src/HOL/NumberTheory/Int2.thy
changeset 16663 13e9c402308b
parent 16417 9bc16273c2d4
child 18369 694ea14ab4f2
equal deleted inserted replaced
16662:0836569a8ffc 16663:13e9c402308b
    35 qed;
    35 qed;
    36 
    36 
    37 lemma aux4: " -(m * n) = (-m) * (n::int)";
    37 lemma aux4: " -(m * n) = (-m) * (n::int)";
    38   by auto
    38   by auto
    39 
    39 
    40 lemma zprime_zdvd_zmult_better: "[| p \<in> zprime;  p dvd (m * n) |] ==> 
    40 lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==> 
    41     (p dvd m) | (p dvd n)";
    41     (p dvd m) | (p dvd n)";
    42   apply (case_tac "0 \<le> m")
    42   apply (case_tac "0 \<le> m")
    43   apply (simp add: zprime_zdvd_zmult)
    43   apply (simp add: zprime_zdvd_zmult)
    44   by (insert zprime_zdvd_zmult [of "-m" p n], auto)
    44   by (insert zprime_zdvd_zmult [of "-m" p n], auto)
    45 
    45 
    46 lemma zpower_zdvd_prop2 [rule_format]: "p \<in> zprime --> p dvd ((y::int) ^ n) 
    46 lemma zpower_zdvd_prop2 [rule_format]: "zprime p --> p dvd ((y::int) ^ n) 
    47     --> 0 < n --> p dvd y";
    47     --> 0 < n --> p dvd y";
    48   apply (induct_tac n, auto)
    48   apply (induct_tac n, auto)
    49   apply (frule zprime_zdvd_zmult_better, auto)
    49   apply (frule zprime_zdvd_zmult_better, auto)
    50 done
    50 done
    51 
    51 
   122 
   122 
   123 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
   123 lemma zcong_zmult_prop2: "[a = b](mod m) ==> 
   124     ([c = d * a](mod m) = [c = d * b] (mod m))";
   124     ([c = d * a](mod m) = [c = d * b] (mod m))";
   125   by (auto simp add: zmult_ac zcong_zmult_prop1)
   125   by (auto simp add: zmult_ac zcong_zmult_prop1)
   126 
   126 
   127 lemma zcong_zmult_prop3: "[|p \<in> zprime; ~[x = 0] (mod p); 
   127 lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); 
   128     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)";
   128     ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)";
   129   apply (auto simp add: zcong_def)
   129   apply (auto simp add: zcong_def)
   130   apply (drule zprime_zdvd_zmult_better, auto)
   130   apply (drule zprime_zdvd_zmult_better, auto)
   131 done
   131 done
   132 
   132 
   158 qed;
   158 qed;
   159 
   159 
   160 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)";
   160 lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)";
   161   by (auto simp add: zcong_def)
   161   by (auto simp add: zcong_def)
   162 
   162 
   163 lemma zcong_zprime_prod_zero: "[| p \<in> zprime; 0 < a |] ==> 
   163 lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> 
   164   [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"; 
   164   [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"; 
   165   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
   165   by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
   166 
   166 
   167 lemma zcong_zprime_prod_zero_contra: "[| p \<in> zprime; 0 < a |] ==>
   167 lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
   168   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)";
   168   ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)";
   169   apply auto 
   169   apply auto 
   170   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
   170   apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
   171 by auto
   171 by auto
   172 
   172 
   189 
   189 
   190 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
   190 lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> 
   191     [(MultInv p x) = (MultInv p y)] (mod p)";
   191     [(MultInv p x) = (MultInv p y)] (mod p)";
   192   by (auto simp add: MultInv_def zcong_zpower)
   192   by (auto simp add: MultInv_def zcong_zpower)
   193 
   193 
   194 lemma MultInv_prop2: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p)) |] ==> 
   194 lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   195   [(x * (MultInv p x)) = 1] (mod p)";
   195   [(x * (MultInv p x)) = 1] (mod p)";
   196 proof (simp add: MultInv_def zcong_eq_zdvd_prop);
   196 proof (simp add: MultInv_def zcong_eq_zdvd_prop);
   197   assume "2 < p" and "p \<in> zprime" and "~ p dvd x";
   197   assume "2 < p" and "zprime p" and "~ p dvd x";
   198   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)";
   198   have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)";
   199     by auto
   199     by auto
   200   also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)";
   200   also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)";
   201     by (simp only: nat_add_distrib, auto)
   201     by (simp only: nat_add_distrib, auto)
   202   also have "p - 2 + 1 = p - 1" by arith
   202   also have "p - 2 + 1 = p - 1" by arith
   205   also from prems have "[x ^ nat (p - 1) = 1] (mod p)";
   205   also from prems have "[x ^ nat (p - 1) = 1] (mod p)";
   206     by (auto simp add: Little_Fermat) 
   206     by (auto simp add: Little_Fermat) 
   207   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)";.;
   207   finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)";.;
   208 qed;
   208 qed;
   209 
   209 
   210 lemma MultInv_prop2a: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p)) |] ==> 
   210 lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   211     [(MultInv p x) * x = 1] (mod p)";
   211     [(MultInv p x) * x = 1] (mod p)";
   212   by (auto simp add: MultInv_prop2 zmult_ac)
   212   by (auto simp add: MultInv_prop2 zmult_ac)
   213 
   213 
   214 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))";
   214 lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))";
   215   by (simp add: nat_diff_distrib)
   215   by (simp add: nat_diff_distrib)
   216 
   216 
   217 lemma aux_2: "2 < p ==> 0 < nat (p - 2)";
   217 lemma aux_2: "2 < p ==> 0 < nat (p - 2)";
   218   by auto
   218   by auto
   219 
   219 
   220 lemma MultInv_prop3: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p)) |] ==> 
   220 lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   221     ~([MultInv p x = 0](mod p))";
   221     ~([MultInv p x = 0](mod p))";
   222   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   222   apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
   223   apply (drule aux_2)
   223   apply (drule aux_2)
   224   apply (drule zpower_zdvd_prop2, auto)
   224   apply (drule zpower_zdvd_prop2, auto)
   225 done
   225 done
   226 
   226 
   227 lemma aux__1: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p))|] ==> 
   227 lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> 
   228     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
   228     [(MultInv p (MultInv p x)) = (x * (MultInv p x) * 
   229       (MultInv p (MultInv p x)))] (mod p)";
   229       (MultInv p (MultInv p x)))] (mod p)";
   230   apply (drule MultInv_prop2, auto)
   230   apply (drule MultInv_prop2, auto)
   231   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto);
   231   apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto);
   232   apply (auto simp add: zcong_sym)
   232   apply (auto simp add: zcong_sym)
   233 done
   233 done
   234 
   234 
   235 lemma aux__2: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p))|] ==>
   235 lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
   236     [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)";
   236     [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)";
   237   apply (frule MultInv_prop3, auto)
   237   apply (frule MultInv_prop3, auto)
   238   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
   238   apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
   239   apply (drule MultInv_prop2, auto)
   239   apply (drule MultInv_prop2, auto)
   240   apply (drule_tac k = x in zcong_scalar2, auto)
   240   apply (drule_tac k = x in zcong_scalar2, auto)
   241   apply (auto simp add: zmult_ac)
   241   apply (auto simp add: zmult_ac)
   242 done
   242 done
   243 
   243 
   244 lemma MultInv_prop4: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p)) |] ==> 
   244 lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> 
   245     [(MultInv p (MultInv p x)) = x] (mod p)";
   245     [(MultInv p (MultInv p x)) = x] (mod p)";
   246   apply (frule aux__1, auto)
   246   apply (frule aux__1, auto)
   247   apply (drule aux__2, auto)
   247   apply (drule aux__2, auto)
   248   apply (drule zcong_trans, auto)
   248   apply (drule zcong_trans, auto)
   249 done
   249 done
   250 
   250 
   251 lemma MultInv_prop5: "[| 2 < p; p \<in> zprime; ~([x = 0](mod p)); 
   251 lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
   252     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
   252     ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> 
   253     [x = y] (mod p)";
   253     [x = y] (mod p)";
   254   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
   254   apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and 
   255     m = p and k = x in zcong_scalar)
   255     m = p and k = x in zcong_scalar)
   256   apply (insert MultInv_prop2 [of p x], simp)
   256   apply (insert MultInv_prop2 [of p x], simp)
   269 
   269 
   270 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
   270 lemma aux___1: "[j = a * MultInv p k] (mod p) ==> 
   271     [j * k = a * MultInv p k * k] (mod p)";
   271     [j * k = a * MultInv p k * k] (mod p)";
   272   by (auto simp add: zcong_scalar)
   272   by (auto simp add: zcong_scalar)
   273 
   273 
   274 lemma aux___2: "[|2 < p; p \<in> zprime; ~([k = 0](mod p)); 
   274 lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); 
   275     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)";
   275     [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)";
   276   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
   276   apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 
   277     [of "MultInv p k * k" 1 p "j * k" a])
   277     [of "MultInv p k * k" 1 p "j * k" a])
   278   apply (auto simp add: zmult_ac)
   278   apply (auto simp add: zmult_ac)
   279 done
   279 done
   280 
   280 
   281 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
   281 lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = 
   282      (MultInv p j) * a] (mod p)";
   282      (MultInv p j) * a] (mod p)";
   283   by (auto simp add: zmult_assoc zcong_scalar2)
   283   by (auto simp add: zmult_assoc zcong_scalar2)
   284 
   284 
   285 lemma aux___4: "[|2 < p; p \<in> zprime; ~([j = 0](mod p)); 
   285 lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); 
   286     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
   286     [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
   287        ==> [k = a * (MultInv p j)] (mod p)";
   287        ==> [k = a * (MultInv p j)] (mod p)";
   288   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
   288   apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 
   289     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   289     [of "MultInv p j * j" 1 p "MultInv p j * a" k])
   290   apply (auto simp add: zmult_ac zcong_sym)
   290   apply (auto simp add: zmult_ac zcong_sym)
   291 done
   291 done
   292 
   292 
   293 lemma MultInv_zcong_prop2: "[| 2 < p; p \<in> zprime; ~([k = 0](mod p)); 
   293 lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); 
   294     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
   294     ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> 
   295     [k = a * MultInv p j] (mod p)";
   295     [k = a * MultInv p j] (mod p)";
   296   apply (drule aux___1)
   296   apply (drule aux___1)
   297   apply (frule aux___2, auto)
   297   apply (frule aux___2, auto)
   298   by (drule aux___3, drule aux___4, auto)
   298   by (drule aux___3, drule aux___4, auto)
   299 
   299 
   300 lemma MultInv_zcong_prop3: "[| 2 < p; p \<in> zprime; ~([a = 0](mod p)); 
   300 lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); 
   301     ~([k = 0](mod p)); ~([j = 0](mod p));
   301     ~([k = 0](mod p)); ~([j = 0](mod p));
   302     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
   302     [a * MultInv p j = a * MultInv p k] (mod p) |] ==> 
   303       [j = k] (mod p)";
   303       [j = k] (mod p)";
   304   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   304   apply (auto simp add: zcong_eq_zdvd_prop [of a p])
   305   apply (frule zprime_imp_zrelprime, auto)
   305   apply (frule zprime_imp_zrelprime, auto)