author | haftmann |
Sun, 16 Oct 2016 09:31:03 +0200 | |
changeset 64238 | b60a9752b6d0 |
parent 64178 | 12e6c3bbb488 |
child 66283 | adf3155c57e2 |
permissions | -rw-r--r-- |
47108 | 1 |
(* Title: HOL/Num.thy |
2 |
Author: Florian Haftmann |
|
3 |
Author: Brian Huffman |
|
4 |
*) |
|
5 |
||
60758 | 6 |
section \<open>Binary Numerals\<close> |
47108 | 7 |
|
8 |
theory Num |
|
64178 | 9 |
imports BNF_Least_Fixpoint Transfer |
47108 | 10 |
begin |
11 |
||
61799 | 12 |
subsection \<open>The \<open>num\<close> type\<close> |
47108 | 13 |
|
58310 | 14 |
datatype num = One | Bit0 num | Bit1 num |
47108 | 15 |
|
60758 | 16 |
text \<open>Increment function for type @{typ num}\<close> |
47108 | 17 |
|
63654 | 18 |
primrec inc :: "num \<Rightarrow> num" |
19 |
where |
|
20 |
"inc One = Bit0 One" |
|
21 |
| "inc (Bit0 x) = Bit1 x" |
|
22 |
| "inc (Bit1 x) = Bit0 (inc x)" |
|
47108 | 23 |
|
60758 | 24 |
text \<open>Converting between type @{typ num} and type @{typ nat}\<close> |
47108 | 25 |
|
63654 | 26 |
primrec nat_of_num :: "num \<Rightarrow> nat" |
27 |
where |
|
28 |
"nat_of_num One = Suc 0" |
|
29 |
| "nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x" |
|
30 |
| "nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)" |
|
47108 | 31 |
|
63654 | 32 |
primrec num_of_nat :: "nat \<Rightarrow> num" |
33 |
where |
|
34 |
"num_of_nat 0 = One" |
|
35 |
| "num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)" |
|
47108 | 36 |
|
37 |
lemma nat_of_num_pos: "0 < nat_of_num x" |
|
38 |
by (induct x) simp_all |
|
39 |
||
40 |
lemma nat_of_num_neq_0: " nat_of_num x \<noteq> 0" |
|
41 |
by (induct x) simp_all |
|
42 |
||
43 |
lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)" |
|
44 |
by (induct x) simp_all |
|
45 |
||
63654 | 46 |
lemma num_of_nat_double: "0 < n \<Longrightarrow> num_of_nat (n + n) = Bit0 (num_of_nat n)" |
47108 | 47 |
by (induct n) simp_all |
48 |
||
63654 | 49 |
text \<open>Type @{typ num} is isomorphic to the strictly positive natural numbers.\<close> |
47108 | 50 |
|
51 |
lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x" |
|
52 |
by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos) |
|
53 |
||
54 |
lemma num_of_nat_inverse: "0 < n \<Longrightarrow> nat_of_num (num_of_nat n) = n" |
|
55 |
by (induct n) (simp_all add: nat_of_num_inc) |
|
56 |
||
57 |
lemma num_eq_iff: "x = y \<longleftrightarrow> nat_of_num x = nat_of_num y" |
|
58 |
apply safe |
|
59 |
apply (drule arg_cong [where f=num_of_nat]) |
|
60 |
apply (simp add: nat_of_num_inverse) |
|
61 |
done |
|
62 |
||
63 |
lemma num_induct [case_names One inc]: |
|
64 |
fixes P :: "num \<Rightarrow> bool" |
|
65 |
assumes One: "P One" |
|
66 |
and inc: "\<And>x. P x \<Longrightarrow> P (inc x)" |
|
67 |
shows "P x" |
|
68 |
proof - |
|
69 |
obtain n where n: "Suc n = nat_of_num x" |
|
63654 | 70 |
by (cases "nat_of_num x") (simp_all add: nat_of_num_neq_0) |
47108 | 71 |
have "P (num_of_nat (Suc n))" |
72 |
proof (induct n) |
|
63654 | 73 |
case 0 |
74 |
from One show ?case by simp |
|
47108 | 75 |
next |
76 |
case (Suc n) |
|
77 |
then have "P (inc (num_of_nat (Suc n)))" by (rule inc) |
|
78 |
then show "P (num_of_nat (Suc (Suc n)))" by simp |
|
79 |
qed |
|
80 |
with n show "P x" |
|
81 |
by (simp add: nat_of_num_inverse) |
|
82 |
qed |
|
83 |
||
60758 | 84 |
text \<open> |
63654 | 85 |
From now on, there are two possible models for @{typ num}: as positive |
86 |
naturals (rule \<open>num_induct\<close>) and as digit representation (rules |
|
87 |
\<open>num.induct\<close>, \<open>num.cases\<close>). |
|
60758 | 88 |
\<close> |
47108 | 89 |
|
90 |
||
60758 | 91 |
subsection \<open>Numeral operations\<close> |
47108 | 92 |
|
93 |
instantiation num :: "{plus,times,linorder}" |
|
94 |
begin |
|
95 |
||
63654 | 96 |
definition [code del]: "m + n = num_of_nat (nat_of_num m + nat_of_num n)" |
47108 | 97 |
|
63654 | 98 |
definition [code del]: "m * n = num_of_nat (nat_of_num m * nat_of_num n)" |
47108 | 99 |
|
63654 | 100 |
definition [code del]: "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n" |
47108 | 101 |
|
63654 | 102 |
definition [code del]: "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n" |
47108 | 103 |
|
104 |
instance |
|
61169 | 105 |
by standard (auto simp add: less_num_def less_eq_num_def num_eq_iff) |
47108 | 106 |
|
107 |
end |
|
108 |
||
109 |
lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y" |
|
110 |
unfolding plus_num_def |
|
111 |
by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos) |
|
112 |
||
113 |
lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y" |
|
114 |
unfolding times_num_def |
|
115 |
by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos) |
|
116 |
||
117 |
lemma add_num_simps [simp, code]: |
|
118 |
"One + One = Bit0 One" |
|
119 |
"One + Bit0 n = Bit1 n" |
|
120 |
"One + Bit1 n = Bit0 (n + One)" |
|
121 |
"Bit0 m + One = Bit1 m" |
|
122 |
"Bit0 m + Bit0 n = Bit0 (m + n)" |
|
123 |
"Bit0 m + Bit1 n = Bit1 (m + n)" |
|
124 |
"Bit1 m + One = Bit0 (m + One)" |
|
125 |
"Bit1 m + Bit0 n = Bit1 (m + n)" |
|
126 |
"Bit1 m + Bit1 n = Bit0 (m + n + One)" |
|
127 |
by (simp_all add: num_eq_iff nat_of_num_add) |
|
128 |
||
129 |
lemma mult_num_simps [simp, code]: |
|
130 |
"m * One = m" |
|
131 |
"One * n = n" |
|
132 |
"Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))" |
|
133 |
"Bit0 m * Bit1 n = Bit0 (m * Bit1 n)" |
|
134 |
"Bit1 m * Bit0 n = Bit0 (Bit1 m * n)" |
|
135 |
"Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))" |
|
63654 | 136 |
by (simp_all add: num_eq_iff nat_of_num_add nat_of_num_mult distrib_right distrib_left) |
47108 | 137 |
|
138 |
lemma eq_num_simps: |
|
139 |
"One = One \<longleftrightarrow> True" |
|
140 |
"One = Bit0 n \<longleftrightarrow> False" |
|
141 |
"One = Bit1 n \<longleftrightarrow> False" |
|
142 |
"Bit0 m = One \<longleftrightarrow> False" |
|
143 |
"Bit1 m = One \<longleftrightarrow> False" |
|
144 |
"Bit0 m = Bit0 n \<longleftrightarrow> m = n" |
|
145 |
"Bit0 m = Bit1 n \<longleftrightarrow> False" |
|
146 |
"Bit1 m = Bit0 n \<longleftrightarrow> False" |
|
147 |
"Bit1 m = Bit1 n \<longleftrightarrow> m = n" |
|
148 |
by simp_all |
|
149 |
||
150 |
lemma le_num_simps [simp, code]: |
|
151 |
"One \<le> n \<longleftrightarrow> True" |
|
152 |
"Bit0 m \<le> One \<longleftrightarrow> False" |
|
153 |
"Bit1 m \<le> One \<longleftrightarrow> False" |
|
154 |
"Bit0 m \<le> Bit0 n \<longleftrightarrow> m \<le> n" |
|
155 |
"Bit0 m \<le> Bit1 n \<longleftrightarrow> m \<le> n" |
|
156 |
"Bit1 m \<le> Bit1 n \<longleftrightarrow> m \<le> n" |
|
157 |
"Bit1 m \<le> Bit0 n \<longleftrightarrow> m < n" |
|
158 |
using nat_of_num_pos [of n] nat_of_num_pos [of m] |
|
159 |
by (auto simp add: less_eq_num_def less_num_def) |
|
160 |
||
161 |
lemma less_num_simps [simp, code]: |
|
162 |
"m < One \<longleftrightarrow> False" |
|
163 |
"One < Bit0 n \<longleftrightarrow> True" |
|
164 |
"One < Bit1 n \<longleftrightarrow> True" |
|
165 |
"Bit0 m < Bit0 n \<longleftrightarrow> m < n" |
|
166 |
"Bit0 m < Bit1 n \<longleftrightarrow> m \<le> n" |
|
167 |
"Bit1 m < Bit1 n \<longleftrightarrow> m < n" |
|
168 |
"Bit1 m < Bit0 n \<longleftrightarrow> m < n" |
|
169 |
using nat_of_num_pos [of n] nat_of_num_pos [of m] |
|
170 |
by (auto simp add: less_eq_num_def less_num_def) |
|
171 |
||
61630 | 172 |
lemma le_num_One_iff: "x \<le> num.One \<longleftrightarrow> x = num.One" |
63654 | 173 |
by (simp add: antisym_conv) |
61630 | 174 |
|
63654 | 175 |
text \<open>Rules using \<open>One\<close> and \<open>inc\<close> as constructors.\<close> |
47108 | 176 |
|
177 |
lemma add_One: "x + One = inc x" |
|
178 |
by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc) |
|
179 |
||
180 |
lemma add_One_commute: "One + n = n + One" |
|
181 |
by (induct n) simp_all |
|
182 |
||
183 |
lemma add_inc: "x + inc y = inc (x + y)" |
|
184 |
by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc) |
|
185 |
||
186 |
lemma mult_inc: "x * inc y = x * y + x" |
|
187 |
by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc) |
|
188 |
||
63654 | 189 |
text \<open>The @{const num_of_nat} conversion.\<close> |
47108 | 190 |
|
63654 | 191 |
lemma num_of_nat_One: "n \<le> 1 \<Longrightarrow> num_of_nat n = One" |
47108 | 192 |
by (cases n) simp_all |
193 |
||
194 |
lemma num_of_nat_plus_distrib: |
|
195 |
"0 < m \<Longrightarrow> 0 < n \<Longrightarrow> num_of_nat (m + n) = num_of_nat m + num_of_nat n" |
|
196 |
by (induct n) (auto simp add: add_One add_One_commute add_inc) |
|
197 |
||
63654 | 198 |
text \<open>A double-and-decrement function.\<close> |
47108 | 199 |
|
63654 | 200 |
primrec BitM :: "num \<Rightarrow> num" |
201 |
where |
|
202 |
"BitM One = One" |
|
203 |
| "BitM (Bit0 n) = Bit1 (BitM n)" |
|
204 |
| "BitM (Bit1 n) = Bit1 (Bit0 n)" |
|
47108 | 205 |
|
206 |
lemma BitM_plus_one: "BitM n + One = Bit0 n" |
|
207 |
by (induct n) simp_all |
|
208 |
||
209 |
lemma one_plus_BitM: "One + BitM n = Bit0 n" |
|
210 |
unfolding add_One_commute BitM_plus_one .. |
|
211 |
||
63654 | 212 |
text \<open>Squaring and exponentiation.\<close> |
47108 | 213 |
|
63654 | 214 |
primrec sqr :: "num \<Rightarrow> num" |
215 |
where |
|
216 |
"sqr One = One" |
|
217 |
| "sqr (Bit0 n) = Bit0 (Bit0 (sqr n))" |
|
218 |
| "sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))" |
|
47108 | 219 |
|
63654 | 220 |
primrec pow :: "num \<Rightarrow> num \<Rightarrow> num" |
221 |
where |
|
222 |
"pow x One = x" |
|
223 |
| "pow x (Bit0 y) = sqr (pow x y)" |
|
224 |
| "pow x (Bit1 y) = sqr (pow x y) * x" |
|
47108 | 225 |
|
226 |
lemma nat_of_num_sqr: "nat_of_num (sqr x) = nat_of_num x * nat_of_num x" |
|
63654 | 227 |
by (induct x) (simp_all add: algebra_simps nat_of_num_add) |
47108 | 228 |
|
229 |
lemma sqr_conv_mult: "sqr x = x * x" |
|
230 |
by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult) |
|
231 |
||
232 |
||
60758 | 233 |
subsection \<open>Binary numerals\<close> |
47108 | 234 |
|
60758 | 235 |
text \<open> |
47211 | 236 |
We embed binary representations into a generic algebraic |
61799 | 237 |
structure using \<open>numeral\<close>. |
60758 | 238 |
\<close> |
47108 | 239 |
|
240 |
class numeral = one + semigroup_add |
|
241 |
begin |
|
242 |
||
63654 | 243 |
primrec numeral :: "num \<Rightarrow> 'a" |
244 |
where |
|
245 |
numeral_One: "numeral One = 1" |
|
246 |
| numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" |
|
247 |
| numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" |
|
47108 | 248 |
|
50817 | 249 |
lemma numeral_code [code]: |
250 |
"numeral One = 1" |
|
251 |
"numeral (Bit0 n) = (let m = numeral n in m + m)" |
|
252 |
"numeral (Bit1 n) = (let m = numeral n in m + m + 1)" |
|
253 |
by (simp_all add: Let_def) |
|
63654 | 254 |
|
47108 | 255 |
lemma one_plus_numeral_commute: "1 + numeral x = numeral x + 1" |
63654 | 256 |
proof (induct x) |
257 |
case One |
|
258 |
then show ?case by simp |
|
259 |
next |
|
260 |
case Bit0 |
|
261 |
then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc) |
|
262 |
next |
|
263 |
case Bit1 |
|
264 |
then show ?case by (simp add: add.assoc [symmetric]) (simp add: add.assoc) |
|
265 |
qed |
|
47108 | 266 |
|
267 |
lemma numeral_inc: "numeral (inc x) = numeral x + 1" |
|
268 |
proof (induct x) |
|
63654 | 269 |
case One |
270 |
then show ?case by simp |
|
271 |
next |
|
272 |
case Bit0 |
|
273 |
then show ?case by simp |
|
274 |
next |
|
47108 | 275 |
case (Bit1 x) |
276 |
have "numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1" |
|
277 |
by (simp only: one_plus_numeral_commute) |
|
278 |
with Bit1 show ?case |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
279 |
by (simp add: add.assoc) |
63654 | 280 |
qed |
47108 | 281 |
|
282 |
declare numeral.simps [simp del] |
|
283 |
||
284 |
abbreviation "Numeral1 \<equiv> numeral One" |
|
285 |
||
286 |
declare numeral_One [code_post] |
|
287 |
||
288 |
end |
|
289 |
||
60758 | 290 |
text \<open>Numeral syntax.\<close> |
47108 | 291 |
|
292 |
syntax |
|
293 |
"_Numeral" :: "num_const \<Rightarrow> 'a" ("_") |
|
294 |
||
58410
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58310
diff
changeset
|
295 |
ML_file "Tools/numeral.ML" |
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
haftmann
parents:
58310
diff
changeset
|
296 |
|
60758 | 297 |
parse_translation \<open> |
52143 | 298 |
let |
299 |
fun numeral_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = |
|
300 |
c $ numeral_tr [t] $ u |
|
301 |
| numeral_tr [Const (num, _)] = |
|
58421 | 302 |
(Numeral.mk_number_syntax o #value o Lexicon.read_num) num |
52143 | 303 |
| numeral_tr ts = raise TERM ("numeral_tr", ts); |
55974
c835a9379026
more official const syntax: avoid educated guessing by Syntax_Phases.decode_term;
wenzelm
parents:
55534
diff
changeset
|
304 |
in [(@{syntax_const "_Numeral"}, K numeral_tr)] end |
60758 | 305 |
\<close> |
47108 | 306 |
|
60758 | 307 |
typed_print_translation \<open> |
52143 | 308 |
let |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
309 |
fun num_tr' ctxt T [n] = |
52143 | 310 |
let |
62597 | 311 |
val k = Numeral.dest_num_syntax n; |
52187 | 312 |
val t' = |
313 |
Syntax.const @{syntax_const "_Numeral"} $ |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
314 |
Syntax.free (string_of_int k); |
52143 | 315 |
in |
316 |
(case T of |
|
317 |
Type (@{type_name fun}, [_, T']) => |
|
52210
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
wenzelm
parents:
52187
diff
changeset
|
318 |
if Printer.type_emphasis ctxt T' then |
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
wenzelm
parents:
52187
diff
changeset
|
319 |
Syntax.const @{syntax_const "_constrain"} $ t' $ |
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
wenzelm
parents:
52187
diff
changeset
|
320 |
Syntax_Phases.term_of_typ ctxt T' |
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
wenzelm
parents:
52187
diff
changeset
|
321 |
else t' |
52187 | 322 |
| _ => if T = dummyT then t' else raise Match) |
52143 | 323 |
end; |
324 |
in |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
325 |
[(@{const_syntax numeral}, num_tr')] |
52143 | 326 |
end |
60758 | 327 |
\<close> |
47108 | 328 |
|
47228 | 329 |
|
60758 | 330 |
subsection \<open>Class-specific numeral rules\<close> |
47108 | 331 |
|
63654 | 332 |
text \<open>@{const numeral} is a morphism.\<close> |
333 |
||
47108 | 334 |
|
61799 | 335 |
subsubsection \<open>Structures with addition: class \<open>numeral\<close>\<close> |
47108 | 336 |
|
337 |
context numeral |
|
338 |
begin |
|
339 |
||
340 |
lemma numeral_add: "numeral (m + n) = numeral m + numeral n" |
|
341 |
by (induct n rule: num_induct) |
|
63654 | 342 |
(simp_all only: numeral_One add_One add_inc numeral_inc add.assoc) |
47108 | 343 |
|
344 |
lemma numeral_plus_numeral: "numeral m + numeral n = numeral (m + n)" |
|
345 |
by (rule numeral_add [symmetric]) |
|
346 |
||
347 |
lemma numeral_plus_one: "numeral n + 1 = numeral (n + One)" |
|
348 |
using numeral_add [of n One] by (simp add: numeral_One) |
|
349 |
||
350 |
lemma one_plus_numeral: "1 + numeral n = numeral (One + n)" |
|
351 |
using numeral_add [of One n] by (simp add: numeral_One) |
|
352 |
||
353 |
lemma one_add_one: "1 + 1 = 2" |
|
354 |
using numeral_add [of One One] by (simp add: numeral_One) |
|
355 |
||
356 |
lemmas add_numeral_special = |
|
357 |
numeral_plus_one one_plus_numeral one_add_one |
|
358 |
||
359 |
end |
|
360 |
||
63654 | 361 |
|
362 |
subsubsection \<open>Structures with negation: class \<open>neg_numeral\<close>\<close> |
|
47108 | 363 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
364 |
class neg_numeral = numeral + group_add |
47108 | 365 |
begin |
366 |
||
63654 | 367 |
lemma uminus_numeral_One: "- Numeral1 = - 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
368 |
by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
369 |
|
60758 | 370 |
text \<open>Numerals form an abelian subgroup.\<close> |
47108 | 371 |
|
63654 | 372 |
inductive is_num :: "'a \<Rightarrow> bool" |
373 |
where |
|
374 |
"is_num 1" |
|
375 |
| "is_num x \<Longrightarrow> is_num (- x)" |
|
376 |
| "is_num x \<Longrightarrow> is_num y \<Longrightarrow> is_num (x + y)" |
|
47108 | 377 |
|
378 |
lemma is_num_numeral: "is_num (numeral k)" |
|
63654 | 379 |
by (induct k) (simp_all add: numeral.simps is_num.intros) |
47108 | 380 |
|
63654 | 381 |
lemma is_num_add_commute: "is_num x \<Longrightarrow> is_num y \<Longrightarrow> x + y = y + x" |
47108 | 382 |
apply (induct x rule: is_num.induct) |
63654 | 383 |
apply (induct y rule: is_num.induct) |
384 |
apply simp |
|
385 |
apply (rule_tac a=x in add_left_imp_eq) |
|
386 |
apply (rule_tac a=x in add_right_imp_eq) |
|
387 |
apply (simp add: add.assoc) |
|
388 |
apply (simp add: add.assoc [symmetric]) |
|
389 |
apply (simp add: add.assoc) |
|
390 |
apply (rule_tac a=x in add_left_imp_eq) |
|
391 |
apply (rule_tac a=x in add_right_imp_eq) |
|
392 |
apply (simp add: add.assoc) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
393 |
apply (simp add: add.assoc) |
63654 | 394 |
apply (simp add: add.assoc [symmetric]) |
47108 | 395 |
done |
396 |
||
63654 | 397 |
lemma is_num_add_left_commute: "is_num x \<Longrightarrow> is_num y \<Longrightarrow> x + (y + z) = y + (x + z)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
398 |
by (simp only: add.assoc [symmetric] is_num_add_commute) |
47108 | 399 |
|
400 |
lemmas is_num_normalize = |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
401 |
add.assoc is_num_add_commute is_num_add_left_commute |
47108 | 402 |
is_num.intros is_num_numeral |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53064
diff
changeset
|
403 |
minus_add |
47108 | 404 |
|
63654 | 405 |
definition dbl :: "'a \<Rightarrow> 'a" |
406 |
where "dbl x = x + x" |
|
407 |
||
408 |
definition dbl_inc :: "'a \<Rightarrow> 'a" |
|
409 |
where "dbl_inc x = x + x + 1" |
|
47108 | 410 |
|
63654 | 411 |
definition dbl_dec :: "'a \<Rightarrow> 'a" |
412 |
where "dbl_dec x = x + x - 1" |
|
413 |
||
414 |
definition sub :: "num \<Rightarrow> num \<Rightarrow> 'a" |
|
415 |
where "sub k l = numeral k - numeral l" |
|
47108 | 416 |
|
417 |
lemma numeral_BitM: "numeral (BitM n) = numeral (Bit0 n) - 1" |
|
418 |
by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq) |
|
419 |
||
420 |
lemma dbl_simps [simp]: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
421 |
"dbl (- numeral k) = - dbl (numeral k)" |
47108 | 422 |
"dbl 0 = 0" |
423 |
"dbl 1 = 2" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
424 |
"dbl (- 1) = - 2" |
47108 | 425 |
"dbl (numeral k) = numeral (Bit0 k)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
426 |
by (simp_all add: dbl_def numeral.simps minus_add) |
47108 | 427 |
|
428 |
lemma dbl_inc_simps [simp]: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
429 |
"dbl_inc (- numeral k) = - dbl_dec (numeral k)" |
47108 | 430 |
"dbl_inc 0 = 1" |
431 |
"dbl_inc 1 = 3" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
432 |
"dbl_inc (- 1) = - 1" |
47108 | 433 |
"dbl_inc (numeral k) = numeral (Bit1 k)" |
63654 | 434 |
by (simp_all add: dbl_inc_def dbl_dec_def numeral.simps numeral_BitM is_num_normalize algebra_simps |
435 |
del: add_uminus_conv_diff) |
|
47108 | 436 |
|
437 |
lemma dbl_dec_simps [simp]: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
438 |
"dbl_dec (- numeral k) = - dbl_inc (numeral k)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
439 |
"dbl_dec 0 = - 1" |
47108 | 440 |
"dbl_dec 1 = 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
441 |
"dbl_dec (- 1) = - 3" |
47108 | 442 |
"dbl_dec (numeral k) = numeral (BitM k)" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
443 |
by (simp_all add: dbl_dec_def dbl_inc_def numeral.simps numeral_BitM is_num_normalize) |
47108 | 444 |
|
445 |
lemma sub_num_simps [simp]: |
|
446 |
"sub One One = 0" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
447 |
"sub One (Bit0 l) = - numeral (BitM l)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
448 |
"sub One (Bit1 l) = - numeral (Bit0 l)" |
47108 | 449 |
"sub (Bit0 k) One = numeral (BitM k)" |
450 |
"sub (Bit1 k) One = numeral (Bit0 k)" |
|
451 |
"sub (Bit0 k) (Bit0 l) = dbl (sub k l)" |
|
452 |
"sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)" |
|
453 |
"sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)" |
|
454 |
"sub (Bit1 k) (Bit1 l) = dbl (sub k l)" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
455 |
by (simp_all add: dbl_def dbl_dec_def dbl_inc_def sub_def numeral.simps |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53064
diff
changeset
|
456 |
numeral_BitM is_num_normalize del: add_uminus_conv_diff add: diff_conv_add_uminus) |
47108 | 457 |
|
458 |
lemma add_neg_numeral_simps: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
459 |
"numeral m + - numeral n = sub m n" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
460 |
"- numeral m + numeral n = sub n m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
461 |
"- numeral m + - numeral n = - (numeral m + numeral n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
462 |
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize |
63654 | 463 |
del: add_uminus_conv_diff add: diff_conv_add_uminus) |
47108 | 464 |
|
465 |
lemma add_neg_numeral_special: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
466 |
"1 + - numeral m = sub One m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
467 |
"- numeral m + 1 = sub One m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
468 |
"numeral m + - 1 = sub m One" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
469 |
"- 1 + numeral n = sub n One" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
470 |
"- 1 + - numeral n = - numeral (inc n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
471 |
"- numeral m + - 1 = - numeral (inc m)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
472 |
"1 + - 1 = 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
473 |
"- 1 + 1 = 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
474 |
"- 1 + - 1 = - 2" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
475 |
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize right_minus numeral_inc |
63654 | 476 |
del: add_uminus_conv_diff add: diff_conv_add_uminus) |
47108 | 477 |
|
478 |
lemma diff_numeral_simps: |
|
479 |
"numeral m - numeral n = sub m n" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
480 |
"numeral m - - numeral n = numeral (m + n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
481 |
"- numeral m - numeral n = - numeral (m + n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
482 |
"- numeral m - - numeral n = sub n m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
483 |
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize |
63654 | 484 |
del: add_uminus_conv_diff add: diff_conv_add_uminus) |
47108 | 485 |
|
486 |
lemma diff_numeral_special: |
|
487 |
"1 - numeral n = sub One n" |
|
488 |
"numeral m - 1 = sub m One" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
489 |
"1 - - numeral n = numeral (One + n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
490 |
"- numeral m - 1 = - numeral (m + One)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
491 |
"- 1 - numeral n = - numeral (inc n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
492 |
"numeral m - - 1 = numeral (inc m)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
493 |
"- 1 - - numeral n = sub n One" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
494 |
"- numeral m - - 1 = sub One m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
495 |
"1 - 1 = 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
496 |
"- 1 - 1 = - 2" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
497 |
"1 - - 1 = 2" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
498 |
"- 1 - - 1 = 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
499 |
by (simp_all add: sub_def numeral_add numeral.simps is_num_normalize numeral_inc |
63654 | 500 |
del: add_uminus_conv_diff add: diff_conv_add_uminus) |
47108 | 501 |
|
502 |
end |
|
503 |
||
63654 | 504 |
|
505 |
subsubsection \<open>Structures with multiplication: class \<open>semiring_numeral\<close>\<close> |
|
47108 | 506 |
|
507 |
class semiring_numeral = semiring + monoid_mult |
|
508 |
begin |
|
509 |
||
510 |
subclass numeral .. |
|
511 |
||
512 |
lemma numeral_mult: "numeral (m * n) = numeral m * numeral n" |
|
63654 | 513 |
by (induct n rule: num_induct) |
514 |
(simp_all add: numeral_One mult_inc numeral_inc numeral_add distrib_left) |
|
47108 | 515 |
|
516 |
lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)" |
|
517 |
by (rule numeral_mult [symmetric]) |
|
518 |
||
53064 | 519 |
lemma mult_2: "2 * z = z + z" |
63654 | 520 |
by (simp add: one_add_one [symmetric] distrib_right) |
53064 | 521 |
|
522 |
lemma mult_2_right: "z * 2 = z + z" |
|
63654 | 523 |
by (simp add: one_add_one [symmetric] distrib_left) |
53064 | 524 |
|
47108 | 525 |
end |
526 |
||
63654 | 527 |
|
528 |
subsubsection \<open>Structures with a zero: class \<open>semiring_1\<close>\<close> |
|
47108 | 529 |
|
530 |
context semiring_1 |
|
531 |
begin |
|
532 |
||
533 |
subclass semiring_numeral .. |
|
534 |
||
535 |
lemma of_nat_numeral [simp]: "of_nat (numeral n) = numeral n" |
|
63654 | 536 |
by (induct n) (simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1) |
47108 | 537 |
|
64178 | 538 |
lemma numeral_unfold_funpow: |
539 |
"numeral k = (op + 1 ^^ numeral k) 0" |
|
540 |
unfolding of_nat_def [symmetric] by simp |
|
541 |
||
47108 | 542 |
end |
543 |
||
64178 | 544 |
lemma transfer_rule_numeral: |
545 |
fixes R :: "'a::semiring_1 \<Rightarrow> 'b::semiring_1 \<Rightarrow> bool" |
|
546 |
assumes [transfer_rule]: "R 0 0" "R 1 1" |
|
547 |
"rel_fun R (rel_fun R R) plus plus" |
|
548 |
shows "rel_fun HOL.eq R numeral numeral" |
|
549 |
apply (subst (2) numeral_unfold_funpow [abs_def]) |
|
550 |
apply (subst (1) numeral_unfold_funpow [abs_def]) |
|
551 |
apply transfer_prover |
|
552 |
done |
|
553 |
||
63654 | 554 |
lemma nat_of_num_numeral [code_abbrev]: "nat_of_num = numeral" |
47108 | 555 |
proof |
556 |
fix n |
|
557 |
have "numeral n = nat_of_num n" |
|
558 |
by (induct n) (simp_all add: numeral.simps) |
|
63654 | 559 |
then show "nat_of_num n = numeral n" |
560 |
by simp |
|
47108 | 561 |
qed |
562 |
||
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
563 |
lemma nat_of_num_code [code]: |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
564 |
"nat_of_num One = 1" |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
565 |
"nat_of_num (Bit0 n) = (let m = nat_of_num n in m + m)" |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
566 |
"nat_of_num (Bit1 n) = (let m = nat_of_num n in Suc (m + m))" |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
567 |
by (simp_all add: Let_def) |
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
568 |
|
63654 | 569 |
|
570 |
subsubsection \<open>Equality: class \<open>semiring_char_0\<close>\<close> |
|
47108 | 571 |
|
572 |
context semiring_char_0 |
|
573 |
begin |
|
574 |
||
575 |
lemma numeral_eq_iff: "numeral m = numeral n \<longleftrightarrow> m = n" |
|
63654 | 576 |
by (simp only: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] |
577 |
of_nat_eq_iff num_eq_iff) |
|
47108 | 578 |
|
579 |
lemma numeral_eq_one_iff: "numeral n = 1 \<longleftrightarrow> n = One" |
|
580 |
by (rule numeral_eq_iff [of n One, unfolded numeral_One]) |
|
581 |
||
582 |
lemma one_eq_numeral_iff: "1 = numeral n \<longleftrightarrow> One = n" |
|
583 |
by (rule numeral_eq_iff [of One n, unfolded numeral_One]) |
|
584 |
||
585 |
lemma numeral_neq_zero: "numeral n \<noteq> 0" |
|
63654 | 586 |
by (simp add: of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] nat_of_num_pos) |
47108 | 587 |
|
588 |
lemma zero_neq_numeral: "0 \<noteq> numeral n" |
|
589 |
unfolding eq_commute [of 0] by (rule numeral_neq_zero) |
|
590 |
||
591 |
lemmas eq_numeral_simps [simp] = |
|
592 |
numeral_eq_iff |
|
593 |
numeral_eq_one_iff |
|
594 |
one_eq_numeral_iff |
|
595 |
numeral_neq_zero |
|
596 |
zero_neq_numeral |
|
597 |
||
598 |
end |
|
599 |
||
63654 | 600 |
|
601 |
subsubsection \<open>Comparisons: class \<open>linordered_semidom\<close>\<close> |
|
47108 | 602 |
|
60758 | 603 |
text \<open>Could be perhaps more general than here.\<close> |
47108 | 604 |
|
605 |
context linordered_semidom |
|
606 |
begin |
|
607 |
||
608 |
lemma numeral_le_iff: "numeral m \<le> numeral n \<longleftrightarrow> m \<le> n" |
|
609 |
proof - |
|
610 |
have "of_nat (numeral m) \<le> of_nat (numeral n) \<longleftrightarrow> m \<le> n" |
|
63654 | 611 |
by (simp only: less_eq_num_def nat_of_num_numeral of_nat_le_iff) |
47108 | 612 |
then show ?thesis by simp |
613 |
qed |
|
614 |
||
615 |
lemma one_le_numeral: "1 \<le> numeral n" |
|
63654 | 616 |
using numeral_le_iff [of One n] by (simp add: numeral_One) |
47108 | 617 |
|
618 |
lemma numeral_le_one_iff: "numeral n \<le> 1 \<longleftrightarrow> n \<le> One" |
|
63654 | 619 |
using numeral_le_iff [of n One] by (simp add: numeral_One) |
47108 | 620 |
|
621 |
lemma numeral_less_iff: "numeral m < numeral n \<longleftrightarrow> m < n" |
|
622 |
proof - |
|
623 |
have "of_nat (numeral m) < of_nat (numeral n) \<longleftrightarrow> m < n" |
|
624 |
unfolding less_num_def nat_of_num_numeral of_nat_less_iff .. |
|
625 |
then show ?thesis by simp |
|
626 |
qed |
|
627 |
||
628 |
lemma not_numeral_less_one: "\<not> numeral n < 1" |
|
629 |
using numeral_less_iff [of n One] by (simp add: numeral_One) |
|
630 |
||
631 |
lemma one_less_numeral_iff: "1 < numeral n \<longleftrightarrow> One < n" |
|
632 |
using numeral_less_iff [of One n] by (simp add: numeral_One) |
|
633 |
||
634 |
lemma zero_le_numeral: "0 \<le> numeral n" |
|
635 |
by (induct n) (simp_all add: numeral.simps) |
|
636 |
||
637 |
lemma zero_less_numeral: "0 < numeral n" |
|
638 |
by (induct n) (simp_all add: numeral.simps add_pos_pos) |
|
639 |
||
640 |
lemma not_numeral_le_zero: "\<not> numeral n \<le> 0" |
|
641 |
by (simp add: not_le zero_less_numeral) |
|
642 |
||
643 |
lemma not_numeral_less_zero: "\<not> numeral n < 0" |
|
644 |
by (simp add: not_less zero_le_numeral) |
|
645 |
||
646 |
lemmas le_numeral_extra = |
|
647 |
zero_le_one not_one_le_zero |
|
648 |
order_refl [of 0] order_refl [of 1] |
|
649 |
||
650 |
lemmas less_numeral_extra = |
|
651 |
zero_less_one not_one_less_zero |
|
652 |
less_irrefl [of 0] less_irrefl [of 1] |
|
653 |
||
654 |
lemmas le_numeral_simps [simp] = |
|
655 |
numeral_le_iff |
|
656 |
one_le_numeral |
|
657 |
numeral_le_one_iff |
|
658 |
zero_le_numeral |
|
659 |
not_numeral_le_zero |
|
660 |
||
661 |
lemmas less_numeral_simps [simp] = |
|
662 |
numeral_less_iff |
|
663 |
one_less_numeral_iff |
|
664 |
not_numeral_less_one |
|
665 |
zero_less_numeral |
|
666 |
not_numeral_less_zero |
|
667 |
||
61630 | 668 |
lemma min_0_1 [simp]: |
63654 | 669 |
fixes min' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
670 |
defines "min' \<equiv> min" |
|
671 |
shows |
|
672 |
"min' 0 1 = 0" |
|
673 |
"min' 1 0 = 0" |
|
674 |
"min' 0 (numeral x) = 0" |
|
675 |
"min' (numeral x) 0 = 0" |
|
676 |
"min' 1 (numeral x) = 1" |
|
677 |
"min' (numeral x) 1 = 1" |
|
678 |
by (simp_all add: min'_def min_def le_num_One_iff) |
|
61630 | 679 |
|
63654 | 680 |
lemma max_0_1 [simp]: |
681 |
fixes max' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
682 |
defines "max' \<equiv> max" |
|
683 |
shows |
|
684 |
"max' 0 1 = 1" |
|
685 |
"max' 1 0 = 1" |
|
686 |
"max' 0 (numeral x) = numeral x" |
|
687 |
"max' (numeral x) 0 = numeral x" |
|
688 |
"max' 1 (numeral x) = numeral x" |
|
689 |
"max' (numeral x) 1 = numeral x" |
|
690 |
by (simp_all add: max'_def max_def le_num_One_iff) |
|
61630 | 691 |
|
47108 | 692 |
end |
693 |
||
63654 | 694 |
|
695 |
subsubsection \<open>Multiplication and negation: class \<open>ring_1\<close>\<close> |
|
47108 | 696 |
|
697 |
context ring_1 |
|
698 |
begin |
|
699 |
||
700 |
subclass neg_numeral .. |
|
701 |
||
702 |
lemma mult_neg_numeral_simps: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
703 |
"- numeral m * - numeral n = numeral (m * n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
704 |
"- numeral m * numeral n = - numeral (m * n)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
705 |
"numeral m * - numeral n = - numeral (m * n)" |
63654 | 706 |
by (simp_all only: mult_minus_left mult_minus_right minus_minus numeral_mult) |
47108 | 707 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
708 |
lemma mult_minus1 [simp]: "- 1 * z = - z" |
63654 | 709 |
by (simp add: numeral.simps) |
47108 | 710 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
711 |
lemma mult_minus1_right [simp]: "z * - 1 = - z" |
63654 | 712 |
by (simp add: numeral.simps) |
47108 | 713 |
|
714 |
end |
|
715 |
||
63654 | 716 |
|
717 |
subsubsection \<open>Equality using \<open>iszero\<close> for rings with non-zero characteristic\<close> |
|
47108 | 718 |
|
719 |
context ring_1 |
|
720 |
begin |
|
721 |
||
722 |
definition iszero :: "'a \<Rightarrow> bool" |
|
723 |
where "iszero z \<longleftrightarrow> z = 0" |
|
724 |
||
725 |
lemma iszero_0 [simp]: "iszero 0" |
|
726 |
by (simp add: iszero_def) |
|
727 |
||
728 |
lemma not_iszero_1 [simp]: "\<not> iszero 1" |
|
729 |
by (simp add: iszero_def) |
|
730 |
||
731 |
lemma not_iszero_Numeral1: "\<not> iszero Numeral1" |
|
732 |
by (simp add: numeral_One) |
|
733 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
734 |
lemma not_iszero_neg_1 [simp]: "\<not> iszero (- 1)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
735 |
by (simp add: iszero_def) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
736 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
737 |
lemma not_iszero_neg_Numeral1: "\<not> iszero (- Numeral1)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
738 |
by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
739 |
|
63654 | 740 |
lemma iszero_neg_numeral [simp]: "iszero (- numeral w) \<longleftrightarrow> iszero (numeral w)" |
741 |
unfolding iszero_def by (rule neg_equal_0_iff_equal) |
|
47108 | 742 |
|
743 |
lemma eq_iff_iszero_diff: "x = y \<longleftrightarrow> iszero (x - y)" |
|
744 |
unfolding iszero_def by (rule eq_iff_diff_eq_0) |
|
745 |
||
63654 | 746 |
text \<open> |
747 |
The \<open>eq_numeral_iff_iszero\<close> lemmas are not declared \<open>[simp]\<close> by default, |
|
748 |
because for rings of characteristic zero, better simp rules are possible. |
|
749 |
For a type like integers mod \<open>n\<close>, type-instantiated versions of these rules |
|
750 |
should be added to the simplifier, along with a type-specific rule for |
|
751 |
deciding propositions of the form \<open>iszero (numeral w)\<close>. |
|
47108 | 752 |
|
63654 | 753 |
bh: Maybe it would not be so bad to just declare these as simp rules anyway? |
754 |
I should test whether these rules take precedence over the \<open>ring_char_0\<close> |
|
755 |
rules in the simplifier. |
|
60758 | 756 |
\<close> |
47108 | 757 |
|
758 |
lemma eq_numeral_iff_iszero: |
|
759 |
"numeral x = numeral y \<longleftrightarrow> iszero (sub x y)" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
760 |
"numeral x = - numeral y \<longleftrightarrow> iszero (numeral (x + y))" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
761 |
"- numeral x = numeral y \<longleftrightarrow> iszero (numeral (x + y))" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
762 |
"- numeral x = - numeral y \<longleftrightarrow> iszero (sub y x)" |
47108 | 763 |
"numeral x = 1 \<longleftrightarrow> iszero (sub x One)" |
764 |
"1 = numeral y \<longleftrightarrow> iszero (sub One y)" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
765 |
"- numeral x = 1 \<longleftrightarrow> iszero (numeral (x + One))" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
766 |
"1 = - numeral y \<longleftrightarrow> iszero (numeral (One + y))" |
47108 | 767 |
"numeral x = 0 \<longleftrightarrow> iszero (numeral x)" |
768 |
"0 = numeral y \<longleftrightarrow> iszero (numeral y)" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
769 |
"- numeral x = 0 \<longleftrightarrow> iszero (numeral x)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
770 |
"0 = - numeral y \<longleftrightarrow> iszero (numeral y)" |
47108 | 771 |
unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special |
772 |
by simp_all |
|
773 |
||
774 |
end |
|
775 |
||
63654 | 776 |
|
777 |
subsubsection \<open>Equality and negation: class \<open>ring_char_0\<close>\<close> |
|
47108 | 778 |
|
62481
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
haftmann
parents:
62348
diff
changeset
|
779 |
context ring_char_0 |
47108 | 780 |
begin |
781 |
||
782 |
lemma not_iszero_numeral [simp]: "\<not> iszero (numeral w)" |
|
783 |
by (simp add: iszero_def) |
|
784 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
785 |
lemma neg_numeral_eq_iff: "- numeral m = - numeral n \<longleftrightarrow> m = n" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
786 |
by simp |
47108 | 787 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
788 |
lemma numeral_neq_neg_numeral: "numeral m \<noteq> - numeral n" |
63654 | 789 |
by (simp add: eq_neg_iff_add_eq_0 numeral_plus_numeral) |
47108 | 790 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
791 |
lemma neg_numeral_neq_numeral: "- numeral m \<noteq> numeral n" |
47108 | 792 |
by (rule numeral_neq_neg_numeral [symmetric]) |
793 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
794 |
lemma zero_neq_neg_numeral: "0 \<noteq> - numeral n" |
63654 | 795 |
by simp |
47108 | 796 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
797 |
lemma neg_numeral_neq_zero: "- numeral n \<noteq> 0" |
63654 | 798 |
by simp |
47108 | 799 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
800 |
lemma one_neq_neg_numeral: "1 \<noteq> - numeral n" |
47108 | 801 |
using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One) |
802 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
803 |
lemma neg_numeral_neq_one: "- numeral n \<noteq> 1" |
47108 | 804 |
using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One) |
805 |
||
63654 | 806 |
lemma neg_one_neq_numeral: "- 1 \<noteq> numeral n" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
807 |
using neg_numeral_neq_numeral [of One n] by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
808 |
|
63654 | 809 |
lemma numeral_neq_neg_one: "numeral n \<noteq> - 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
810 |
using numeral_neq_neg_numeral [of n One] by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
811 |
|
63654 | 812 |
lemma neg_one_eq_numeral_iff: "- 1 = - numeral n \<longleftrightarrow> n = One" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
813 |
using neg_numeral_eq_iff [of One n] by (auto simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
814 |
|
63654 | 815 |
lemma numeral_eq_neg_one_iff: "- numeral n = - 1 \<longleftrightarrow> n = One" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
816 |
using neg_numeral_eq_iff [of n One] by (auto simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
817 |
|
63654 | 818 |
lemma neg_one_neq_zero: "- 1 \<noteq> 0" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
819 |
by simp |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
820 |
|
63654 | 821 |
lemma zero_neq_neg_one: "0 \<noteq> - 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
822 |
by simp |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
823 |
|
63654 | 824 |
lemma neg_one_neq_one: "- 1 \<noteq> 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
825 |
using neg_numeral_neq_numeral [of One One] by (simp only: numeral_One not_False_eq_True) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
826 |
|
63654 | 827 |
lemma one_neq_neg_one: "1 \<noteq> - 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
828 |
using numeral_neq_neg_numeral [of One One] by (simp only: numeral_One not_False_eq_True) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
829 |
|
47108 | 830 |
lemmas eq_neg_numeral_simps [simp] = |
831 |
neg_numeral_eq_iff |
|
832 |
numeral_neq_neg_numeral neg_numeral_neq_numeral |
|
833 |
one_neq_neg_numeral neg_numeral_neq_one |
|
834 |
zero_neq_neg_numeral neg_numeral_neq_zero |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
835 |
neg_one_neq_numeral numeral_neq_neg_one |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
836 |
neg_one_eq_numeral_iff numeral_eq_neg_one_iff |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
837 |
neg_one_neq_zero zero_neq_neg_one |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
838 |
neg_one_neq_one one_neq_neg_one |
47108 | 839 |
|
840 |
end |
|
841 |
||
62348 | 842 |
|
63654 | 843 |
subsubsection \<open>Structures with negation and order: class \<open>linordered_idom\<close>\<close> |
47108 | 844 |
|
845 |
context linordered_idom |
|
846 |
begin |
|
847 |
||
848 |
subclass ring_char_0 .. |
|
849 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
850 |
lemma neg_numeral_le_iff: "- numeral m \<le> - numeral n \<longleftrightarrow> n \<le> m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
851 |
by (simp only: neg_le_iff_le numeral_le_iff) |
47108 | 852 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
853 |
lemma neg_numeral_less_iff: "- numeral m < - numeral n \<longleftrightarrow> n < m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
854 |
by (simp only: neg_less_iff_less numeral_less_iff) |
47108 | 855 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
856 |
lemma neg_numeral_less_zero: "- numeral n < 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
857 |
by (simp only: neg_less_0_iff_less zero_less_numeral) |
47108 | 858 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
859 |
lemma neg_numeral_le_zero: "- numeral n \<le> 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
860 |
by (simp only: neg_le_0_iff_le zero_le_numeral) |
47108 | 861 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
862 |
lemma not_zero_less_neg_numeral: "\<not> 0 < - numeral n" |
47108 | 863 |
by (simp only: not_less neg_numeral_le_zero) |
864 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
865 |
lemma not_zero_le_neg_numeral: "\<not> 0 \<le> - numeral n" |
47108 | 866 |
by (simp only: not_le neg_numeral_less_zero) |
867 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
868 |
lemma neg_numeral_less_numeral: "- numeral m < numeral n" |
47108 | 869 |
using neg_numeral_less_zero zero_less_numeral by (rule less_trans) |
870 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
871 |
lemma neg_numeral_le_numeral: "- numeral m \<le> numeral n" |
47108 | 872 |
by (simp only: less_imp_le neg_numeral_less_numeral) |
873 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
874 |
lemma not_numeral_less_neg_numeral: "\<not> numeral m < - numeral n" |
47108 | 875 |
by (simp only: not_less neg_numeral_le_numeral) |
876 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
877 |
lemma not_numeral_le_neg_numeral: "\<not> numeral m \<le> - numeral n" |
47108 | 878 |
by (simp only: not_le neg_numeral_less_numeral) |
63654 | 879 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
880 |
lemma neg_numeral_less_one: "- numeral m < 1" |
47108 | 881 |
by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One]) |
882 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
883 |
lemma neg_numeral_le_one: "- numeral m \<le> 1" |
47108 | 884 |
by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One]) |
885 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
886 |
lemma not_one_less_neg_numeral: "\<not> 1 < - numeral m" |
47108 | 887 |
by (simp only: not_less neg_numeral_le_one) |
888 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
889 |
lemma not_one_le_neg_numeral: "\<not> 1 \<le> - numeral m" |
47108 | 890 |
by (simp only: not_le neg_numeral_less_one) |
891 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
892 |
lemma not_numeral_less_neg_one: "\<not> numeral m < - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
893 |
using not_numeral_less_neg_numeral [of m One] by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
894 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
895 |
lemma not_numeral_le_neg_one: "\<not> numeral m \<le> - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
896 |
using not_numeral_le_neg_numeral [of m One] by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
897 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
898 |
lemma neg_one_less_numeral: "- 1 < numeral m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
899 |
using neg_numeral_less_numeral [of One m] by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
900 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
901 |
lemma neg_one_le_numeral: "- 1 \<le> numeral m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
902 |
using neg_numeral_le_numeral [of One m] by (simp add: numeral_One) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
903 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
904 |
lemma neg_numeral_less_neg_one_iff: "- numeral m < - 1 \<longleftrightarrow> m \<noteq> One" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
905 |
by (cases m) simp_all |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
906 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
907 |
lemma neg_numeral_le_neg_one: "- numeral m \<le> - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
908 |
by simp |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
909 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
910 |
lemma not_neg_one_less_neg_numeral: "\<not> - 1 < - numeral m" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
911 |
by simp |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
912 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
913 |
lemma not_neg_one_le_neg_numeral_iff: "\<not> - 1 \<le> - numeral m \<longleftrightarrow> m \<noteq> One" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
914 |
by (cases m) simp_all |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
915 |
|
63654 | 916 |
lemma sub_non_negative: "sub n m \<ge> 0 \<longleftrightarrow> n \<ge> m" |
47108 | 917 |
by (simp only: sub_def le_diff_eq) simp |
918 |
||
63654 | 919 |
lemma sub_positive: "sub n m > 0 \<longleftrightarrow> n > m" |
47108 | 920 |
by (simp only: sub_def less_diff_eq) simp |
921 |
||
63654 | 922 |
lemma sub_non_positive: "sub n m \<le> 0 \<longleftrightarrow> n \<le> m" |
47108 | 923 |
by (simp only: sub_def diff_le_eq) simp |
924 |
||
63654 | 925 |
lemma sub_negative: "sub n m < 0 \<longleftrightarrow> n < m" |
47108 | 926 |
by (simp only: sub_def diff_less_eq) simp |
927 |
||
928 |
lemmas le_neg_numeral_simps [simp] = |
|
929 |
neg_numeral_le_iff |
|
930 |
neg_numeral_le_numeral not_numeral_le_neg_numeral |
|
931 |
neg_numeral_le_zero not_zero_le_neg_numeral |
|
932 |
neg_numeral_le_one not_one_le_neg_numeral |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
933 |
neg_one_le_numeral not_numeral_le_neg_one |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
934 |
neg_numeral_le_neg_one not_neg_one_le_neg_numeral_iff |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
935 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
936 |
lemma le_minus_one_simps [simp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
937 |
"- 1 \<le> 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
938 |
"- 1 \<le> 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
939 |
"\<not> 0 \<le> - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
940 |
"\<not> 1 \<le> - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
941 |
by simp_all |
47108 | 942 |
|
943 |
lemmas less_neg_numeral_simps [simp] = |
|
944 |
neg_numeral_less_iff |
|
945 |
neg_numeral_less_numeral not_numeral_less_neg_numeral |
|
946 |
neg_numeral_less_zero not_zero_less_neg_numeral |
|
947 |
neg_numeral_less_one not_one_less_neg_numeral |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
948 |
neg_one_less_numeral not_numeral_less_neg_one |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
949 |
neg_numeral_less_neg_one_iff not_neg_one_less_neg_numeral |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
950 |
|
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
951 |
lemma less_minus_one_simps [simp]: |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
952 |
"- 1 < 0" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
953 |
"- 1 < 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
954 |
"\<not> 0 < - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
955 |
"\<not> 1 < - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
956 |
by (simp_all add: less_le) |
47108 | 957 |
|
61944 | 958 |
lemma abs_numeral [simp]: "\<bar>numeral n\<bar> = numeral n" |
47108 | 959 |
by simp |
960 |
||
61944 | 961 |
lemma abs_neg_numeral [simp]: "\<bar>- numeral n\<bar> = numeral n" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
962 |
by (simp only: abs_minus_cancel abs_numeral) |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
963 |
|
61944 | 964 |
lemma abs_neg_one [simp]: "\<bar>- 1\<bar> = 1" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
965 |
by simp |
47108 | 966 |
|
967 |
end |
|
968 |
||
63654 | 969 |
|
970 |
subsubsection \<open>Natural numbers\<close> |
|
47108 | 971 |
|
47299 | 972 |
lemma Suc_1 [simp]: "Suc 1 = 2" |
973 |
unfolding Suc_eq_plus1 by (rule one_add_one) |
|
974 |
||
47108 | 975 |
lemma Suc_numeral [simp]: "Suc (numeral n) = numeral (n + One)" |
47299 | 976 |
unfolding Suc_eq_plus1 by (rule numeral_plus_one) |
47108 | 977 |
|
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
978 |
definition pred_numeral :: "num \<Rightarrow> nat" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
979 |
where [code del]: "pred_numeral k = numeral k - 1" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
980 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
981 |
lemma numeral_eq_Suc: "numeral k = Suc (pred_numeral k)" |
63654 | 982 |
by (simp add: pred_numeral_def) |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
983 |
|
47220
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
huffman
parents:
47218
diff
changeset
|
984 |
lemma eval_nat_numeral: |
47108 | 985 |
"numeral One = Suc 0" |
986 |
"numeral (Bit0 n) = Suc (numeral (BitM n))" |
|
987 |
"numeral (Bit1 n) = Suc (numeral (Bit0 n))" |
|
988 |
by (simp_all add: numeral.simps BitM_plus_one) |
|
989 |
||
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
990 |
lemma pred_numeral_simps [simp]: |
47300 | 991 |
"pred_numeral One = 0" |
992 |
"pred_numeral (Bit0 k) = numeral (BitM k)" |
|
993 |
"pred_numeral (Bit1 k) = numeral (Bit0 k)" |
|
63654 | 994 |
by (simp_all only: pred_numeral_def eval_nat_numeral diff_Suc_Suc diff_0) |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
995 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
996 |
lemma numeral_2_eq_2: "2 = Suc (Suc 0)" |
47220
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
huffman
parents:
47218
diff
changeset
|
997 |
by (simp add: eval_nat_numeral) |
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
998 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
999 |
lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))" |
47220
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
huffman
parents:
47218
diff
changeset
|
1000 |
by (simp add: eval_nat_numeral) |
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
1001 |
|
47207
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
1002 |
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0" |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
1003 |
by (simp only: numeral_One One_nat_def) |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
1004 |
|
63654 | 1005 |
lemma Suc_nat_number_of_add: "Suc (numeral v + n) = numeral (v + One) + n" |
47207
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
1006 |
by simp |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
1007 |
|
63654 | 1008 |
lemma numerals: "Numeral1 = (1::nat)" "2 = Suc (Suc 0)" |
1009 |
by (rule numeral_One) (rule numeral_2_eq_2) |
|
47207
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
1010 |
|
63913 | 1011 |
lemmas numeral_nat = eval_nat_numeral BitM.simps One_nat_def |
1012 |
||
60758 | 1013 |
text \<open>Comparisons involving @{term Suc}.\<close> |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1014 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1015 |
lemma eq_numeral_Suc [simp]: "numeral k = Suc n \<longleftrightarrow> pred_numeral k = n" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1016 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1017 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1018 |
lemma Suc_eq_numeral [simp]: "Suc n = numeral k \<longleftrightarrow> n = pred_numeral k" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1019 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1020 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1021 |
lemma less_numeral_Suc [simp]: "numeral k < Suc n \<longleftrightarrow> pred_numeral k < n" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1022 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1023 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1024 |
lemma less_Suc_numeral [simp]: "Suc n < numeral k \<longleftrightarrow> n < pred_numeral k" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1025 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1026 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1027 |
lemma le_numeral_Suc [simp]: "numeral k \<le> Suc n \<longleftrightarrow> pred_numeral k \<le> n" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1028 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1029 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1030 |
lemma le_Suc_numeral [simp]: "Suc n \<le> numeral k \<longleftrightarrow> n \<le> pred_numeral k" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1031 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1032 |
|
47218
2b652cbadde1
new lemmas for simplifying subtraction on nat numerals
huffman
parents:
47216
diff
changeset
|
1033 |
lemma diff_Suc_numeral [simp]: "Suc n - numeral k = n - pred_numeral k" |
2b652cbadde1
new lemmas for simplifying subtraction on nat numerals
huffman
parents:
47216
diff
changeset
|
1034 |
by (simp add: numeral_eq_Suc) |
2b652cbadde1
new lemmas for simplifying subtraction on nat numerals
huffman
parents:
47216
diff
changeset
|
1035 |
|
2b652cbadde1
new lemmas for simplifying subtraction on nat numerals
huffman
parents:
47216
diff
changeset
|
1036 |
lemma diff_numeral_Suc [simp]: "numeral k - Suc n = pred_numeral k - n" |
2b652cbadde1
new lemmas for simplifying subtraction on nat numerals
huffman
parents:
47216
diff
changeset
|
1037 |
by (simp add: numeral_eq_Suc) |
2b652cbadde1
new lemmas for simplifying subtraction on nat numerals
huffman
parents:
47216
diff
changeset
|
1038 |
|
63654 | 1039 |
lemma max_Suc_numeral [simp]: "max (Suc n) (numeral k) = Suc (max n (pred_numeral k))" |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1040 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1041 |
|
63654 | 1042 |
lemma max_numeral_Suc [simp]: "max (numeral k) (Suc n) = Suc (max (pred_numeral k) n)" |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1043 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1044 |
|
63654 | 1045 |
lemma min_Suc_numeral [simp]: "min (Suc n) (numeral k) = Suc (min n (pred_numeral k))" |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1046 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1047 |
|
63654 | 1048 |
lemma min_numeral_Suc [simp]: "min (numeral k) (Suc n) = Suc (min (pred_numeral k) n)" |
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1049 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
1050 |
|
60758 | 1051 |
text \<open>For @{term case_nat} and @{term rec_nat}.\<close> |
47216
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1052 |
|
63654 | 1053 |
lemma case_nat_numeral [simp]: "case_nat a f (numeral v) = (let pv = pred_numeral v in f pv)" |
47216
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1054 |
by (simp add: numeral_eq_Suc) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1055 |
|
55415 | 1056 |
lemma case_nat_add_eq_if [simp]: |
1057 |
"case_nat a f ((numeral v) + n) = (let pv = pred_numeral v in f (pv + n))" |
|
47216
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1058 |
by (simp add: numeral_eq_Suc) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1059 |
|
55415 | 1060 |
lemma rec_nat_numeral [simp]: |
63654 | 1061 |
"rec_nat a f (numeral v) = (let pv = pred_numeral v in f pv (rec_nat a f pv))" |
47216
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1062 |
by (simp add: numeral_eq_Suc Let_def) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1063 |
|
55415 | 1064 |
lemma rec_nat_add_eq_if [simp]: |
63654 | 1065 |
"rec_nat a f (numeral v + n) = (let pv = pred_numeral v in f (pv + n) (rec_nat a f (pv + n)))" |
47216
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1066 |
by (simp add: numeral_eq_Suc Let_def) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
1067 |
|
63654 | 1068 |
text \<open>Case analysis on @{term "n < 2"}.\<close> |
47255
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1069 |
lemma less_2_cases: "n < 2 \<Longrightarrow> n = 0 \<or> n = Suc 0" |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1070 |
by (auto simp add: numeral_2_eq_2) |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1071 |
|
63654 | 1072 |
text \<open>Removal of Small Numerals: 0, 1 and (in additive positions) 2.\<close> |
60758 | 1073 |
text \<open>bh: Are these rules really a good idea?\<close> |
47255
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1074 |
|
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1075 |
lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)" |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1076 |
by simp |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1077 |
|
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1078 |
lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)" |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1079 |
by simp |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1080 |
|
60758 | 1081 |
text \<open>Can be used to eliminate long strings of Sucs, but not by default.\<close> |
47255
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1082 |
lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n" |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1083 |
by simp |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1084 |
|
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1085 |
lemmas nat_1_add_1 = one_add_one [where 'a=nat] (* legacy *) |
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
huffman
parents:
47228
diff
changeset
|
1086 |
|
47108 | 1087 |
|
60758 | 1088 |
subsection \<open>Particular lemmas concerning @{term 2}\<close> |
58512
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1089 |
|
59867
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
haftmann
parents:
59621
diff
changeset
|
1090 |
context linordered_field |
58512
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1091 |
begin |
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1092 |
|
62348 | 1093 |
subclass field_char_0 .. |
1094 |
||
63654 | 1095 |
lemma half_gt_zero_iff: "0 < a / 2 \<longleftrightarrow> 0 < a" |
58512
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1096 |
by (auto simp add: field_simps) |
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1097 |
|
63654 | 1098 |
lemma half_gt_zero [simp]: "0 < a \<Longrightarrow> 0 < a / 2" |
58512
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1099 |
by (simp add: half_gt_zero_iff) |
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1100 |
|
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1101 |
end |
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1102 |
|
dc4d76dfa8f0
moved lemmas out of Int.thy which have nothing to do with int
haftmann
parents:
58421
diff
changeset
|
1103 |
|
60758 | 1104 |
subsection \<open>Numeral equations as default simplification rules\<close> |
47108 | 1105 |
|
1106 |
declare (in numeral) numeral_One [simp] |
|
1107 |
declare (in numeral) numeral_plus_numeral [simp] |
|
1108 |
declare (in numeral) add_numeral_special [simp] |
|
1109 |
declare (in neg_numeral) add_neg_numeral_simps [simp] |
|
1110 |
declare (in neg_numeral) add_neg_numeral_special [simp] |
|
1111 |
declare (in neg_numeral) diff_numeral_simps [simp] |
|
1112 |
declare (in neg_numeral) diff_numeral_special [simp] |
|
1113 |
declare (in semiring_numeral) numeral_times_numeral [simp] |
|
1114 |
declare (in ring_1) mult_neg_numeral_simps [simp] |
|
1115 |
||
60758 | 1116 |
subsection \<open>Setting up simprocs\<close> |
47108 | 1117 |
|
63654 | 1118 |
lemma mult_numeral_1: "Numeral1 * a = a" |
1119 |
for a :: "'a::semiring_numeral" |
|
47108 | 1120 |
by simp |
1121 |
||
63654 | 1122 |
lemma mult_numeral_1_right: "a * Numeral1 = a" |
1123 |
for a :: "'a::semiring_numeral" |
|
47108 | 1124 |
by simp |
1125 |
||
63654 | 1126 |
lemma divide_numeral_1: "a / Numeral1 = a" |
1127 |
for a :: "'a::field" |
|
47108 | 1128 |
by simp |
1129 |
||
63654 | 1130 |
lemma inverse_numeral_1: "inverse Numeral1 = (Numeral1::'a::division_ring)" |
47108 | 1131 |
by simp |
1132 |
||
63654 | 1133 |
text \<open> |
1134 |
Theorem lists for the cancellation simprocs. The use of a binary |
|
1135 |
numeral for 1 reduces the number of special cases. |
|
1136 |
\<close> |
|
47108 | 1137 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1138 |
lemma mult_1s: |
63654 | 1139 |
"Numeral1 * a = a" |
1140 |
"a * Numeral1 = a" |
|
1141 |
"- Numeral1 * b = - b" |
|
1142 |
"b * - Numeral1 = - b" |
|
1143 |
for a :: "'a::semiring_numeral" and b :: "'b::ring_1" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1144 |
by simp_all |
47108 | 1145 |
|
60758 | 1146 |
setup \<open> |
47226 | 1147 |
Reorient_Proc.add |
1148 |
(fn Const (@{const_name numeral}, _) $ _ => true |
|
63654 | 1149 |
| Const (@{const_name uminus}, _) $ (Const (@{const_name numeral}, _) $ _) => true |
1150 |
| _ => false) |
|
60758 | 1151 |
\<close> |
47226 | 1152 |
|
63654 | 1153 |
simproc_setup reorient_numeral ("numeral w = x" | "- numeral w = y") = |
1154 |
Reorient_Proc.proc |
|
47226 | 1155 |
|
47108 | 1156 |
|
63654 | 1157 |
subsubsection \<open>Simplification of arithmetic operations on integer constants\<close> |
47108 | 1158 |
|
1159 |
lemmas arith_special = (* already declared simp above *) |
|
1160 |
add_numeral_special add_neg_numeral_special |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1161 |
diff_numeral_special |
47108 | 1162 |
|
63654 | 1163 |
lemmas arith_extra_simps = (* rules already in simpset *) |
47108 | 1164 |
numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1165 |
minus_zero |
47108 | 1166 |
diff_numeral_simps diff_0 diff_0_right |
1167 |
numeral_times_numeral mult_neg_numeral_simps |
|
1168 |
mult_zero_left mult_zero_right |
|
1169 |
abs_numeral abs_neg_numeral |
|
1170 |
||
60758 | 1171 |
text \<open> |
47108 | 1172 |
For making a minimal simpset, one must include these default simprules. |
61799 | 1173 |
Also include \<open>simp_thms\<close>. |
60758 | 1174 |
\<close> |
47108 | 1175 |
|
1176 |
lemmas arith_simps = |
|
1177 |
add_num_simps mult_num_simps sub_num_simps |
|
1178 |
BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps |
|
1179 |
abs_zero abs_one arith_extra_simps |
|
1180 |
||
54249 | 1181 |
lemmas more_arith_simps = |
1182 |
neg_le_iff_le |
|
1183 |
minus_zero left_minus right_minus |
|
1184 |
mult_1_left mult_1_right |
|
1185 |
mult_minus_left mult_minus_right |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
1186 |
minus_add_distrib minus_minus mult.assoc |
54249 | 1187 |
|
1188 |
lemmas of_nat_simps = |
|
1189 |
of_nat_0 of_nat_1 of_nat_Suc of_nat_add of_nat_mult |
|
1190 |
||
63654 | 1191 |
text \<open>Simplification of relational operations.\<close> |
47108 | 1192 |
|
1193 |
lemmas eq_numeral_extra = |
|
1194 |
zero_neq_one one_neq_zero |
|
1195 |
||
1196 |
lemmas rel_simps = |
|
1197 |
le_num_simps less_num_simps eq_num_simps |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1198 |
le_numeral_simps le_neg_numeral_simps le_minus_one_simps le_numeral_extra |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1199 |
less_numeral_simps less_neg_numeral_simps less_minus_one_simps less_numeral_extra |
47108 | 1200 |
eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra |
1201 |
||
54249 | 1202 |
lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)" |
61799 | 1203 |
\<comment> \<open>Unfold all \<open>let\<close>s involving constants\<close> |
54249 | 1204 |
unfolding Let_def .. |
1205 |
||
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1206 |
lemma Let_neg_numeral [simp]: "Let (- numeral v) f = f (- numeral v)" |
61799 | 1207 |
\<comment> \<open>Unfold all \<open>let\<close>s involving constants\<close> |
54249 | 1208 |
unfolding Let_def .. |
1209 |
||
60758 | 1210 |
declaration \<open> |
63654 | 1211 |
let |
59996 | 1212 |
fun number_of ctxt T n = |
1213 |
if not (Sign.of_sort (Proof_Context.theory_of ctxt) (T, @{sort numeral})) |
|
54249 | 1214 |
then raise CTERM ("number_of", []) |
59996 | 1215 |
else Numeral.mk_cnumber (Thm.ctyp_of ctxt T) n; |
54249 | 1216 |
in |
1217 |
K ( |
|
63654 | 1218 |
Lin_Arith.add_simps |
1219 |
@{thms arith_simps more_arith_simps rel_simps pred_numeral_simps |
|
64238 | 1220 |
arith_special numeral_One of_nat_simps uminus_numeral_One} |
63654 | 1221 |
#> Lin_Arith.add_simps |
1222 |
@{thms Suc_numeral Let_numeral Let_neg_numeral Let_0 Let_1 |
|
1223 |
le_Suc_numeral le_numeral_Suc less_Suc_numeral less_numeral_Suc |
|
1224 |
Suc_eq_numeral eq_numeral_Suc mult_Suc mult_Suc_right of_nat_numeral} |
|
54249 | 1225 |
#> Lin_Arith.set_number_of number_of) |
1226 |
end |
|
60758 | 1227 |
\<close> |
54249 | 1228 |
|
47108 | 1229 |
|
63654 | 1230 |
subsubsection \<open>Simplification of arithmetic when nested to the right\<close> |
47108 | 1231 |
|
63654 | 1232 |
lemma add_numeral_left [simp]: "numeral v + (numeral w + z) = (numeral(v + w) + z)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
1233 |
by (simp_all add: add.assoc [symmetric]) |
47108 | 1234 |
|
1235 |
lemma add_neg_numeral_left [simp]: |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1236 |
"numeral v + (- numeral w + y) = (sub v w + y)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1237 |
"- numeral v + (numeral w + y) = (sub w v + y)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1238 |
"- numeral v + (- numeral w + y) = (- numeral(v + w) + y)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
1239 |
by (simp_all add: add.assoc [symmetric]) |
47108 | 1240 |
|
1241 |
lemma mult_numeral_left [simp]: |
|
1242 |
"numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)" |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1243 |
"- numeral v * (numeral w * y) = (- numeral(v * w) * y :: 'b::ring_1)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1244 |
"numeral v * (- numeral w * y) = (- numeral(v * w) * y :: 'b::ring_1)" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54249
diff
changeset
|
1245 |
"- numeral v * (- numeral w * y) = (numeral(v * w) * y :: 'b::ring_1)" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55974
diff
changeset
|
1246 |
by (simp_all add: mult.assoc [symmetric]) |
47108 | 1247 |
|
1248 |
hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec |
|
1249 |
||
51143
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
haftmann
parents:
50817
diff
changeset
|
1250 |
|
63654 | 1251 |
subsection \<open>Code module namespace\<close> |
47108 | 1252 |
|
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52210
diff
changeset
|
1253 |
code_identifier |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52210
diff
changeset
|
1254 |
code_module Num \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith |
47108 | 1255 |
|
1256 |
end |