| author | wenzelm | 
| Thu, 15 Oct 2015 22:25:57 +0200 | |
| changeset 61456 | b521b8b400f7 | 
| parent 61167 | 34f782641caa | 
| child 61945 | 1135b8de26c3 | 
| permissions | -rw-r--r-- | 
| 53572 | 1 | (* Author: John Harrison | 
| 2 | Author: Robert Himmelmann, TU Muenchen (translation from HOL light) | |
| 3 | *) | |
| 36432 | 4 | |
| 60420 | 5 | section \<open>Fashoda meet theorem\<close> | 
| 36432 | 6 | |
| 7 | theory Fashoda | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 8 | imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space | 
| 36432 | 9 | begin | 
| 10 | ||
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 11 | (* move *) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 12 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 13 | lemma cart_eq_inner_axis: "a $ i = a \<bullet> axis i 1" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 14 | by (simp add: inner_axis) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 15 | |
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 16 | lemma axis_in_Basis: "a \<in> Basis \<Longrightarrow> axis i a \<in> Basis" | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 17 | by (auto simp add: Basis_vec_def axis_eq_axis) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 18 | |
| 60420 | 19 | subsection \<open>Bijections between intervals.\<close> | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 20 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 21 | definition interval_bij :: "'a \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 22 | where "interval_bij = | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 23 | (\<lambda>(a, b) (u, v) x. (\<Sum>i\<in>Basis. (u\<bullet>i + (x\<bullet>i - a\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (v\<bullet>i - u\<bullet>i)) *\<^sub>R i))" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 24 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 25 | lemma interval_bij_affine: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 26 | "interval_bij (a,b) (u,v) = (\<lambda>x. (\<Sum>i\<in>Basis. ((v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (x\<bullet>i)) *\<^sub>R i) + | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 27 | (\<Sum>i\<in>Basis. (u\<bullet>i - (v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (a\<bullet>i)) *\<^sub>R i))" | 
| 57418 | 28 | by (auto simp: setsum.distrib[symmetric] scaleR_add_left[symmetric] interval_bij_def fun_eq_iff | 
| 29 | field_simps inner_simps add_divide_distrib[symmetric] intro!: setsum.cong) | |
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 30 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 31 | lemma continuous_interval_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 32 | fixes a b :: "'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 33 | shows "continuous (at x) (interval_bij (a, b) (u, v))" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 34 | by (auto simp add: divide_inverse interval_bij_def intro!: continuous_setsum continuous_intros) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 35 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 36 | lemma continuous_on_interval_bij: "continuous_on s (interval_bij (a, b) (u, v))" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 37 | apply(rule continuous_at_imp_continuous_on) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 38 | apply (rule, rule continuous_interval_bij) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 39 | done | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 40 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 41 | lemma in_interval_interval_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 42 | fixes a b u v x :: "'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 43 | assumes "x \<in> cbox a b" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 44 |     and "cbox u v \<noteq> {}"
 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 45 | shows "interval_bij (a, b) (u, v) x \<in> cbox u v" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 46 | apply (simp only: interval_bij_def split_conv mem_box inner_setsum_left_Basis cong: ball_cong) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 47 | apply safe | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 48 | proof - | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 49 | fix i :: 'a | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 50 | assume i: "i \<in> Basis" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 51 |   have "cbox a b \<noteq> {}"
 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 52 | using assms by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 53 | with i have *: "a\<bullet>i \<le> b\<bullet>i" "u\<bullet>i \<le> v\<bullet>i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 54 | using assms(2) by (auto simp add: box_eq_empty) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 55 | have x: "a\<bullet>i\<le>x\<bullet>i" "x\<bullet>i\<le>b\<bullet>i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 56 | using assms(1)[unfolded mem_box] using i by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 57 | have "0 \<le> (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)" | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56371diff
changeset | 58 | using * x by auto | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 59 | then show "u \<bullet> i \<le> u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 60 | using * by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 61 | have "((x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i)) * (v \<bullet> i - u \<bullet> i) \<le> 1 * (v \<bullet> i - u \<bullet> i)" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 62 | apply (rule mult_right_mono) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 63 | unfolding divide_le_eq_1 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 64 | using * x | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 65 | apply auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 66 | done | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 67 | then show "u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 68 | using * by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 69 | qed | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 70 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 71 | lemma interval_bij_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 72 | "\<forall>(i::'a::euclidean_space)\<in>Basis. a\<bullet>i < b\<bullet>i \<and> u\<bullet>i < v\<bullet>i \<Longrightarrow> | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 73 | interval_bij (a, b) (u, v) (interval_bij (u, v) (a, b) x) = x" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 74 | by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a]) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 75 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 76 | lemma interval_bij_bij_cart: fixes x::"real^'n" assumes "\<forall>i. a$i < b$i \<and> u$i < v$i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 77 | shows "interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 78 | using assms by (intro interval_bij_bij) (auto simp: Basis_vec_def inner_axis) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 79 | |
| 53572 | 80 | |
| 60420 | 81 | subsection \<open>Fashoda meet theorem\<close> | 
| 36432 | 82 | |
| 53572 | 83 | lemma infnorm_2: | 
| 84 | fixes x :: "real^2" | |
| 85 | shows "infnorm x = max (abs (x$1)) (abs (x$2))" | |
| 86 | unfolding infnorm_cart UNIV_2 by (rule cSup_eq) auto | |
| 36432 | 87 | |
| 53572 | 88 | lemma infnorm_eq_1_2: | 
| 89 | fixes x :: "real^2" | |
| 90 | shows "infnorm x = 1 \<longleftrightarrow> | |
| 91 | abs (x$1) \<le> 1 \<and> abs (x$2) \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1)" | |
| 36432 | 92 | unfolding infnorm_2 by auto | 
| 93 | ||
| 53572 | 94 | lemma infnorm_eq_1_imp: | 
| 95 | fixes x :: "real^2" | |
| 96 | assumes "infnorm x = 1" | |
| 97 | shows "abs (x$1) \<le> 1" and "abs (x$2) \<le> 1" | |
| 36432 | 98 | using assms unfolding infnorm_eq_1_2 by auto | 
| 99 | ||
| 53572 | 100 | lemma fashoda_unit: | 
| 101 | fixes f g :: "real \<Rightarrow> real^2" | |
| 56188 | 102 |   assumes "f ` {-1 .. 1} \<subseteq> cbox (-1) 1"
 | 
| 103 |     and "g ` {-1 .. 1} \<subseteq> cbox (-1) 1"
 | |
| 104 |     and "continuous_on {-1 .. 1} f"
 | |
| 105 |     and "continuous_on {-1 .. 1} g"
 | |
| 53572 | 106 | and "f (- 1)$1 = - 1" | 
| 107 | and "f 1$1 = 1" "g (- 1) $2 = -1" | |
| 108 | and "g 1 $2 = 1" | |
| 56188 | 109 |   shows "\<exists>s\<in>{-1 .. 1}. \<exists>t\<in>{-1 .. 1}. f s = g t"
 | 
| 53572 | 110 | proof (rule ccontr) | 
| 111 | assume "\<not> ?thesis" | |
| 112 | note as = this[unfolded bex_simps,rule_format] | |
| 36432 | 113 | def sqprojection \<equiv> "\<lambda>z::real^2. (inverse (infnorm z)) *\<^sub>R z" | 
| 53572 | 114 | def negatex \<equiv> "\<lambda>x::real^2. (vector [-(x$1), x$2])::real^2" | 
| 115 | have lem1: "\<forall>z::real^2. infnorm (negatex z) = infnorm z" | |
| 36432 | 116 | unfolding negatex_def infnorm_2 vector_2 by auto | 
| 53572 | 117 | have lem2: "\<forall>z. z \<noteq> 0 \<longrightarrow> infnorm (sqprojection z) = 1" | 
| 118 | unfolding sqprojection_def | |
| 119 | unfolding infnorm_mul[unfolded scalar_mult_eq_scaleR] | |
| 120 | unfolding abs_inverse real_abs_infnorm | |
| 53628 | 121 | apply (subst infnorm_eq_0[symmetric]) | 
| 53572 | 122 | apply auto | 
| 123 | done | |
| 124 | let ?F = "\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w" | |
| 56188 | 125 |   have *: "\<And>i. (\<lambda>x::real^2. x $ i) ` cbox (- 1) 1 = {-1 .. 1}"
 | 
| 53572 | 126 | apply (rule set_eqI) | 
| 56188 | 127 | unfolding image_iff Bex_def mem_interval_cart interval_cbox_cart | 
| 53572 | 128 | apply rule | 
| 129 | defer | |
| 130 | apply (rule_tac x="vec x" in exI) | |
| 131 | apply auto | |
| 132 | done | |
| 133 |   {
 | |
| 134 | fix x | |
| 56188 | 135 | assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` (cbox (- 1) (1::real^2))" | 
| 55675 | 136 | then obtain w :: "real^2" where w: | 
| 56188 | 137 | "w \<in> cbox (- 1) 1" | 
| 55675 | 138 | "x = (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w" | 
| 139 | unfolding image_iff .. | |
| 53572 | 140 | then have "x \<noteq> 0" | 
| 141 | using as[of "w$1" "w$2"] | |
| 56188 | 142 | unfolding mem_interval_cart atLeastAtMost_iff | 
| 53572 | 143 | by auto | 
| 144 | } note x0 = this | |
| 145 | have 21: "\<And>i::2. i \<noteq> 1 \<Longrightarrow> i = 2" | |
| 146 | using UNIV_2 by auto | |
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 147 |   have 1: "box (- 1) (1::real^2) \<noteq> {}"
 | 
| 53572 | 148 | unfolding interval_eq_empty_cart by auto | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 149 | have 2: "continuous_on (cbox (- 1) 1) (negatex \<circ> sqprojection \<circ> ?F)" | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56273diff
changeset | 150 | apply (intro continuous_intros continuous_on_component) | 
| 53572 | 151 | unfolding * | 
| 152 | apply (rule assms)+ | |
| 153 | apply (subst sqprojection_def) | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56273diff
changeset | 154 | apply (intro continuous_intros) | 
| 53572 | 155 | apply (simp add: infnorm_eq_0 x0) | 
| 156 | apply (rule linear_continuous_on) | |
| 157 | proof - | |
| 158 | show "bounded_linear negatex" | |
| 159 | apply (rule bounded_linearI') | |
| 160 | unfolding vec_eq_iff | |
| 161 | proof (rule_tac[!] allI) | |
| 162 | fix i :: 2 | |
| 163 | fix x y :: "real^2" | |
| 164 | fix c :: real | |
| 165 | show "negatex (x + y) $ i = | |
| 166 | (negatex x + negatex y) $ i" "negatex (c *\<^sub>R x) $ i = (c *\<^sub>R negatex x) $ i" | |
| 167 | apply - | |
| 168 | apply (case_tac[!] "i\<noteq>1") | |
| 169 | prefer 3 | |
| 170 | apply (drule_tac[1-2] 21) | |
| 171 | unfolding negatex_def | |
| 172 | apply (auto simp add:vector_2) | |
| 173 | done | |
| 174 | qed | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44531diff
changeset | 175 | qed | 
| 56188 | 176 | have 3: "(negatex \<circ> sqprojection \<circ> ?F) ` cbox (-1) 1 \<subseteq> cbox (-1) 1" | 
| 53572 | 177 | unfolding subset_eq | 
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61165diff
changeset | 178 | proof (rule, goal_cases) | 
| 61165 | 179 | case (1 x) | 
| 55675 | 180 | then obtain y :: "real^2" where y: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 181 | "y \<in> cbox (- 1) 1" | 
| 55675 | 182 | "x = (negatex \<circ> sqprojection \<circ> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w)) y" | 
| 183 | unfolding image_iff .. | |
| 53572 | 184 | have "?F y \<noteq> 0" | 
| 185 | apply (rule x0) | |
| 186 | using y(1) | |
| 187 | apply auto | |
| 188 | done | |
| 189 | then have *: "infnorm (sqprojection (?F y)) = 1" | |
| 53628 | 190 | unfolding y o_def | 
| 191 | by - (rule lem2[rule_format]) | |
| 53572 | 192 | have "infnorm x = 1" | 
| 53628 | 193 | unfolding *[symmetric] y o_def | 
| 194 | by (rule lem1[rule_format]) | |
| 56188 | 195 | then show "x \<in> cbox (-1) 1" | 
| 196 | unfolding mem_interval_cart interval_cbox_cart infnorm_2 | |
| 53572 | 197 | apply - | 
| 198 | apply rule | |
| 199 | proof - | |
| 61165 | 200 | fix i | 
| 201 | assume "max \<bar>x $ 1\<bar> \<bar>x $ 2\<bar> = 1" | |
| 202 | then show "(- 1) $ i \<le> x $ i \<and> x $ i \<le> 1 $ i" | |
| 53572 | 203 | apply (cases "i = 1") | 
| 204 | defer | |
| 205 | apply (drule 21) | |
| 206 | apply auto | |
| 207 | done | |
| 208 | qed | |
| 209 | qed | |
| 55675 | 210 | obtain x :: "real^2" where x: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 211 | "x \<in> cbox (- 1) 1" | 
| 55675 | 212 | "(negatex \<circ> sqprojection \<circ> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w)) x = x" | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 213 | apply (rule brouwer_weak[of "cbox (- 1) (1::real^2)" "negatex \<circ> sqprojection \<circ> ?F"]) | 
| 56188 | 214 | apply (rule compact_cbox convex_box)+ | 
| 215 | unfolding interior_cbox | |
| 53572 | 216 | apply (rule 1 2 3)+ | 
| 55675 | 217 | apply blast | 
| 53572 | 218 | done | 
| 219 | have "?F x \<noteq> 0" | |
| 220 | apply (rule x0) | |
| 221 | using x(1) | |
| 222 | apply auto | |
| 223 | done | |
| 224 | then have *: "infnorm (sqprojection (?F x)) = 1" | |
| 53628 | 225 | unfolding o_def | 
| 226 | by (rule lem2[rule_format]) | |
| 53572 | 227 | have nx: "infnorm x = 1" | 
| 53628 | 228 | apply (subst x(2)[symmetric]) | 
| 229 | unfolding *[symmetric] o_def | |
| 53572 | 230 | apply (rule lem1[rule_format]) | 
| 231 | done | |
| 232 | have "\<forall>x i. x \<noteq> 0 \<longrightarrow> (0 < (sqprojection x)$i \<longleftrightarrow> 0 < x$i)" | |
| 233 | and "\<forall>x i. x \<noteq> 0 \<longrightarrow> ((sqprojection x)$i < 0 \<longleftrightarrow> x$i < 0)" | |
| 234 | apply - | |
| 235 | apply (rule_tac[!] allI impI)+ | |
| 236 | proof - | |
| 237 | fix x :: "real^2" | |
| 238 | fix i :: 2 | |
| 239 | assume x: "x \<noteq> 0" | |
| 240 | have "inverse (infnorm x) > 0" | |
| 53628 | 241 | using x[unfolded infnorm_pos_lt[symmetric]] by auto | 
| 53572 | 242 | then show "(0 < sqprojection x $ i) = (0 < x $ i)" | 
| 243 | and "(sqprojection x $ i < 0) = (x $ i < 0)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44136diff
changeset | 244 | unfolding sqprojection_def vector_component_simps vector_scaleR_component real_scaleR_def | 
| 53572 | 245 | unfolding zero_less_mult_iff mult_less_0_iff | 
| 246 | by (auto simp add: field_simps) | |
| 247 | qed | |
| 36432 | 248 | note lem3 = this[rule_format] | 
| 53572 | 249 |   have x1: "x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}"
 | 
| 250 | using x(1) unfolding mem_interval_cart by auto | |
| 251 | then have nz: "f (x $ 1) - g (x $ 2) \<noteq> 0" | |
| 252 | unfolding right_minus_eq | |
| 253 | apply - | |
| 254 | apply (rule as) | |
| 255 | apply auto | |
| 256 | done | |
| 257 | have "x $ 1 = -1 \<or> x $ 1 = 1 \<or> x $ 2 = -1 \<or> x $ 2 = 1" | |
| 258 | using nx unfolding infnorm_eq_1_2 by auto | |
| 259 | then show False | |
| 260 | proof - | |
| 261 | fix P Q R S | |
| 262 | presume "P \<or> Q \<or> R \<or> S" | |
| 263 | and "P \<Longrightarrow> False" | |
| 264 | and "Q \<Longrightarrow> False" | |
| 265 | and "R \<Longrightarrow> False" | |
| 266 | and "S \<Longrightarrow> False" | |
| 267 | then show False by auto | |
| 268 | next | |
| 269 | assume as: "x$1 = 1" | |
| 270 | then have *: "f (x $ 1) $ 1 = 1" | |
| 271 | using assms(6) by auto | |
| 36432 | 272 | have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 273 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 53572 | 274 | unfolding as negatex_def vector_2 | 
| 275 | by auto | |
| 276 | moreover | |
| 56188 | 277 | from x1 have "g (x $ 2) \<in> cbox (-1) 1" | 
| 53572 | 278 | apply - | 
| 279 | apply (rule assms(2)[unfolded subset_eq,rule_format]) | |
| 280 | apply auto | |
| 281 | done | |
| 282 | ultimately show False | |
| 283 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 284 | apply (erule_tac x=1 in allE) | |
| 285 | apply auto | |
| 286 | done | |
| 287 | next | |
| 288 | assume as: "x$1 = -1" | |
| 289 | then have *: "f (x $ 1) $ 1 = - 1" | |
| 290 | using assms(5) by auto | |
| 36432 | 291 | have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 292 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 53572 | 293 | unfolding as negatex_def vector_2 | 
| 294 | by auto | |
| 295 | moreover | |
| 56188 | 296 | from x1 have "g (x $ 2) \<in> cbox (-1) 1" | 
| 53572 | 297 | apply - | 
| 298 | apply (rule assms(2)[unfolded subset_eq,rule_format]) | |
| 299 | apply auto | |
| 300 | done | |
| 301 | ultimately show False | |
| 302 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 303 | apply (erule_tac x=1 in allE) | |
| 304 | apply auto | |
| 305 | done | |
| 306 | next | |
| 307 | assume as: "x$2 = 1" | |
| 308 | then have *: "g (x $ 2) $ 2 = 1" | |
| 309 | using assms(8) by auto | |
| 36432 | 310 | have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 311 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] | 
| 53572 | 312 | unfolding as negatex_def vector_2 | 
| 313 | by auto | |
| 314 | moreover | |
| 56188 | 315 | from x1 have "f (x $ 1) \<in> cbox (-1) 1" | 
| 53572 | 316 | apply - | 
| 317 | apply (rule assms(1)[unfolded subset_eq,rule_format]) | |
| 318 | apply auto | |
| 319 | done | |
| 320 | ultimately show False | |
| 321 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 322 | apply (erule_tac x=2 in allE) | |
| 323 | apply auto | |
| 324 | done | |
| 325 | next | |
| 326 | assume as: "x$2 = -1" | |
| 327 | then have *: "g (x $ 2) $ 2 = - 1" | |
| 328 | using assms(7) by auto | |
| 36432 | 329 | have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 330 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] | 
| 53572 | 331 | unfolding as negatex_def vector_2 | 
| 332 | by auto | |
| 333 | moreover | |
| 56188 | 334 | from x1 have "f (x $ 1) \<in> cbox (-1) 1" | 
| 53572 | 335 | apply - | 
| 336 | apply (rule assms(1)[unfolded subset_eq,rule_format]) | |
| 337 | apply auto | |
| 338 | done | |
| 339 | ultimately show False | |
| 340 | unfolding lem3[OF nz] vector_component_simps * mem_interval_cart | |
| 341 | apply (erule_tac x=2 in allE) | |
| 342 | apply auto | |
| 343 | done | |
| 344 | qed auto | |
| 345 | qed | |
| 36432 | 346 | |
| 53572 | 347 | lemma fashoda_unit_path: | 
| 348 | fixes f g :: "real \<Rightarrow> real^2" | |
| 349 | assumes "path f" | |
| 350 | and "path g" | |
| 56188 | 351 | and "path_image f \<subseteq> cbox (-1) 1" | 
| 352 | and "path_image g \<subseteq> cbox (-1) 1" | |
| 53572 | 353 | and "(pathstart f)$1 = -1" | 
| 354 | and "(pathfinish f)$1 = 1" | |
| 355 | and "(pathstart g)$2 = -1" | |
| 356 | and "(pathfinish g)$2 = 1" | |
| 357 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 358 | proof - | |
| 36432 | 359 | note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def] | 
| 360 | def iscale \<equiv> "\<lambda>z::real. inverse 2 *\<^sub>R (z + 1)" | |
| 53572 | 361 |   have isc: "iscale ` {- 1..1} \<subseteq> {0..1}"
 | 
| 362 | unfolding iscale_def by auto | |
| 363 |   have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t"
 | |
| 364 | proof (rule fashoda_unit) | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 365 |     show "(f \<circ> iscale) ` {- 1..1} \<subseteq> cbox (- 1) 1" "(g \<circ> iscale) ` {- 1..1} \<subseteq> cbox (- 1) 1"
 | 
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55675diff
changeset | 366 | using isc and assms(3-4) by (auto simp add: image_comp [symmetric]) | 
| 53572 | 367 |     have *: "continuous_on {- 1..1} iscale"
 | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56273diff
changeset | 368 | unfolding iscale_def by (rule continuous_intros)+ | 
| 36432 | 369 |     show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
 | 
| 53572 | 370 | apply - | 
| 371 | apply (rule_tac[!] continuous_on_compose[OF *]) | |
| 372 | apply (rule_tac[!] continuous_on_subset[OF _ isc]) | |
| 373 | apply (rule assms)+ | |
| 374 | done | |
| 375 | have *: "(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" | |
| 376 | unfolding vec_eq_iff by auto | |
| 377 | show "(f \<circ> iscale) (- 1) $ 1 = - 1" | |
| 378 | and "(f \<circ> iscale) 1 $ 1 = 1" | |
| 379 | and "(g \<circ> iscale) (- 1) $ 2 = -1" | |
| 380 | and "(g \<circ> iscale) 1 $ 2 = 1" | |
| 381 | unfolding o_def iscale_def | |
| 382 | using assms | |
| 383 | by (auto simp add: *) | |
| 384 | qed | |
| 55675 | 385 | then obtain s t where st: | 
| 386 |       "s \<in> {- 1..1}"
 | |
| 387 |       "t \<in> {- 1..1}"
 | |
| 388 | "(f \<circ> iscale) s = (g \<circ> iscale) t" | |
| 56188 | 389 | by auto | 
| 53572 | 390 | show thesis | 
| 53628 | 391 | apply (rule_tac z = "f (iscale s)" in that) | 
| 55675 | 392 | using st | 
| 53572 | 393 | unfolding o_def path_image_def image_iff | 
| 394 | apply - | |
| 395 | apply (rule_tac x="iscale s" in bexI) | |
| 396 | prefer 3 | |
| 397 | apply (rule_tac x="iscale t" in bexI) | |
| 398 | using isc[unfolded subset_eq, rule_format] | |
| 399 | apply auto | |
| 400 | done | |
| 401 | qed | |
| 36432 | 402 | |
| 53627 | 403 | lemma fashoda: | 
| 404 | fixes b :: "real^2" | |
| 405 | assumes "path f" | |
| 406 | and "path g" | |
| 56188 | 407 | and "path_image f \<subseteq> cbox a b" | 
| 408 | and "path_image g \<subseteq> cbox a b" | |
| 53627 | 409 | and "(pathstart f)$1 = a$1" | 
| 410 | and "(pathfinish f)$1 = b$1" | |
| 411 | and "(pathstart g)$2 = a$2" | |
| 412 | and "(pathfinish g)$2 = b$2" | |
| 413 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 414 | proof - | |
| 415 | fix P Q S | |
| 416 | presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" and "Q \<Longrightarrow> thesis" and "S \<Longrightarrow> thesis" | |
| 417 | then show thesis | |
| 418 | by auto | |
| 419 | next | |
| 56188 | 420 |   have "cbox a b \<noteq> {}"
 | 
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 421 | using assms(3) using path_image_nonempty[of f] by auto | 
| 53627 | 422 | then have "a \<le> b" | 
| 423 | unfolding interval_eq_empty_cart less_eq_vec_def by (auto simp add: not_less) | |
| 424 | then show "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" | |
| 425 | unfolding less_eq_vec_def forall_2 by auto | |
| 426 | next | |
| 427 | assume as: "a$1 = b$1" | |
| 428 | have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" | |
| 429 | apply (rule connected_ivt_component_cart) | |
| 430 | apply (rule connected_path_image assms)+ | |
| 431 | apply (rule pathstart_in_path_image) | |
| 432 | apply (rule pathfinish_in_path_image) | |
| 36432 | 433 | unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"] | 
| 53627 | 434 | unfolding pathstart_def | 
| 56188 | 435 | apply (auto simp add: less_eq_vec_def mem_interval_cart) | 
| 53627 | 436 | done | 
| 55675 | 437 | then obtain z :: "real^2" where z: "z \<in> path_image g" "z $ 2 = pathstart f $ 2" .. | 
| 56188 | 438 | have "z \<in> cbox a b" | 
| 53627 | 439 | using z(1) assms(4) | 
| 440 | unfolding path_image_def | |
| 56188 | 441 | by blast | 
| 53627 | 442 | then have "z = f 0" | 
| 443 | unfolding vec_eq_iff forall_2 | |
| 444 | unfolding z(2) pathstart_def | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 445 | using assms(3)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "f 0" 1] | 
| 53627 | 446 | unfolding mem_interval_cart | 
| 447 | apply (erule_tac x=1 in allE) | |
| 448 | using as | |
| 449 | apply auto | |
| 450 | done | |
| 451 | then show thesis | |
| 452 | apply - | |
| 453 | apply (rule that[OF _ z(1)]) | |
| 454 | unfolding path_image_def | |
| 455 | apply auto | |
| 456 | done | |
| 457 | next | |
| 458 | assume as: "a$2 = b$2" | |
| 459 | have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" | |
| 460 | apply (rule connected_ivt_component_cart) | |
| 461 | apply (rule connected_path_image assms)+ | |
| 462 | apply (rule pathstart_in_path_image) | |
| 463 | apply (rule pathfinish_in_path_image) | |
| 464 | unfolding assms | |
| 465 | using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"] | |
| 466 | unfolding pathstart_def | |
| 56188 | 467 | apply (auto simp add: less_eq_vec_def mem_interval_cart) | 
| 53627 | 468 | done | 
| 55675 | 469 | then obtain z where z: "z \<in> path_image f" "z $ 1 = pathstart g $ 1" .. | 
| 56188 | 470 | have "z \<in> cbox a b" | 
| 53627 | 471 | using z(1) assms(3) | 
| 472 | unfolding path_image_def | |
| 56188 | 473 | by blast | 
| 53627 | 474 | then have "z = g 0" | 
| 475 | unfolding vec_eq_iff forall_2 | |
| 476 | unfolding z(2) pathstart_def | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 477 | using assms(4)[unfolded path_image_def subset_eq mem_interval_cart,rule_format,of "g 0" 2] | 
| 53627 | 478 | unfolding mem_interval_cart | 
| 479 | apply (erule_tac x=2 in allE) | |
| 480 | using as | |
| 481 | apply auto | |
| 482 | done | |
| 483 | then show thesis | |
| 484 | apply - | |
| 485 | apply (rule that[OF z(1)]) | |
| 486 | unfolding path_image_def | |
| 487 | apply auto | |
| 488 | done | |
| 489 | next | |
| 490 | assume as: "a $ 1 < b $ 1 \<and> a $ 2 < b $ 2" | |
| 56188 | 491 |   have int_nem: "cbox (-1) (1::real^2) \<noteq> {}"
 | 
| 53627 | 492 | unfolding interval_eq_empty_cart by auto | 
| 55675 | 493 | obtain z :: "real^2" where z: | 
| 494 |       "z \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 495 |       "z \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 53627 | 496 | apply (rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"]) | 
| 36432 | 497 | unfolding path_def path_image_def pathstart_def pathfinish_def | 
| 53627 | 498 | apply (rule_tac[1-2] continuous_on_compose) | 
| 499 | apply (rule assms[unfolded path_def] continuous_on_interval_bij)+ | |
| 500 | unfolding subset_eq | |
| 501 | apply(rule_tac[1-2] ballI) | |
| 502 | proof - | |
| 503 | fix x | |
| 504 |     assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 55675 | 505 | then obtain y where y: | 
| 506 |         "y \<in> {0..1}"
 | |
| 507 | "x = (interval_bij (a, b) (- 1, 1) \<circ> f) y" | |
| 508 | unfolding image_iff .. | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 509 | show "x \<in> cbox (- 1) 1" | 
| 53627 | 510 | unfolding y o_def | 
| 511 | apply (rule in_interval_interval_bij) | |
| 512 | using y(1) | |
| 513 | using assms(3)[unfolded path_image_def subset_eq] int_nem | |
| 514 | apply auto | |
| 515 | done | |
| 516 | next | |
| 517 | fix x | |
| 518 |     assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 55675 | 519 | then obtain y where y: | 
| 520 |         "y \<in> {0..1}"
 | |
| 521 | "x = (interval_bij (a, b) (- 1, 1) \<circ> g) y" | |
| 522 | unfolding image_iff .. | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 523 | show "x \<in> cbox (- 1) 1" | 
| 53627 | 524 | unfolding y o_def | 
| 525 | apply (rule in_interval_interval_bij) | |
| 526 | using y(1) | |
| 527 | using assms(4)[unfolded path_image_def subset_eq] int_nem | |
| 528 | apply auto | |
| 529 | done | |
| 530 | next | |
| 531 | show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1" | |
| 532 | and "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1" | |
| 533 | and "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1" | |
| 534 | and "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" | |
| 56188 | 535 | using assms as | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 536 | by (simp_all add: axis_in_Basis cart_eq_inner_axis pathstart_def pathfinish_def interval_bij_def) | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 537 | (simp_all add: inner_axis) | 
| 53627 | 538 | qed | 
| 55675 | 539 | from z(1) obtain zf where zf: | 
| 540 |       "zf \<in> {0..1}"
 | |
| 541 | "z = (interval_bij (a, b) (- 1, 1) \<circ> f) zf" | |
| 542 | unfolding image_iff .. | |
| 543 | from z(2) obtain zg where zg: | |
| 544 |       "zg \<in> {0..1}"
 | |
| 545 | "z = (interval_bij (a, b) (- 1, 1) \<circ> g) zg" | |
| 546 | unfolding image_iff .. | |
| 53627 | 547 | have *: "\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" | 
| 548 | unfolding forall_2 | |
| 549 | using as | |
| 550 | by auto | |
| 551 | show thesis | |
| 552 | apply (rule_tac z="interval_bij (- 1,1) (a,b) z" in that) | |
| 553 | apply (subst zf) | |
| 554 | defer | |
| 555 | apply (subst zg) | |
| 556 | unfolding o_def interval_bij_bij_cart[OF *] path_image_def | |
| 557 | using zf(1) zg(1) | |
| 558 | apply auto | |
| 559 | done | |
| 560 | qed | |
| 36432 | 561 | |
| 53627 | 562 | |
| 60420 | 563 | subsection \<open>Some slightly ad hoc lemmas I use below\<close> | 
| 36432 | 564 | |
| 53627 | 565 | lemma segment_vertical: | 
| 566 | fixes a :: "real^2" | |
| 567 | assumes "a$1 = b$1" | |
| 568 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 569 | x$1 = a$1 \<and> x$1 = b$1 \<and> (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2)" | |
| 570 | (is "_ = ?R") | |
| 571 | proof - | |
| 36432 | 572 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 573 |   {
 | 
| 574 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 575 | then show ?thesis | |
| 576 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 577 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 578 | by blast | 
| 579 | } | |
| 580 |   {
 | |
| 581 | assume ?L | |
| 55675 | 582 | then obtain u where u: | 
| 583 | "x $ 1 = (1 - u) * a $ 1 + u * b $ 1" | |
| 584 | "x $ 2 = (1 - u) * a $ 2 + u * b $ 2" | |
| 585 | "0 \<le> u" | |
| 586 | "u \<le> 1" | |
| 587 | by blast | |
| 53627 | 588 |     { fix b a
 | 
| 589 | assume "b + u * a > a + u * b" | |
| 590 | then have "(1 - u) * b > (1 - u) * a" | |
| 591 | by (auto simp add:field_simps) | |
| 592 | then have "b \<ge> a" | |
| 59555 | 593 | apply (drule_tac mult_left_less_imp_less) | 
| 53627 | 594 | using u | 
| 595 | apply auto | |
| 596 | done | |
| 597 | then have "u * a \<le> u * b" | |
| 598 | apply - | |
| 599 | apply (rule mult_left_mono[OF _ u(3)]) | |
| 600 | using u(3-4) | |
| 601 | apply (auto simp add: field_simps) | |
| 602 | done | |
| 603 | } note * = this | |
| 604 |     {
 | |
| 605 | fix a b | |
| 606 | assume "u * b > u * a" | |
| 607 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 608 | apply - | |
| 609 | apply (rule mult_left_mono) | |
| 59555 | 610 | apply (drule mult_left_less_imp_less) | 
| 53627 | 611 | using u | 
| 612 | apply auto | |
| 613 | done | |
| 614 | then have "a + u * b \<le> b + u * a" | |
| 615 | by (auto simp add: field_simps) | |
| 616 | } note ** = this | |
| 617 | then show ?R | |
| 618 | unfolding u assms | |
| 619 | using u | |
| 620 | by (auto simp add:field_simps not_le intro: * **) | |
| 621 | } | |
| 622 |   {
 | |
| 623 | assume ?R | |
| 624 | then show ?L | |
| 625 | proof (cases "x$2 = b$2") | |
| 626 | case True | |
| 627 | then show ?L | |
| 628 | apply (rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) | |
| 629 | unfolding assms True | |
| 60420 | 630 | using \<open>?R\<close> | 
| 53627 | 631 | apply (auto simp add: field_simps) | 
| 632 | done | |
| 633 | next | |
| 634 | case False | |
| 635 | then show ?L | |
| 636 | apply (rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) | |
| 637 | unfolding assms | |
| 60420 | 638 | using \<open>?R\<close> | 
| 53627 | 639 | apply (auto simp add: field_simps) | 
| 640 | done | |
| 641 | qed | |
| 642 | } | |
| 643 | qed | |
| 36432 | 644 | |
| 53627 | 645 | lemma segment_horizontal: | 
| 646 | fixes a :: "real^2" | |
| 647 | assumes "a$2 = b$2" | |
| 648 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 649 | x$2 = a$2 \<and> x$2 = b$2 \<and> (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1)" | |
| 650 | (is "_ = ?R") | |
| 651 | proof - | |
| 36432 | 652 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 653 |   {
 | 
| 654 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 655 | then show ?thesis | |
| 656 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 657 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 658 | by blast | 
| 659 | } | |
| 660 |   {
 | |
| 661 | assume ?L | |
| 55675 | 662 | then obtain u where u: | 
| 663 | "x $ 1 = (1 - u) * a $ 1 + u * b $ 1" | |
| 664 | "x $ 2 = (1 - u) * a $ 2 + u * b $ 2" | |
| 665 | "0 \<le> u" | |
| 666 | "u \<le> 1" | |
| 667 | by blast | |
| 53627 | 668 |     {
 | 
| 669 | fix b a | |
| 670 | assume "b + u * a > a + u * b" | |
| 671 | then have "(1 - u) * b > (1 - u) * a" | |
| 53628 | 672 | by (auto simp add: field_simps) | 
| 53627 | 673 | then have "b \<ge> a" | 
| 59555 | 674 | apply (drule_tac mult_left_less_imp_less) | 
| 53627 | 675 | using u | 
| 676 | apply auto | |
| 677 | done | |
| 678 | then have "u * a \<le> u * b" | |
| 679 | apply - | |
| 680 | apply (rule mult_left_mono[OF _ u(3)]) | |
| 681 | using u(3-4) | |
| 682 | apply (auto simp add: field_simps) | |
| 683 | done | |
| 684 | } note * = this | |
| 685 |     {
 | |
| 686 | fix a b | |
| 687 | assume "u * b > u * a" | |
| 688 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 689 | apply - | |
| 690 | apply (rule mult_left_mono) | |
| 59555 | 691 | apply (drule mult_left_less_imp_less) | 
| 53627 | 692 | using u | 
| 693 | apply auto | |
| 694 | done | |
| 695 | then have "a + u * b \<le> b + u * a" | |
| 696 | by (auto simp add: field_simps) | |
| 697 | } note ** = this | |
| 698 | then show ?R | |
| 699 | unfolding u assms | |
| 700 | using u | |
| 701 | by (auto simp add: field_simps not_le intro: * **) | |
| 702 | } | |
| 703 |   {
 | |
| 704 | assume ?R | |
| 705 | then show ?L | |
| 706 | proof (cases "x$1 = b$1") | |
| 707 | case True | |
| 708 | then show ?L | |
| 709 | apply (rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) | |
| 710 | unfolding assms True | |
| 60420 | 711 | using \<open>?R\<close> | 
| 53627 | 712 | apply (auto simp add: field_simps) | 
| 713 | done | |
| 714 | next | |
| 715 | case False | |
| 716 | then show ?L | |
| 717 | apply (rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) | |
| 718 | unfolding assms | |
| 60420 | 719 | using \<open>?R\<close> | 
| 53627 | 720 | apply (auto simp add: field_simps) | 
| 721 | done | |
| 722 | qed | |
| 723 | } | |
| 724 | qed | |
| 36432 | 725 | |
| 53627 | 726 | |
| 60420 | 727 | subsection \<open>Useful Fashoda corollary pointed out to me by Tom Hales\<close> | 
| 36432 | 728 | |
| 53627 | 729 | lemma fashoda_interlace: | 
| 730 | fixes a :: "real^2" | |
| 731 | assumes "path f" | |
| 732 | and "path g" | |
| 56188 | 733 | and "path_image f \<subseteq> cbox a b" | 
| 734 | and "path_image g \<subseteq> cbox a b" | |
| 53627 | 735 | and "(pathstart f)$2 = a$2" | 
| 736 | and "(pathfinish f)$2 = a$2" | |
| 737 | and "(pathstart g)$2 = a$2" | |
| 738 | and "(pathfinish g)$2 = a$2" | |
| 739 | and "(pathstart f)$1 < (pathstart g)$1" | |
| 740 | and "(pathstart g)$1 < (pathfinish f)$1" | |
| 741 | and "(pathfinish f)$1 < (pathfinish g)$1" | |
| 742 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 743 | proof - | |
| 56188 | 744 |   have "cbox a b \<noteq> {}"
 | 
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 745 | using path_image_nonempty[of f] using assms(3) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 746 | note ab=this[unfolded interval_eq_empty_cart not_ex forall_2 not_less] | 
| 56188 | 747 | have "pathstart f \<in> cbox a b" | 
| 748 | and "pathfinish f \<in> cbox a b" | |
| 749 | and "pathstart g \<in> cbox a b" | |
| 750 | and "pathfinish g \<in> cbox a b" | |
| 53628 | 751 | using pathstart_in_path_image pathfinish_in_path_image | 
| 752 | using assms(3-4) | |
| 753 | by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 754 | note startfin = this[unfolded mem_interval_cart forall_2] | 
| 36432 | 755 | let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ | 
| 756 | linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ | |
| 757 | linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ | |
| 758 | linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" | |
| 759 | let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ | |
| 760 | linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ | |
| 761 | linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ | |
| 762 | linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" | |
| 763 | let ?a = "vector[a$1 - 2, a$2 - 3]" | |
| 764 | let ?b = "vector[b$1 + 2, b$2 + 3]" | |
| 53627 | 765 | have P1P2: "path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union> | 
| 36432 | 766 | path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union> | 
| 767 | path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union> | |
| 768 | path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" | |
| 769 | "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union> | |
| 770 | path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union> | |
| 771 | path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union> | |
| 772 | path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) | |
| 773 | by(auto simp add: path_image_join path_linepath) | |
| 56188 | 774 | have abab: "cbox a b \<subseteq> cbox ?a ?b" | 
| 775 | unfolding interval_cbox_cart[symmetric] | |
| 53627 | 776 | by (auto simp add:less_eq_vec_def forall_2 vector_2) | 
| 55675 | 777 | obtain z where | 
| 778 | "z \<in> path_image | |
| 779 | (linepath (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) +++ | |
| 780 | linepath (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f) +++ | |
| 781 | f +++ | |
| 782 | linepath (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) +++ | |
| 783 | linepath (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]))" | |
| 784 | "z \<in> path_image | |
| 785 | (linepath (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g) +++ | |
| 786 | g +++ | |
| 787 | linepath (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1]) +++ | |
| 788 | linepath (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1]) +++ | |
| 789 | linepath (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]))" | |
| 53627 | 790 | apply (rule fashoda[of ?P1 ?P2 ?a ?b]) | 
| 791 | unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 | |
| 792 | proof - | |
| 53628 | 793 | show "path ?P1" and "path ?P2" | 
| 53627 | 794 | using assms by auto | 
| 56188 | 795 | have "path_image ?P1 \<subseteq> cbox ?a ?b" | 
| 53627 | 796 | unfolding P1P2 path_image_linepath | 
| 797 | apply (rule Un_least)+ | |
| 798 | defer 3 | |
| 56188 | 799 | apply (rule_tac[1-4] convex_box(1)[unfolded convex_contains_segment,rule_format]) | 
| 53627 | 800 | unfolding mem_interval_cart forall_2 vector_2 | 
| 801 | using ab startfin abab assms(3) | |
| 802 | using assms(9-) | |
| 803 | unfolding assms | |
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 804 | apply (auto simp add: field_simps box_def) | 
| 53627 | 805 | done | 
| 56188 | 806 | then show "path_image ?P1 \<subseteq> cbox ?a ?b" . | 
| 807 | have "path_image ?P2 \<subseteq> cbox ?a ?b" | |
| 53627 | 808 | unfolding P1P2 path_image_linepath | 
| 809 | apply (rule Un_least)+ | |
| 810 | defer 2 | |
| 56188 | 811 | apply (rule_tac[1-4] convex_box(1)[unfolded convex_contains_segment,rule_format]) | 
| 53627 | 812 | unfolding mem_interval_cart forall_2 vector_2 | 
| 813 | using ab startfin abab assms(4) | |
| 814 | using assms(9-) | |
| 815 | unfolding assms | |
| 56189 
c4daa97ac57a
removed dependencies on theory Ordered_Euclidean_Space
 immler parents: 
56188diff
changeset | 816 | apply (auto simp add: field_simps box_def) | 
| 53627 | 817 | done | 
| 56188 | 818 | then show "path_image ?P2 \<subseteq> cbox ?a ?b" . | 
| 53627 | 819 | show "a $ 1 - 2 = a $ 1 - 2" | 
| 820 | and "b $ 1 + 2 = b $ 1 + 2" | |
| 821 | and "pathstart g $ 2 - 3 = a $ 2 - 3" | |
| 822 | and "b $ 2 + 3 = b $ 2 + 3" | |
| 823 | by (auto simp add: assms) | |
| 53628 | 824 | qed | 
| 825 | note z=this[unfolded P1P2 path_image_linepath] | |
| 53627 | 826 | show thesis | 
| 827 | apply (rule that[of z]) | |
| 828 | proof - | |
| 36432 | 829 | have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or> | 
| 53627 | 830 | z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or> | 
| 831 | z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or> | |
| 832 | z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow> | |
| 833 | (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or> | |
| 834 | z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or> | |
| 835 | z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or> | |
| 836 | z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False" | |
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61165diff
changeset | 837 | proof (simp only: segment_vertical segment_horizontal vector_2, goal_cases) | 
| 61167 | 838 | case prems: 1 | 
| 56188 | 839 | have "pathfinish f \<in> cbox a b" | 
| 53627 | 840 | using assms(3) pathfinish_in_path_image[of f] by auto | 
| 53628 | 841 | then have "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" | 
| 53627 | 842 | unfolding mem_interval_cart forall_2 by auto | 
| 843 | then have "z$1 \<noteq> pathfinish f$1" | |
| 61167 | 844 | using prems(2) | 
| 53628 | 845 | using assms ab | 
| 846 | by (auto simp add: field_simps) | |
| 56188 | 847 | moreover have "pathstart f \<in> cbox a b" | 
| 53628 | 848 | using assms(3) pathstart_in_path_image[of f] | 
| 849 | by auto | |
| 53627 | 850 | then have "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" | 
| 53628 | 851 | unfolding mem_interval_cart forall_2 | 
| 852 | by auto | |
| 53627 | 853 | then have "z$1 \<noteq> pathstart f$1" | 
| 61167 | 854 | using prems(2) using assms ab | 
| 53628 | 855 | by (auto simp add: field_simps) | 
| 53627 | 856 | ultimately have *: "z$2 = a$2 - 2" | 
| 61167 | 857 | using prems(1) | 
| 53628 | 858 | by auto | 
| 53627 | 859 | have "z$1 \<noteq> pathfinish g$1" | 
| 61167 | 860 | using prems(2) | 
| 53628 | 861 | using assms ab | 
| 862 | by (auto simp add: field_simps *) | |
| 56188 | 863 | moreover have "pathstart g \<in> cbox a b" | 
| 53628 | 864 | using assms(4) pathstart_in_path_image[of g] | 
| 865 | by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 866 | note this[unfolded mem_interval_cart forall_2] | 
| 53627 | 867 | then have "z$1 \<noteq> pathstart g$1" | 
| 61167 | 868 | using prems(1) | 
| 53628 | 869 | using assms ab | 
| 870 | by (auto simp add: field_simps *) | |
| 36432 | 871 | ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1" | 
| 61167 | 872 | using prems(2) | 
| 53628 | 873 | unfolding * assms | 
| 874 | by (auto simp add: field_simps) | |
| 53627 | 875 | then show False | 
| 876 | unfolding * using ab by auto | |
| 877 | qed | |
| 878 | then have "z \<in> path_image f \<or> z \<in> path_image g" | |
| 879 | using z unfolding Un_iff by blast | |
| 56188 | 880 | then have z': "z \<in> cbox a b" | 
| 53628 | 881 | using assms(3-4) | 
| 882 | by auto | |
| 53627 | 883 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> | 
| 884 | z = pathstart f \<or> z = pathfinish f" | |
| 53628 | 885 | unfolding vec_eq_iff forall_2 assms | 
| 886 | by auto | |
| 53627 | 887 | with z' show "z \<in> path_image f" | 
| 888 | using z(1) | |
| 889 | unfolding Un_iff mem_interval_cart forall_2 | |
| 890 | apply - | |
| 891 | apply (simp only: segment_vertical segment_horizontal vector_2) | |
| 892 | unfolding assms | |
| 893 | apply auto | |
| 894 | done | |
| 895 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> | |
| 896 | z = pathstart g \<or> z = pathfinish g" | |
| 53628 | 897 | unfolding vec_eq_iff forall_2 assms | 
| 898 | by auto | |
| 53627 | 899 | with z' show "z \<in> path_image g" | 
| 900 | using z(2) | |
| 901 | unfolding Un_iff mem_interval_cart forall_2 | |
| 902 | apply (simp only: segment_vertical segment_horizontal vector_2) | |
| 903 | unfolding assms | |
| 904 | apply auto | |
| 905 | done | |
| 906 | qed | |
| 907 | qed | |
| 36432 | 908 | |
| 909 | (** The Following still needs to be translated. Maybe I will do that later. | |
| 910 | ||
| 911 | (* ------------------------------------------------------------------------- *) | |
| 912 | (* Complement in dimension N >= 2 of set homeomorphic to any interval in *) | |
| 913 | (* any dimension is (path-)connected. This naively generalizes the argument *) | |
| 914 | (* in Ryuji Maehara's paper "The Jordan curve theorem via the Brouwer *) | |
| 915 | (* fixed point theorem", American Mathematical Monthly 1984. *) | |
| 916 | (* ------------------------------------------------------------------------- *) | |
| 917 | ||
| 918 | let RETRACTION_INJECTIVE_IMAGE_INTERVAL = prove | |
| 919 | (`!p:real^M->real^N a b. | |
| 920 |         ~(interval[a,b] = {}) /\
 | |
| 921 | p continuous_on interval[a,b] /\ | |
| 922 | (!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ p x = p y ==> x = y) | |
| 923 | ==> ?f. f continuous_on (:real^N) /\ | |
| 924 | IMAGE f (:real^N) SUBSET (IMAGE p (interval[a,b])) /\ | |
| 925 | (!x. x IN (IMAGE p (interval[a,b])) ==> f x = x)`, | |
| 926 | REPEAT STRIP_TAC THEN | |
| 927 | FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN | |
| 928 | DISCH_THEN(X_CHOOSE_TAC `q:real^N->real^M`) THEN | |
| 929 | SUBGOAL_THEN `(q:real^N->real^M) continuous_on | |
| 930 | (IMAGE p (interval[a:real^M,b]))` | |
| 931 | ASSUME_TAC THENL | |
| 932 | [MATCH_MP_TAC CONTINUOUS_ON_INVERSE THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]; | |
| 933 | ALL_TAC] THEN | |
| 934 | MP_TAC(ISPECL [`q:real^N->real^M`; | |
| 935 | `IMAGE (p:real^M->real^N) | |
| 936 | (interval[a,b])`; | |
| 937 | `a:real^M`; `b:real^M`] | |
| 938 | TIETZE_CLOSED_INTERVAL) THEN | |
| 939 | ASM_SIMP_TAC[COMPACT_INTERVAL; COMPACT_CONTINUOUS_IMAGE; | |
| 940 | COMPACT_IMP_CLOSED] THEN | |
| 941 | ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
| 942 | DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^M` STRIP_ASSUME_TAC) THEN | |
| 943 | EXISTS_TAC `(p:real^M->real^N) o (r:real^N->real^M)` THEN | |
| 944 | REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN | |
| 945 | CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
| 946 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN | |
| 947 | FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] | |
| 948 | CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);; | |
| 949 | ||
| 950 | let UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove | |
| 951 | (`!s:real^N->bool a b:real^M. | |
| 952 | s homeomorphic (interval[a,b]) | |
| 953 | ==> !x. ~(x IN s) ==> ~bounded(path_component((:real^N) DIFF s) x)`, | |
| 954 | REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN | |
| 955 | REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
| 956 | MAP_EVERY X_GEN_TAC [`p':real^N->real^M`; `p:real^M->real^N`] THEN | |
| 957 | DISCH_TAC THEN | |
| 958 | SUBGOAL_THEN | |
| 959 | `!x y. x IN interval[a,b] /\ y IN interval[a,b] /\ | |
| 960 | (p:real^M->real^N) x = p y ==> x = y` | |
| 961 | ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
| 962 | FIRST_X_ASSUM(MP_TAC o funpow 4 CONJUNCT2) THEN | |
| 963 | DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN | |
| 964 |   ASM_CASES_TAC `interval[a:real^M,b] = {}` THEN
 | |
| 965 | ASM_REWRITE_TAC[IMAGE_CLAUSES; DIFF_EMPTY; PATH_COMPONENT_UNIV; | |
| 966 | NOT_BOUNDED_UNIV] THEN | |
| 967 | ABBREV_TAC `s = (:real^N) DIFF (IMAGE p (interval[a:real^M,b]))` THEN | |
| 968 | X_GEN_TAC `c:real^N` THEN REPEAT STRIP_TAC THEN | |
| 969 | SUBGOAL_THEN `(c:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
| 970 | SUBGOAL_THEN `bounded((path_component s c) UNION | |
| 971 | (IMAGE (p:real^M->real^N) (interval[a,b])))` | |
| 972 | MP_TAC THENL | |
| 973 | [ASM_SIMP_TAC[BOUNDED_UNION; COMPACT_IMP_BOUNDED; COMPACT_IMP_BOUNDED; | |
| 974 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 975 | ALL_TAC] THEN | |
| 976 | DISCH_THEN(MP_TAC o SPEC `c:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN | |
| 977 | REWRITE_TAC[UNION_SUBSET] THEN | |
| 978 | DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN | |
| 979 | MP_TAC(ISPECL [`p:real^M->real^N`; `a:real^M`; `b:real^M`] | |
| 980 | RETRACTION_INJECTIVE_IMAGE_INTERVAL) THEN | |
| 981 | ASM_REWRITE_TAC[SUBSET; IN_UNIV] THEN | |
| 982 | DISCH_THEN(X_CHOOSE_THEN `r:real^N->real^N` MP_TAC) THEN | |
| 983 | DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC | |
| 984 | (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
| 985 | REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_TAC THEN | |
| 986 | ABBREV_TAC `q = \z:real^N. if z IN path_component s c then r(z) else z` THEN | |
| 987 | SUBGOAL_THEN | |
| 988 | `(q:real^N->real^N) continuous_on | |
| 989 | (closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)))` | |
| 990 | MP_TAC THENL | |
| 991 | [EXPAND_TAC "q" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES THEN | |
| 992 | REWRITE_TAC[CLOSED_CLOSURE; CONTINUOUS_ON_ID; GSYM OPEN_CLOSED] THEN | |
| 993 | REPEAT CONJ_TAC THENL | |
| 994 | [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN | |
| 995 | ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; | |
| 996 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 997 | ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; | |
| 998 | ALL_TAC] THEN | |
| 999 | X_GEN_TAC `z:real^N` THEN | |
| 1000 | REWRITE_TAC[SET_RULE `~(z IN (s DIFF t) /\ z IN t)`] THEN | |
| 1001 | STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
| 1002 | MP_TAC(ISPECL | |
| 1003 | [`path_component s (z:real^N)`; `path_component s (c:real^N)`] | |
| 1004 | OPEN_INTER_CLOSURE_EQ_EMPTY) THEN | |
| 1005 | ASM_REWRITE_TAC[GSYM DISJOINT; PATH_COMPONENT_DISJOINT] THEN ANTS_TAC THENL | |
| 1006 | [MATCH_MP_TAC OPEN_PATH_COMPONENT THEN EXPAND_TAC "s" THEN | |
| 1007 | ASM_SIMP_TAC[GSYM CLOSED_OPEN; COMPACT_IMP_CLOSED; | |
| 1008 | COMPACT_CONTINUOUS_IMAGE; COMPACT_INTERVAL]; | |
| 1009 | REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
| 1010 | DISCH_THEN(MP_TAC o SPEC `z:real^N`) THEN ASM_REWRITE_TAC[] THEN | |
| 1011 | GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN] THEN | |
| 1012 | REWRITE_TAC[PATH_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]]; | |
| 1013 | ALL_TAC] THEN | |
| 1014 | SUBGOAL_THEN | |
| 1015 | `closure(path_component s c) UNION ((:real^N) DIFF (path_component s c)) = | |
| 1016 | (:real^N)` | |
| 1017 | SUBST1_TAC THENL | |
| 1018 | [MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t UNION (UNIV DIFF s) = UNIV`) THEN | |
| 1019 | REWRITE_TAC[CLOSURE_SUBSET]; | |
| 1020 | DISCH_TAC] THEN | |
| 1021 | MP_TAC(ISPECL | |
| 1022 | [`(\x. &2 % c - x) o | |
| 1023 | (\x. c + B / norm(x - c) % (x - c)) o (q:real^N->real^N)`; | |
| 1024 | `cball(c:real^N,B)`] | |
| 1025 | BROUWER) THEN | |
| 1026 | REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; COMPACT_CBALL; CONVEX_CBALL] THEN | |
| 1027 | ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LT_IMP_LE; REAL_NOT_LT] THEN | |
| 1028 | SUBGOAL_THEN `!x. ~((q:real^N->real^N) x = c)` ASSUME_TAC THENL | |
| 1029 | [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "q" THEN | |
| 1030 | REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN COND_CASES_TAC THEN | |
| 1031 | ASM SET_TAC[PATH_COMPONENT_REFL_EQ]; | |
| 1032 | ALL_TAC] THEN | |
| 1033 | REPEAT CONJ_TAC THENL | |
| 1034 | [MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
| 1035 | SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN | |
| 1036 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL | |
| 1037 | [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; ALL_TAC] THEN | |
| 1038 | MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN | |
| 1039 | MATCH_MP_TAC CONTINUOUS_ON_MUL THEN | |
| 1040 | SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST] THEN | |
| 1041 | REWRITE_TAC[o_DEF; real_div; LIFT_CMUL] THEN | |
| 1042 | MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN | |
| 1043 | MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN | |
| 1044 | ASM_REWRITE_TAC[FORALL_IN_IMAGE; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 1045 | SUBGOAL_THEN | |
| 1046 | `(\x:real^N. lift(norm(x - c))) = (lift o norm) o (\x. x - c)` | |
| 1047 | SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN | |
| 1048 | MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN | |
| 1049 | ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; | |
| 1050 | CONTINUOUS_ON_LIFT_NORM]; | |
| 1051 | REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_CBALL; o_THM; dist] THEN | |
| 1052 | X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
| 1053 | REWRITE_TAC[VECTOR_ARITH `c - (&2 % c - (c + x)) = x`] THEN | |
| 1054 | REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN | |
| 1055 | ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 1056 | ASM_REAL_ARITH_TAC; | |
| 1057 | REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(c /\ b) <=> c ==> ~b`] THEN | |
| 1058 | REWRITE_TAC[IN_CBALL; o_THM; dist] THEN | |
| 1059 | X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN | |
| 1060 | REWRITE_TAC[VECTOR_ARITH `&2 % c - (c + x') = x <=> --x' = x - c`] THEN | |
| 1061 | ASM_CASES_TAC `(x:real^N) IN path_component s c` THENL | |
| 1062 | [MATCH_MP_TAC(NORM_ARITH `norm(y) < B /\ norm(x) = B ==> ~(--x = y)`) THEN | |
| 1063 | REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN | |
| 1064 | ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN | |
| 1065 | ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs B = B`] THEN | |
| 1066 | UNDISCH_TAC `path_component s c SUBSET ball(c:real^N,B)` THEN | |
| 1067 | REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[dist; NORM_SUB]; | |
| 1068 | EXPAND_TAC "q" THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[] THEN | |
| 1069 | REWRITE_TAC[VECTOR_ARITH `--(c % x) = x <=> (&1 + c) % x = vec 0`] THEN | |
| 1070 | ASM_REWRITE_TAC[DE_MORGAN_THM; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN | |
| 1071 | SUBGOAL_THEN `~(x:real^N = c)` ASSUME_TAC THENL | |
| 1072 | [ASM_MESON_TAC[PATH_COMPONENT_REFL; IN]; ALL_TAC] THEN | |
| 1073 | ASM_REWRITE_TAC[] THEN | |
| 1074 | MATCH_MP_TAC(REAL_ARITH `&0 < x ==> ~(&1 + x = &0)`) THEN | |
| 1075 | ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]]);; | |
| 1076 | ||
| 1077 | let PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL = prove | |
| 1078 | (`!s:real^N->bool a b:real^M. | |
| 1079 | 2 <= dimindex(:N) /\ s homeomorphic interval[a,b] | |
| 1080 | ==> path_connected((:real^N) DIFF s)`, | |
| 1081 | REPEAT STRIP_TAC THEN REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN | |
| 1082 | FIRST_ASSUM(MP_TAC o MATCH_MP | |
| 1083 | UNBOUNDED_PATH_COMPONENTS_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN | |
| 1084 | ASM_REWRITE_TAC[SET_RULE `~(x IN s) <=> x IN (UNIV DIFF s)`] THEN | |
| 1085 | ABBREV_TAC `t = (:real^N) DIFF s` THEN | |
| 1086 | DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN | |
| 1087 | STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_COMPACTNESS) THEN | |
| 1088 | REWRITE_TAC[COMPACT_INTERVAL] THEN | |
| 1089 | DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN | |
| 1090 | REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN | |
| 1091 | X_GEN_TAC `B:real` THEN STRIP_TAC THEN | |
| 1092 | SUBGOAL_THEN `(?u:real^N. u IN path_component t x /\ B < norm(u)) /\ | |
| 1093 | (?v:real^N. v IN path_component t y /\ B < norm(v))` | |
| 1094 | STRIP_ASSUME_TAC THENL | |
| 1095 | [ASM_MESON_TAC[BOUNDED_POS; REAL_NOT_LE]; ALL_TAC] THEN | |
| 1096 | MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `u:real^N` THEN | |
| 1097 | CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
| 1098 | MATCH_MP_TAC PATH_COMPONENT_SYM THEN | |
| 1099 | MATCH_MP_TAC PATH_COMPONENT_TRANS THEN EXISTS_TAC `v:real^N` THEN | |
| 1100 | CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
| 1101 | MATCH_MP_TAC PATH_COMPONENT_OF_SUBSET THEN | |
| 1102 | EXISTS_TAC `(:real^N) DIFF cball(vec 0,B)` THEN CONJ_TAC THENL | |
| 1103 | [EXPAND_TAC "t" THEN MATCH_MP_TAC(SET_RULE | |
| 1104 | `s SUBSET t ==> (u DIFF t) SUBSET (u DIFF s)`) THEN | |
| 1105 | ASM_REWRITE_TAC[SUBSET; IN_CBALL_0]; | |
| 1106 | MP_TAC(ISPEC `cball(vec 0:real^N,B)` | |
| 1107 | PATH_CONNECTED_COMPLEMENT_BOUNDED_CONVEX) THEN | |
| 1108 | ASM_REWRITE_TAC[BOUNDED_CBALL; CONVEX_CBALL] THEN | |
| 1109 | REWRITE_TAC[PATH_CONNECTED_IFF_PATH_COMPONENT] THEN | |
| 1110 | DISCH_THEN MATCH_MP_TAC THEN | |
| 1111 | ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; IN_CBALL_0; REAL_NOT_LE]]);; | |
| 1112 | ||
| 1113 | (* ------------------------------------------------------------------------- *) | |
| 1114 | (* In particular, apply all these to the special case of an arc. *) | |
| 1115 | (* ------------------------------------------------------------------------- *) | |
| 1116 | ||
| 1117 | let RETRACTION_ARC = prove | |
| 1118 | (`!p. arc p | |
| 1119 | ==> ?f. f continuous_on (:real^N) /\ | |
| 1120 | IMAGE f (:real^N) SUBSET path_image p /\ | |
| 1121 | (!x. x IN path_image p ==> f x = x)`, | |
| 1122 | REWRITE_TAC[arc; path; path_image] THEN REPEAT STRIP_TAC THEN | |
| 1123 | MATCH_MP_TAC RETRACTION_INJECTIVE_IMAGE_INTERVAL THEN | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 1124 | ASM_REWRITE_TAC[INTERVAL_EQ_EMPTY_CART_1; DROP_VEC; REAL_NOT_LT; REAL_POS]);; | 
| 36432 | 1125 | |
| 1126 | let PATH_CONNECTED_ARC_COMPLEMENT = prove | |
| 1127 | (`!p. 2 <= dimindex(:N) /\ arc p | |
| 1128 | ==> path_connected((:real^N) DIFF path_image p)`, | |
| 1129 | REWRITE_TAC[arc; path] THEN REPEAT STRIP_TAC THEN SIMP_TAC[path_image] THEN | |
| 1130 | MP_TAC(ISPECL [`path_image p:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`] | |
| 1131 | PATH_CONNECTED_COMPLEMENT_HOMEOMORPHIC_INTERVAL) THEN | |
| 1132 | ASM_REWRITE_TAC[path_image] THEN DISCH_THEN MATCH_MP_TAC THEN | |
| 1133 | ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN | |
| 1134 | MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN | |
| 1135 | EXISTS_TAC `p:real^1->real^N` THEN ASM_REWRITE_TAC[COMPACT_INTERVAL]);; | |
| 1136 | ||
| 1137 | let CONNECTED_ARC_COMPLEMENT = prove | |
| 1138 | (`!p. 2 <= dimindex(:N) /\ arc p | |
| 1139 | ==> connected((:real^N) DIFF path_image p)`, | |
| 1140 | SIMP_TAC[PATH_CONNECTED_ARC_COMPLEMENT; PATH_CONNECTED_IMP_CONNECTED]);; *) | |
| 1141 | ||
| 1142 | end |