author | paulson <lp15@cam.ac.uk> |
Fri, 19 Jul 2019 12:57:14 +0100 | |
changeset 70381 | b151d1f00204 |
parent 69313 | b021008c5397 |
child 73536 | 5131c388a9b0 |
permissions | -rw-r--r-- |
37665 | 1 |
(* Title: HOL/Library/Indicator_Function.thy |
2 |
Author: Johannes Hoelzl (TU Muenchen) |
|
3 |
*) |
|
4 |
||
60500 | 5 |
section \<open>Indicator Function\<close> |
37665 | 6 |
|
7 |
theory Indicator_Function |
|
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
8 |
imports Complex_Main Disjoint_Sets |
37665 | 9 |
begin |
10 |
||
11 |
definition "indicator S x = (if x \<in> S then 1 else 0)" |
|
12 |
||
67683
817944aeac3f
Lots of new material about matrices, etc.
paulson <lp15@cam.ac.uk>
parents:
64966
diff
changeset
|
13 |
text\<open>Type constrained version\<close> |
817944aeac3f
Lots of new material about matrices, etc.
paulson <lp15@cam.ac.uk>
parents:
64966
diff
changeset
|
14 |
abbreviation indicat_real :: "'a set \<Rightarrow> 'a \<Rightarrow> real" where "indicat_real S \<equiv> indicator S" |
817944aeac3f
Lots of new material about matrices, etc.
paulson <lp15@cam.ac.uk>
parents:
64966
diff
changeset
|
15 |
|
37665 | 16 |
lemma indicator_simps[simp]: |
17 |
"x \<in> S \<Longrightarrow> indicator S x = 1" |
|
18 |
"x \<notin> S \<Longrightarrow> indicator S x = 0" |
|
19 |
unfolding indicator_def by auto |
|
20 |
||
45425 | 21 |
lemma indicator_pos_le[intro, simp]: "(0::'a::linordered_semidom) \<le> indicator S x" |
37665 | 22 |
and indicator_le_1[intro, simp]: "indicator S x \<le> (1::'a::linordered_semidom)" |
45425 | 23 |
unfolding indicator_def by auto |
24 |
||
25 |
lemma indicator_abs_le_1: "\<bar>indicator S x\<bar> \<le> (1::'a::linordered_idom)" |
|
37665 | 26 |
unfolding indicator_def by auto |
27 |
||
63309 | 28 |
lemma indicator_eq_0_iff: "indicator A x = (0::'a::zero_neq_one) \<longleftrightarrow> x \<notin> A" |
54408 | 29 |
by (auto simp: indicator_def) |
30 |
||
63309 | 31 |
lemma indicator_eq_1_iff: "indicator A x = (1::'a::zero_neq_one) \<longleftrightarrow> x \<in> A" |
54408 | 32 |
by (auto simp: indicator_def) |
33 |
||
63958
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents:
63649
diff
changeset
|
34 |
lemma indicator_UNIV [simp]: "indicator UNIV = (\<lambda>x. 1)" |
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents:
63649
diff
changeset
|
35 |
by auto |
02de4a58e210
HOL-Analysis: add measurable sets with finite measures, prove affine transformation rule for the Lebesgue measure
hoelzl
parents:
63649
diff
changeset
|
36 |
|
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
37 |
lemma indicator_leI: |
63309 | 38 |
"(x \<in> A \<Longrightarrow> y \<in> B) \<Longrightarrow> (indicator A x :: 'a::linordered_nonzero_semiring) \<le> indicator B y" |
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
39 |
by (auto simp: indicator_def) |
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
40 |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
41 |
lemma split_indicator: "P (indicator S x) \<longleftrightarrow> ((x \<in> S \<longrightarrow> P 1) \<and> (x \<notin> S \<longrightarrow> P 0))" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
42 |
unfolding indicator_def by auto |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
43 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
44 |
lemma split_indicator_asm: "P (indicator S x) \<longleftrightarrow> (\<not> (x \<in> S \<and> \<not> P 1 \<or> x \<notin> S \<and> \<not> P 0))" |
37665 | 45 |
unfolding indicator_def by auto |
46 |
||
45425 | 47 |
lemma indicator_inter_arith: "indicator (A \<inter> B) x = indicator A x * (indicator B x::'a::semiring_1)" |
48 |
unfolding indicator_def by (auto simp: min_def max_def) |
|
49 |
||
63309 | 50 |
lemma indicator_union_arith: |
51 |
"indicator (A \<union> B) x = indicator A x + indicator B x - indicator A x * (indicator B x :: 'a::ring_1)" |
|
45425 | 52 |
unfolding indicator_def by (auto simp: min_def max_def) |
53 |
||
54 |
lemma indicator_inter_min: "indicator (A \<inter> B) x = min (indicator A x) (indicator B x::'a::linordered_semidom)" |
|
37665 | 55 |
and indicator_union_max: "indicator (A \<union> B) x = max (indicator A x) (indicator B x::'a::linordered_semidom)" |
45425 | 56 |
unfolding indicator_def by (auto simp: min_def max_def) |
57 |
||
63309 | 58 |
lemma indicator_disj_union: |
59 |
"A \<inter> B = {} \<Longrightarrow> indicator (A \<union> B) x = (indicator A x + indicator B x :: 'a::linordered_semidom)" |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
60 |
by (auto split: split_indicator) |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
61 |
|
63309 | 62 |
lemma indicator_compl: "indicator (- A) x = 1 - (indicator A x :: 'a::ring_1)" |
63 |
and indicator_diff: "indicator (A - B) x = indicator A x * (1 - indicator B x ::'a::ring_1)" |
|
37665 | 64 |
unfolding indicator_def by (auto simp: min_def max_def) |
65 |
||
63309 | 66 |
lemma indicator_times: |
67 |
"indicator (A \<times> B) x = indicator A (fst x) * (indicator B (snd x) :: 'a::semiring_1)" |
|
37665 | 68 |
unfolding indicator_def by (cases x) auto |
69 |
||
63309 | 70 |
lemma indicator_sum: |
71 |
"indicator (A <+> B) x = (case x of Inl x \<Rightarrow> indicator A x | Inr x \<Rightarrow> indicator B x)" |
|
37665 | 72 |
unfolding indicator_def by (cases x) auto |
73 |
||
59002
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
hoelzl
parents:
58881
diff
changeset
|
74 |
lemma indicator_image: "inj f \<Longrightarrow> indicator (f ` X) (f x) = (indicator X x::_::zero_neq_one)" |
64966
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
wenzelm
parents:
64267
diff
changeset
|
75 |
by (auto simp: indicator_def inj_def) |
59002
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
hoelzl
parents:
58881
diff
changeset
|
76 |
|
61633 | 77 |
lemma indicator_vimage: "indicator (f -` A) x = indicator A (f x)" |
63309 | 78 |
by (auto split: split_indicator) |
61633 | 79 |
|
63309 | 80 |
lemma (* FIXME unnamed!? *) |
81 |
fixes f :: "'a \<Rightarrow> 'b::semiring_1" |
|
82 |
assumes "finite A" |
|
64267 | 83 |
shows sum_mult_indicator[simp]: "(\<Sum>x \<in> A. f x * indicator B x) = (\<Sum>x \<in> A \<inter> B. f x)" |
84 |
and sum_indicator_mult[simp]: "(\<Sum>x \<in> A. indicator B x * f x) = (\<Sum>x \<in> A \<inter> B. f x)" |
|
37665 | 85 |
unfolding indicator_def |
64267 | 86 |
using assms by (auto intro!: sum.mono_neutral_cong_right split: if_split_asm) |
37665 | 87 |
|
64267 | 88 |
lemma sum_indicator_eq_card: |
37665 | 89 |
assumes "finite A" |
61954 | 90 |
shows "(\<Sum>x \<in> A. indicator B x) = card (A Int B)" |
64267 | 91 |
using sum_mult_indicator [OF assms, of "\<lambda>x. 1::nat"] |
92 |
unfolding card_eq_sum by simp |
|
37665 | 93 |
|
64267 | 94 |
lemma sum_indicator_scaleR[simp]: |
56993
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents:
54408
diff
changeset
|
95 |
"finite A \<Longrightarrow> |
63309 | 96 |
(\<Sum>x \<in> A. indicator (B x) (g x) *\<^sub>R f x) = (\<Sum>x \<in> {x\<in>A. g x \<in> B x}. f x :: 'a::real_vector)" |
64267 | 97 |
by (auto intro!: sum.mono_neutral_cong_right split: if_split_asm simp: indicator_def) |
56993
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents:
54408
diff
changeset
|
98 |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
99 |
lemma LIMSEQ_indicator_incseq: |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
100 |
assumes "incseq A" |
63309 | 101 |
shows "(\<lambda>i. indicator (A i) x :: 'a::{topological_space,one,zero}) \<longlonglongrightarrow> indicator (\<Union>i. A i) x" |
102 |
proof (cases "\<exists>i. x \<in> A i") |
|
103 |
case True |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
104 |
then obtain i where "x \<in> A i" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
105 |
by auto |
63649 | 106 |
then have *: |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
107 |
"\<And>n. (indicator (A (n + i)) x :: 'a) = 1" |
60585 | 108 |
"(indicator (\<Union>i. A i) x :: 'a) = 1" |
60500 | 109 |
using incseqD[OF \<open>incseq A\<close>, of i "n + i" for n] \<open>x \<in> A i\<close> by (auto simp: indicator_def) |
63649 | 110 |
show ?thesis |
111 |
by (rule LIMSEQ_offset[of _ i]) (use * in simp) |
|
63309 | 112 |
next |
113 |
case False |
|
114 |
then show ?thesis by (simp add: indicator_def) |
|
115 |
qed |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
116 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
117 |
lemma LIMSEQ_indicator_UN: |
63309 | 118 |
"(\<lambda>k. indicator (\<Union>i<k. A i) x :: 'a::{topological_space,one,zero}) \<longlonglongrightarrow> indicator (\<Union>i. A i) x" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
119 |
proof - |
61969 | 120 |
have "(\<lambda>k. indicator (\<Union>i<k. A i) x::'a) \<longlonglongrightarrow> indicator (\<Union>k. \<Union>i<k. A i) x" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
121 |
by (intro LIMSEQ_indicator_incseq) (auto simp: incseq_def intro: less_le_trans) |
60585 | 122 |
also have "(\<Union>k. \<Union>i<k. A i) = (\<Union>i. A i)" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
123 |
by auto |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
124 |
finally show ?thesis . |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
125 |
qed |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
126 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
127 |
lemma LIMSEQ_indicator_decseq: |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
128 |
assumes "decseq A" |
63309 | 129 |
shows "(\<lambda>i. indicator (A i) x :: 'a::{topological_space,one,zero}) \<longlonglongrightarrow> indicator (\<Inter>i. A i) x" |
130 |
proof (cases "\<exists>i. x \<notin> A i") |
|
131 |
case True |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
132 |
then obtain i where "x \<notin> A i" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
133 |
by auto |
63649 | 134 |
then have *: |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
135 |
"\<And>n. (indicator (A (n + i)) x :: 'a) = 0" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
136 |
"(indicator (\<Inter>i. A i) x :: 'a) = 0" |
60500 | 137 |
using decseqD[OF \<open>decseq A\<close>, of i "n + i" for n] \<open>x \<notin> A i\<close> by (auto simp: indicator_def) |
63649 | 138 |
show ?thesis |
139 |
by (rule LIMSEQ_offset[of _ i]) (use * in simp) |
|
63309 | 140 |
next |
141 |
case False |
|
142 |
then show ?thesis by (simp add: indicator_def) |
|
143 |
qed |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
144 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
145 |
lemma LIMSEQ_indicator_INT: |
63309 | 146 |
"(\<lambda>k. indicator (\<Inter>i<k. A i) x :: 'a::{topological_space,one,zero}) \<longlonglongrightarrow> indicator (\<Inter>i. A i) x" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
147 |
proof - |
61969 | 148 |
have "(\<lambda>k. indicator (\<Inter>i<k. A i) x::'a) \<longlonglongrightarrow> indicator (\<Inter>k. \<Inter>i<k. A i) x" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
149 |
by (intro LIMSEQ_indicator_decseq) (auto simp: decseq_def intro: less_le_trans) |
60585 | 150 |
also have "(\<Inter>k. \<Inter>i<k. A i) = (\<Inter>i. A i)" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
151 |
by auto |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
152 |
finally show ?thesis . |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
153 |
qed |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
154 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
155 |
lemma indicator_add: |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
156 |
"A \<inter> B = {} \<Longrightarrow> (indicator A x::_::monoid_add) + indicator B x = indicator (A \<union> B) x" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
157 |
unfolding indicator_def by auto |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
158 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
159 |
lemma of_real_indicator: "of_real (indicator A x) = indicator A x" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
160 |
by (simp split: split_indicator) |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
161 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
162 |
lemma real_of_nat_indicator: "real (indicator A x :: nat) = indicator A x" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
163 |
by (simp split: split_indicator) |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
164 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
165 |
lemma abs_indicator: "\<bar>indicator A x :: 'a::linordered_idom\<bar> = indicator A x" |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
166 |
by (simp split: split_indicator) |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
167 |
|
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
168 |
lemma mult_indicator_subset: |
63309 | 169 |
"A \<subseteq> B \<Longrightarrow> indicator A x * indicator B x = (indicator A x :: 'a::comm_semiring_1)" |
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
170 |
by (auto split: split_indicator simp: fun_eq_iff) |
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
171 |
|
70381
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
172 |
lemma indicator_times_eq_if: |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
173 |
fixes f :: "'a \<Rightarrow> 'b::comm_ring_1" |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
174 |
shows "indicator S x * f x = (if x \<in> S then f x else 0)" "f x * indicator S x = (if x \<in> S then f x else 0)" |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
175 |
by auto |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
176 |
|
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
177 |
lemma indicator_scaleR_eq_if: |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
178 |
fixes f :: "'a \<Rightarrow> 'b::real_vector" |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
179 |
shows "indicator S x *\<^sub>R f x = (if x \<in> S then f x else 0)" |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
180 |
by simp |
b151d1f00204
More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents:
69313
diff
changeset
|
181 |
|
62648 | 182 |
lemma indicator_sums: |
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
183 |
assumes "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
184 |
shows "(\<lambda>i. indicator (A i) x::real) sums indicator (\<Union>i. A i) x" |
63309 | 185 |
proof (cases "\<exists>i. x \<in> A i") |
186 |
case True |
|
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
187 |
then obtain i where i: "x \<in> A i" .. |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
188 |
with assms have "(\<lambda>i. indicator (A i) x::real) sums (\<Sum>i\<in>{i}. indicator (A i) x)" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
189 |
by (intro sums_finite) (auto split: split_indicator) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
190 |
also have "(\<Sum>i\<in>{i}. indicator (A i) x) = indicator (\<Union>i. A i) x" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
191 |
using i by (auto split: split_indicator) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
192 |
finally show ?thesis . |
63309 | 193 |
next |
194 |
case False |
|
195 |
then show ?thesis by simp |
|
196 |
qed |
|
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57446
diff
changeset
|
197 |
|
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
198 |
text \<open> |
63309 | 199 |
The indicator function of the union of a disjoint family of sets is the |
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
200 |
sum over all the individual indicators. |
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
201 |
\<close> |
63309 | 202 |
|
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
203 |
lemma indicator_UN_disjoint: |
69313 | 204 |
"finite A \<Longrightarrow> disjoint_family_on f A \<Longrightarrow> indicator (\<Union>(f ` A)) x = (\<Sum>y\<in>A. indicator (f y) x)" |
63309 | 205 |
by (induct A rule: finite_induct) |
206 |
(auto simp: disjoint_family_on_def indicator_def split: if_splits) |
|
63099
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
eberlm
parents:
63092
diff
changeset
|
207 |
|
57446
06e195515deb
some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents:
57418
diff
changeset
|
208 |
end |