src/HOL/NumberTheory/Int2.thy
changeset 18369 694ea14ab4f2
parent 16663 13e9c402308b
child 19670 2e4a143c73c5
--- a/src/HOL/NumberTheory/Int2.thy	Thu Dec 08 12:50:03 2005 +0100
+++ b/src/HOL/NumberTheory/Int2.thy	Thu Dec 08 12:50:04 2005 +0100
@@ -5,14 +5,14 @@
 
 header {*Integers: Divisibility and Congruences*}
 
-theory Int2 imports Finite2 WilsonRuss begin;
+theory Int2 imports Finite2 WilsonRuss begin
 
 text{*Note.  This theory is being revised.  See the web page
 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
 
 constdefs
   MultInv :: "int => int => int" 
-  "MultInv p x == x ^ nat (p - 2)";
+  "MultInv p x == x ^ nat (p - 2)"
 
 (*****************************************************************)
 (*                                                               *)
@@ -20,69 +20,68 @@
 (*                                                               *)
 (*****************************************************************)
 
-lemma zpower_zdvd_prop1 [rule_format]: "((0 < n) & (p dvd y)) --> 
-    p dvd ((y::int) ^ n)";
-  by (induct_tac n, auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
+lemma zpower_zdvd_prop1:
+  "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
+  by (induct n) (auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
 
-lemma zdvd_bounds: "n dvd m ==> (m \<le> (0::int) | n \<le> m)";
-proof -;
-  assume "n dvd m";
-  then have "~(0 < m & m < n)";
-    apply (insert zdvd_not_zless [of m n])
-    by (rule contrapos_pn, auto)
-  then have "(~0 < m | ~m < n)"  by auto
+lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
+proof -
+  assume "n dvd m"
+  then have "~(0 < m & m < n)"
+    using zdvd_not_zless [of m n] by auto
   then show ?thesis by auto
-qed;
-
-lemma aux4: " -(m * n) = (-m) * (n::int)";
-  by auto
+qed
 
 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
-    (p dvd m) | (p dvd n)";
-  apply (case_tac "0 \<le> m")
+    (p dvd m) | (p dvd n)"
+  apply (cases "0 \<le> m")
   apply (simp add: zprime_zdvd_zmult)
-  by (insert zprime_zdvd_zmult [of "-m" p n], auto)
+  apply (insert zprime_zdvd_zmult [of "-m" p n])
+  apply auto
+  done
 
-lemma zpower_zdvd_prop2 [rule_format]: "zprime p --> p dvd ((y::int) ^ n) 
-    --> 0 < n --> p dvd y";
-  apply (induct_tac n, auto)
-  apply (frule zprime_zdvd_zmult_better, auto)
-done
-
-lemma stupid: "(0 :: int) \<le> y ==> x \<le> x + y";
-  by arith
+lemma zpower_zdvd_prop2:
+    "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
+  apply (induct n)
+   apply simp
+  apply (frule zprime_zdvd_zmult_better)
+   apply simp
+  apply force
+  done
 
-lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y";
-proof -;
-  assume "0 < z";
-  then have "(x div z) * z \<le> (x div z) * z + x mod z";
-  apply (rule_tac x = "x div z * z" in stupid)
-  by (simp add: pos_mod_sign)
-  also have "... = x";
-    by (auto simp add: zmod_zdiv_equality [THEN sym] zmult_ac)
-  also assume  "x < y * z";
-  finally show ?thesis;
+lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
+proof -
+  assume "0 < z"
+  then have "(x div z) * z \<le> (x div z) * z + x mod z"
+    by arith
+  also have "... = x"
+    by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
+  also assume  "x < y * z"
+  finally show ?thesis
     by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
-qed;
+qed
 
-lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y";
-proof -;
-  assume "0 < z" and "x < (y * z) + z";
+lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
+proof -
+  assume "0 < z" and "x < (y * z) + z"
   then have "x < (y + 1) * z" by (auto simp add: int_distrib)
-  then have "x div z < y + 1";
-    by (rule_tac y = "y + 1" in div_prop1, auto simp add: prems)
+  then have "x div z < y + 1"
+    apply -
+    apply (rule_tac y = "y + 1" in div_prop1)
+    apply (auto simp add: prems)
+    done
   then show ?thesis by auto
-qed;
+qed
 
-lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)";
-proof-;
-  assume "0 < y";
+lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
+proof-
+  assume "0 < y"
   from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
-  moreover have "0 \<le> x mod y";
+  moreover have "0 \<le> x mod y"
     by (auto simp add: prems pos_mod_sign)
-  ultimately show ?thesis;
+  ultimately show ?thesis
     by arith
-qed;
+qed
 
 (*****************************************************************)
 (*                                                               *)
@@ -90,96 +89,102 @@
 (*                                                               *)
 (*****************************************************************)
 
-lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)";
+lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
   by (auto simp add: zcong_def)
 
-lemma zcong_id: "[m = 0] (mod m)";
+lemma zcong_id: "[m = 0] (mod m)"
   by (auto simp add: zcong_def zdvd_0_right)
 
-lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)";
+lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
   by (auto simp add: zcong_refl zcong_zadd)
 
-lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)";
-  by (induct_tac z, auto simp add: zcong_zmult)
+lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
+  by (induct z) (auto simp add: zcong_zmult)
 
 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> 
-    [a = d](mod m)";
-  by (auto, rule_tac b = c in zcong_trans)
+    [a = d](mod m)"
+  apply (erule zcong_trans)
+  apply simp
+  done
 
-lemma aux1: "a - b = (c::int) ==> a = c + b";
+lemma aux1: "a - b = (c::int) ==> a = c + b"
   by auto
 
 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = 
-    [c = b * d] (mod m))";
+    [c = b * d] (mod m))"
   apply (auto simp add: zcong_def dvd_def)
   apply (rule_tac x = "ka + k * d" in exI)
-  apply (drule aux1)+;
+  apply (drule aux1)+
   apply (auto simp add: int_distrib)
   apply (rule_tac x = "ka - k * d" in exI)
-  apply (drule aux1)+;
+  apply (drule aux1)+
   apply (auto simp add: int_distrib)
-done
+  done
 
 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
-    ([c = d * a](mod m) = [c = d * b] (mod m))";
+    ([c = d * a](mod m) = [c = d * b] (mod m))"
   by (auto simp add: zmult_ac zcong_zmult_prop1)
 
 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
-    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)";
+    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
   apply (auto simp add: zcong_def)
   apply (drule zprime_zdvd_zmult_better, auto)
-done
+  done
 
 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); 
-    x < m; y < m |] ==> x = y";
+    x < m; y < m |] ==> x = y"
   apply (simp add: zcong_zmod_eq)
-  apply (subgoal_tac "(x mod m) = x");
-  apply (subgoal_tac "(y mod m) = y");
+  apply (subgoal_tac "(x mod m) = x")
+  apply (subgoal_tac "(y mod m) = y")
   apply simp
   apply (rule_tac [1-2] mod_pos_pos_trivial)
-by auto
+  apply auto
+  done
 
 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> 
-    ~([x = 1] (mod p))";
-proof;
+    ~([x = 1] (mod p))"
+proof
   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
-  then have "[1 = -1] (mod p)";
+  then have "[1 = -1] (mod p)"
     apply (auto simp add: zcong_sym)
     apply (drule zcong_trans, auto)
-  done
-  then have "[1 + 1 = -1 + 1] (mod p)";
+    done
+  then have "[1 + 1 = -1 + 1] (mod p)"
     by (simp only: zcong_shift)
-  then have "[2 = 0] (mod p)";
+  then have "[2 = 0] (mod p)"
     by auto
-  then have "p dvd 2";
+  then have "p dvd 2"
     by (auto simp add: dvd_def zcong_def)
-  with prems show False;
+  with prems show False
     by (auto simp add: zdvd_not_zless)
-qed;
+qed
 
-lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)";
+lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
   by (auto simp add: zcong_def)
 
 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
-  [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"; 
+    [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" 
   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
 
 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
-  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)";
+  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
   apply auto 
   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
-by auto
+  apply auto
+  done
 
-lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"; 
+lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" 
   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
 
-lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0";
+lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
   apply (drule order_le_imp_less_or_eq, auto)
-by (frule_tac m = m in zcong_not_zero, auto)
+  apply (frule_tac m = m in zcong_not_zero)
+  apply auto
+  done
 
 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
-    ==> zgcd (setprod id A,y) = 1";
-  by (induct set: Finites, auto simp add: zgcd_zgcd_zmult)
+    ==> zgcd (setprod id A,y) = 1"
+  by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult)
 
 (*****************************************************************)
 (*                                                               *)
@@ -188,69 +193,69 @@
 (*****************************************************************)
 
 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
-    [(MultInv p x) = (MultInv p y)] (mod p)";
+    [(MultInv p x) = (MultInv p y)] (mod p)"
   by (auto simp add: MultInv_def zcong_zpower)
 
 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-  [(x * (MultInv p x)) = 1] (mod p)";
-proof (simp add: MultInv_def zcong_eq_zdvd_prop);
-  assume "2 < p" and "zprime p" and "~ p dvd x";
-  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)";
+  [(x * (MultInv p x)) = 1] (mod p)"
+proof (simp add: MultInv_def zcong_eq_zdvd_prop)
+  assume "2 < p" and "zprime p" and "~ p dvd x"
+  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
     by auto
-  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)";
+  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
     by (simp only: nat_add_distrib, auto)
   also have "p - 2 + 1 = p - 1" by arith
-  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)";
+  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
     by (rule ssubst, auto)
-  also from prems have "[x ^ nat (p - 1) = 1] (mod p)";
+  also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
     by (auto simp add: Little_Fermat) 
-  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)";.;
-qed;
+  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
+qed
 
 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-    [(MultInv p x) * x = 1] (mod p)";
+    [(MultInv p x) * x = 1] (mod p)"
   by (auto simp add: MultInv_prop2 zmult_ac)
 
-lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))";
+lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
   by (simp add: nat_diff_distrib)
 
-lemma aux_2: "2 < p ==> 0 < nat (p - 2)";
+lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
   by auto
 
 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-    ~([MultInv p x = 0](mod p))";
+    ~([MultInv p x = 0](mod p))"
   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   apply (drule aux_2)
   apply (drule zpower_zdvd_prop2, auto)
-done
+  done
 
 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
-      (MultInv p (MultInv p x)))] (mod p)";
+      (MultInv p (MultInv p x)))] (mod p)"
   apply (drule MultInv_prop2, auto)
-  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto);
+  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
   apply (auto simp add: zcong_sym)
-done
+  done
 
 lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
-    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)";
+    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
   apply (frule MultInv_prop3, auto)
   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
   apply (drule MultInv_prop2, auto)
   apply (drule_tac k = x in zcong_scalar2, auto)
   apply (auto simp add: zmult_ac)
-done
+  done
 
 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
-    [(MultInv p (MultInv p x)) = x] (mod p)";
+    [(MultInv p (MultInv p x)) = x] (mod p)"
   apply (frule aux__1, auto)
   apply (drule aux__2, auto)
   apply (drule zcong_trans, auto)
-done
+  done
 
 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
-    [x = y] (mod p)";
+    [x = y] (mod p)"
   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
     m = p and k = x in zcong_scalar)
   apply (insert MultInv_prop2 [of p x], simp)
@@ -261,38 +266,38 @@
   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
   apply (auto simp add: zcong_sym)
-done
+  done
 
 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> 
-    [a * MultInv p j = a * MultInv p k] (mod p)";
+    [a * MultInv p j = a * MultInv p k] (mod p)"
   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
 
 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
-    [j * k = a * MultInv p k * k] (mod p)";
+    [j * k = a * MultInv p k * k] (mod p)"
   by (auto simp add: zcong_scalar)
 
 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
-    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)";
+    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
     [of "MultInv p k * k" 1 p "j * k" a])
   apply (auto simp add: zmult_ac)
-done
+  done
 
 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
-     (MultInv p j) * a] (mod p)";
+     (MultInv p j) * a] (mod p)"
   by (auto simp add: zmult_assoc zcong_scalar2)
 
 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
-       ==> [k = a * (MultInv p j)] (mod p)";
+       ==> [k = a * (MultInv p j)] (mod p)"
   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   apply (auto simp add: zmult_ac zcong_sym)
-done
+  done
 
 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
-    [k = a * MultInv p j] (mod p)";
+    [k = a * MultInv p j] (mod p)"
   apply (drule aux___1)
   apply (frule aux___2, auto)
   by (drule aux___3, drule aux___4, auto)
@@ -300,11 +305,11 @@
 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
     ~([k = 0](mod p)); ~([j = 0](mod p));
     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
-      [j = k] (mod p)";
+      [j = k] (mod p)"
   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   apply (frule zprime_imp_zrelprime, auto)
   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
   apply (drule MultInv_prop5, auto)
-done
+  done
 
 end