src/HOL/NumberTheory/Int2.thy
changeset 18369 694ea14ab4f2
parent 16663 13e9c402308b
child 19670 2e4a143c73c5
equal deleted inserted replaced
18368:2f9b2539c5bb 18369:694ea14ab4f2
     3     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
     3     Authors:    Jeremy Avigad, David Gray, and Adam Kramer
     4 *)
     4 *)
     5 
     5 
     6 header {*Integers: Divisibility and Congruences*}
     6 header {*Integers: Divisibility and Congruences*}
     7 
     7 
     8 theory Int2 imports Finite2 WilsonRuss begin;
     8 theory Int2 imports Finite2 WilsonRuss begin
     9 
     9 
    10 text{*Note.  This theory is being revised.  See the web page
    10 text{*Note.  This theory is being revised.  See the web page
    11 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
    11 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
    12 
    12 
    13 constdefs
    13 constdefs
    14   MultInv :: "int => int => int" 
    14   MultInv :: "int => int => int" 
    15   "MultInv p x == x ^ nat (p - 2)";
    15   "MultInv p x == x ^ nat (p - 2)"
    16 
    16 
    17 (*****************************************************************)
    17 (*****************************************************************)
    18 (*                                                               *)
    18 (*                                                               *)
    19 (* Useful lemmas about dvd and powers                            *)
    19 (* Useful lemmas about dvd and powers                            *)
    20 (*                                                               *)
    20 (*                                                               *)
    21 (*****************************************************************)
    21 (*****************************************************************)
    22 
    22 
    23 lemma zpower_zdvd_prop1 [rule_format]: "((0 < n) & (p dvd y)) --> 
    23 lemma zpower_zdvd_prop1:
    24     p dvd ((y::int) ^ n)";
    24   "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
    25   by (induct_tac n, auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
    25   by (induct n) (auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
    26 
    26 
    27 lemma zdvd_bounds: "n dvd m ==> (m \<le> (0::int) | n \<le> m)";
    27 lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
    28 proof -;
    28 proof -
    29   assume "n dvd m";
    29   assume "n dvd m"
    30   then have "~(0 < m & m < n)";
    30   then have "~(0 < m & m < n)"
    31     apply (insert zdvd_not_zless [of m n])
    31     using zdvd_not_zless [of m n] by auto
    32     by (rule contrapos_pn, auto)
       
    33   then have "(~0 < m | ~m < n)"  by auto
       
    34   then show ?thesis by auto
    32   then show ?thesis by auto
    35 qed;
    33 qed
    36 
    34 
    37 lemma aux4: " -(m * n) = (-m) * (n::int)";
    35 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
       
    36     (p dvd m) | (p dvd n)"
       
    37   apply (cases "0 \<le> m")
       
    38   apply (simp add: zprime_zdvd_zmult)
       
    39   apply (insert zprime_zdvd_zmult [of "-m" p n])
       
    40   apply auto
       
    41   done
       
    42 
       
    43 lemma zpower_zdvd_prop2:
       
    44     "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
       
    45   apply (induct n)
       
    46    apply simp
       
    47   apply (frule zprime_zdvd_zmult_better)
       
    48    apply simp
       
    49   apply force
       
    50   done
       
    51 
       
    52 lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
       
    53 proof -
       
    54   assume "0 < z"
       
    55   then have "(x div z) * z \<le> (x div z) * z + x mod z"
       
    56     by arith
       
    57   also have "... = x"
       
    58     by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
       
    59   also assume  "x < y * z"
       
    60   finally show ?thesis
       
    61     by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
       
    62 qed
       
    63 
       
    64 lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
       
    65 proof -
       
    66   assume "0 < z" and "x < (y * z) + z"
       
    67   then have "x < (y + 1) * z" by (auto simp add: int_distrib)
       
    68   then have "x div z < y + 1"
       
    69     apply -
       
    70     apply (rule_tac y = "y + 1" in div_prop1)
       
    71     apply (auto simp add: prems)
       
    72     done
       
    73   then show ?thesis by auto
       
    74 qed
       
    75 
       
    76 lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
       
    77 proof-
       
    78   assume "0 < y"
       
    79   from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
       
    80   moreover have "0 \<le> x mod y"
       
    81     by (auto simp add: prems pos_mod_sign)
       
    82   ultimately show ?thesis
       
    83     by arith
       
    84 qed
       
    85 
       
    86 (*****************************************************************)
       
    87 (*                                                               *)
       
    88 (* Useful properties of congruences                              *)
       
    89 (*                                                               *)
       
    90 (*****************************************************************)
       
    91 
       
    92 lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
       
    93   by (auto simp add: zcong_def)
       
    94 
       
    95 lemma zcong_id: "[m = 0] (mod m)"
       
    96   by (auto simp add: zcong_def zdvd_0_right)
       
    97 
       
    98 lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
       
    99   by (auto simp add: zcong_refl zcong_zadd)
       
   100 
       
   101 lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
       
   102   by (induct z) (auto simp add: zcong_zmult)
       
   103 
       
   104 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> 
       
   105     [a = d](mod m)"
       
   106   apply (erule zcong_trans)
       
   107   apply simp
       
   108   done
       
   109 
       
   110 lemma aux1: "a - b = (c::int) ==> a = c + b"
    38   by auto
   111   by auto
    39 
   112 
    40 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
       
    41     (p dvd m) | (p dvd n)";
       
    42   apply (case_tac "0 \<le> m")
       
    43   apply (simp add: zprime_zdvd_zmult)
       
    44   by (insert zprime_zdvd_zmult [of "-m" p n], auto)
       
    45 
       
    46 lemma zpower_zdvd_prop2 [rule_format]: "zprime p --> p dvd ((y::int) ^ n) 
       
    47     --> 0 < n --> p dvd y";
       
    48   apply (induct_tac n, auto)
       
    49   apply (frule zprime_zdvd_zmult_better, auto)
       
    50 done
       
    51 
       
    52 lemma stupid: "(0 :: int) \<le> y ==> x \<le> x + y";
       
    53   by arith
       
    54 
       
    55 lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y";
       
    56 proof -;
       
    57   assume "0 < z";
       
    58   then have "(x div z) * z \<le> (x div z) * z + x mod z";
       
    59   apply (rule_tac x = "x div z * z" in stupid)
       
    60   by (simp add: pos_mod_sign)
       
    61   also have "... = x";
       
    62     by (auto simp add: zmod_zdiv_equality [THEN sym] zmult_ac)
       
    63   also assume  "x < y * z";
       
    64   finally show ?thesis;
       
    65     by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
       
    66 qed;
       
    67 
       
    68 lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y";
       
    69 proof -;
       
    70   assume "0 < z" and "x < (y * z) + z";
       
    71   then have "x < (y + 1) * z" by (auto simp add: int_distrib)
       
    72   then have "x div z < y + 1";
       
    73     by (rule_tac y = "y + 1" in div_prop1, auto simp add: prems)
       
    74   then show ?thesis by auto
       
    75 qed;
       
    76 
       
    77 lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)";
       
    78 proof-;
       
    79   assume "0 < y";
       
    80   from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
       
    81   moreover have "0 \<le> x mod y";
       
    82     by (auto simp add: prems pos_mod_sign)
       
    83   ultimately show ?thesis;
       
    84     by arith
       
    85 qed;
       
    86 
       
    87 (*****************************************************************)
       
    88 (*                                                               *)
       
    89 (* Useful properties of congruences                              *)
       
    90 (*                                                               *)
       
    91 (*****************************************************************)
       
    92 
       
    93 lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)";
       
    94   by (auto simp add: zcong_def)
       
    95 
       
    96 lemma zcong_id: "[m = 0] (mod m)";
       
    97   by (auto simp add: zcong_def zdvd_0_right)
       
    98 
       
    99 lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)";
       
   100   by (auto simp add: zcong_refl zcong_zadd)
       
   101 
       
   102 lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)";
       
   103   by (induct_tac z, auto simp add: zcong_zmult)
       
   104 
       
   105 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> 
       
   106     [a = d](mod m)";
       
   107   by (auto, rule_tac b = c in zcong_trans)
       
   108 
       
   109 lemma aux1: "a - b = (c::int) ==> a = c + b";
       
   110   by auto
       
   111 
       
   112 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = 
   113 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = 
   113     [c = b * d] (mod m))";
   114     [c = b * d] (mod m))"
   114   apply (auto simp add: zcong_def dvd_def)
   115   apply (auto simp add: zcong_def dvd_def)
   115   apply (rule_tac x = "ka + k * d" in exI)
   116   apply (rule_tac x = "ka + k * d" in exI)
   116   apply (drule aux1)+;
   117   apply (drule aux1)+
   117   apply (auto simp add: int_distrib)
   118   apply (auto simp add: int_distrib)
   118   apply (rule_tac x = "ka - k * d" in exI)
   119   apply (rule_tac x = "ka - k * d" in exI)
   119   apply (drule aux1)+;
   120   apply (drule aux1)+
   120   apply (auto simp add: int_distrib)
   121   apply (auto simp add: int_distrib)
   121 done
   122   done
   122 
   123 
   123 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
   124 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
   124     ([c = d * a](mod m) = [c = d * b] (mod m))";
   125     ([c = d * a](mod m) = [c = d * b] (mod m))"
   125   by (auto simp add: zmult_ac zcong_zmult_prop1)
   126   by (auto simp add: zmult_ac zcong_zmult_prop1)
   126 
   127 
   127 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
   128 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
   128     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)";
   129     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
   129   apply (auto simp add: zcong_def)
   130   apply (auto simp add: zcong_def)
   130   apply (drule zprime_zdvd_zmult_better, auto)
   131   apply (drule zprime_zdvd_zmult_better, auto)
   131 done
   132   done
   132 
   133 
   133 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); 
   134 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); 
   134     x < m; y < m |] ==> x = y";
   135     x < m; y < m |] ==> x = y"
   135   apply (simp add: zcong_zmod_eq)
   136   apply (simp add: zcong_zmod_eq)
   136   apply (subgoal_tac "(x mod m) = x");
   137   apply (subgoal_tac "(x mod m) = x")
   137   apply (subgoal_tac "(y mod m) = y");
   138   apply (subgoal_tac "(y mod m) = y")
   138   apply simp
   139   apply simp
   139   apply (rule_tac [1-2] mod_pos_pos_trivial)
   140   apply (rule_tac [1-2] mod_pos_pos_trivial)
   140 by auto
   141   apply auto
       
   142   done
   141 
   143 
   142 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> 
   144 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> 
   143     ~([x = 1] (mod p))";
   145     ~([x = 1] (mod p))"
   144 proof;
   146 proof
   145   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
   147   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
   146   then have "[1 = -1] (mod p)";
   148   then have "[1 = -1] (mod p)"
   147     apply (auto simp add: zcong_sym)
   149     apply (auto simp add: zcong_sym)
   148     apply (drule zcong_trans, auto)
   150     apply (drule zcong_trans, auto)
   149   done
   151     done
   150   then have "[1 + 1 = -1 + 1] (mod p)";
   152   then have "[1 + 1 = -1 + 1] (mod p)"
   151     by (simp only: zcong_shift)
   153     by (simp only: zcong_shift)
   152   then have "[2 = 0] (mod p)";
   154   then have "[2 = 0] (mod p)"
   153     by auto
   155     by auto
   154   then have "p dvd 2";
   156   then have "p dvd 2"
   155     by (auto simp add: dvd_def zcong_def)
   157     by (auto simp add: dvd_def zcong_def)
   156   with prems show False;
   158   with prems show False
   157     by (auto simp add: zdvd_not_zless)
   159     by (auto simp add: zdvd_not_zless)
   158 qed;
   160 qed
   159 
   161 
   160 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)";
   162 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
   161   by (auto simp add: zcong_def)
   163   by (auto simp add: zcong_def)
   162 
   164 
   163 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
   165 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
   164   [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"; 
   166     [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" 
   165   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
   167   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
   166 
   168 
   167 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
   169 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
   168   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)";
   170   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
   169   apply auto 
   171   apply auto 
   170   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
   172   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
   171 by auto
   173   apply auto
   172 
   174   done
   173 lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"; 
   175 
       
   176 lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" 
   174   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
   177   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
   175 
   178 
   176 lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0";
   179 lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
   177   apply (drule order_le_imp_less_or_eq, auto)
   180   apply (drule order_le_imp_less_or_eq, auto)
   178 by (frule_tac m = m in zcong_not_zero, auto)
   181   apply (frule_tac m = m in zcong_not_zero)
       
   182   apply auto
       
   183   done
   179 
   184 
   180 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
   185 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
   181     ==> zgcd (setprod id A,y) = 1";
   186     ==> zgcd (setprod id A,y) = 1"
   182   by (induct set: Finites, auto simp add: zgcd_zgcd_zmult)
   187   by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult)
   183 
   188 
   184 (*****************************************************************)
   189 (*****************************************************************)
   185 (*                                                               *)
   190 (*                                                               *)
   186 (* Some properties of MultInv                                    *)
   191 (* Some properties of MultInv                                    *)
   187 (*                                                               *)
   192 (*                                                               *)
   188 (*****************************************************************)
   193 (*****************************************************************)
   189 
   194 
   190 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
   195 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
   191     [(MultInv p x) = (MultInv p y)] (mod p)";
   196     [(MultInv p x) = (MultInv p y)] (mod p)"
   192   by (auto simp add: MultInv_def zcong_zpower)
   197   by (auto simp add: MultInv_def zcong_zpower)
   193 
   198 
   194 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   199 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   195   [(x * (MultInv p x)) = 1] (mod p)";
   200   [(x * (MultInv p x)) = 1] (mod p)"
   196 proof (simp add: MultInv_def zcong_eq_zdvd_prop);
   201 proof (simp add: MultInv_def zcong_eq_zdvd_prop)
   197   assume "2 < p" and "zprime p" and "~ p dvd x";
   202   assume "2 < p" and "zprime p" and "~ p dvd x"
   198   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)";
   203   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
   199     by auto
   204     by auto
   200   also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)";
   205   also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
   201     by (simp only: nat_add_distrib, auto)
   206     by (simp only: nat_add_distrib, auto)
   202   also have "p - 2 + 1 = p - 1" by arith
   207   also have "p - 2 + 1 = p - 1" by arith
   203   finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)";
   208   finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
   204     by (rule ssubst, auto)
   209     by (rule ssubst, auto)
   205   also from prems have "[x ^ nat (p - 1) = 1] (mod p)";
   210   also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
   206     by (auto simp add: Little_Fermat) 
   211     by (auto simp add: Little_Fermat) 
   207   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)";.;
   212   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
   208 qed;
   213 qed
   209 
   214 
   210 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   215 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   211     [(MultInv p x) * x = 1] (mod p)";
   216     [(MultInv p x) * x = 1] (mod p)"
   212   by (auto simp add: MultInv_prop2 zmult_ac)
   217   by (auto simp add: MultInv_prop2 zmult_ac)
   213 
   218 
   214 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))";
   219 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
   215   by (simp add: nat_diff_distrib)
   220   by (simp add: nat_diff_distrib)
   216 
   221 
   217 lemma aux_2: "2 < p ==> 0 < nat (p - 2)";
   222 lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
   218   by auto
   223   by auto
   219 
   224 
   220 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   225 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   221     ~([MultInv p x = 0](mod p))";
   226     ~([MultInv p x = 0](mod p))"
   222   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   227   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   223   apply (drule aux_2)
   228   apply (drule aux_2)
   224   apply (drule zpower_zdvd_prop2, auto)
   229   apply (drule zpower_zdvd_prop2, auto)
   225 done
   230   done
   226 
   231 
   227 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
   232 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
   228     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
   233     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
   229       (MultInv p (MultInv p x)))] (mod p)";
   234       (MultInv p (MultInv p x)))] (mod p)"
   230   apply (drule MultInv_prop2, auto)
   235   apply (drule MultInv_prop2, auto)
   231   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto);
   236   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
   232   apply (auto simp add: zcong_sym)
   237   apply (auto simp add: zcong_sym)
   233 done
   238   done
   234 
   239 
   235 lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
   240 lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
   236     [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)";
   241     [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
   237   apply (frule MultInv_prop3, auto)
   242   apply (frule MultInv_prop3, auto)
   238   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
   243   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
   239   apply (drule MultInv_prop2, auto)
   244   apply (drule MultInv_prop2, auto)
   240   apply (drule_tac k = x in zcong_scalar2, auto)
   245   apply (drule_tac k = x in zcong_scalar2, auto)
   241   apply (auto simp add: zmult_ac)
   246   apply (auto simp add: zmult_ac)
   242 done
   247   done
   243 
   248 
   244 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   249 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   245     [(MultInv p (MultInv p x)) = x] (mod p)";
   250     [(MultInv p (MultInv p x)) = x] (mod p)"
   246   apply (frule aux__1, auto)
   251   apply (frule aux__1, auto)
   247   apply (drule aux__2, auto)
   252   apply (drule aux__2, auto)
   248   apply (drule zcong_trans, auto)
   253   apply (drule zcong_trans, auto)
   249 done
   254   done
   250 
   255 
   251 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
   256 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
   252     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
   257     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
   253     [x = y] (mod p)";
   258     [x = y] (mod p)"
   254   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
   259   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
   255     m = p and k = x in zcong_scalar)
   260     m = p and k = x in zcong_scalar)
   256   apply (insert MultInv_prop2 [of p x], simp)
   261   apply (insert MultInv_prop2 [of p x], simp)
   257   apply (auto simp only: zcong_sym [of "MultInv p x * x"])
   262   apply (auto simp only: zcong_sym [of "MultInv p x * x"])
   258   apply (auto simp add:  zmult_ac)
   263   apply (auto simp add:  zmult_ac)
   259   apply (drule zcong_trans, auto)
   264   apply (drule zcong_trans, auto)
   260   apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto)
   265   apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto)
   261   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
   266   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
   262   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
   267   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
   263   apply (auto simp add: zcong_sym)
   268   apply (auto simp add: zcong_sym)
   264 done
   269   done
   265 
   270 
   266 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> 
   271 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> 
   267     [a * MultInv p j = a * MultInv p k] (mod p)";
   272     [a * MultInv p j = a * MultInv p k] (mod p)"
   268   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
   273   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
   269 
   274 
   270 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
   275 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
   271     [j * k = a * MultInv p k * k] (mod p)";
   276     [j * k = a * MultInv p k * k] (mod p)"
   272   by (auto simp add: zcong_scalar)
   277   by (auto simp add: zcong_scalar)
   273 
   278 
   274 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
   279 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
   275     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)";
   280     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
   276   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
   281   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
   277     [of "MultInv p k * k" 1 p "j * k" a])
   282     [of "MultInv p k * k" 1 p "j * k" a])
   278   apply (auto simp add: zmult_ac)
   283   apply (auto simp add: zmult_ac)
   279 done
   284   done
   280 
   285 
   281 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
   286 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
   282      (MultInv p j) * a] (mod p)";
   287      (MultInv p j) * a] (mod p)"
   283   by (auto simp add: zmult_assoc zcong_scalar2)
   288   by (auto simp add: zmult_assoc zcong_scalar2)
   284 
   289 
   285 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
   290 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
   286     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
   291     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
   287        ==> [k = a * (MultInv p j)] (mod p)";
   292        ==> [k = a * (MultInv p j)] (mod p)"
   288   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
   293   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
   289     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   294     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   290   apply (auto simp add: zmult_ac zcong_sym)
   295   apply (auto simp add: zmult_ac zcong_sym)
   291 done
   296   done
   292 
   297 
   293 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
   298 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
   294     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
   299     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
   295     [k = a * MultInv p j] (mod p)";
   300     [k = a * MultInv p j] (mod p)"
   296   apply (drule aux___1)
   301   apply (drule aux___1)
   297   apply (frule aux___2, auto)
   302   apply (frule aux___2, auto)
   298   by (drule aux___3, drule aux___4, auto)
   303   by (drule aux___3, drule aux___4, auto)
   299 
   304 
   300 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
   305 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
   301     ~([k = 0](mod p)); ~([j = 0](mod p));
   306     ~([k = 0](mod p)); ~([j = 0](mod p));
   302     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
   307     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
   303       [j = k] (mod p)";
   308       [j = k] (mod p)"
   304   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   309   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   305   apply (frule zprime_imp_zrelprime, auto)
   310   apply (frule zprime_imp_zrelprime, auto)
   306   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
   311   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
   307   apply (drule MultInv_prop5, auto)
   312   apply (drule MultInv_prop5, auto)
   308 done
   313   done
   309 
   314 
   310 end
   315 end