src/HOL/NumberTheory/Int2.thy
changeset 19670 2e4a143c73c5
parent 18369 694ea14ab4f2
child 20217 25b068a99d2b
equal deleted inserted replaced
19669:95ac857276e1 19670:2e4a143c73c5
     5 
     5 
     6 header {*Integers: Divisibility and Congruences*}
     6 header {*Integers: Divisibility and Congruences*}
     7 
     7 
     8 theory Int2 imports Finite2 WilsonRuss begin
     8 theory Int2 imports Finite2 WilsonRuss begin
     9 
     9 
    10 text{*Note.  This theory is being revised.  See the web page
    10 definition
    11 \url{http://www.andrew.cmu.edu/~avigad/isabelle}.*}
    11   MultInv :: "int => int => int"
    12 
    12   "MultInv p x = x ^ nat (p - 2)"
    13 constdefs
    13 
    14   MultInv :: "int => int => int" 
    14 
    15   "MultInv p x == x ^ nat (p - 2)"
    15 subsection {* Useful lemmas about dvd and powers *}
    16 
       
    17 (*****************************************************************)
       
    18 (*                                                               *)
       
    19 (* Useful lemmas about dvd and powers                            *)
       
    20 (*                                                               *)
       
    21 (*****************************************************************)
       
    22 
    16 
    23 lemma zpower_zdvd_prop1:
    17 lemma zpower_zdvd_prop1:
    24   "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
    18   "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
    25   by (induct n) (auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
    19   by (induct n) (auto simp add: zdvd_zmult zdvd_zmult2 [of p y])
    26 
    20 
    30   then have "~(0 < m & m < n)"
    24   then have "~(0 < m & m < n)"
    31     using zdvd_not_zless [of m n] by auto
    25     using zdvd_not_zless [of m n] by auto
    32   then show ?thesis by auto
    26   then show ?thesis by auto
    33 qed
    27 qed
    34 
    28 
    35 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
    29 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==>
    36     (p dvd m) | (p dvd n)"
    30     (p dvd m) | (p dvd n)"
    37   apply (cases "0 \<le> m")
    31   apply (cases "0 \<le> m")
    38   apply (simp add: zprime_zdvd_zmult)
    32   apply (simp add: zprime_zdvd_zmult)
    39   apply (insert zprime_zdvd_zmult [of "-m" p n])
    33   apply (insert zprime_zdvd_zmult [of "-m" p n])
    40   apply auto
    34   apply auto
    81     by (auto simp add: prems pos_mod_sign)
    75     by (auto simp add: prems pos_mod_sign)
    82   ultimately show ?thesis
    76   ultimately show ?thesis
    83     by arith
    77     by arith
    84 qed
    78 qed
    85 
    79 
    86 (*****************************************************************)
    80 
    87 (*                                                               *)
    81 subsection {* Useful properties of congruences *}
    88 (* Useful properties of congruences                              *)
       
    89 (*                                                               *)
       
    90 (*****************************************************************)
       
    91 
    82 
    92 lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
    83 lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
    93   by (auto simp add: zcong_def)
    84   by (auto simp add: zcong_def)
    94 
    85 
    95 lemma zcong_id: "[m = 0] (mod m)"
    86 lemma zcong_id: "[m = 0] (mod m)"
    99   by (auto simp add: zcong_refl zcong_zadd)
    90   by (auto simp add: zcong_refl zcong_zadd)
   100 
    91 
   101 lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
    92 lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
   102   by (induct z) (auto simp add: zcong_zmult)
    93   by (induct z) (auto simp add: zcong_zmult)
   103 
    94 
   104 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> 
    95 lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==>
   105     [a = d](mod m)"
    96     [a = d](mod m)"
   106   apply (erule zcong_trans)
    97   apply (erule zcong_trans)
   107   apply simp
    98   apply simp
   108   done
    99   done
   109 
   100 
   110 lemma aux1: "a - b = (c::int) ==> a = c + b"
   101 lemma aux1: "a - b = (c::int) ==> a = c + b"
   111   by auto
   102   by auto
   112 
   103 
   113 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = 
   104 lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) =
   114     [c = b * d] (mod m))"
   105     [c = b * d] (mod m))"
   115   apply (auto simp add: zcong_def dvd_def)
   106   apply (auto simp add: zcong_def dvd_def)
   116   apply (rule_tac x = "ka + k * d" in exI)
   107   apply (rule_tac x = "ka + k * d" in exI)
   117   apply (drule aux1)+
   108   apply (drule aux1)+
   118   apply (auto simp add: int_distrib)
   109   apply (auto simp add: int_distrib)
   119   apply (rule_tac x = "ka - k * d" in exI)
   110   apply (rule_tac x = "ka - k * d" in exI)
   120   apply (drule aux1)+
   111   apply (drule aux1)+
   121   apply (auto simp add: int_distrib)
   112   apply (auto simp add: int_distrib)
   122   done
   113   done
   123 
   114 
   124 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
   115 lemma zcong_zmult_prop2: "[a = b](mod m) ==>
   125     ([c = d * a](mod m) = [c = d * b] (mod m))"
   116     ([c = d * a](mod m) = [c = d * b] (mod m))"
   126   by (auto simp add: zmult_ac zcong_zmult_prop1)
   117   by (auto simp add: zmult_ac zcong_zmult_prop1)
   127 
   118 
   128 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
   119 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p);
   129     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
   120     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
   130   apply (auto simp add: zcong_def)
   121   apply (auto simp add: zcong_def)
   131   apply (drule zprime_zdvd_zmult_better, auto)
   122   apply (drule zprime_zdvd_zmult_better, auto)
   132   done
   123   done
   133 
   124 
   134 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); 
   125 lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m);
   135     x < m; y < m |] ==> x = y"
   126     x < m; y < m |] ==> x = y"
   136   apply (simp add: zcong_zmod_eq)
   127   apply (simp add: zcong_zmod_eq)
   137   apply (subgoal_tac "(x mod m) = x")
   128   apply (subgoal_tac "(x mod m) = x")
   138   apply (subgoal_tac "(y mod m) = y")
   129   apply (subgoal_tac "(y mod m) = y")
   139   apply simp
   130   apply simp
   140   apply (rule_tac [1-2] mod_pos_pos_trivial)
   131   apply (rule_tac [1-2] mod_pos_pos_trivial)
   141   apply auto
   132   apply auto
   142   done
   133   done
   143 
   134 
   144 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> 
   135 lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==>
   145     ~([x = 1] (mod p))"
   136     ~([x = 1] (mod p))"
   146 proof
   137 proof
   147   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
   138   assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
   148   then have "[1 = -1] (mod p)"
   139   then have "[1 = -1] (mod p)"
   149     apply (auto simp add: zcong_sym)
   140     apply (auto simp add: zcong_sym)
   160 qed
   151 qed
   161 
   152 
   162 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
   153 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
   163   by (auto simp add: zcong_def)
   154   by (auto simp add: zcong_def)
   164 
   155 
   165 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
   156 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==>
   166     [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" 
   157     [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"
   167   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
   158   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
   168 
   159 
   169 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
   160 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
   170   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
   161   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
   171   apply auto 
   162   apply auto
   172   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
   163   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
   173   apply auto
   164   apply auto
   174   done
   165   done
   175 
   166 
   176 lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" 
   167 lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"
   177   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
   168   by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
   178 
   169 
   179 lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
   170 lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
   180   apply (drule order_le_imp_less_or_eq, auto)
   171   apply (drule order_le_imp_less_or_eq, auto)
   181   apply (frule_tac m = m in zcong_not_zero)
   172   apply (frule_tac m = m in zcong_not_zero)
   184 
   175 
   185 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
   176 lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. (zgcd(x,y) = 1) |]
   186     ==> zgcd (setprod id A,y) = 1"
   177     ==> zgcd (setprod id A,y) = 1"
   187   by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult)
   178   by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult)
   188 
   179 
   189 (*****************************************************************)
   180 
   190 (*                                                               *)
   181 subsection {* Some properties of MultInv *}
   191 (* Some properties of MultInv                                    *)
   182 
   192 (*                                                               *)
   183 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==>
   193 (*****************************************************************)
       
   194 
       
   195 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
       
   196     [(MultInv p x) = (MultInv p y)] (mod p)"
   184     [(MultInv p x) = (MultInv p y)] (mod p)"
   197   by (auto simp add: MultInv_def zcong_zpower)
   185   by (auto simp add: MultInv_def zcong_zpower)
   198 
   186 
   199 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   187 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
   200   [(x * (MultInv p x)) = 1] (mod p)"
   188   [(x * (MultInv p x)) = 1] (mod p)"
   201 proof (simp add: MultInv_def zcong_eq_zdvd_prop)
   189 proof (simp add: MultInv_def zcong_eq_zdvd_prop)
   202   assume "2 < p" and "zprime p" and "~ p dvd x"
   190   assume "2 < p" and "zprime p" and "~ p dvd x"
   203   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
   191   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
   204     by auto
   192     by auto
   206     by (simp only: nat_add_distrib, auto)
   194     by (simp only: nat_add_distrib, auto)
   207   also have "p - 2 + 1 = p - 1" by arith
   195   also have "p - 2 + 1 = p - 1" by arith
   208   finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
   196   finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
   209     by (rule ssubst, auto)
   197     by (rule ssubst, auto)
   210   also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
   198   also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
   211     by (auto simp add: Little_Fermat) 
   199     by (auto simp add: Little_Fermat)
   212   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
   200   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
   213 qed
   201 qed
   214 
   202 
   215 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   203 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
   216     [(MultInv p x) * x = 1] (mod p)"
   204     [(MultInv p x) * x = 1] (mod p)"
   217   by (auto simp add: MultInv_prop2 zmult_ac)
   205   by (auto simp add: MultInv_prop2 zmult_ac)
   218 
   206 
   219 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
   207 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
   220   by (simp add: nat_diff_distrib)
   208   by (simp add: nat_diff_distrib)
   221 
   209 
   222 lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
   210 lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
   223   by auto
   211   by auto
   224 
   212 
   225 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   213 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
   226     ~([MultInv p x = 0](mod p))"
   214     ~([MultInv p x = 0](mod p))"
   227   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   215   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   228   apply (drule aux_2)
   216   apply (drule aux_2)
   229   apply (drule zpower_zdvd_prop2, auto)
   217   apply (drule zpower_zdvd_prop2, auto)
   230   done
   218   done
   231 
   219 
   232 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
   220 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
   233     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
   221     [(MultInv p (MultInv p x)) = (x * (MultInv p x) *
   234       (MultInv p (MultInv p x)))] (mod p)"
   222       (MultInv p (MultInv p x)))] (mod p)"
   235   apply (drule MultInv_prop2, auto)
   223   apply (drule MultInv_prop2, auto)
   236   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
   224   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
   237   apply (auto simp add: zcong_sym)
   225   apply (auto simp add: zcong_sym)
   238   done
   226   done
   244   apply (drule MultInv_prop2, auto)
   232   apply (drule MultInv_prop2, auto)
   245   apply (drule_tac k = x in zcong_scalar2, auto)
   233   apply (drule_tac k = x in zcong_scalar2, auto)
   246   apply (auto simp add: zmult_ac)
   234   apply (auto simp add: zmult_ac)
   247   done
   235   done
   248 
   236 
   249 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   237 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
   250     [(MultInv p (MultInv p x)) = x] (mod p)"
   238     [(MultInv p (MultInv p x)) = x] (mod p)"
   251   apply (frule aux__1, auto)
   239   apply (frule aux__1, auto)
   252   apply (drule aux__2, auto)
   240   apply (drule aux__2, auto)
   253   apply (drule zcong_trans, auto)
   241   apply (drule zcong_trans, auto)
   254   done
   242   done
   255 
   243 
   256 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
   244 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p));
   257     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
   245     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==>
   258     [x = y] (mod p)"
   246     [x = y] (mod p)"
   259   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
   247   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and
   260     m = p and k = x in zcong_scalar)
   248     m = p and k = x in zcong_scalar)
   261   apply (insert MultInv_prop2 [of p x], simp)
   249   apply (insert MultInv_prop2 [of p x], simp)
   262   apply (auto simp only: zcong_sym [of "MultInv p x * x"])
   250   apply (auto simp only: zcong_sym [of "MultInv p x * x"])
   263   apply (auto simp add:  zmult_ac)
   251   apply (auto simp add:  zmult_ac)
   264   apply (drule zcong_trans, auto)
   252   apply (drule zcong_trans, auto)
   266   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
   254   apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
   267   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
   255   apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
   268   apply (auto simp add: zcong_sym)
   256   apply (auto simp add: zcong_sym)
   269   done
   257   done
   270 
   258 
   271 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> 
   259 lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==>
   272     [a * MultInv p j = a * MultInv p k] (mod p)"
   260     [a * MultInv p j = a * MultInv p k] (mod p)"
   273   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
   261   by (drule MultInv_prop1, auto simp add: zcong_scalar2)
   274 
   262 
   275 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
   263 lemma aux___1: "[j = a * MultInv p k] (mod p) ==>
   276     [j * k = a * MultInv p k * k] (mod p)"
   264     [j * k = a * MultInv p k * k] (mod p)"
   277   by (auto simp add: zcong_scalar)
   265   by (auto simp add: zcong_scalar)
   278 
   266 
   279 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
   267 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p));
   280     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
   268     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
   281   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
   269   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2
   282     [of "MultInv p k * k" 1 p "j * k" a])
   270     [of "MultInv p k * k" 1 p "j * k" a])
   283   apply (auto simp add: zmult_ac)
   271   apply (auto simp add: zmult_ac)
   284   done
   272   done
   285 
   273 
   286 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
   274 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k =
   287      (MultInv p j) * a] (mod p)"
   275      (MultInv p j) * a] (mod p)"
   288   by (auto simp add: zmult_assoc zcong_scalar2)
   276   by (auto simp add: zmult_assoc zcong_scalar2)
   289 
   277 
   290 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
   278 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p));
   291     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
   279     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
   292        ==> [k = a * (MultInv p j)] (mod p)"
   280        ==> [k = a * (MultInv p j)] (mod p)"
   293   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
   281   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1
   294     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   282     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   295   apply (auto simp add: zmult_ac zcong_sym)
   283   apply (auto simp add: zmult_ac zcong_sym)
   296   done
   284   done
   297 
   285 
   298 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
   286 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p));
   299     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
   287     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==>
   300     [k = a * MultInv p j] (mod p)"
   288     [k = a * MultInv p j] (mod p)"
   301   apply (drule aux___1)
   289   apply (drule aux___1)
   302   apply (frule aux___2, auto)
   290   apply (frule aux___2, auto)
   303   by (drule aux___3, drule aux___4, auto)
   291   by (drule aux___3, drule aux___4, auto)
   304 
   292 
   305 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
   293 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p));
   306     ~([k = 0](mod p)); ~([j = 0](mod p));
   294     ~([k = 0](mod p)); ~([j = 0](mod p));
   307     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
   295     [a * MultInv p j = a * MultInv p k] (mod p) |] ==>
   308       [j = k] (mod p)"
   296       [j = k] (mod p)"
   309   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   297   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   310   apply (frule zprime_imp_zrelprime, auto)
   298   apply (frule zprime_imp_zrelprime, auto)
   311   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
   299   apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
   312   apply (drule MultInv_prop5, auto)
   300   apply (drule MultInv_prop5, auto)