| author | wenzelm | 
| Fri, 31 Oct 1997 15:21:32 +0100 | |
| changeset 4054 | b33e02b3478e | 
| parent 38 | 4433428596f9 | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/ex/ramsey.ML  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1992 University of Cambridge  | 
|
5  | 
||
6  | 
Ramsey's Theorem (finite exponent 2 version)  | 
|
7  | 
||
8  | 
Based upon the article  | 
|
9  | 
D Basin and M Kaufmann,  | 
|
10  | 
The Boyer-Moore Prover and Nuprl: An Experimental Comparison.  | 
|
11  | 
In G Huet and G Plotkin, editors, Logical Frameworks.  | 
|
12  | 
(CUP, 1991), pages 89--119  | 
|
13  | 
||
14  | 
See also  | 
|
15  | 
M Kaufmann,  | 
|
16  | 
An example in NQTHM: Ramsey's Theorem  | 
|
17  | 
Internal Note, Computational Logic, Inc., Austin, Texas 78703  | 
|
18  | 
Available from the author: kaufmann@cli.com  | 
|
19  | 
*)  | 
|
20  | 
||
21  | 
open Ramsey;  | 
|
22  | 
||
23  | 
(*** Cliques and Independent sets ***)  | 
|
24  | 
||
25  | 
goalw Ramsey.thy [Clique_def] "Clique(0,V,E)";  | 
|
26  | 
by (fast_tac ZF_cs 1);  | 
|
27  | 
val Clique0 = result();  | 
|
28  | 
||
29  | 
goalw Ramsey.thy [Clique_def]  | 
|
30  | 
"!!C V E. [| Clique(C,V',E); V'<=V |] ==> Clique(C,V,E)";  | 
|
31  | 
by (fast_tac ZF_cs 1);  | 
|
32  | 
val Clique_superset = result();  | 
|
33  | 
||
34  | 
goalw Ramsey.thy [Indept_def] "Indept(0,V,E)";  | 
|
35  | 
by (fast_tac ZF_cs 1);  | 
|
36  | 
val Indept0 = result();  | 
|
37  | 
||
38  | 
val prems = goalw Ramsey.thy [Indept_def]  | 
|
39  | 
"!!I V E. [| Indept(I,V',E); V'<=V |] ==> Indept(I,V,E)";  | 
|
40  | 
by (fast_tac ZF_cs 1);  | 
|
41  | 
val Indept_superset = result();  | 
|
42  | 
||
43  | 
(*** Atleast ***)  | 
|
44  | 
||
45  | 
goalw Ramsey.thy [Atleast_def,inj_def] "Atleast(0,A)";  | 
|
46  | 
by (fast_tac (ZF_cs addIs [PiI]) 1);  | 
|
47  | 
val Atleast0 = result();  | 
|
48  | 
||
49  | 
val [major] = goalw Ramsey.thy [Atleast_def]  | 
|
50  | 
    "Atleast(succ(m),A) ==> EX x:A. Atleast(m, A-{x})";
 | 
|
51  | 
by (rtac (major RS exE) 1);  | 
|
52  | 
by (rtac bexI 1);  | 
|
53  | 
by (etac (inj_is_fun RS apply_type) 2);  | 
|
54  | 
by (rtac succI1 2);  | 
|
55  | 
by (rtac exI 1);  | 
|
56  | 
by (etac inj_succ_restrict 1);  | 
|
57  | 
val Atleast_succD = result();  | 
|
58  | 
||
59  | 
val major::prems = goalw Ramsey.thy [Atleast_def]  | 
|
60  | 
"[| Atleast(n,A); A<=B |] ==> Atleast(n,B)";  | 
|
61  | 
by (rtac (major RS exE) 1);  | 
|
62  | 
by (rtac exI 1);  | 
|
63  | 
by (etac inj_weaken_type 1);  | 
|
64  | 
by (resolve_tac prems 1);  | 
|
65  | 
val Atleast_superset = result();  | 
|
66  | 
||
67  | 
val prems = goalw Ramsey.thy [Atleast_def,succ_def]  | 
|
| 38 | 68  | 
"[| Atleast(m,B); b~: B |] ==> Atleast(succ(m), cons(b,B))";  | 
| 0 | 69  | 
by (cut_facts_tac prems 1);  | 
70  | 
by (etac exE 1);  | 
|
71  | 
by (rtac exI 1);  | 
|
72  | 
by (etac inj_extend 1);  | 
|
73  | 
by (rtac mem_not_refl 1);  | 
|
74  | 
by (assume_tac 1);  | 
|
75  | 
val Atleast_succI = result();  | 
|
76  | 
||
77  | 
val prems = goal Ramsey.thy  | 
|
78  | 
    "[| Atleast(m, B-{x});  x: B |] ==> Atleast(succ(m), B)";
 | 
|
79  | 
by (cut_facts_tac prems 1);  | 
|
80  | 
by (etac (Atleast_succI RS Atleast_superset) 1);  | 
|
81  | 
by (fast_tac ZF_cs 1);  | 
|
82  | 
by (fast_tac ZF_cs 1);  | 
|
83  | 
val Atleast_Diff_succI = result();  | 
|
84  | 
||
85  | 
(*** Main Cardinality Lemma ***)  | 
|
86  | 
||
87  | 
(*The #-succ(0) strengthens the original theorem statement, but precisely  | 
|
88  | 
the same proof could be used!!*)  | 
|
89  | 
val prems = goal Ramsey.thy  | 
|
90  | 
"m: nat ==> \  | 
|
91  | 
\ ALL n: nat. ALL A B. Atleast((m#+n) #- succ(0), A Un B) --> \  | 
|
92  | 
\ Atleast(m,A) | Atleast(n,B)";  | 
|
93  | 
by (nat_ind_tac "m" prems 1);  | 
|
94  | 
by (fast_tac (ZF_cs addSIs [Atleast0]) 1);  | 
|
| 
7
 
268f93ab3bc4
Installation of new simplifier for ZF/ex.  The hom_ss example in misc.ML is
 
lcp 
parents: 
0 
diff
changeset
 | 
95  | 
by (asm_simp_tac arith_ss 1);  | 
| 0 | 96  | 
by (rtac ballI 1);  | 
| 
7
 
268f93ab3bc4
Installation of new simplifier for ZF/ex.  The hom_ss example in misc.ML is
 
lcp 
parents: 
0 
diff
changeset
 | 
97  | 
by (rename_tac "n" 1); (*simplifier does NOT preserve bound names!*)  | 
| 0 | 98  | 
by (nat_ind_tac "n" [] 1);  | 
99  | 
by (fast_tac (ZF_cs addSIs [Atleast0]) 1);  | 
|
| 
7
 
268f93ab3bc4
Installation of new simplifier for ZF/ex.  The hom_ss example in misc.ML is
 
lcp 
parents: 
0 
diff
changeset
 | 
100  | 
by (asm_simp_tac (arith_ss addsimps [add_succ_right]) 1);  | 
| 0 | 101  | 
by (safe_tac ZF_cs);  | 
102  | 
by (etac (Atleast_succD RS bexE) 1);  | 
|
103  | 
by (etac UnE 1);  | 
|
104  | 
(**case x:B. Instantiate the 'ALL A B' induction hypothesis. **)  | 
|
105  | 
by (dres_inst_tac [("x1","A"), ("x","B-{x}")] (spec RS spec) 2);
 | 
|
106  | 
by (etac (mp RS disjE) 2);  | 
|
107  | 
(*cases Atleast(succ(m1),A) and Atleast(succ(n1),B)*)  | 
|
108  | 
by (REPEAT (eresolve_tac [asm_rl, notE, Atleast_Diff_succI] 3));  | 
|
109  | 
(*proving the condition*)  | 
|
110  | 
by (etac Atleast_superset 2 THEN fast_tac ZF_cs 2);  | 
|
111  | 
(**case x:A. Instantiate the 'ALL n:nat. ALL A B' induction hypothesis. **)  | 
|
112  | 
by (dres_inst_tac [("x2","succ(n1)"), ("x1","A-{x}"), ("x","B")] 
 | 
|
113  | 
(bspec RS spec RS spec) 1);  | 
|
114  | 
by (etac nat_succI 1);  | 
|
115  | 
by (etac (mp RS disjE) 1);  | 
|
116  | 
(*cases Atleast(succ(m1),A) and Atleast(succ(n1),B)*)  | 
|
117  | 
by (REPEAT (eresolve_tac [asm_rl, Atleast_Diff_succI, notE] 2));  | 
|
118  | 
(*proving the condition*)  | 
|
| 
7
 
268f93ab3bc4
Installation of new simplifier for ZF/ex.  The hom_ss example in misc.ML is
 
lcp 
parents: 
0 
diff
changeset
 | 
119  | 
by (asm_simp_tac (arith_ss addsimps [add_succ_right]) 1);  | 
| 0 | 120  | 
by (etac Atleast_superset 1 THEN fast_tac ZF_cs 1);  | 
121  | 
val pigeon2_lemma = result();  | 
|
122  | 
||
123  | 
(* [| m:nat; n:nat; Atleast(m #+ n #- succ(0), A Un B) |] ==>  | 
|
124  | 
Atleast(m,A) | Atleast(n,B) *)  | 
|
125  | 
val pigeon2 = standard (pigeon2_lemma RS bspec RS spec RS spec RS mp);  | 
|
126  | 
||
127  | 
||
128  | 
(**** Ramsey's Theorem ****)  | 
|
129  | 
||
130  | 
(** Base cases of induction; they now admit ANY Ramsey number **)  | 
|
131  | 
||
132  | 
goalw Ramsey.thy [Ramsey_def] "Ramsey(n,0,j)";  | 
|
133  | 
by (fast_tac (ZF_cs addIs [Clique0,Atleast0]) 1);  | 
|
134  | 
val Ramsey0j = result();  | 
|
135  | 
||
136  | 
goalw Ramsey.thy [Ramsey_def] "Ramsey(n,i,0)";  | 
|
137  | 
by (fast_tac (ZF_cs addIs [Indept0,Atleast0]) 1);  | 
|
138  | 
val Ramseyi0 = result();  | 
|
139  | 
||
140  | 
(** Lemmas for induction step **)  | 
|
141  | 
||
142  | 
(*The use of succ(m) here, rather than #-succ(0), simplifies the proof of  | 
|
143  | 
Ramsey_step_lemma.*)  | 
|
144  | 
val prems = goal Ramsey.thy  | 
|
145  | 
"[| Atleast(m #+ n, A); m: nat; n: nat |] ==> \  | 
|
146  | 
\    Atleast(succ(m), {x:A. ~P(x)}) | Atleast(n, {x:A. P(x)})";
 | 
|
147  | 
by (rtac (nat_succI RS pigeon2) 1);  | 
|
| 
7
 
268f93ab3bc4
Installation of new simplifier for ZF/ex.  The hom_ss example in misc.ML is
 
lcp 
parents: 
0 
diff
changeset
 | 
148  | 
by (simp_tac (arith_ss addsimps prems) 3);  | 
| 0 | 149  | 
by (rtac Atleast_superset 3);  | 
150  | 
by (REPEAT (resolve_tac prems 1));  | 
|
151  | 
by (fast_tac ZF_cs 1);  | 
|
152  | 
val Atleast_partition = result();  | 
|
153  | 
||
154  | 
(*For the Atleast part, proves ~(a:I) from the second premise!*)  | 
|
155  | 
val prems = goalw Ramsey.thy [Symmetric_def,Indept_def]  | 
|
| 38 | 156  | 
    "[| Symmetric(E);  Indept(I, {z: V-{a}. <a,z> ~: E}, E);  a: V;  \
 | 
| 0 | 157  | 
\ Atleast(j,I) |] ==> \  | 
158  | 
\ Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))";  | 
|
159  | 
by (cut_facts_tac prems 1);  | 
|
160  | 
by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1); (*34 secs*)  | 
|
161  | 
val Indept_succ = result();  | 
|
162  | 
||
163  | 
val prems = goalw Ramsey.thy [Symmetric_def,Clique_def]  | 
|
164  | 
    "[| Symmetric(E);  Clique(C, {z: V-{a}. <a,z>:E}, E);  a: V;  \
 | 
|
165  | 
\ Atleast(j,C) |] ==> \  | 
|
166  | 
\ Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))";  | 
|
167  | 
by (cut_facts_tac prems 1);  | 
|
168  | 
by (fast_tac (ZF_cs addSEs [Atleast_succI]) 1); (*41 secs*)  | 
|
169  | 
val Clique_succ = result();  | 
|
170  | 
||
171  | 
(** Induction step **)  | 
|
172  | 
||
173  | 
(*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*)  | 
|
174  | 
val ram1::ram2::prems = goalw Ramsey.thy [Ramsey_def]  | 
|
175  | 
"[| Ramsey(succ(m), succ(i), j); Ramsey(n, i, succ(j)); \  | 
|
176  | 
\ m: nat; n: nat |] ==> \  | 
|
177  | 
\ Ramsey(succ(m#+n), succ(i), succ(j))";  | 
|
178  | 
by (safe_tac ZF_cs);  | 
|
179  | 
by (etac (Atleast_succD RS bexE) 1);  | 
|
180  | 
by (eres_inst_tac [("P1","%z.<x,z>:E")] (Atleast_partition RS disjE) 1);
 | 
|
181  | 
by (REPEAT (resolve_tac prems 1));  | 
|
182  | 
(*case m*)  | 
|
183  | 
by (rtac (ram1 RS spec RS spec RS mp RS disjE) 1);  | 
|
184  | 
by (fast_tac ZF_cs 1);  | 
|
185  | 
by (fast_tac (ZF_cs addEs [Clique_superset]) 1); (*easy -- given a Clique*)  | 
|
186  | 
by (safe_tac ZF_cs);  | 
|
187  | 
by (eresolve_tac (swapify [exI]) 1); (*ignore main EX quantifier*)  | 
|
188  | 
by (REPEAT (ares_tac [Indept_succ] 1)); (*make a bigger Indept*)  | 
|
189  | 
(*case n*)  | 
|
190  | 
by (rtac (ram2 RS spec RS spec RS mp RS disjE) 1);  | 
|
191  | 
by (fast_tac ZF_cs 1);  | 
|
192  | 
by (safe_tac ZF_cs);  | 
|
193  | 
by (rtac exI 1);  | 
|
194  | 
by (REPEAT (ares_tac [Clique_succ] 1)); (*make a bigger Clique*)  | 
|
195  | 
by (fast_tac (ZF_cs addEs [Indept_superset]) 1); (*easy -- given an Indept*)  | 
|
196  | 
val Ramsey_step_lemma = result();  | 
|
197  | 
||
198  | 
||
199  | 
(** The actual proof **)  | 
|
200  | 
||
201  | 
(*Again, the induction requires Ramsey numbers to be positive.*)  | 
|
202  | 
val prems = goal Ramsey.thy  | 
|
203  | 
"i: nat ==> ALL j: nat. EX n:nat. Ramsey(succ(n), i, j)";  | 
|
204  | 
by (nat_ind_tac "i" prems 1);  | 
|
205  | 
by (fast_tac (ZF_cs addSIs [nat_0I,Ramsey0j]) 1);  | 
|
206  | 
by (rtac ballI 1);  | 
|
207  | 
by (nat_ind_tac "j" [] 1);  | 
|
208  | 
by (fast_tac (ZF_cs addSIs [nat_0I,Ramseyi0]) 1);  | 
|
209  | 
by (dres_inst_tac [("x","succ(j1)")] bspec 1);
 | 
|
210  | 
by (REPEAT (eresolve_tac [nat_succI,bexE] 1));  | 
|
211  | 
by (rtac bexI 1);  | 
|
212  | 
by (rtac Ramsey_step_lemma 1);  | 
|
213  | 
by (REPEAT (ares_tac [nat_succI,add_type] 1));  | 
|
214  | 
val ramsey_lemma = result();  | 
|
215  | 
||
216  | 
(*Final statement in a tidy form, without succ(...) *)  | 
|
217  | 
val prems = goal Ramsey.thy  | 
|
218  | 
"[| i: nat; j: nat |] ==> EX n:nat. Ramsey(n,i,j)";  | 
|
219  | 
by (rtac (ramsey_lemma RS bspec RS bexE) 1);  | 
|
220  | 
by (etac bexI 3);  | 
|
221  | 
by (REPEAT (ares_tac (prems@[nat_succI]) 1));  | 
|
222  | 
val ramsey = result();  | 
|
223  | 
||
224  | 
(*Computer Ramsey numbers according to proof above -- which, actually,  | 
|
225  | 
does not constrain the base case values at all!*)  | 
|
226  | 
fun ram 0 j = 1  | 
|
227  | 
| ram i 0 = 1  | 
|
228  | 
| ram i j = ram (i-1) j + ram i (j-1);  | 
|
229  | 
||
230  | 
(*Previous proof gave the following Ramsey numbers, which are smaller than  | 
|
231  | 
those above by one!*)  | 
|
232  | 
fun ram' 0 j = 0  | 
|
233  | 
| ram' i 0 = 0  | 
|
234  | 
| ram' i j = ram' (i-1) j + ram' i (j-1) + 1;  |