| author | wenzelm | 
| Fri, 03 Aug 2012 16:00:12 +0200 | |
| changeset 48662 | b171bcd5dd86 | 
| parent 32153 | a0e57fb1b930 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 17456 | 1  | 
(* Title: CCL/Gfp.thy  | 
| 1474 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 3  | 
Copyright 1992 University of Cambridge  | 
4  | 
*)  | 
|
5  | 
||
| 17456 | 6  | 
header {* Greatest fixed points *}
 | 
7  | 
||
8  | 
theory Gfp  | 
|
9  | 
imports Lfp  | 
|
10  | 
begin  | 
|
11  | 
||
| 20140 | 12  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20140 
diff
changeset
 | 
13  | 
gfp :: "['a set=>'a set] => 'a set" where -- "greatest fixed point"  | 
| 17456 | 14  | 
  "gfp(f) == Union({u. u <= f(u)})"
 | 
15  | 
||
| 20140 | 16  | 
(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | 
17  | 
||
18  | 
lemma gfp_upperbound: "[| A <= f(A) |] ==> A <= gfp(f)"  | 
|
19  | 
unfolding gfp_def by blast  | 
|
20  | 
||
21  | 
lemma gfp_least: "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A"  | 
|
22  | 
unfolding gfp_def by blast  | 
|
23  | 
||
24  | 
lemma gfp_lemma2: "mono(f) ==> gfp(f) <= f(gfp(f))"  | 
|
25  | 
by (rule gfp_least, rule subset_trans, assumption, erule monoD,  | 
|
26  | 
rule gfp_upperbound, assumption)  | 
|
27  | 
||
28  | 
lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) <= gfp(f)"  | 
|
29  | 
by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+)  | 
|
30  | 
||
31  | 
lemma gfp_Tarski: "mono(f) ==> gfp(f) = f(gfp(f))"  | 
|
32  | 
by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+  | 
|
33  | 
||
34  | 
||
35  | 
(*** Coinduction rules for greatest fixed points ***)  | 
|
36  | 
||
37  | 
(*weak version*)  | 
|
38  | 
lemma coinduct: "[| a: A; A <= f(A) |] ==> a : gfp(f)"  | 
|
39  | 
by (blast dest: gfp_upperbound)  | 
|
40  | 
||
41  | 
lemma coinduct2_lemma:  | 
|
42  | 
"[| A <= f(A) Un gfp(f); mono(f) |] ==>  | 
|
43  | 
A Un gfp(f) <= f(A Un gfp(f))"  | 
|
44  | 
apply (rule subset_trans)  | 
|
45  | 
prefer 2  | 
|
46  | 
apply (erule mono_Un)  | 
|
47  | 
apply (rule subst, erule gfp_Tarski)  | 
|
48  | 
apply (erule Un_least)  | 
|
49  | 
apply (rule Un_upper2)  | 
|
50  | 
done  | 
|
51  | 
||
52  | 
(*strong version, thanks to Martin Coen*)  | 
|
53  | 
lemma coinduct2:  | 
|
54  | 
"[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)"  | 
|
55  | 
apply (rule coinduct)  | 
|
56  | 
prefer 2  | 
|
57  | 
apply (erule coinduct2_lemma, assumption)  | 
|
58  | 
apply blast  | 
|
59  | 
done  | 
|
60  | 
||
61  | 
(*** Even Stronger version of coinduct [by Martin Coen]  | 
|
62  | 
- instead of the condition A <= f(A)  | 
|
63  | 
consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***)  | 
|
64  | 
||
65  | 
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un A Un B)"  | 
|
66  | 
by (rule monoI) (blast dest: monoD)  | 
|
67  | 
||
68  | 
lemma coinduct3_lemma:  | 
|
69  | 
assumes prem: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))"  | 
|
70  | 
and mono: "mono(f)"  | 
|
71  | 
shows "lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))"  | 
|
72  | 
apply (rule subset_trans)  | 
|
73  | 
apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3])  | 
|
74  | 
apply (rule Un_least [THEN Un_least])  | 
|
75  | 
apply (rule subset_refl)  | 
|
76  | 
apply (rule prem)  | 
|
77  | 
apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans])  | 
|
78  | 
apply (rule mono [THEN monoD])  | 
|
79  | 
apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski])  | 
|
80  | 
apply (rule Un_upper2)  | 
|
81  | 
done  | 
|
82  | 
||
83  | 
lemma coinduct3:  | 
|
84  | 
assumes 1: "a:A"  | 
|
85  | 
and 2: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))"  | 
|
86  | 
and 3: "mono(f)"  | 
|
87  | 
shows "a : gfp(f)"  | 
|
88  | 
apply (rule coinduct)  | 
|
89  | 
prefer 2  | 
|
90  | 
apply (rule coinduct3_lemma [OF 2 3])  | 
|
91  | 
apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3])  | 
|
92  | 
using 1 apply blast  | 
|
93  | 
done  | 
|
94  | 
||
95  | 
||
96  | 
subsection {* Definition forms of @{text "gfp_Tarski"}, to control unfolding *}
 | 
|
97  | 
||
98  | 
lemma def_gfp_Tarski: "[| h==gfp(f); mono(f) |] ==> h = f(h)"  | 
|
99  | 
apply unfold  | 
|
100  | 
apply (erule gfp_Tarski)  | 
|
101  | 
done  | 
|
102  | 
||
103  | 
lemma def_coinduct: "[| h==gfp(f); a:A; A <= f(A) |] ==> a: h"  | 
|
104  | 
apply unfold  | 
|
105  | 
apply (erule coinduct)  | 
|
106  | 
apply assumption  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
lemma def_coinduct2: "[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h"  | 
|
110  | 
apply unfold  | 
|
111  | 
apply (erule coinduct2)  | 
|
112  | 
apply assumption  | 
|
113  | 
apply assumption  | 
|
114  | 
done  | 
|
115  | 
||
116  | 
lemma def_coinduct3: "[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h"  | 
|
117  | 
apply unfold  | 
|
118  | 
apply (erule coinduct3)  | 
|
119  | 
apply assumption  | 
|
120  | 
apply assumption  | 
|
121  | 
done  | 
|
122  | 
||
123  | 
(*Monotonicity of gfp!*)  | 
|
124  | 
lemma gfp_mono: "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"  | 
|
125  | 
apply (rule gfp_upperbound)  | 
|
126  | 
apply (rule subset_trans)  | 
|
127  | 
apply (rule gfp_lemma2)  | 
|
128  | 
apply assumption  | 
|
129  | 
apply (erule meta_spec)  | 
|
130  | 
done  | 
|
| 17456 | 131  | 
|
| 0 | 132  | 
end  |