src/HOL/NumberTheory/Int2.thy
author urbanc
Tue, 13 Dec 2005 18:11:21 +0100
changeset 18396 b3e7da94b51f
parent 18369 694ea14ab4f2
child 19670 2e4a143c73c5
permissions -rw-r--r--
added a fresh_left lemma that contains all instantiation for the various atom-types.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     1
(*  Title:      HOL/Quadratic_Reciprocity/Gauss.thy
14981
e73f8140af78 Merged in license change from Isabelle2004
kleing
parents: 14387
diff changeset
     2
    ID:         $Id$
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     3
    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     4
*)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     5
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     6
header {*Integers: Divisibility and Congruences*}
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     7
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
     8
theory Int2 imports Finite2 WilsonRuss begin
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
     9
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    10
text{*Note.  This theory is being revised.  See the web page
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    11
\url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    12
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    13
constdefs
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    14
  MultInv :: "int => int => int" 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    15
  "MultInv p x == x ^ nat (p - 2)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    16
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    17
(*****************************************************************)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    18
(*                                                               *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    19
(* Useful lemmas about dvd and powers                            *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    20
(*                                                               *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    21
(*****************************************************************)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    22
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    23
lemma zpower_zdvd_prop1:
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    24
  "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    25
  by (induct n) (auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    26
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    27
lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    28
proof -
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    29
  assume "n dvd m"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    30
  then have "~(0 < m & m < n)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    31
    using zdvd_not_zless [of m n] by auto
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    32
  then show ?thesis by auto
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    33
qed
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    34
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
    35
lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    36
    (p dvd m) | (p dvd n)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    37
  apply (cases "0 \<le> m")
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    38
  apply (simp add: zprime_zdvd_zmult)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    39
  apply (insert zprime_zdvd_zmult [of "-m" p n])
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    40
  apply auto
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    41
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    42
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    43
lemma zpower_zdvd_prop2:
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    44
    "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    45
  apply (induct n)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    46
   apply simp
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    47
  apply (frule zprime_zdvd_zmult_better)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    48
   apply simp
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    49
  apply force
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    50
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    51
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    52
lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    53
proof -
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    54
  assume "0 < z"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    55
  then have "(x div z) * z \<le> (x div z) * z + x mod z"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    56
    by arith
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    57
  also have "... = x"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    58
    by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    59
  also assume  "x < y * z"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    60
  finally show ?thesis
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 13871
diff changeset
    61
    by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    62
qed
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    63
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    64
lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    65
proof -
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    66
  assume "0 < z" and "x < (y * z) + z"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    67
  then have "x < (y + 1) * z" by (auto simp add: int_distrib)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    68
  then have "x div z < y + 1"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    69
    apply -
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    70
    apply (rule_tac y = "y + 1" in div_prop1)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    71
    apply (auto simp add: prems)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    72
    done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    73
  then show ?thesis by auto
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    74
qed
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    75
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    76
lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    77
proof-
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    78
  assume "0 < y"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    79
  from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    80
  moreover have "0 \<le> x mod y"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    81
    by (auto simp add: prems pos_mod_sign)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    82
  ultimately show ?thesis
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    83
    by arith
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    84
qed
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    85
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    86
(*****************************************************************)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    87
(*                                                               *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    88
(* Useful properties of congruences                              *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    89
(*                                                               *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    90
(*****************************************************************)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    91
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    92
lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    93
  by (auto simp add: zcong_def)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    94
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    95
lemma zcong_id: "[m = 0] (mod m)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    96
  by (auto simp add: zcong_def zdvd_0_right)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    97
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
    98
lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
    99
  by (auto simp add: zcong_refl zcong_zadd)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   100
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   101
lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   102
  by (induct z) (auto simp add: zcong_zmult)
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   103
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   104
lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   105
    [a = d](mod m)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   106
  apply (erule zcong_trans)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   107
  apply simp
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   108
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   109
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   110
lemma aux1: "a - b = (c::int) ==> a = c + b"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   111
  by auto
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   112
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   113
lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   114
    [c = b * d] (mod m))"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   115
  apply (auto simp add: zcong_def dvd_def)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   116
  apply (rule_tac x = "ka + k * d" in exI)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   117
  apply (drule aux1)+
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   118
  apply (auto simp add: int_distrib)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   119
  apply (rule_tac x = "ka - k * d" in exI)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   120
  apply (drule aux1)+
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   121
  apply (auto simp add: int_distrib)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   122
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   123
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   124
lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   125
    ([c = d * a](mod m) = [c = d * b] (mod m))"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   126
  by (auto simp add: zmult_ac zcong_zmult_prop1)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   127
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   128
lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   129
    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   130
  apply (auto simp add: zcong_def)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   131
  apply (drule zprime_zdvd_zmult_better, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   132
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   133
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   134
lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   135
    x < m; y < m |] ==> x = y"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   136
  apply (simp add: zcong_zmod_eq)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   137
  apply (subgoal_tac "(x mod m) = x")
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   138
  apply (subgoal_tac "(y mod m) = y")
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   139
  apply simp
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   140
  apply (rule_tac [1-2] mod_pos_pos_trivial)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   141
  apply auto
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   142
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   143
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   144
lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   145
    ~([x = 1] (mod p))"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   146
proof
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   147
  assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   148
  then have "[1 = -1] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   149
    apply (auto simp add: zcong_sym)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   150
    apply (drule zcong_trans, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   151
    done
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   152
  then have "[1 + 1 = -1 + 1] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   153
    by (simp only: zcong_shift)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   154
  then have "[2 = 0] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   155
    by auto
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   156
  then have "p dvd 2"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   157
    by (auto simp add: dvd_def zcong_def)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   158
  with prems show False
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   159
    by (auto simp add: zdvd_not_zless)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   160
qed
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   161
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   162
lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   163
  by (auto simp add: zcong_def)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   164
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   165
lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   166
    [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   167
  by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   168
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   169
lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   170
  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   171
  apply auto 
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   172
  apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   173
  apply auto
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   174
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   175
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   176
lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   177
  by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   178
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   179
lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   180
  apply (drule order_le_imp_less_or_eq, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   181
  apply (frule_tac m = m in zcong_not_zero)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   182
  apply auto
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   183
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   184
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   185
lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   186
    ==> zgcd (setprod id A,y) = 1"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   187
  by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult)
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   188
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   189
(*****************************************************************)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   190
(*                                                               *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   191
(* Some properties of MultInv                                    *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   192
(*                                                               *)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   193
(*****************************************************************)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   194
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   195
lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   196
    [(MultInv p x) = (MultInv p y)] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   197
  by (auto simp add: MultInv_def zcong_zpower)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   198
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   199
lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   200
  [(x * (MultInv p x)) = 1] (mod p)"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   201
proof (simp add: MultInv_def zcong_eq_zdvd_prop)
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   202
  assume "2 < p" and "zprime p" and "~ p dvd x"
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   203
  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   204
    by auto
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   205
  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   206
    by (simp only: nat_add_distrib, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   207
  also have "p - 2 + 1 = p - 1" by arith
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   208
  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   209
    by (rule ssubst, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   210
  also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   211
    by (auto simp add: Little_Fermat) 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   212
  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   213
qed
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   214
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   215
lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   216
    [(MultInv p x) * x = 1] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   217
  by (auto simp add: MultInv_prop2 zmult_ac)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   218
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   219
lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   220
  by (simp add: nat_diff_distrib)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   221
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   222
lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   223
  by auto
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   224
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   225
lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   226
    ~([MultInv p x = 0](mod p))"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   227
  apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   228
  apply (drule aux_2)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   229
  apply (drule zpower_zdvd_prop2, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   230
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   231
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   232
lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   233
    [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   234
      (MultInv p (MultInv p x)))] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   235
  apply (drule MultInv_prop2, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   236
  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   237
  apply (auto simp add: zcong_sym)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   238
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   239
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   240
lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   241
    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   242
  apply (frule MultInv_prop3, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   243
  apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   244
  apply (drule MultInv_prop2, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   245
  apply (drule_tac k = x in zcong_scalar2, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   246
  apply (auto simp add: zmult_ac)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   247
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   248
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   249
lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   250
    [(MultInv p (MultInv p x)) = x] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   251
  apply (frule aux__1, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   252
  apply (drule aux__2, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   253
  apply (drule zcong_trans, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   254
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   255
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   256
lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   257
    ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   258
    [x = y] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   259
  apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   260
    m = p and k = x in zcong_scalar)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   261
  apply (insert MultInv_prop2 [of p x], simp)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   262
  apply (auto simp only: zcong_sym [of "MultInv p x * x"])
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   263
  apply (auto simp add:  zmult_ac)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   264
  apply (drule zcong_trans, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   265
  apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   266
  apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   267
  apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   268
  apply (auto simp add: zcong_sym)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   269
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   270
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   271
lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   272
    [a * MultInv p j = a * MultInv p k] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   273
  by (drule MultInv_prop1, auto simp add: zcong_scalar2)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   274
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   275
lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   276
    [j * k = a * MultInv p k * k] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   277
  by (auto simp add: zcong_scalar)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   278
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   279
lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   280
    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   281
  apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   282
    [of "MultInv p k * k" 1 p "j * k" a])
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   283
  apply (auto simp add: zmult_ac)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   284
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   285
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   286
lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   287
     (MultInv p j) * a] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   288
  by (auto simp add: zmult_assoc zcong_scalar2)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   289
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   290
lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   291
    [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   292
       ==> [k = a * (MultInv p j)] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   293
  apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   294
    [of "MultInv p j * j" 1 p "MultInv p j * a" k])
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   295
  apply (auto simp add: zmult_ac zcong_sym)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   296
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   297
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   298
lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   299
    ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   300
    [k = a * MultInv p j] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   301
  apply (drule aux___1)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   302
  apply (frule aux___2, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   303
  by (drule aux___3, drule aux___4, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   304
16663
13e9c402308b prime is a predicate now.
nipkow
parents: 16417
diff changeset
   305
lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   306
    ~([k = 0](mod p)); ~([j = 0](mod p));
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   307
    [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   308
      [j = k] (mod p)"
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   309
  apply (auto simp add: zcong_eq_zdvd_prop [of a p])
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   310
  apply (frule zprime_imp_zrelprime, auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   311
  apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   312
  apply (drule MultInv_prop5, auto)
18369
694ea14ab4f2 tuned sources and proofs
wenzelm
parents: 16663
diff changeset
   313
  done
13871
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   314
26e5f5e624f6 Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
paulson
parents:
diff changeset
   315
end