author | haftmann |
Mon, 21 May 2007 19:11:42 +0200 | |
changeset 23063 | b4ee6ec4f9c6 |
parent 21404 | eb85850d3eb7 |
child 26106 | be52145f482d |
permissions | -rw-r--r-- |
13586 | 1 |
(* Title: HOL/Library/FuncSet.thy |
2 |
ID: $Id$ |
|
3 |
Author: Florian Kammueller and Lawrence C Paulson |
|
4 |
*) |
|
5 |
||
14706 | 6 |
header {* Pi and Function Sets *} |
13586 | 7 |
|
15131 | 8 |
theory FuncSet |
15140 | 9 |
imports Main |
15131 | 10 |
begin |
13586 | 11 |
|
19736 | 12 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
13 |
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where |
19736 | 14 |
"Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}" |
13586 | 15 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
16 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
17 |
extensional :: "'a set => ('a => 'b) set" where |
19736 | 18 |
"extensional A = {f. \<forall>x. x~:A --> f x = arbitrary}" |
13586 | 19 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
20 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
21 |
"restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where |
19736 | 22 |
"restrict f A = (%x. if x \<in> A then f x else arbitrary)" |
13586 | 23 |
|
19536 | 24 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
25 |
funcset :: "['a set, 'b set] => ('a => 'b) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
26 |
(infixr "->" 60) where |
19536 | 27 |
"A -> B == Pi A (%_. B)" |
28 |
||
21210 | 29 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
30 |
funcset (infixr "\<rightarrow>" 60) |
19536 | 31 |
|
13586 | 32 |
syntax |
19736 | 33 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10) |
34 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3%_:_./ _)" [0,0,3] 3) |
|
13586 | 35 |
|
36 |
syntax (xsymbols) |
|
19736 | 37 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
38 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
13586 | 39 |
|
14565 | 40 |
syntax (HTML output) |
19736 | 41 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
42 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
14565 | 43 |
|
13586 | 44 |
translations |
20770 | 45 |
"PI x:A. B" == "CONST Pi A (%x. B)" |
46 |
"%x:A. f" == "CONST restrict (%x. f) A" |
|
13586 | 47 |
|
19736 | 48 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
49 |
"compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where |
19736 | 50 |
"compose A g f = (\<lambda>x\<in>A. g (f x))" |
13586 | 51 |
|
52 |
||
53 |
subsection{*Basic Properties of @{term Pi}*} |
|
54 |
||
55 |
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" |
|
14706 | 56 |
by (simp add: Pi_def) |
13586 | 57 |
|
58 |
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" |
|
14706 | 59 |
by (simp add: Pi_def) |
13586 | 60 |
|
61 |
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" |
|
14706 | 62 |
by (simp add: Pi_def) |
13586 | 63 |
|
64 |
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" |
|
14706 | 65 |
by (simp add: Pi_def) |
13586 | 66 |
|
14762 | 67 |
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" |
19736 | 68 |
by (auto simp add: Pi_def) |
14762 | 69 |
|
13586 | 70 |
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})" |
13593 | 71 |
apply (simp add: Pi_def, auto) |
13586 | 72 |
txt{*Converse direction requires Axiom of Choice to exhibit a function |
73 |
picking an element from each non-empty @{term "B x"}*} |
|
13593 | 74 |
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) |
14706 | 75 |
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) |
13586 | 76 |
done |
77 |
||
13593 | 78 |
lemma Pi_empty [simp]: "Pi {} B = UNIV" |
14706 | 79 |
by (simp add: Pi_def) |
13593 | 80 |
|
81 |
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" |
|
14706 | 82 |
by (simp add: Pi_def) |
13586 | 83 |
|
84 |
text{*Covariance of Pi-sets in their second argument*} |
|
85 |
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" |
|
14706 | 86 |
by (simp add: Pi_def, blast) |
13586 | 87 |
|
88 |
text{*Contravariance of Pi-sets in their first argument*} |
|
89 |
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" |
|
14706 | 90 |
by (simp add: Pi_def, blast) |
13586 | 91 |
|
92 |
||
93 |
subsection{*Composition With a Restricted Domain: @{term compose}*} |
|
94 |
||
14706 | 95 |
lemma funcset_compose: |
96 |
"[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" |
|
97 |
by (simp add: Pi_def compose_def restrict_def) |
|
13586 | 98 |
|
99 |
lemma compose_assoc: |
|
14706 | 100 |
"[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] |
13586 | 101 |
==> compose A h (compose A g f) = compose A (compose B h g) f" |
14706 | 102 |
by (simp add: expand_fun_eq Pi_def compose_def restrict_def) |
13586 | 103 |
|
104 |
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" |
|
14706 | 105 |
by (simp add: compose_def restrict_def) |
13586 | 106 |
|
107 |
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" |
|
14706 | 108 |
by (auto simp add: image_def compose_eq) |
13586 | 109 |
|
110 |
||
111 |
subsection{*Bounded Abstraction: @{term restrict}*} |
|
112 |
||
113 |
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" |
|
14706 | 114 |
by (simp add: Pi_def restrict_def) |
13586 | 115 |
|
116 |
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" |
|
14706 | 117 |
by (simp add: Pi_def restrict_def) |
13586 | 118 |
|
119 |
lemma restrict_apply [simp]: |
|
14706 | 120 |
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)" |
121 |
by (simp add: restrict_def) |
|
13586 | 122 |
|
14706 | 123 |
lemma restrict_ext: |
13586 | 124 |
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" |
14706 | 125 |
by (simp add: expand_fun_eq Pi_def Pi_def restrict_def) |
13586 | 126 |
|
14853 | 127 |
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" |
14706 | 128 |
by (simp add: inj_on_def restrict_def) |
13586 | 129 |
|
130 |
lemma Id_compose: |
|
14706 | 131 |
"[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" |
132 |
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) |
|
13586 | 133 |
|
134 |
lemma compose_Id: |
|
14706 | 135 |
"[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" |
136 |
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) |
|
13586 | 137 |
|
14853 | 138 |
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" |
19736 | 139 |
by (auto simp add: restrict_def) |
13586 | 140 |
|
14745 | 141 |
|
14762 | 142 |
subsection{*Bijections Between Sets*} |
143 |
||
144 |
text{*The basic definition could be moved to @{text "Fun.thy"}, but most of |
|
145 |
the theorems belong here, or need at least @{term Hilbert_Choice}.*} |
|
146 |
||
19736 | 147 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
148 |
bij_betw :: "['a => 'b, 'a set, 'b set] => bool" where -- {* bijective *} |
19736 | 149 |
"bij_betw f A B = (inj_on f A & f ` A = B)" |
14762 | 150 |
|
151 |
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" |
|
19736 | 152 |
by (simp add: bij_betw_def) |
14762 | 153 |
|
154 |
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" |
|
19736 | 155 |
by (auto simp add: bij_betw_def inj_on_Inv Pi_def) |
14762 | 156 |
|
157 |
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A" |
|
19736 | 158 |
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem) |
159 |
apply (simp add: image_compose [symmetric] o_def) |
|
160 |
apply (simp add: image_def Inv_f_f) |
|
161 |
done |
|
14762 | 162 |
|
14853 | 163 |
lemma inj_on_compose: |
164 |
"[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" |
|
165 |
by (auto simp add: bij_betw_def inj_on_def compose_eq) |
|
166 |
||
14762 | 167 |
lemma bij_betw_compose: |
168 |
"[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" |
|
19736 | 169 |
apply (simp add: bij_betw_def compose_eq inj_on_compose) |
170 |
apply (auto simp add: compose_def image_def) |
|
171 |
done |
|
14762 | 172 |
|
14853 | 173 |
lemma bij_betw_restrict_eq [simp]: |
174 |
"bij_betw (restrict f A) A B = bij_betw f A B" |
|
175 |
by (simp add: bij_betw_def) |
|
176 |
||
177 |
||
178 |
subsection{*Extensionality*} |
|
179 |
||
180 |
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary" |
|
181 |
by (simp add: extensional_def) |
|
182 |
||
183 |
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" |
|
184 |
by (simp add: restrict_def extensional_def) |
|
185 |
||
186 |
lemma compose_extensional [simp]: "compose A f g \<in> extensional A" |
|
187 |
by (simp add: compose_def) |
|
188 |
||
189 |
lemma extensionalityI: |
|
190 |
"[| f \<in> extensional A; g \<in> extensional A; |
|
191 |
!!x. x\<in>A ==> f x = g x |] ==> f = g" |
|
192 |
by (force simp add: expand_fun_eq extensional_def) |
|
193 |
||
194 |
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A" |
|
195 |
by (unfold Inv_def) (fast intro: restrict_in_funcset someI2) |
|
196 |
||
197 |
lemma compose_Inv_id: |
|
198 |
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)" |
|
199 |
apply (simp add: bij_betw_def compose_def) |
|
200 |
apply (rule restrict_ext, auto) |
|
201 |
apply (erule subst) |
|
202 |
apply (simp add: Inv_f_f) |
|
203 |
done |
|
204 |
||
205 |
lemma compose_id_Inv: |
|
206 |
"f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)" |
|
207 |
apply (simp add: compose_def) |
|
208 |
apply (rule restrict_ext) |
|
209 |
apply (simp add: f_Inv_f) |
|
210 |
done |
|
211 |
||
14762 | 212 |
|
14745 | 213 |
subsection{*Cardinality*} |
214 |
||
215 |
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" |
|
19736 | 216 |
apply (rule card_inj_on_le) |
217 |
apply (auto simp add: Pi_def) |
|
218 |
done |
|
14745 | 219 |
|
220 |
lemma card_bij: |
|
221 |
"[|f \<in> A\<rightarrow>B; inj_on f A; |
|
222 |
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" |
|
19736 | 223 |
by (blast intro: card_inj order_antisym) |
14745 | 224 |
|
20362 | 225 |
|
226 |
(*The following declarations generate polymorphic Skolem functions for |
|
227 |
these theorems. Eventually they should become redundant, once this |
|
228 |
is done automatically.*) |
|
229 |
||
230 |
declare FuncSet.Pi_I [skolem] |
|
231 |
declare FuncSet.Pi_mono [skolem] |
|
232 |
declare FuncSet.extensionalityI [skolem] |
|
233 |
declare FuncSet.funcsetI [skolem] |
|
234 |
declare FuncSet.restrictI [skolem] |
|
235 |
declare FuncSet.restrict_in_funcset [skolem] |
|
236 |
||
13586 | 237 |
end |