author | wenzelm |
Sat, 15 Oct 2005 00:08:09 +0200 | |
changeset 17860 | b4cf247ea0d2 |
parent 16417 | 9bc16273c2d4 |
child 21020 | 9af9ceb16d58 |
permissions | -rw-r--r-- |
11565 | 1 |
(* Title: HOL/NanoJava/Example.thy |
2 |
ID: $Id$ |
|
3 |
Author: David von Oheimb |
|
4 |
Copyright 2001 Technische Universitaet Muenchen |
|
5 |
*) |
|
6 |
||
7 |
header "Example" |
|
8 |
||
16417 | 9 |
theory Example imports Equivalence begin |
11565 | 10 |
|
11 |
text {* |
|
12 |
||
13 |
\begin{verbatim} |
|
14 |
class Nat { |
|
15 |
||
16 |
Nat pred; |
|
17 |
||
18 |
Nat suc() |
|
19 |
{ Nat n = new Nat(); n.pred = this; return n; } |
|
20 |
||
21 |
Nat eq(Nat n) |
|
22 |
{ if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred); |
|
23 |
else return n.pred; // false |
|
24 |
else if (n.pred != null) return this.pred; // false |
|
25 |
else return this.suc(); // true |
|
26 |
} |
|
27 |
||
28 |
Nat add(Nat n) |
|
29 |
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; } |
|
30 |
||
31 |
public static void main(String[] args) // test x+1=1+x |
|
32 |
{ |
|
33 |
Nat one = new Nat().suc(); |
|
34 |
Nat x = new Nat().suc().suc().suc().suc(); |
|
35 |
Nat ok = x.suc().eq(x.add(one)); |
|
36 |
System.out.println(ok != null); |
|
37 |
} |
|
38 |
} |
|
39 |
\end{verbatim} |
|
40 |
||
41 |
*} |
|
42 |
||
43 |
axioms This_neq_Par [simp]: "This \<noteq> Par" |
|
44 |
Res_neq_This [simp]: "Res \<noteq> This" |
|
45 |
||
46 |
||
47 |
subsection "Program representation" |
|
48 |
||
49 |
consts N :: cname ("Nat") (* with mixfix because of clash with NatDef.Nat *) |
|
50 |
consts pred :: fname |
|
51 |
consts suc :: mname |
|
52 |
add :: mname |
|
53 |
consts any :: vname |
|
54 |
syntax dummy:: expr ("<>") |
|
55 |
one :: expr |
|
56 |
translations |
|
57 |
"<>" == "LAcc any" |
|
58 |
"one" == "{Nat}new Nat..suc(<>)" |
|
59 |
||
60 |
text {* The following properties could be derived from a more complete |
|
61 |
program model, which we leave out for laziness. *} |
|
62 |
||
63 |
axioms Nat_no_subclasses [simp]: "D \<preceq>C Nat = (D=Nat)" |
|
64 |
||
65 |
axioms method_Nat_add [simp]: "method Nat add = Some |
|
66 |
\<lparr> par=Class Nat, res=Class Nat, lcl=[], |
|
67 |
bdy= If((LAcc This..pred)) |
|
68 |
(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>))) |
|
69 |
Else Res :== LAcc Par \<rparr>" |
|
70 |
||
71 |
axioms method_Nat_suc [simp]: "method Nat suc = Some |
|
72 |
\<lparr> par=NT, res=Class Nat, lcl=[], |
|
73 |
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This \<rparr>" |
|
74 |
||
75 |
axioms field_Nat [simp]: "field Nat = empty(pred\<mapsto>Class Nat)" |
|
76 |
||
77 |
lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s" |
|
78 |
by (simp add: init_locs_def init_vars_def) |
|
79 |
||
80 |
lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s" |
|
81 |
by (simp add: init_locs_def init_vars_def) |
|
82 |
||
83 |
lemma upd_obj_new_obj_Nat [simp]: |
|
84 |
"upd_obj a pred v (new_obj a Nat s) = hupd(a\<mapsto>(Nat, empty(pred\<mapsto>v))) s" |
|
85 |
by (simp add: new_obj_def init_vars_def upd_obj_def Let_def) |
|
86 |
||
87 |
||
88 |
subsection "``atleast'' relation for interpretation of Nat ``values''" |
|
89 |
||
90 |
consts Nat_atleast :: "state \<Rightarrow> val \<Rightarrow> nat \<Rightarrow> bool" ("_:_ \<ge> _" [51, 51, 51] 50) |
|
91 |
primrec "s:x\<ge>0 = (x\<noteq>Null)" |
|
92 |
"s:x\<ge>Suc n = (\<exists>a. x=Addr a \<and> heap s a \<noteq> None \<and> s:get_field s a pred\<ge>n)" |
|
93 |
||
94 |
lemma Nat_atleast_lupd [rule_format, simp]: |
|
95 |
"\<forall>s v. lupd(x\<mapsto>y) s:v \<ge> n = (s:v \<ge> n)" |
|
96 |
apply (induct n) |
|
97 |
by auto |
|
98 |
||
99 |
lemma Nat_atleast_set_locs [rule_format, simp]: |
|
100 |
"\<forall>s v. set_locs l s:v \<ge> n = (s:v \<ge> n)" |
|
101 |
apply (induct n) |
|
102 |
by auto |
|
103 |
||
11772 | 104 |
lemma Nat_atleast_del_locs [rule_format, simp]: |
105 |
"\<forall>s v. del_locs s:v \<ge> n = (s:v \<ge> n)" |
|
11565 | 106 |
apply (induct n) |
107 |
by auto |
|
108 |
||
109 |
lemma Nat_atleast_NullD [rule_format]: "s:Null \<ge> n \<longrightarrow> False" |
|
110 |
apply (induct n) |
|
111 |
by auto |
|
112 |
||
113 |
lemma Nat_atleast_pred_NullD [rule_format]: |
|
114 |
"Null = get_field s a pred \<Longrightarrow> s:Addr a \<ge> n \<longrightarrow> n = 0" |
|
115 |
apply (induct n) |
|
116 |
by (auto dest: Nat_atleast_NullD) |
|
117 |
||
118 |
lemma Nat_atleast_mono [rule_format]: |
|
119 |
"\<forall>a. s:get_field s a pred \<ge> n \<longrightarrow> heap s a \<noteq> None \<longrightarrow> s:Addr a \<ge> n" |
|
120 |
apply (induct n) |
|
121 |
by auto |
|
122 |
||
123 |
lemma Nat_atleast_newC [rule_format]: |
|
124 |
"heap s aa = None \<Longrightarrow> \<forall>v. s:v \<ge> n \<longrightarrow> hupd(aa\<mapsto>obj) s:v \<ge> n" |
|
125 |
apply (induct n) |
|
126 |
apply auto |
|
127 |
apply (case_tac "aa=a") |
|
128 |
apply auto |
|
129 |
apply (tactic "smp_tac 1 1") |
|
130 |
apply (case_tac "aa=a") |
|
131 |
apply auto |
|
132 |
done |
|
133 |
||
134 |
||
135 |
subsection "Proof(s) using the Hoare logic" |
|
136 |
||
12742 | 137 |
theorem add_homomorph_lb: |
11565 | 138 |
"{} \<turnstile> {\<lambda>s. s:s<This> \<ge> X \<and> s:s<Par> \<ge> Y} Meth(Nat,add) {\<lambda>s. s:s<Res> \<ge> X+Y}" |
12742 | 139 |
apply (rule hoare_ehoare.Meth) (* 1 *) |
11565 | 140 |
apply clarsimp |
141 |
apply (rule_tac P'= "\<lambda>Z s. (s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z) \<and> D=Nat" and |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
142 |
Q'= "\<lambda>Z s. s:s<Res> \<ge> fst Z+snd Z" in AxSem.Conseq) |
11565 | 143 |
prefer 2 |
144 |
apply (clarsimp simp add: init_locs_def init_vars_def) |
|
145 |
apply rule |
|
146 |
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
147 |
apply (rule_tac P = "\<lambda>Z Cm s. s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z" in AxSem.Impl1) |
12742 | 148 |
apply (clarsimp simp add: body_def) (* 4 *) |
11565 | 149 |
apply (rename_tac n m) |
150 |
apply (rule_tac Q = "\<lambda>v s. (s:s<This> \<ge> n \<and> s:s<Par> \<ge> m) \<and> |
|
151 |
(\<exists>a. s<This> = Addr a \<and> v = get_field s a pred)" in hoare_ehoare.Cond) |
|
152 |
apply (rule hoare_ehoare.FAcc) |
|
153 |
apply (rule eConseq1) |
|
154 |
apply (rule hoare_ehoare.LAcc) |
|
155 |
apply fast |
|
156 |
apply auto |
|
157 |
prefer 2 |
|
158 |
apply (rule hoare_ehoare.LAss) |
|
159 |
apply (rule eConseq1) |
|
160 |
apply (rule hoare_ehoare.LAcc) |
|
161 |
apply (auto dest: Nat_atleast_pred_NullD) |
|
162 |
apply (rule hoare_ehoare.LAss) |
|
163 |
apply (rule_tac |
|
164 |
Q = "\<lambda>v s. (\<forall>m. n = Suc m \<longrightarrow> s:v \<ge> m) \<and> s:s<Par> \<ge> m" and |
|
165 |
R = "\<lambda>T P s. (\<forall>m. n = Suc m \<longrightarrow> s:T \<ge> m) \<and> s:P \<ge> Suc m" |
|
12742 | 166 |
in hoare_ehoare.Call) (* 13 *) |
11565 | 167 |
apply (rule hoare_ehoare.FAcc) |
168 |
apply (rule eConseq1) |
|
169 |
apply (rule hoare_ehoare.LAcc) |
|
170 |
apply clarify |
|
171 |
apply (drule sym, rotate_tac -1, frule (1) trans) |
|
172 |
apply simp |
|
173 |
prefer 2 |
|
174 |
apply clarsimp |
|
12742 | 175 |
apply (rule hoare_ehoare.Meth) (* 17 *) |
11565 | 176 |
apply clarsimp |
177 |
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
178 |
apply (rule AxSem.Conseq) |
11565 | 179 |
apply rule |
12742 | 180 |
apply (rule hoare_ehoare.Asm) (* 20 *) |
11565 | 181 |
apply (rule_tac a = "((case n of 0 \<Rightarrow> 0 | Suc m \<Rightarrow> m),m+1)" in UN_I, rule+) |
182 |
apply (clarsimp split add: nat.split_asm dest!: Nat_atleast_mono) |
|
183 |
apply rule |
|
12742 | 184 |
apply (rule hoare_ehoare.Call) (* 21 *) |
11565 | 185 |
apply (rule hoare_ehoare.LAcc) |
186 |
apply rule |
|
187 |
apply (rule hoare_ehoare.LAcc) |
|
188 |
apply clarify |
|
12742 | 189 |
apply (rule hoare_ehoare.Meth) (* 24 *) |
11565 | 190 |
apply clarsimp |
191 |
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse) |
|
12934
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
oheimb
parents:
12742
diff
changeset
|
192 |
apply (rule AxSem.Impl1) |
11565 | 193 |
apply (clarsimp simp add: body_def) |
12742 | 194 |
apply (rule hoare_ehoare.Comp) (* 26 *) |
11565 | 195 |
prefer 2 |
196 |
apply (rule hoare_ehoare.FAss) |
|
197 |
prefer 2 |
|
198 |
apply rule |
|
199 |
apply (rule hoare_ehoare.LAcc) |
|
200 |
apply (rule hoare_ehoare.LAcc) |
|
201 |
apply (rule hoare_ehoare.LAss) |
|
202 |
apply (rule eConseq1) |
|
12742 | 203 |
apply (rule hoare_ehoare.NewC) (* 32 *) |
11565 | 204 |
apply (auto dest!: new_AddrD elim: Nat_atleast_newC) |
205 |
done |
|
206 |
||
207 |
||
208 |
end |