author | wenzelm |
Fri, 09 May 2014 22:14:06 +0200 | |
changeset 56933 | b47193851dc6 |
parent 54703 | 499f92dc6e45 |
child 57607 | 5ff0cf3f5f6f |
permissions | -rw-r--r-- |
27063 | 1 |
theory Examples3 |
32983 | 2 |
imports Examples |
27063 | 3 |
begin |
32981 | 4 |
text {* \vspace{-5ex} *} |
5 |
subsection {* Third Version: Local Interpretation |
|
6 |
\label{sec:local-interpretation} *} |
|
27063 | 7 |
|
32981 | 8 |
text {* In the above example, the fact that @{term "op \<le>"} is a partial |
32982 | 9 |
order for the integers was used in the second goal to |
32981 | 10 |
discharge the premise in the definition of @{text "op \<sqsubset>"}. In |
11 |
general, proofs of the equations not only may involve definitions |
|
32983 | 12 |
from the interpreted locale but arbitrarily complex arguments in the |
46855 | 13 |
context of the locale. Therefore it would be convenient to have the |
14 |
interpreted locale conclusions temporarily available in the proof. |
|
32981 | 15 |
This can be achieved by a locale interpretation in the proof body. |
16 |
The command for local interpretations is \isakeyword{interpret}. We |
|
17 |
repeat the example from the previous section to illustrate this. *} |
|
27063 | 18 |
|
32982 | 19 |
interpretation %visible int: partial_order "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool" |
43543
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
ballarin
parents:
37206
diff
changeset
|
20 |
where "int.less x y = (x < y)" |
32981 | 21 |
proof - |
32982 | 22 |
show "partial_order (op \<le> :: int \<Rightarrow> int \<Rightarrow> bool)" |
32981 | 23 |
by unfold_locales auto |
32982 | 24 |
then interpret int: partial_order "op \<le> :: [int, int] \<Rightarrow> bool" . |
43543
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
ballarin
parents:
37206
diff
changeset
|
25 |
show "int.less x y = (x < y)" |
32982 | 26 |
unfolding int.less_def by auto |
32981 | 27 |
qed |
27063 | 28 |
|
32981 | 29 |
text {* The inner interpretation is immediate from the preceding fact |
30 |
and proved by assumption (Isar short hand ``.''). It enriches the |
|
31 |
local proof context by the theorems |
|
30826 | 32 |
also obtained in the interpretation from Section~\ref{sec:po-first}, |
32982 | 33 |
and @{text int.less_def} may directly be used to unfold the |
30826 | 34 |
definition. Theorems from the local interpretation disappear after |
32983 | 35 |
leaving the proof context --- that is, after the succeeding |
32981 | 36 |
\isakeyword{next} or \isakeyword{qed} statement. *} |
27063 | 37 |
|
38 |
||
39 |
subsection {* Further Interpretations *} |
|
40 |
||
32981 | 41 |
text {* Further interpretations are necessary for |
32983 | 42 |
the other locales. In @{text lattice} the operations~@{text \<sqinter>} |
43 |
and~@{text \<squnion>} are substituted by @{term "min :: int \<Rightarrow> int \<Rightarrow> int"} |
|
44 |
and @{term "max :: int \<Rightarrow> int \<Rightarrow> int"}. The entire proof for the |
|
32981 | 45 |
interpretation is reproduced to give an example of a more |
32983 | 46 |
elaborate interpretation proof. Note that the equations are named |
47 |
so they can be used in a later example. *} |
|
27063 | 48 |
|
32982 | 49 |
interpretation %visible int: lattice "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool" |
43543
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
ballarin
parents:
37206
diff
changeset
|
50 |
where int_min_eq: "int.meet x y = min x y" |
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
ballarin
parents:
37206
diff
changeset
|
51 |
and int_max_eq: "int.join x y = max x y" |
32981 | 52 |
proof - |
32982 | 53 |
show "lattice (op \<le> :: int \<Rightarrow> int \<Rightarrow> bool)" |
32981 | 54 |
txt {* \normalsize We have already shown that this is a partial |
43708 | 55 |
order, *} |
32981 | 56 |
apply unfold_locales |
57 |
txt {* \normalsize hence only the lattice axioms remain to be |
|
43708 | 58 |
shown. |
32983 | 59 |
@{subgoals [display]} |
43708 | 60 |
By @{text is_inf} and @{text is_sup}, *} |
32982 | 61 |
apply (unfold int.is_inf_def int.is_sup_def) |
32983 | 62 |
txt {* \normalsize the goals are transformed to these |
43708 | 63 |
statements: |
64 |
@{subgoals [display]} |
|
65 |
This is Presburger arithmetic, which can be solved by the |
|
35423 | 66 |
method @{text arith}. *} |
32981 | 67 |
by arith+ |
68 |
txt {* \normalsize In order to show the equations, we put ourselves |
|
69 |
in a situation where the lattice theorems can be used in a |
|
70 |
convenient way. *} |
|
32982 | 71 |
then interpret int: lattice "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool" . |
43543
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
ballarin
parents:
37206
diff
changeset
|
72 |
show "int.meet x y = min x y" |
32982 | 73 |
by (bestsimp simp: int.meet_def int.is_inf_def) |
43543
eb8b4851b039
While reading equations of an interpretation, already allow syntax provided by the interpretation base.
ballarin
parents:
37206
diff
changeset
|
74 |
show "int.join x y = max x y" |
32982 | 75 |
by (bestsimp simp: int.join_def int.is_sup_def) |
32981 | 76 |
qed |
27063 | 77 |
|
32981 | 78 |
text {* Next follows that @{text "op \<le>"} is a total order, again for |
32982 | 79 |
the integers. *} |
27063 | 80 |
|
32982 | 81 |
interpretation %visible int: total_order "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool" |
32981 | 82 |
by unfold_locales arith |
27063 | 83 |
|
84 |
text {* Theorems that are available in the theory at this point are shown in |
|
32982 | 85 |
Table~\ref{tab:int-lattice}. Two points are worth noting: |
27063 | 86 |
|
87 |
\begin{table} |
|
88 |
\hrule |
|
89 |
\vspace{2ex} |
|
90 |
\begin{center} |
|
91 |
\begin{tabular}{l} |
|
32982 | 92 |
@{thm [source] int.less_def} from locale @{text partial_order}: \\ |
93 |
\quad @{thm int.less_def} \\ |
|
94 |
@{thm [source] int.meet_left} from locale @{text lattice}: \\ |
|
95 |
\quad @{thm int.meet_left} \\ |
|
96 |
@{thm [source] int.join_distr} from locale @{text distrib_lattice}: \\ |
|
97 |
\quad @{thm int.join_distr} \\ |
|
98 |
@{thm [source] int.less_total} from locale @{text total_order}: \\ |
|
99 |
\quad @{thm int.less_total} |
|
27063 | 100 |
\end{tabular} |
101 |
\end{center} |
|
102 |
\hrule |
|
32983 | 103 |
\caption{Interpreted theorems for~@{text \<le>} on the integers.} |
32982 | 104 |
\label{tab:int-lattice} |
27063 | 105 |
\end{table} |
32804
ca430e6aee1c
Propagation of mixins for interpretation; reactivated diagnostic command print_interps.
ballarin
parents:
31960
diff
changeset
|
106 |
|
ca430e6aee1c
Propagation of mixins for interpretation; reactivated diagnostic command print_interps.
ballarin
parents:
31960
diff
changeset
|
107 |
\begin{itemize} |
ca430e6aee1c
Propagation of mixins for interpretation; reactivated diagnostic command print_interps.
ballarin
parents:
31960
diff
changeset
|
108 |
\item |
32981 | 109 |
Locale @{text distrib_lattice} was also interpreted. Since the |
32983 | 110 |
locale hierarchy reflects that total orders are distributive |
32981 | 111 |
lattices, the interpretation of the latter was inserted |
112 |
automatically with the interpretation of the former. In general, |
|
32983 | 113 |
interpretation traverses the locale hierarchy upwards and interprets |
114 |
all encountered locales, regardless whether imported or proved via |
|
115 |
the \isakeyword{sublocale} command. Existing interpretations are |
|
116 |
skipped avoiding duplicate work. |
|
32804
ca430e6aee1c
Propagation of mixins for interpretation; reactivated diagnostic command print_interps.
ballarin
parents:
31960
diff
changeset
|
117 |
\item |
32983 | 118 |
The predicate @{term "op <"} appears in theorem @{thm [source] |
119 |
int.less_total} |
|
32981 | 120 |
although an equation for the replacement of @{text "op \<sqsubset>"} was only |
32983 | 121 |
given in the interpretation of @{text partial_order}. The |
122 |
interpretation equations are pushed downwards the hierarchy for |
|
123 |
related interpretations --- that is, for interpretations that share |
|
124 |
the instances of parameters they have in common. |
|
32804
ca430e6aee1c
Propagation of mixins for interpretation; reactivated diagnostic command print_interps.
ballarin
parents:
31960
diff
changeset
|
125 |
\end{itemize} |
27063 | 126 |
*} |
127 |
||
32981 | 128 |
text {* The interpretations for a locale $n$ within the current |
129 |
theory may be inspected with \isakeyword{print\_interps}~$n$. This |
|
130 |
prints the list of instances of $n$, for which interpretations exist. |
|
131 |
For example, \isakeyword{print\_interps} @{term partial_order} |
|
132 |
outputs the following: |
|
32983 | 133 |
\begin{small} |
32981 | 134 |
\begin{alltt} |
32982 | 135 |
int! : partial_order "op \(\le\)" |
32981 | 136 |
\end{alltt} |
32983 | 137 |
\end{small} |
138 |
Of course, there is only one interpretation. |
|
139 |
The interpretation qualifier on the left is decorated with an |
|
140 |
exclamation point. This means that it is mandatory. Qualifiers |
|
32981 | 141 |
can either be \emph{mandatory} or \emph{optional}, designated by |
142 |
``!'' or ``?'' respectively. Mandatory qualifiers must occur in a |
|
143 |
name reference while optional ones need not. Mandatory qualifiers |
|
32983 | 144 |
prevent accidental hiding of names, while optional qualifiers can be |
32981 | 145 |
more convenient to use. For \isakeyword{interpretation}, the |
32983 | 146 |
default is ``!''. |
32981 | 147 |
*} |
27063 | 148 |
|
149 |
||
27077 | 150 |
section {* Locale Expressions \label{sec:expressions} *} |
27063 | 151 |
|
152 |
text {* |
|
32983 | 153 |
A map~@{term \<phi>} between partial orders~@{text \<sqsubseteq>} and~@{text \<preceq>} |
27063 | 154 |
is called order preserving if @{text "x \<sqsubseteq> y"} implies @{text "\<phi> x \<preceq> |
155 |
\<phi> y"}. This situation is more complex than those encountered so |
|
156 |
far: it involves two partial orders, and it is desirable to use the |
|
157 |
existing locale for both. |
|
158 |
||
32981 | 159 |
A locale for order preserving maps requires three parameters: @{text |
32983 | 160 |
le}~(\isakeyword{infixl}~@{text \<sqsubseteq>}) and @{text |
161 |
le'}~(\isakeyword{infixl}~@{text \<preceq>}) for the orders and~@{text \<phi>} |
|
162 |
for the map. |
|
32981 | 163 |
|
164 |
In order to reuse the existing locale for partial orders, which has |
|
32983 | 165 |
the single parameter~@{text le}, it must be imported twice, once |
166 |
mapping its parameter to~@{text le} from the new locale and once |
|
167 |
to~@{text le'}. This can be achieved with a compound locale |
|
32981 | 168 |
expression. |
169 |
||
32983 | 170 |
In general, a locale expression is a sequence of \emph{locale instances} |
171 |
separated by~``$\textbf{+}$'' and followed by a \isakeyword{for} |
|
32981 | 172 |
clause. |
32983 | 173 |
An instance has the following format: |
32981 | 174 |
\begin{quote} |
175 |
\textit{qualifier} \textbf{:} \textit{locale-name} |
|
176 |
\textit{parameter-instantiation} |
|
177 |
\end{quote} |
|
178 |
We have already seen locale instances as arguments to |
|
179 |
\isakeyword{interpretation} in Section~\ref{sec:interpretation}. |
|
32983 | 180 |
As before, the qualifier serves to disambiguate names from |
181 |
different instances of the same locale. While in |
|
182 |
\isakeyword{interpretation} qualifiers default to mandatory, in |
|
183 |
import and in the \isakeyword{sublocale} command, they default to |
|
184 |
optional. |
|
30750
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
185 |
|
32983 | 186 |
Since the parameters~@{text le} and~@{text le'} are to be partial |
32981 | 187 |
orders, our locale for order preserving maps will import the these |
188 |
instances: |
|
32983 | 189 |
\begin{small} |
32981 | 190 |
\begin{alltt} |
191 |
le: partial_order le |
|
192 |
le': partial_order le' |
|
193 |
\end{alltt} |
|
32983 | 194 |
\end{small} |
195 |
For matter of convenience we choose to name parameter names and |
|
196 |
qualifiers alike. This is an arbitrary decision. Technically, qualifiers |
|
32981 | 197 |
and parameters are unrelated. |
198 |
||
199 |
Having determined the instances, let us turn to the \isakeyword{for} |
|
200 |
clause. It serves to declare locale parameters in the same way as |
|
201 |
the context element \isakeyword{fixes} does. Context elements can |
|
202 |
only occur after the import section, and therefore the parameters |
|
32983 | 203 |
referred to in the instances must be declared in the \isakeyword{for} |
204 |
clause. The \isakeyword{for} clause is also where the syntax of these |
|
32981 | 205 |
parameters is declared. |
206 |
||
32983 | 207 |
Two context elements for the map parameter~@{text \<phi>} and the |
208 |
assumptions that it is order preserving complete the locale |
|
32981 | 209 |
declaration. *} |
27063 | 210 |
|
211 |
locale order_preserving = |
|
30750
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
212 |
le: partial_order le + le': partial_order le' |
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
213 |
for le (infixl "\<sqsubseteq>" 50) and le' (infixl "\<preceq>" 50) + |
32981 | 214 |
fixes \<phi> |
27063 | 215 |
assumes hom_le: "x \<sqsubseteq> y \<Longrightarrow> \<phi> x \<preceq> \<phi> y" |
216 |
||
32981 | 217 |
text (in order_preserving) {* Here are examples of theorems that are |
218 |
available in the locale: |
|
27063 | 219 |
|
32983 | 220 |
\hspace*{1em}@{thm [source] hom_le}: @{thm hom_le} |
27063 | 221 |
|
32983 | 222 |
\hspace*{1em}@{thm [source] le.less_le_trans}: @{thm le.less_le_trans} |
27063 | 223 |
|
32983 | 224 |
\hspace*{1em}@{thm [source] le'.less_le_trans}: |
225 |
@{thm [display, indent=4] le'.less_le_trans} |
|
32981 | 226 |
While there is infix syntax for the strict operation associated to |
227 |
@{term "op \<sqsubseteq>"}, there is none for the strict version of @{term |
|
228 |
"op \<preceq>"}. The abbreviation @{text less} with its infix syntax is only |
|
229 |
available for the original instance it was declared for. We may |
|
32983 | 230 |
introduce the abbreviation @{text less'} with infix syntax~@{text \<prec>} |
231 |
with the following declaration: *} |
|
27063 | 232 |
|
233 |
abbreviation (in order_preserving) |
|
234 |
less' (infixl "\<prec>" 50) where "less' \<equiv> partial_order.less le'" |
|
235 |
||
30393
aa6f42252bf6
replaced old locale option by proper "text (in locale)";
wenzelm
parents:
29568
diff
changeset
|
236 |
text (in order_preserving) {* Now the theorem is displayed nicely as |
30826 | 237 |
@{thm [source] le'.less_le_trans}: |
238 |
@{thm [display, indent=2] le'.less_le_trans} *} |
|
27063 | 239 |
|
32983 | 240 |
text {* There are short notations for locale expressions. These are |
241 |
discussed in the following. *} |
|
32981 | 242 |
|
32983 | 243 |
|
244 |
subsection {* Default Instantiations *} |
|
32981 | 245 |
|
32983 | 246 |
text {* |
247 |
It is possible to omit parameter instantiations. The |
|
248 |
instantiation then defaults to the name of |
|
249 |
the parameter itself. For example, the locale expression @{text |
|
32981 | 250 |
partial_order} is short for @{text "partial_order le"}, since the |
32983 | 251 |
locale's single parameter is~@{text le}. We took advantage of this |
252 |
in the \isakeyword{sublocale} declarations of |
|
32981 | 253 |
Section~\ref{sec:changing-the-hierarchy}. *} |
254 |
||
255 |
||
32983 | 256 |
subsection {* Implicit Parameters \label{sec:implicit-parameters} *} |
257 |
||
32981 | 258 |
text {* In a locale expression that occurs within a locale |
259 |
declaration, omitted parameters additionally extend the (possibly |
|
260 |
empty) \isakeyword{for} clause. |
|
27063 | 261 |
|
32983 | 262 |
The \isakeyword{for} clause is a general construct of Isabelle/Isar |
263 |
to mark names occurring in the preceding declaration as ``arbitrary |
|
264 |
but fixed''. This is necessary for example, if the name is already |
|
265 |
bound in a surrounding context. In a locale expression, names |
|
266 |
occurring in parameter instantiations should be bound by a |
|
267 |
\isakeyword{for} clause whenever these names are not introduced |
|
268 |
elsewhere in the context --- for example, on the left hand side of a |
|
269 |
\isakeyword{sublocale} declaration. |
|
27063 | 270 |
|
32981 | 271 |
There is an exception to this rule in locale declarations, where the |
32983 | 272 |
\isakeyword{for} clause serves to declare locale parameters. Here, |
32981 | 273 |
locale parameters for which no parameter instantiation is given are |
274 |
implicitly added, with their mixfix syntax, at the beginning of the |
|
275 |
\isakeyword{for} clause. For example, in a locale declaration, the |
|
276 |
expression @{text partial_order} is short for |
|
32983 | 277 |
\begin{small} |
32981 | 278 |
\begin{alltt} |
279 |
partial_order le \isakeyword{for} le (\isakeyword{infixl} "\(\sqsubseteq\)" 50)\textrm{.} |
|
280 |
\end{alltt} |
|
32983 | 281 |
\end{small} |
282 |
This short hand was used in the locale declarations throughout |
|
32981 | 283 |
Section~\ref{sec:import}. |
284 |
*} |
|
285 |
||
286 |
text{* |
|
32983 | 287 |
The following locale declarations provide more examples. A |
288 |
map~@{text \<phi>} is a lattice homomorphism if it preserves meet and |
|
32981 | 289 |
join. *} |
30750
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
290 |
|
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
291 |
locale lattice_hom = |
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
292 |
le: lattice + le': lattice le' for le' (infixl "\<preceq>" 50) + |
27063 | 293 |
fixes \<phi> |
30826 | 294 |
assumes hom_meet: "\<phi> (x \<sqinter> y) = le'.meet (\<phi> x) (\<phi> y)" |
295 |
and hom_join: "\<phi> (x \<squnion> y) = le'.join (\<phi> x) (\<phi> y)" |
|
27063 | 296 |
|
32983 | 297 |
text {* The parameter instantiation in the first instance of @{term |
298 |
lattice} is omitted. This causes the parameter~@{text le} to be |
|
299 |
added to the \isakeyword{for} clause, and the locale has |
|
300 |
parameters~@{text le},~@{text le'} and, of course,~@{text \<phi>}. |
|
27063 | 301 |
|
32981 | 302 |
Before turning to the second example, we complete the locale by |
32983 | 303 |
providing infix syntax for the meet and join operations of the |
32981 | 304 |
second lattice. |
305 |
*} |
|
306 |
||
46855 | 307 |
context lattice_hom |
308 |
begin |
|
32981 | 309 |
abbreviation meet' (infixl "\<sqinter>''" 50) where "meet' \<equiv> le'.meet" |
310 |
abbreviation join' (infixl "\<squnion>''" 50) where "join' \<equiv> le'.join" |
|
311 |
end |
|
312 |
||
32983 | 313 |
text {* The next example makes radical use of the short hand |
314 |
facilities. A homomorphism is an endomorphism if both orders |
|
315 |
coincide. *} |
|
27063 | 316 |
|
30750
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
317 |
locale lattice_end = lattice_hom _ le |
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
318 |
|
32983 | 319 |
text {* The notation~@{text _} enables to omit a parameter in a |
320 |
positional instantiation. The omitted parameter,~@{text le} becomes |
|
32981 | 321 |
the parameter of the declared locale and is, in the following |
32983 | 322 |
position, used to instantiate the second parameter of @{text |
32981 | 323 |
lattice_hom}. The effect is that of identifying the first in second |
324 |
parameter of the homomorphism locale. *} |
|
27063 | 325 |
|
326 |
text {* The inheritance diagram of the situation we have now is shown |
|
327 |
in Figure~\ref{fig:hom}, where the dashed line depicts an |
|
32983 | 328 |
interpretation which is introduced below. Parameter instantiations |
329 |
are indicated by $\sqsubseteq \mapsto \preceq$ etc. By looking at |
|
330 |
the inheritance diagram it would seem |
|
27063 | 331 |
that two identical copies of each of the locales @{text |
32981 | 332 |
partial_order} and @{text lattice} are imported by @{text |
333 |
lattice_end}. This is not the case! Inheritance paths with |
|
334 |
identical morphisms are automatically detected and |
|
27503 | 335 |
the conclusions of the respective locales appear only once. |
27063 | 336 |
|
337 |
\begin{figure} |
|
338 |
\hrule \vspace{2ex} |
|
339 |
\begin{center} |
|
340 |
\begin{tikzpicture} |
|
341 |
\node (o) at (0,0) {@{text partial_order}}; |
|
342 |
\node (oh) at (1.5,-2) {@{text order_preserving}}; |
|
343 |
\node (oh1) at (1.5,-0.7) {$\scriptscriptstyle \sqsubseteq \mapsto \sqsubseteq$}; |
|
344 |
\node (oh2) at (0,-1.3) {$\scriptscriptstyle \sqsubseteq \mapsto \preceq$}; |
|
345 |
\node (l) at (-1.5,-2) {@{text lattice}}; |
|
346 |
\node (lh) at (0,-4) {@{text lattice_hom}}; |
|
347 |
\node (lh1) at (0,-2.7) {$\scriptscriptstyle \sqsubseteq \mapsto \sqsubseteq$}; |
|
348 |
\node (lh2) at (-1.5,-3.3) {$\scriptscriptstyle \sqsubseteq \mapsto \preceq$}; |
|
349 |
\node (le) at (0,-6) {@{text lattice_end}}; |
|
350 |
\node (le1) at (0,-4.8) |
|
351 |
[anchor=west]{$\scriptscriptstyle \sqsubseteq \mapsto \sqsubseteq$}; |
|
352 |
\node (le2) at (0,-5.2) |
|
353 |
[anchor=west]{$\scriptscriptstyle \preceq \mapsto \sqsubseteq$}; |
|
354 |
\draw (o) -- (l); |
|
355 |
\draw[dashed] (oh) -- (lh); |
|
356 |
\draw (lh) -- (le); |
|
357 |
\draw (o) .. controls (oh1.south west) .. (oh); |
|
358 |
\draw (o) .. controls (oh2.north east) .. (oh); |
|
359 |
\draw (l) .. controls (lh1.south west) .. (lh); |
|
360 |
\draw (l) .. controls (lh2.north east) .. (lh); |
|
361 |
\end{tikzpicture} |
|
362 |
\end{center} |
|
363 |
\hrule |
|
364 |
\caption{Hierarchy of Homomorphism Locales.} |
|
365 |
\label{fig:hom} |
|
366 |
\end{figure} |
|
367 |
*} |
|
368 |
||
369 |
text {* It can be shown easily that a lattice homomorphism is order |
|
370 |
preserving. As the final example of this section, a locale |
|
30750
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
371 |
interpretation is used to assert this: *} |
27063 | 372 |
|
46855 | 373 |
sublocale lattice_hom \<subseteq> order_preserving |
374 |
proof unfold_locales |
|
27063 | 375 |
fix x y |
376 |
assume "x \<sqsubseteq> y" |
|
377 |
then have "y = (x \<squnion> y)" by (simp add: le.join_connection) |
|
378 |
then have "\<phi> y = (\<phi> x \<squnion>' \<phi> y)" by (simp add: hom_join [symmetric]) |
|
379 |
then show "\<phi> x \<preceq> \<phi> y" by (simp add: le'.join_connection) |
|
380 |
qed |
|
381 |
||
30393
aa6f42252bf6
replaced old locale option by proper "text (in locale)";
wenzelm
parents:
29568
diff
changeset
|
382 |
text (in lattice_hom) {* |
aa6f42252bf6
replaced old locale option by proper "text (in locale)";
wenzelm
parents:
29568
diff
changeset
|
383 |
Theorems and other declarations --- syntax, in particular --- from |
aa6f42252bf6
replaced old locale option by proper "text (in locale)";
wenzelm
parents:
29568
diff
changeset
|
384 |
the locale @{text order_preserving} are now active in @{text |
27063 | 385 |
lattice_hom}, for example |
30826 | 386 |
@{thm [source] hom_le}: |
387 |
@{thm [display, indent=2] hom_le} |
|
32983 | 388 |
This theorem will be useful in the following section. |
27063 | 389 |
*} |
390 |
||
32983 | 391 |
|
32981 | 392 |
section {* Conditional Interpretation *} |
27063 | 393 |
|
32983 | 394 |
text {* There are situations where an interpretation is not possible |
395 |
in the general case since the desired property is only valid if |
|
396 |
certain conditions are fulfilled. Take, for example, the function |
|
397 |
@{text "\<lambda>i. n * i"} that scales its argument by a constant factor. |
|
398 |
This function is order preserving (and even a lattice endomorphism) |
|
399 |
with respect to @{term "op \<le>"} provided @{text "n \<ge> 0"}. |
|
400 |
||
401 |
It is not possible to express this using a global interpretation, |
|
402 |
because it is in general unspecified whether~@{term n} is |
|
403 |
non-negative, but one may make an interpretation in an inner context |
|
404 |
of a proof where full information is available. |
|
405 |
This is not fully satisfactory either, since potentially |
|
406 |
interpretations may be required to make interpretations in many |
|
407 |
contexts. What is |
|
408 |
required is an interpretation that depends on the condition --- and |
|
409 |
this can be done with the \isakeyword{sublocale} command. For this |
|
410 |
purpose, we introduce a locale for the condition. *} |
|
411 |
||
32981 | 412 |
locale non_negative = |
413 |
fixes n :: int |
|
32983 | 414 |
assumes non_neg: "0 \<le> n" |
415 |
||
416 |
text {* It is again convenient to make the interpretation in an |
|
417 |
incremental fashion, first for order preserving maps, the for |
|
418 |
lattice endomorphisms. *} |
|
32981 | 419 |
|
32983 | 420 |
sublocale non_negative \<subseteq> |
421 |
order_preserving "op \<le>" "op \<le>" "\<lambda>i. n * i" |
|
422 |
using non_neg by unfold_locales (rule mult_left_mono) |
|
423 |
||
424 |
text {* While the proof of the previous interpretation |
|
425 |
is straightforward from monotonicity lemmas for~@{term "op *"}, the |
|
426 |
second proof follows a useful pattern. *} |
|
32981 | 427 |
|
32983 | 428 |
sublocale %visible non_negative \<subseteq> lattice_end "op \<le>" "\<lambda>i. n * i" |
429 |
proof (unfold_locales, unfold int_min_eq int_max_eq) |
|
430 |
txt {* \normalsize Unfolding the locale predicates \emph{and} the |
|
431 |
interpretation equations immediately yields two subgoals that |
|
432 |
reflect the core conjecture. |
|
433 |
@{subgoals [display]} |
|
434 |
It is now necessary to show, in the context of @{term |
|
435 |
non_negative}, that multiplication by~@{term n} commutes with |
|
436 |
@{term min} and @{term max}. *} |
|
437 |
qed (auto simp: hom_le) |
|
32981 | 438 |
|
32983 | 439 |
text (in order_preserving) {* The lemma @{thm [source] hom_le} |
440 |
simplifies a proof that would have otherwise been lengthy and we may |
|
441 |
consider making it a default rule for the simplifier: *} |
|
32981 | 442 |
|
32983 | 443 |
lemmas (in order_preserving) hom_le [simp] |
32981 | 444 |
|
445 |
||
32983 | 446 |
subsection {* Avoiding Infinite Chains of Interpretations |
447 |
\label{sec:infinite-chains} *} |
|
448 |
||
449 |
text {* Similar situations arise frequently in formalisations of |
|
450 |
abstract algebra where it is desirable to express that certain |
|
451 |
constructions preserve certain properties. For example, polynomials |
|
452 |
over rings are rings, or --- an example from the domain where the |
|
453 |
illustrations of this tutorial are taken from --- a partial order |
|
454 |
may be obtained for a function space by point-wise lifting of the |
|
455 |
partial order of the co-domain. This corresponds to the following |
|
456 |
interpretation: *} |
|
457 |
||
458 |
sublocale %visible partial_order \<subseteq> f: partial_order "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x" |
|
459 |
oops |
|
460 |
||
461 |
text {* Unfortunately this is a cyclic interpretation that leads to an |
|
462 |
infinite chain, namely |
|
463 |
@{text [display, indent=2] "partial_order \<subseteq> partial_order (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) \<subseteq> |
|
464 |
partial_order (\<lambda>f g. \<forall>x y. f x y \<sqsubseteq> g x y) \<subseteq> \<dots>"} |
|
465 |
and the interpretation is rejected. |
|
466 |
||
467 |
Instead it is necessary to declare a locale that is logically |
|
468 |
equivalent to @{term partial_order} but serves to collect facts |
|
469 |
about functions spaces where the co-domain is a partial order, and |
|
470 |
to make the interpretation in its context: *} |
|
32981 | 471 |
|
32983 | 472 |
locale fun_partial_order = partial_order |
473 |
||
474 |
sublocale fun_partial_order \<subseteq> |
|
475 |
f: partial_order "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x" |
|
476 |
by unfold_locales (fast,rule,fast,blast intro: trans) |
|
477 |
||
478 |
text {* It is quite common in abstract algebra that such a construction |
|
479 |
maps a hierarchy of algebraic structures (or specifications) to a |
|
480 |
related hierarchy. By means of the same lifting, a function space |
|
481 |
is a lattice if its co-domain is a lattice: *} |
|
482 |
||
483 |
locale fun_lattice = fun_partial_order + lattice |
|
32981 | 484 |
|
32983 | 485 |
sublocale fun_lattice \<subseteq> f: lattice "\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x" |
46855 | 486 |
proof unfold_locales |
32983 | 487 |
fix f g |
488 |
have "partial_order.is_inf (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g (\<lambda>x. f x \<sqinter> g x)" |
|
489 |
apply (rule is_infI) apply rule+ apply (drule spec, assumption)+ done |
|
490 |
then show "\<exists>inf. partial_order.is_inf (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g inf" |
|
491 |
by fast |
|
492 |
next |
|
493 |
fix f g |
|
494 |
have "partial_order.is_sup (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g (\<lambda>x. f x \<squnion> g x)" |
|
495 |
apply (rule is_supI) apply rule+ apply (drule spec, assumption)+ done |
|
496 |
then show "\<exists>sup. partial_order.is_sup (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x) f g sup" |
|
497 |
by fast |
|
498 |
qed |
|
499 |
||
27063 | 500 |
|
501 |
section {* Further Reading *} |
|
502 |
||
503 |
text {* More information on locales and their interpretation is |
|
504 |
available. For the locale hierarchy of import and interpretation |
|
32983 | 505 |
dependencies see~\cite{Ballarin2006a}; interpretations in theories |
506 |
and proofs are covered in~\cite{Ballarin2006b}. In the latter, I |
|
27063 | 507 |
show how interpretation in proofs enables to reason about families |
508 |
of algebraic structures, which cannot be expressed with locales |
|
509 |
directly. |
|
510 |
||
32983 | 511 |
Haftmann and Wenzel~\cite{HaftmannWenzel2007} overcome a restriction |
27063 | 512 |
of axiomatic type classes through a combination with locale |
513 |
interpretation. The result is a Haskell-style class system with a |
|
30750
3779e2158dad
Update explanation of locale expressions to locale reimplementation.
ballarin
parents:
30580
diff
changeset
|
514 |
facility to generate ML and Haskell code. Classes are sufficient for |
27063 | 515 |
simple specifications with a single type parameter. The locales for |
516 |
orders and lattices presented in this tutorial fall into this |
|
517 |
category. Order preserving maps, homomorphisms and vector spaces, |
|
518 |
on the other hand, do not. |
|
519 |
||
32981 | 520 |
The locales reimplementation for Isabelle 2009 provides, among other |
32983 | 521 |
improvements, a clean integration with Isabelle/Isar's local theory |
522 |
mechanisms, which are described in another paper by Haftmann and |
|
523 |
Wenzel~\cite{HaftmannWenzel2009}. |
|
32981 | 524 |
|
32983 | 525 |
The original work of Kamm\"uller on locales~\cite{KammullerEtAl1999} |
526 |
may be of interest from a historical perspective. My previous |
|
527 |
report on locales and locale expressions~\cite{Ballarin2004a} |
|
528 |
describes a simpler form of expressions than available now and is |
|
529 |
outdated. The mathematical background on orders and lattices is |
|
530 |
taken from Jacobson's textbook on algebra~\cite[Chapter~8]{Jacobson1985}. |
|
32981 | 531 |
|
532 |
The sources of this tutorial, which include all proofs, are |
|
533 |
available with the Isabelle distribution at |
|
54703 | 534 |
@{url "http://isabelle.in.tum.de"}. |
27063 | 535 |
*} |
536 |
||
537 |
text {* |
|
538 |
\begin{table} |
|
539 |
\hrule |
|
540 |
\vspace{2ex} |
|
541 |
\begin{center} |
|
542 |
\begin{tabular}{l>$c<$l} |
|
543 |
\multicolumn{3}{l}{Miscellaneous} \\ |
|
544 |
||
545 |
\textit{attr-name} & ::= |
|
546 |
& \textit{name} $|$ \textit{attribute} $|$ |
|
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
547 |
\textit{name} \textit{attribute} \\ |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
548 |
\textit{qualifier} & ::= |
30751 | 549 |
& \textit{name} [``\textbf{?}'' $|$ ``\textbf{!}''] \\[2ex] |
27063 | 550 |
|
551 |
\multicolumn{3}{l}{Context Elements} \\ |
|
552 |
||
553 |
\textit{fixes} & ::= |
|
554 |
& \textit{name} [ ``\textbf{::}'' \textit{type} ] |
|
555 |
[ ``\textbf{(}'' \textbf{structure} ``\textbf{)}'' $|$ |
|
556 |
\textit{mixfix} ] \\ |
|
557 |
\begin{comment} |
|
558 |
\textit{constrains} & ::= |
|
559 |
& \textit{name} ``\textbf{::}'' \textit{type} \\ |
|
560 |
\end{comment} |
|
561 |
\textit{assumes} & ::= |
|
562 |
& [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\ |
|
563 |
\begin{comment} |
|
564 |
\textit{defines} & ::= |
|
565 |
& [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\ |
|
566 |
\textit{notes} & ::= |
|
567 |
& [ \textit{attr-name} ``\textbf{=}'' ] |
|
568 |
( \textit{qualified-name} [ \textit{attribute} ] )$^+$ \\ |
|
569 |
\end{comment} |
|
570 |
||
571 |
\textit{element} & ::= |
|
572 |
& \textbf{fixes} \textit{fixes} ( \textbf{and} \textit{fixes} )$^*$ \\ |
|
573 |
\begin{comment} |
|
574 |
& | |
|
575 |
& \textbf{constrains} \textit{constrains} |
|
576 |
( \textbf{and} \textit{constrains} )$^*$ \\ |
|
577 |
\end{comment} |
|
578 |
& | |
|
579 |
& \textbf{assumes} \textit{assumes} ( \textbf{and} \textit{assumes} )$^*$ \\[2ex] |
|
580 |
%\begin{comment} |
|
581 |
% & | |
|
582 |
% & \textbf{defines} \textit{defines} ( \textbf{and} \textit{defines} )$^*$ \\ |
|
583 |
% & | |
|
584 |
% & \textbf{notes} \textit{notes} ( \textbf{and} \textit{notes} )$^*$ \\ |
|
585 |
%\end{comment} |
|
586 |
||
587 |
\multicolumn{3}{l}{Locale Expressions} \\ |
|
588 |
||
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
589 |
\textit{pos-insts} & ::= |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
590 |
& ( \textit{term} $|$ ``\textbf{\_}'' )$^*$ \\ |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
591 |
\textit{named-insts} & ::= |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
592 |
& \textbf{where} \textit{name} ``\textbf{=}'' \textit{term} |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
593 |
( \textbf{and} \textit{name} ``\textbf{=}'' \textit{term} )$^*$ \\ |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
594 |
\textit{instance} & ::= |
30751 | 595 |
& [ \textit{qualifier} ``\textbf{:}'' ] |
33867 | 596 |
\textit{name} ( \textit{pos-insts} $|$ \textit{named-inst} ) \\ |
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
597 |
\textit{expression} & ::= |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
598 |
& \textit{instance} ( ``\textbf{+}'' \textit{instance} )$^*$ |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
599 |
[ \textbf{for} \textit{fixes} ( \textbf{and} \textit{fixes} )$^*$ ] \\[2ex] |
27063 | 600 |
|
601 |
\multicolumn{3}{l}{Declaration of Locales} \\ |
|
602 |
||
603 |
\textit{locale} & ::= |
|
604 |
& \textit{element}$^+$ \\ |
|
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
605 |
& | & \textit{expression} [ ``\textbf{+}'' \textit{element}$^+$ ] \\ |
27063 | 606 |
\textit{toplevel} & ::= |
607 |
& \textbf{locale} \textit{name} [ ``\textbf{=}'' |
|
608 |
\textit{locale} ] \\[2ex] |
|
609 |
||
610 |
\multicolumn{3}{l}{Interpretation} \\ |
|
611 |
||
612 |
\textit{equation} & ::= & [ \textit{attr-name} ``\textbf{:}'' ] |
|
613 |
\textit{prop} \\ |
|
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
614 |
\textit{equations} & ::= & \textbf{where} \textit{equation} ( \textbf{and} |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
615 |
\textit{equation} )$^*$ \\ |
27063 | 616 |
\textit{toplevel} & ::= |
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
617 |
& \textbf{sublocale} \textit{name} ( ``$<$'' $|$ |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
618 |
``$\subseteq$'' ) \textit{expression} \textit{proof} \\ |
27063 | 619 |
& | |
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
620 |
& \textbf{interpretation} |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
621 |
\textit{expression} [ \textit{equations} ] \textit{proof} \\ |
27063 | 622 |
& | |
29566
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
623 |
& \textbf{interpret} |
937baa077df2
Fixed tutorial to compile with new locales; grammar of new locale commands.
ballarin
parents:
27595
diff
changeset
|
624 |
\textit{expression} \textit{proof} \\[2ex] |
27063 | 625 |
|
626 |
\multicolumn{3}{l}{Diagnostics} \\ |
|
627 |
||
628 |
\textit{toplevel} & ::= |
|
32981 | 629 |
& \textbf{print\_locales} \\ |
33867 | 630 |
& | & \textbf{print\_locale} [ ``\textbf{!}'' ] \textit{name} \\ |
631 |
& | & \textbf{print\_interps} \textit{name} |
|
27063 | 632 |
\end{tabular} |
633 |
\end{center} |
|
634 |
\hrule |
|
30826 | 635 |
\caption{Syntax of Locale Commands.} |
27063 | 636 |
\label{tab:commands} |
637 |
\end{table} |
|
638 |
*} |
|
639 |
||
32983 | 640 |
text {* \textbf{Revision History.} For the present third revision of |
641 |
the tutorial, much of the explanatory text |
|
642 |
was rewritten. Inheritance of interpretation equations is |
|
643 |
available with the forthcoming release of Isabelle, which at the |
|
644 |
time of editing these notes is expected for the end of 2009. |
|
645 |
The second revision accommodates changes introduced by the locales |
|
646 |
reimplementation for Isabelle 2009. Most notably locale expressions |
|
647 |
have been generalised from renaming to instantiation. *} |
|
32981 | 648 |
|
27063 | 649 |
text {* \textbf{Acknowledgements.} Alexander Krauss, Tobias Nipkow, |
37206 | 650 |
Randy Pollack, Andreas Schropp, Christian Sternagel and Makarius Wenzel |
651 |
have made |
|
32983 | 652 |
useful comments on earlier versions of this document. The section |
653 |
on conditional interpretation was inspired by a number of e-mail |
|
654 |
enquiries the author received from locale users, and which suggested |
|
655 |
that this use case is important enough to deserve explicit |
|
656 |
explanation. The term \emph{conditional interpretation} is due to |
|
657 |
Larry Paulson. *} |
|
27063 | 658 |
|
659 |
end |