarrow> k < 2 ^ n\<close>
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3377
  for k :: int
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3378
  by (simp add: signed_take_bit_eq_take_bit_shift take_bit_int_greater_eq_self_iff algebra_simps)
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3379
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3380
lemma signed_take_bit_int_greater_eq:
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3381
  \<open>k + 2 ^ Suc n \<le> signed_take_bit n k\<close> if \<open>k < - (2 ^ n)\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3382
  for k :: int
72262
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3383
  using that take_bit_int_greater_eq [of \<open>k + 2 ^ n\<close> \<open>Suc n\<close>]
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3384
  by (simp add: signed_take_bit_eq_take_bit_shift)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3385
72261
5193570b739a more lemmas
haftmann
parents: 72241
diff changeset
  3386
lemma signed_take_bit_int_less_eq:
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3387
  \<open>signed_take_bit n k \<le> k - 2 ^ Suc n\<close> if \<open>k \<ge> 2 ^ n\<close>
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3388
  for k :: int
72262
a282abb07642 integrated generic conversions into word corpse
haftmann
parents: 72261
diff changeset
  3389
  using that take_bit_int_less_eq [of \<open>Suc n\<close> \<open>k + 2 ^ n\<close>]
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3390
  by (simp add: signed_take_bit_eq_take_bit_shift)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3391
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3392
lemma signed_take_bit_Suc_bit0 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3393
  \<open>signed_take_bit (Suc n) (numeral (Num.Bit0 k)) = signed_take_bit n (numeral k) * (2 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3394
  by (simp add: signed_take_bit_Suc)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3395
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3396
lemma signed_take_bit_Suc_bit1 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3397
  \<open>signed_take_bit (Suc n) (numeral (Num.Bit1 k)) = signed_take_bit n (numeral k) * 2 + (1 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3398
  by (simp add: signed_take_bit_Suc)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3399
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3400
lemma signed_take_bit_Suc_minus_bit0 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3401
  \<open>signed_take_bit (Suc n) (- numeral (Num.Bit0 k)) = signed_take_bit n (- numeral k) * (2 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3402
  by (simp add: signed_take_bit_Suc)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3403
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3404
lemma signed_take_bit_Suc_minus_bit1 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3405
  \<open>signed_take_bit (Suc n) (- numeral (Num.Bit1 k)) = signed_take_bit n (- numeral k - 1) * 2 + (1 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3406
  by (simp add: signed_take_bit_Suc)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3407
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3408
lemma signed_take_bit_numeral_bit0 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3409
  \<open>signed_take_bit (numeral l) (numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (numeral k) * (2 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3410
  by (simp add: signed_take_bit_rec)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3411
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3412
lemma signed_take_bit_numeral_bit1 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3413
  \<open>signed_take_bit (numeral l) (numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (numeral k) * 2 + (1 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3414
  by (simp add: signed_take_bit_rec)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3415
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3416
lemma signed_take_bit_numeral_minus_bit0 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3417
  \<open>signed_take_bit (numeral l) (- numeral (Num.Bit0 k)) = signed_take_bit (pred_numeral l) (- numeral k) * (2 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3418
  by (simp add: signed_take_bit_rec)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3419
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3420
lemma signed_take_bit_numeral_minus_bit1 [simp]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3421
  \<open>signed_take_bit (numeral l) (- numeral (Num.Bit1 k)) = signed_take_bit (pred_numeral l) (- numeral k - 1) * 2 + (1 :: int)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3422
  by (simp add: signed_take_bit_rec)
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3423
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3424
lemma signed_take_bit_code [code]:
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3425
  \<open>signed_take_bit n a =
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3426
  (let l = take_bit (Suc n) a
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3427
   in if bit l n then l + push_bit (Suc n) (- 1) else l)\<close>
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3428
proof -
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3429
  have *: \<open>take_bit (Suc n) a + push_bit n (- 2) =
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3430
    take_bit (Suc n) a OR NOT (mask (Suc n))\<close>
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3431
    by (auto simp add: bit_take_bit_iff bit_push_bit_iff bit_not_iff bit_mask_iff disjunctive_add
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3432
       simp flip: push_bit_minus_one_eq_not_mask)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3433
  show ?thesis
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3434
    by (rule bit_eqI)
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3435
      (auto simp add: Let_def * bit_signed_take_bit_iff bit_take_bit_iff min_def less_Suc_eq bit_not_iff bit_mask_iff bit_or_iff)
72010
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3436
qed
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3437
a851ce626b78 signed_take_bit
haftmann
parents: 72009
diff changeset
  3438
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3439
subsection \<open>Horner sums\<close>
71804
6fd70ed18199 simplified construction of binary bit operations
haftmann
parents: 71802
diff changeset
  3440
72227
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3441
context semiring_bit_operations
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3442
begin
0f3d24dc197f more on conversions
haftmann
parents: 72187
diff changeset
  3443
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3444
lemma horner_sum_bit_eq_take_bit:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3445
  \<open>horner_sum of_bool 2 (map (bit a) [0..<n]) = take_bit n a\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3446
proof (induction a arbitrary: n rule: bits_induct)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3447
  case (stable a)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3448
  moreover have \<open>bit a = (\<lambda>_. odd a)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3449
    using stable by (simp add: stable_imp_bit_iff_odd fun_eq_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3450
  moreover have \<open>{q. q < n} = {0..<n}\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3451
    by auto
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3452
  ultimately show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3453
    by (simp add: stable_imp_take_bit_eq horner_sum_eq_sum mask_eq_sum_exp)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3454
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3455
  case (rec a b)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3456
  show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3457
  proof (cases n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3458
    case 0
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3459
    then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3460
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3461
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3462
    case (Suc m)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3463
    have \<open>map (bit (of_bool b + 2 * a)) [0..<Suc m] = b # map (bit (of_bool b + 2 * a)) [Suc 0..<Suc m]\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3464
      by (simp only: upt_conv_Cons) simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3465
    also have \<open>\<dots> = b # map (bit a) [0..<m]\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3466
      by (simp only: flip: map_Suc_upt) (simp add: bit_Suc rec.hyps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3467
    finally show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3468
      using Suc rec.IH [of m] by (simp add: take_bit_Suc rec.hyps)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3469
        (simp_all add: ac_simps mod_2_eq_odd)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3470
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3471
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3472
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3473
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3474
74108
3146646a43a7 simplified hierarchy of type classes for bit operations
haftmann
parents: 74101
diff changeset
  3475
context unique_euclidean_semiring_with_bit_operations
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3476
begin
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3477
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3478
lemma bit_horner_sum_bit_iff [bit_simps]:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3479
  \<open>bit (horner_sum of_bool 2 bs) n \<longleftrightarrow> n < length bs \<and> bs ! n\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3480
proof (induction bs arbitrary: n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3481
  case Nil
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3482
  then show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3483
    by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3484
next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3485
  case (Cons b bs)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3486
  show ?case
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3487
  proof (cases n)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3488
    case 0
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3489
    then show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3490
      by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3491
  next
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3492
    case (Suc m)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3493
    with bit_rec [of _ n] Cons.prems Cons.IH [of m]
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3494
    show ?thesis by simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3495
  qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3496
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3497
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3498
lemma take_bit_horner_sum_bit_eq:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3499
  \<open>take_bit n (horner_sum of_bool 2 bs) = horner_sum of_bool 2 (take n bs)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3500
  by (auto simp add: bit_eq_iff bit_take_bit_iff bit_horner_sum_bit_iff)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3501
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3502
end
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3503
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3504
lemma horner_sum_of_bool_2_less:
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3505
  \<open>(horner_sum of_bool 2 bs :: int) < 2 ^ length bs\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3506
proof -
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3507
  have \<open>(\<Sum>n = 0..<length bs. of_bool (bs ! n) * (2::int) ^ n) \<le> (\<Sum>n = 0..<length bs. 2 ^ n)\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3508
    by (rule sum_mono) simp
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3509
  also have \<open>\<dots> = 2 ^ length bs - 1\<close>
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3510
    by (induction bs) simp_all
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3511
  finally show ?thesis
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3512
    by (simp add: horner_sum_eq_sum)
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3513
qed
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3514
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3515
71800
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3516
subsection \<open>Key ideas of bit operations\<close>
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3517
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3518
text \<open>
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3519
  When formalizing bit operations, it is tempting to represent
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3520
  bit values as explicit lists over a binary type. This however
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3521
  is a bad idea, mainly due to the inherent ambiguities in
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3522
  representation concerning repeating leading bits.
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3523
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3524
  Hence this approach avoids such explicit lists altogether
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3525
  following an algebraic path:
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3526
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3527
  \<^item> Bit values are represented by numeric types: idealized
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3528
    unbounded bit values can be represented by type \<^typ>\<open>int\<close>,
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3529
    bounded bit values by quotient types over \<^typ>\<open>int\<close>.
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3530
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3531
  \<^item> (A special case are idealized unbounded bit values ending
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3532
    in @{term [source] 0} which can be represented by type \<^typ>\<open>nat\<close> but
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3533
    only support a restricted set of operations).
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3534
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3535
  \<^item> From this idea follows that
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3536
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3537
      \<^item> multiplication by \<^term>\<open>2 :: int\<close> is a bit shift to the left and
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3538
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3539
      \<^item> division by \<^term>\<open>2 :: int\<close> is a bit shift to the right.
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3540
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3541
  \<^item> Concerning bounded bit values, iterated shifts to the left
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3542
    may result in eliminating all bits by shifting them all
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3543
    beyond the boundary.  The property \<^prop>\<open>(2 :: int) ^ n \<noteq> 0\<close>
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3544
    represents that \<^term>\<open>n\<close> is \<^emph>\<open>not\<close> beyond that boundary.
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3545
71965
d45f5d4c41bd more class operations for the sake of efficient generated code
haftmann
parents: 71956
diff changeset
  3546
  \<^item> The projection on a single bit is then @{thm bit_iff_odd [where ?'a = int, no_vars]}.
71800
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3547
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3548
  \<^item> This leads to the most fundamental properties of bit values:
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3549
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3550
      \<^item> Equality rule: @{thm bit_eqI [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3551
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3552
      \<^item> Induction rule: @{thm bits_induct [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3553
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3554
  \<^item> Typical operations are characterized as follows:
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3555
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3556
      \<^item> Singleton \<^term>\<open>n\<close>th bit: \<^term>\<open>(2 :: int) ^ n\<close>
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3557
71956
a4bffc0de967 bit operations as distinctive library theory
haftmann
parents: 71922
diff changeset
  3558
      \<^item> Bit mask upto bit \<^term>\<open>n\<close>: @{thm mask_eq_exp_minus_1 [where ?'a = int, no_vars]}
71800
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3559
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3560
      \<^item> Left shift: @{thm push_bit_eq_mult [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3561
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3562
      \<^item> Right shift: @{thm drop_bit_eq_div [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3563
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3564
      \<^item> Truncation: @{thm take_bit_eq_mod [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3565
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3566
      \<^item> Negation: @{thm bit_not_iff [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3567
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3568
      \<^item> And: @{thm bit_and_iff [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3569
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3570
      \<^item> Or: @{thm bit_or_iff [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3571
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3572
      \<^item> Xor: @{thm bit_xor_iff [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3573
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3574
      \<^item> Set a single bit: @{thm set_bit_def [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3575
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3576
      \<^item> Unset a single bit: @{thm unset_bit_def [where ?'a = int, no_vars]}
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3577
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3578
      \<^item> Flip a single bit: @{thm flip_bit_def [where ?'a = int, no_vars]}
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3579
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3580
      \<^item> Signed truncation, or modulus centered around \<^term>\<open>0::int\<close>: @{thm signed_take_bit_def [no_vars]}
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3581
72241
5a6d8675bf4b generalized signed_take_bit
haftmann
parents: 72239
diff changeset
  3582
      \<^item> Bit concatenation: @{thm concat_bit_def [no_vars]}
72028
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3583
08f1e4cb735f concatentation of bit values
haftmann
parents: 72023
diff changeset
  3584
      \<^item> (Bounded) conversion from and to a list of bits: @{thm horner_sum_bit_eq_take_bit [where ?'a = int, no_vars]}
71800
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3585
\<close>
35a951ed2e82 documentation of relevant ideas
haftmann
parents: 71535
diff changeset
  3586
74097
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3587
no_notation
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3588
  "and"  (infixr \<open>AND\<close> 64)
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3589
    and or  (infixr \<open>OR\<close>  59)
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3590
    and xor  (infixr \<open>XOR\<close> 59)
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3591
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3592
bundle bit_operations_syntax
74101
d804e93ae9ff moved theory Bit_Operations into Main corpus
haftmann
parents: 74097
diff changeset
  3593
begin
74097
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3594
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3595
notation
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3596
  "and"  (infixr \<open>AND\<close> 64)
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3597
    and or  (infixr \<open>OR\<close>  59)
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3598
    and xor  (infixr \<open>XOR\<close> 59)
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3599
71442
d45495e897f4 more instances
haftmann
parents: 71426
diff changeset
  3600
end
74097
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3601
6d7be1227d02 organize syntax for word operations in bundles
haftmann
parents: 73969
diff changeset
  3602
end