| 5078 |      1 | <!-- $Id$ -->
 | 
|  |      2 | <HTML><HEAD><TITLE>HOL/Real/README</TITLE></HEAD><BODY>
 | 
|  |      3 | 
 | 
|  |      4 | <H2>Real--Dedekind Cut Construction of the Real Line</H2>
 | 
|  |      5 | 
 | 
| 12254 |      6 | <ul>
 | 
| 5947 |      7 | <LI><A HREF="PNat.html">PNat</A>  The positive integers (very much the same as <A HREF="../Nat.html">Nat.thy</A>!) 
 | 
|  |      8 | <LI><A HREF="PRat.html">PRat</A>  The positive rationals
 | 
|  |      9 | <LI><A HREF="PReal.html">PReal</A> The positive reals constructed using Dedekind cuts
 | 
| 10156 |     10 | <LI><A HREF="RealDef.html">RealDef</A>  The real numbers
 | 
|  |     11 | <LI><A HREF="RealOrd.html">RealOrd</A>  More real numbers theorems- ordering
 | 
|  |     12 | properties
 | 
|  |     13 | <LI><A HREF="RealInt.html">RealInt</A>  Embedding of the integers in the reals
 | 
|  |     14 | <LI><A HREF="RealBin.html">RealBin</A> Binary arithmetic for the reals 
 | 
|  |     15 | 
 | 
| 5947 |     16 | <LI><A HREF="Lubs.html">Lubs</A>  Definition of upper bounds, lubs and so on. 
 | 
| 5078 |     17 |      (Useful e.g. in Fleuriot's NSA theory)
 | 
| 5947 |     18 | <LI><A HREF="RComplete.html">RComplete</A> Proof of completeness of reals in form of the supremum 
 | 
| 5078 |     19 |             property. Also proofs that the reals have the Archimedean
 | 
|  |     20 |             property.
 | 
| 5947 |     21 | <LI><A HREF="RealAbs.html">RealAbs</A> The absolute value function defined for the reals
 | 
| 10156 |     22 | </ul>
 | 
|  |     23 | 
 | 
|  |     24 | <H2>Hyperreal--Ultrapower Construction of the Non-Standard Reals</H2>
 | 
| 12254 |     25 | 
 | 
|  |     26 | <p>
 | 
|  |     27 | See J. D. Fleuriot and L. C. Paulson. Mechanizing Nonstandard Real
 | 
|  |     28 | Analysis. LMS J. Computation and Mathematics 3 (2000), 140-190.
 | 
|  |     29 | </p>
 | 
| 10156 |     30 | 
 | 
|  |     31 | <UL>
 | 
|  |     32 | <LI><A HREF="Zorn.html">Zorn</A>
 | 
|  |     33 | Zorn's Lemma: proof based on the <A HREF="../../../ZF/Zorn.html">ZF version</A>
 | 
|  |     34 | 
 | 
|  |     35 | <LI><A HREF="Filter.html">Filter</A>
 | 
|  |     36 | Theory of Filters and Ultrafilters.
 | 
|  |     37 | Main result is a version of the Ultrafilter Theorem proved using
 | 
|  |     38 | Zorn's Lemma. 
 | 
|  |     39 | 
 | 
|  |     40 | <LI><A HREF="HyperDef.html">HyperDef</A>
 | 
|  |     41 | Ultrapower construction of the hyperreals
 | 
|  |     42 | 
 | 
|  |     43 | <LI><A HREF="HyperOrd.html">HyperOrd</A>
 | 
|  |     44 | More hyperreal numbers theorems- ordering properties
 | 
|  |     45 | 
 | 
|  |     46 | <LI><A HREF="HRealAbs.html">HRealAbs</A> The absolute value function
 | 
|  |     47 | defined for the hyperreals 
 | 
|  |     48 | 
 | 
|  |     49 | 
 | 
|  |     50 | <LI><A HREF="NSA.html">NSA</A>
 | 
|  |     51 | Theory defining sets of infinite numbers, infinitesimals, 
 | 
|  |     52 | the infinitely close relation, and their various algebraic properties.
 | 
|  |     53 | 
 | 
|  |     54 | <LI><A HREF="HyperNat.html">HyperNat</A>
 | 
|  |     55 | Ultrapower construction of the hypernaturals
 | 
|  |     56 | 
 | 
|  |     57 | <LI><A HREF="HyperPow.html">HyperPow</A>
 | 
|  |     58 | Powers theory for the hyperreals
 | 
|  |     59 | 
 | 
|  |     60 | <LI><A HREF="Star.html">Star</A>
 | 
|  |     61 | Nonstandard extensions of real sets and real functions
 | 
|  |     62 | 
 | 
|  |     63 | <LI><A HREF="NatStar.html">NatStar</A>
 | 
|  |     64 | Nonstandard extensions of sets of naturals and functions on the natural
 | 
|  |     65 | numbers
 | 
|  |     66 | 
 | 
|  |     67 | <LI><A HREF="SEQ.html">SEQ</A>
 | 
|  |     68 | Theory of sequences developed using standard and nonstandard analysis
 | 
|  |     69 | 
 | 
|  |     70 | <LI><A HREF="Lim.html">Lim</A>
 | 
|  |     71 | Theory of limits, continuous functions, and derivatives
 | 
|  |     72 | 
 | 
|  |     73 | <LI><A HREF="Series.html">Series</A>
 | 
|  |     74 | Standard theory of finite summation and infinite series
 | 
|  |     75 | 
 | 
|  |     76 | 
 | 
|  |     77 | 
 | 
| 5078 |     78 | </UL>
 | 
|  |     79 | 
 | 
|  |     80 | <P>Last modified on $Date$
 | 
|  |     81 | 
 | 
|  |     82 | <HR>
 | 
|  |     83 | 
 | 
|  |     84 | <ADDRESS>
 | 
|  |     85 | <A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
 | 
|  |     86 | </ADDRESS>
 | 
|  |     87 | </BODY></HTML>
 |