src/HOLCF/ex/Dnat.thy
author haftmann
Fri, 17 Mar 2006 14:20:24 +0100
changeset 19281 b411f25fff25
parent 16417 9bc16273c2d4
child 19550 ae77a20f6995
permissions -rw-r--r--
added example for operational classes and code generator
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2570
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     1
(*  Title:      HOLCF/Dnat.thy
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     2
    ID:         $Id$
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     3
    Author:     Franz Regensburger
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     4
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     5
Theory for the domain of natural numbers  dnat = one ++ dnat
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     6
*)
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     7
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 16322
diff changeset
     8
theory Dnat imports HOLCF begin
2570
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
     9
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
    10
domain dnat = dzero | dsucc (dpred :: dnat)
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
    11
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
    12
constdefs
12035
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    13
  iterator :: "dnat -> ('a -> 'a) -> 'a -> 'a"
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    14
  "iterator == fix $ (LAM h n f x.
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    15
    case n of dzero => x
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    16
      | dsucc $ m => f $ (h $ m $ f $ x))"
2570
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
    17
12035
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    18
text {*
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    19
  \medskip Expand fixed point properties.
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    20
*}
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    21
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    22
ML_setup {*
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    23
bind_thm ("iterator_def2", fix_prover2 (the_context ()) (thm "iterator_def")
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    24
        "iterator = (LAM n f x. case n of dzero => x | dsucc$m => f$(iterator$m$f$x))");
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    25
*}
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    26
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    27
text {*
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    28
  \medskip Recursive properties.
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    29
*}
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    30
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    31
lemma iterator1: "iterator $ UU $ f $ x = UU"
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    32
  apply (subst iterator_def2)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    33
  apply (simp add: dnat.rews)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    34
  done
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    35
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    36
lemma iterator2: "iterator $ dzero $ f $ x = x"
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    37
  apply (subst iterator_def2)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    38
  apply (simp add: dnat.rews)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    39
  done
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    40
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    41
lemma iterator3: "n ~= UU ==> iterator $ (dsucc $ n) $ f $ x = f $ (iterator $ n $ f $ x)"
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    42
  apply (rule trans)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    43
   apply (subst iterator_def2)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    44
   apply (simp add: dnat.rews)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    45
  apply (rule refl)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    46
  done
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    47
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    48
lemmas iterator_rews = iterator1 iterator2 iterator3
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    49
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    50
lemma dnat_flat: "ALL x y::dnat. x<<y --> x=UU | x=y"
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    51
  apply (rule allI)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    52
  apply (induct_tac x rule: dnat.ind)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    53
    apply fast
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    54
   apply (rule allI)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    55
   apply (rule_tac x = y in dnat.casedist)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    56
     apply (fast intro!: UU_I)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    57
    apply simp
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    58
   apply (simp add: dnat.dist_les)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    59
  apply (rule allI)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    60
  apply (rule_tac x = y in dnat.casedist)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    61
    apply (fast intro!: UU_I)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    62
   apply (simp add: dnat.dist_les)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    63
  apply (simp (no_asm_simp) add: dnat.rews)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    64
  apply (intro strip)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    65
  apply (subgoal_tac "d << da")
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    66
   apply (erule allE)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    67
   apply (drule mp)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    68
    apply assumption
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    69
   apply (erule disjE)
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    70
    apply (tactic "contr_tac 1")
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    71
   apply simp
16322
7cd7d21975ad fix usage of inverts lemma, which has fewer premises now
huffman
parents: 14981
diff changeset
    72
  apply (erule (1) dnat.inverts)
12035
f2ee4b5d02f2 converted theory Dnat;
wenzelm
parents: 10835
diff changeset
    73
  done
2570
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
    74
24d7e8fb8261 added Classlib.* and Witness.*,
oheimb
parents:
diff changeset
    75
end