| author | wenzelm | 
| Mon, 25 Oct 2010 21:23:09 +0200 | |
| changeset 40133 | b61d52de66f0 | 
| parent 39793 | 4bd217def154 | 
| child 43595 | 7ae4a23b5be6 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Nat.thy | 
| 21243 | 2 | Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel | 
| 923 | 3 | |
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 4 | Type "nat" is a linear order, and a datatype; arithmetic operators + - | 
| 30496 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 5 | and * (for div and mod, see theory Divides). | 
| 923 | 6 | *) | 
| 7 | ||
| 13449 | 8 | header {* Natural numbers *}
 | 
| 9 | ||
| 15131 | 10 | theory Nat | 
| 35121 | 11 | imports Inductive Typedef Fun Fields | 
| 23263 | 12 | uses | 
| 13 | "~~/src/Tools/rat.ML" | |
| 14 | "~~/src/Provers/Arith/cancel_sums.ML" | |
| 30496 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 15 | "Tools/arith_data.ML" | 
| 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 16 |   ("Tools/nat_arith.ML")
 | 
| 24091 | 17 | "~~/src/Provers/Arith/fast_lin_arith.ML" | 
| 18 |   ("Tools/lin_arith.ML")
 | |
| 15131 | 19 | begin | 
| 13449 | 20 | |
| 21 | subsection {* Type @{text ind} *}
 | |
| 22 | ||
| 23 | typedecl ind | |
| 24 | ||
| 19573 | 25 | axiomatization | 
| 26 | Zero_Rep :: ind and | |
| 27 | Suc_Rep :: "ind => ind" | |
| 28 | where | |
| 13449 | 29 |   -- {* the axiom of infinity in 2 parts *}
 | 
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 30 | Suc_Rep_inject: "Suc_Rep x = Suc_Rep y ==> x = y" and | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 31 | Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" | 
| 19573 | 32 | |
| 13449 | 33 | subsection {* Type nat *}
 | 
| 34 | ||
| 35 | text {* Type definition *}
 | |
| 36 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 37 | inductive Nat :: "ind \<Rightarrow> bool" | 
| 22262 | 38 | where | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 39 | Zero_RepI: "Nat Zero_Rep" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 40 | | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)" | 
| 13449 | 41 | |
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36977diff
changeset | 42 | typedef (open Nat) nat = Nat | 
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 43 | by (rule exI, unfold mem_def, rule Nat.Zero_RepI) | 
| 13449 | 44 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35216diff
changeset | 45 | definition Suc :: "nat => nat" where | 
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36977diff
changeset | 46 | "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" | 
| 13449 | 47 | |
| 25510 | 48 | instantiation nat :: zero | 
| 49 | begin | |
| 50 | ||
| 37767 | 51 | definition Zero_nat_def: | 
| 25510 | 52 | "0 = Abs_Nat Zero_Rep" | 
| 53 | ||
| 54 | instance .. | |
| 55 | ||
| 56 | end | |
| 24995 | 57 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 58 | lemma Suc_not_Zero: "Suc m \<noteq> 0" | 
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 59 | by (simp add: Zero_nat_def Suc_def Abs_Nat_inject [unfolded mem_def] | 
| 27129 | 60 | Rep_Nat [unfolded mem_def] Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def]) | 
| 13449 | 61 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 62 | lemma Zero_not_Suc: "0 \<noteq> Suc m" | 
| 13449 | 63 | by (rule not_sym, rule Suc_not_Zero not_sym) | 
| 64 | ||
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 65 | lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y" | 
| 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 66 | by (rule iffI, rule Suc_Rep_inject) simp_all | 
| 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 67 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 68 | rep_datatype "0 \<Colon> nat" Suc | 
| 27129 | 69 | apply (unfold Zero_nat_def Suc_def) | 
| 70 |      apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
 | |
| 71 | apply (erule Rep_Nat [unfolded mem_def, THEN Nat.induct]) | |
| 72 | apply (iprover elim: Abs_Nat_inverse [unfolded mem_def, THEN subst]) | |
| 73 | apply (simp_all add: Abs_Nat_inject [unfolded mem_def] Rep_Nat [unfolded mem_def] | |
| 74 | Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep [unfolded mem_def] | |
| 75 | Suc_Rep_not_Zero_Rep [unfolded mem_def, symmetric] | |
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 76 | Suc_Rep_inject' Rep_Nat_inject) | 
| 27129 | 77 | done | 
| 13449 | 78 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 79 | lemma nat_induct [case_names 0 Suc, induct type: nat]: | 
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 80 |   -- {* for backward compatibility -- names of variables differ *}
 | 
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 81 | fixes n | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 82 | assumes "P 0" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 83 | and "\<And>n. P n \<Longrightarrow> P (Suc n)" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 84 | shows "P n" | 
| 32772 | 85 | using assms by (rule nat.induct) | 
| 21411 | 86 | |
| 87 | declare nat.exhaust [case_names 0 Suc, cases type: nat] | |
| 13449 | 88 | |
| 21672 | 89 | lemmas nat_rec_0 = nat.recs(1) | 
| 90 | and nat_rec_Suc = nat.recs(2) | |
| 91 | ||
| 92 | lemmas nat_case_0 = nat.cases(1) | |
| 93 | and nat_case_Suc = nat.cases(2) | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 94 | |
| 24995 | 95 | |
| 96 | text {* Injectiveness and distinctness lemmas *}
 | |
| 97 | ||
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 98 | lemma inj_Suc[simp]: "inj_on Suc N" | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 99 | by (simp add: inj_on_def) | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 100 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 101 | lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R" | 
| 25162 | 102 | by (rule notE, rule Suc_not_Zero) | 
| 24995 | 103 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 104 | lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R" | 
| 25162 | 105 | by (rule Suc_neq_Zero, erule sym) | 
| 24995 | 106 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 107 | lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y" | 
| 25162 | 108 | by (rule inj_Suc [THEN injD]) | 
| 24995 | 109 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 110 | lemma n_not_Suc_n: "n \<noteq> Suc n" | 
| 25162 | 111 | by (induct n) simp_all | 
| 13449 | 112 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 113 | lemma Suc_n_not_n: "Suc n \<noteq> n" | 
| 25162 | 114 | by (rule not_sym, rule n_not_Suc_n) | 
| 13449 | 115 | |
| 116 | text {* A special form of induction for reasoning
 | |
| 117 |   about @{term "m < n"} and @{term "m - n"} *}
 | |
| 118 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 119 | lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==> | 
| 13449 | 120 | (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n" | 
| 14208 | 121 | apply (rule_tac x = m in spec) | 
| 15251 | 122 | apply (induct n) | 
| 13449 | 123 | prefer 2 | 
| 124 | apply (rule allI) | |
| 17589 | 125 | apply (induct_tac x, iprover+) | 
| 13449 | 126 | done | 
| 127 | ||
| 24995 | 128 | |
| 129 | subsection {* Arithmetic operators *}
 | |
| 130 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 131 | instantiation nat :: "{minus, comm_monoid_add}"
 | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 132 | begin | 
| 24995 | 133 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 134 | primrec plus_nat | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 135 | where | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 136 | add_0: "0 + n = (n\<Colon>nat)" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 137 | | add_Suc: "Suc m + n = Suc (m + n)" | 
| 24995 | 138 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 139 | lemma add_0_right [simp]: "m + 0 = (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 140 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 141 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 142 | lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 143 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 144 | |
| 28514 | 145 | declare add_0 [code] | 
| 146 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 147 | lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 148 | by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 149 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 150 | primrec minus_nat | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 151 | where | 
| 39793 | 152 | diff_0 [code]: "m - 0 = (m\<Colon>nat)" | 
| 153 | | diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)" | |
| 24995 | 154 | |
| 28514 | 155 | declare diff_Suc [simp del] | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 156 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 157 | lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 158 | by (induct n) (simp_all add: diff_Suc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 159 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 160 | lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 161 | by (induct n) (simp_all add: diff_Suc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 162 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 163 | instance proof | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 164 | fix n m q :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 165 | show "(n + m) + q = n + (m + q)" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 166 | show "n + m = m + n" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 167 | show "0 + n = n" by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 168 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 169 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 170 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 171 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 172 | hide_fact (open) add_0 add_0_right diff_0 | 
| 35047 
1b2bae06c796
hide fact Nat.add_0_right; make add_0_right from Groups priority
 haftmann parents: 
35028diff
changeset | 173 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 174 | instantiation nat :: comm_semiring_1_cancel | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 175 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 176 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 177 | definition | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 178 | One_nat_def [simp]: "1 = Suc 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 179 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 180 | primrec times_nat | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 181 | where | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 182 | mult_0: "0 * n = (0\<Colon>nat)" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 183 | | mult_Suc: "Suc m * n = n + (m * n)" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 184 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 185 | lemma mult_0_right [simp]: "(m::nat) * 0 = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 186 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 187 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 188 | lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 189 | by (induct m) (simp_all add: add_left_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 190 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 191 | lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 192 | by (induct m) (simp_all add: add_assoc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 193 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 194 | instance proof | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 195 | fix n m q :: nat | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 196 | show "0 \<noteq> (1::nat)" unfolding One_nat_def by simp | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 197 | show "1 * n = n" unfolding One_nat_def by simp | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 198 | show "n * m = m * n" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 199 | show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 200 | show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 201 | assume "n + m = n + q" thus "m = q" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 202 | qed | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 203 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 204 | end | 
| 24995 | 205 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 206 | subsubsection {* Addition *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 207 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 208 | lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 209 | by (rule add_assoc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 210 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 211 | lemma nat_add_commute: "m + n = n + (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 212 | by (rule add_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 213 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 214 | lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 215 | by (rule add_left_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 216 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 217 | lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 218 | by (rule add_left_cancel) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 219 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 220 | lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 221 | by (rule add_right_cancel) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 222 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 223 | text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 224 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 225 | lemma add_is_0 [iff]: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 226 | fixes m n :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 227 | shows "(m + n = 0) = (m = 0 & n = 0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 228 | by (cases m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 229 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 230 | lemma add_is_1: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 231 | "(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 232 | by (cases m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 233 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 234 | lemma one_is_add: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 235 | "(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 236 | by (rule trans, rule eq_commute, rule add_is_1) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 237 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 238 | lemma add_eq_self_zero: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 239 | fixes m n :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 240 | shows "m + n = m \<Longrightarrow> n = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 241 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 242 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 243 | lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 244 | apply (induct k) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 245 | apply simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 246 | apply(drule comp_inj_on[OF _ inj_Suc]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 247 | apply (simp add:o_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 248 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 249 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 250 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 251 | subsubsection {* Difference *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 252 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 253 | lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 254 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 255 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 256 | lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 257 | by (induct i j rule: diff_induct) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 258 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 259 | lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 260 | by (simp add: diff_diff_left) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 261 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 262 | lemma diff_commute: "(i::nat) - j - k = i - k - j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 263 | by (simp add: diff_diff_left add_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 264 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 265 | lemma diff_add_inverse: "(n + m) - n = (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 266 | by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 267 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 268 | lemma diff_add_inverse2: "(m + n) - n = (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 269 | by (simp add: diff_add_inverse add_commute [of m n]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 270 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 271 | lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 272 | by (induct k) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 273 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 274 | lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 275 | by (simp add: diff_cancel add_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 276 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 277 | lemma diff_add_0: "n - (n + m) = (0::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 278 | by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 279 | |
| 30093 | 280 | lemma diff_Suc_1 [simp]: "Suc n - 1 = n" | 
| 281 | unfolding One_nat_def by simp | |
| 282 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 283 | text {* Difference distributes over multiplication *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 284 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 285 | lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 286 | by (induct m n rule: diff_induct) (simp_all add: diff_cancel) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 287 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 288 | lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 289 | by (simp add: diff_mult_distrib mult_commute [of k]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 290 |   -- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 291 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 292 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 293 | subsubsection {* Multiplication *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 294 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 295 | lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 296 | by (rule mult_assoc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 297 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 298 | lemma nat_mult_commute: "m * n = n * (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 299 | by (rule mult_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 300 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 301 | lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 302 | by (rule right_distrib) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 303 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 304 | lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 305 | by (induct m) auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 306 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 307 | lemmas nat_distrib = | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 308 | add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 309 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 310 | lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = Suc 0 & n = Suc 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 311 | apply (induct m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 312 | apply simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 313 | apply (induct n) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 314 | apply auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 315 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 316 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 317 | lemma one_eq_mult_iff [simp,no_atp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 318 | apply (rule trans) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 319 | apply (rule_tac [2] mult_eq_1_iff, fastsimp) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 320 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 321 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 322 | lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1" | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 323 | unfolding One_nat_def by (rule mult_eq_1_iff) | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 324 | |
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 325 | lemma nat_1_eq_mult_iff [simp]: "(1::nat) = m * n \<longleftrightarrow> m = 1 \<and> n = 1" | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 326 | unfolding One_nat_def by (rule one_eq_mult_iff) | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 327 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 328 | lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 329 | proof - | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 330 | have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 331 | proof (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 332 | case 0 then show "m = 0" by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 333 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 334 | case (Suc n) then show "m = Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 335 | by (cases m) (simp_all add: eq_commute [of "0"]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 336 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 337 | then show ?thesis by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 338 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 339 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 340 | lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 341 | by (simp add: mult_commute) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 342 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 343 | lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 344 | by (subst mult_cancel1) simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 345 | |
| 24995 | 346 | |
| 347 | subsection {* Orders on @{typ nat} *}
 | |
| 348 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 349 | subsubsection {* Operation definition *}
 | 
| 24995 | 350 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 351 | instantiation nat :: linorder | 
| 25510 | 352 | begin | 
| 353 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 354 | primrec less_eq_nat where | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 355 | "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 356 | | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 357 | |
| 28514 | 358 | declare less_eq_nat.simps [simp del] | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 359 | lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 360 | lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 361 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 362 | definition less_nat where | 
| 28514 | 363 | less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 364 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 365 | lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 366 | by (simp add: less_eq_nat.simps(2)) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 367 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 368 | lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 369 | unfolding less_eq_Suc_le .. | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 370 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 371 | lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 372 | by (induct n) (simp_all add: less_eq_nat.simps(2)) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 373 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 374 | lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 375 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 376 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 377 | lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 378 | by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 379 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 380 | lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 381 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 382 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 383 | lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 384 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 385 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 386 | lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 387 | by (induct m arbitrary: n) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 388 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 389 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 390 | lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 391 | by (cases n) (auto intro: le_SucI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 392 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 393 | lemma less_SucI: "m < n \<Longrightarrow> m < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 394 | by (simp add: less_eq_Suc_le) (erule Suc_leD) | 
| 24995 | 395 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 396 | lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 397 | by (simp add: less_eq_Suc_le) (erule Suc_leD) | 
| 25510 | 398 | |
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 399 | instance | 
| 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 400 | proof | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 401 | fix n m :: nat | 
| 27679 | 402 | show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 403 | proof (induct n arbitrary: m) | 
| 27679 | 404 | case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 405 | next | 
| 27679 | 406 | case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 407 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 408 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 409 | fix n :: nat show "n \<le> n" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 410 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 411 | fix n m :: nat assume "n \<le> m" and "m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 412 | then show "n = m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 413 | by (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 414 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 415 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 416 | fix n m q :: nat assume "n \<le> m" and "m \<le> q" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 417 | then show "n \<le> q" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 418 | proof (induct n arbitrary: m q) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 419 | case 0 show ?case by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 420 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 421 | case (Suc n) then show ?case | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 422 | by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 423 | simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 424 | simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 425 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 426 | next | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 427 | fix n m :: nat show "n \<le> m \<or> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 428 | by (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 429 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 430 | qed | 
| 25510 | 431 | |
| 432 | end | |
| 13449 | 433 | |
| 29652 | 434 | instantiation nat :: bot | 
| 435 | begin | |
| 436 | ||
| 437 | definition bot_nat :: nat where | |
| 438 | "bot_nat = 0" | |
| 439 | ||
| 440 | instance proof | |
| 441 | qed (simp add: bot_nat_def) | |
| 442 | ||
| 443 | end | |
| 444 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 445 | subsubsection {* Introduction properties *}
 | 
| 13449 | 446 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 447 | lemma lessI [iff]: "n < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 448 | by (simp add: less_Suc_eq_le) | 
| 13449 | 449 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 450 | lemma zero_less_Suc [iff]: "0 < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 451 | by (simp add: less_Suc_eq_le) | 
| 13449 | 452 | |
| 453 | ||
| 454 | subsubsection {* Elimination properties *}
 | |
| 455 | ||
| 456 | lemma less_not_refl: "~ n < (n::nat)" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 457 | by (rule order_less_irrefl) | 
| 13449 | 458 | |
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 459 | lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)" | 
| 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 460 | by (rule not_sym) (rule less_imp_neq) | 
| 13449 | 461 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 462 | lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 463 | by (rule less_imp_neq) | 
| 13449 | 464 | |
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 465 | lemma less_irrefl_nat: "(n::nat) < n ==> R" | 
| 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 466 | by (rule notE, rule less_not_refl) | 
| 13449 | 467 | |
| 468 | lemma less_zeroE: "(n::nat) < 0 ==> R" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 469 | by (rule notE) (rule not_less0) | 
| 13449 | 470 | |
| 471 | lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 472 | unfolding less_Suc_eq_le le_less .. | 
| 13449 | 473 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 474 | lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 475 | by (simp add: less_Suc_eq) | 
| 13449 | 476 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 477 | lemma less_one [iff, no_atp]: "(n < (1::nat)) = (n = 0)" | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 478 | unfolding One_nat_def by (rule less_Suc0) | 
| 13449 | 479 | |
| 480 | lemma Suc_mono: "m < n ==> Suc m < Suc n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 481 | by simp | 
| 13449 | 482 | |
| 14302 | 483 | text {* "Less than" is antisymmetric, sort of *}
 | 
| 484 | lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 485 | unfolding not_less less_Suc_eq_le by (rule antisym) | 
| 14302 | 486 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 487 | lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 488 | by (rule linorder_neq_iff) | 
| 13449 | 489 | |
| 490 | lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m" | |
| 491 | and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m" | |
| 492 | shows "P n m" | |
| 493 | apply (rule less_linear [THEN disjE]) | |
| 494 | apply (erule_tac [2] disjE) | |
| 495 | apply (erule lessCase) | |
| 496 | apply (erule sym [THEN eqCase]) | |
| 497 | apply (erule major) | |
| 498 | done | |
| 499 | ||
| 500 | ||
| 501 | subsubsection {* Inductive (?) properties *}
 | |
| 502 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 503 | lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 504 | unfolding less_eq_Suc_le [of m] le_less by simp | 
| 13449 | 505 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 506 | lemma lessE: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 507 | assumes major: "i < k" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 508 | and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 509 | shows P | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 510 | proof - | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 511 | from major have "\<exists>j. i \<le> j \<and> k = Suc j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 512 | unfolding less_eq_Suc_le by (induct k) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 513 | then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 514 | by (clarsimp simp add: less_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 515 | with p1 p2 show P by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 516 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 517 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 518 | lemma less_SucE: assumes major: "m < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 519 | and less: "m < n ==> P" and eq: "m = n ==> P" shows P | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 520 | apply (rule major [THEN lessE]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 521 | apply (rule eq, blast) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 522 | apply (rule less, blast) | 
| 13449 | 523 | done | 
| 524 | ||
| 525 | lemma Suc_lessE: assumes major: "Suc i < k" | |
| 526 | and minor: "!!j. i < j ==> k = Suc j ==> P" shows P | |
| 527 | apply (rule major [THEN lessE]) | |
| 528 | apply (erule lessI [THEN minor]) | |
| 14208 | 529 | apply (erule Suc_lessD [THEN minor], assumption) | 
| 13449 | 530 | done | 
| 531 | ||
| 532 | lemma Suc_less_SucD: "Suc m < Suc n ==> m < n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 533 | by simp | 
| 13449 | 534 | |
| 535 | lemma less_trans_Suc: | |
| 536 | assumes le: "i < j" shows "j < k ==> Suc i < k" | |
| 14208 | 537 | apply (induct k, simp_all) | 
| 13449 | 538 | apply (insert le) | 
| 539 | apply (simp add: less_Suc_eq) | |
| 540 | apply (blast dest: Suc_lessD) | |
| 541 | done | |
| 542 | ||
| 543 | text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 544 | lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 545 | unfolding not_less less_Suc_eq_le .. | 
| 13449 | 546 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 547 | lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 548 | unfolding not_le Suc_le_eq .. | 
| 21243 | 549 | |
| 24995 | 550 | text {* Properties of "less than or equal" *}
 | 
| 13449 | 551 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 552 | lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 553 | unfolding less_Suc_eq_le . | 
| 13449 | 554 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 555 | lemma Suc_n_not_le_n: "~ Suc n \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 556 | unfolding not_le less_Suc_eq_le .. | 
| 13449 | 557 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 558 | lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 559 | by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq) | 
| 13449 | 560 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 561 | lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 562 | by (drule le_Suc_eq [THEN iffD1], iprover+) | 
| 13449 | 563 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 564 | lemma Suc_leI: "m < n ==> Suc(m) \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 565 | unfolding Suc_le_eq . | 
| 13449 | 566 | |
| 567 | text {* Stronger version of @{text Suc_leD} *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 568 | lemma Suc_le_lessD: "Suc m \<le> n ==> m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 569 | unfolding Suc_le_eq . | 
| 13449 | 570 | |
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 571 | lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 572 | unfolding less_eq_Suc_le by (rule Suc_leD) | 
| 13449 | 573 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 574 | text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
 | 
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 575 | lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq | 
| 13449 | 576 | |
| 577 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 578 | text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
 | 
| 13449 | 579 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 580 | lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 581 | unfolding le_less . | 
| 13449 | 582 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 583 | lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 584 | by (rule le_less) | 
| 13449 | 585 | |
| 22718 | 586 | text {* Useful with @{text blast}. *}
 | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 587 | lemma eq_imp_le: "(m::nat) = n ==> m \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 588 | by auto | 
| 13449 | 589 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 590 | lemma le_refl: "n \<le> (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 591 | by simp | 
| 13449 | 592 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 593 | lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 594 | by (rule order_trans) | 
| 13449 | 595 | |
| 33657 | 596 | lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 597 | by (rule antisym) | 
| 13449 | 598 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 599 | lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 600 | by (rule less_le) | 
| 13449 | 601 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 602 | lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 603 | unfolding less_le .. | 
| 13449 | 604 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 605 | lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 606 | by (rule linear) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 607 | |
| 22718 | 608 | lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat] | 
| 15921 | 609 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 610 | lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 611 | unfolding less_Suc_eq_le by auto | 
| 13449 | 612 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 613 | lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 614 | unfolding not_less by (rule le_less_Suc_eq) | 
| 13449 | 615 | |
| 616 | lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq | |
| 617 | ||
| 22718 | 618 | text {* These two rules ease the use of primitive recursion.
 | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 619 | NOTE USE OF @{text "=="} *}
 | 
| 13449 | 620 | lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c" | 
| 25162 | 621 | by simp | 
| 13449 | 622 | |
| 623 | lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)" | |
| 25162 | 624 | by simp | 
| 13449 | 625 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 626 | lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m" | 
| 25162 | 627 | by (cases n) simp_all | 
| 628 | ||
| 629 | lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m" | |
| 630 | by (cases n) simp_all | |
| 13449 | 631 | |
| 22718 | 632 | lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0" | 
| 25162 | 633 | by (cases n) simp_all | 
| 13449 | 634 | |
| 25162 | 635 | lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)" | 
| 636 | by (cases n) simp_all | |
| 25140 | 637 | |
| 13449 | 638 | text {* This theorem is useful with @{text blast} *}
 | 
| 639 | lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n" | |
| 25162 | 640 | by (rule neq0_conv[THEN iffD1], iprover) | 
| 13449 | 641 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 642 | lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)" | 
| 25162 | 643 | by (fast intro: not0_implies_Suc) | 
| 13449 | 644 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 645 | lemma not_gr0 [iff,no_atp]: "!!n::nat. (~ (0 < n)) = (n = 0)" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 646 | using neq0_conv by blast | 
| 13449 | 647 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 648 | lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)" | 
| 25162 | 649 | by (induct m') simp_all | 
| 13449 | 650 | |
| 651 | text {* Useful in certain inductive arguments *}
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 652 | lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))" | 
| 25162 | 653 | by (cases m) simp_all | 
| 13449 | 654 | |
| 655 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 656 | subsubsection {* @{term min} and @{term max} *}
 | 
| 13449 | 657 | |
| 25076 | 658 | lemma mono_Suc: "mono Suc" | 
| 25162 | 659 | by (rule monoI) simp | 
| 25076 | 660 | |
| 13449 | 661 | lemma min_0L [simp]: "min 0 n = (0::nat)" | 
| 25162 | 662 | by (rule min_leastL) simp | 
| 13449 | 663 | |
| 664 | lemma min_0R [simp]: "min n 0 = (0::nat)" | |
| 25162 | 665 | by (rule min_leastR) simp | 
| 13449 | 666 | |
| 667 | lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" | |
| 25162 | 668 | by (simp add: mono_Suc min_of_mono) | 
| 13449 | 669 | |
| 22191 | 670 | lemma min_Suc1: | 
| 671 | "min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))" | |
| 25162 | 672 | by (simp split: nat.split) | 
| 22191 | 673 | |
| 674 | lemma min_Suc2: | |
| 675 | "min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))" | |
| 25162 | 676 | by (simp split: nat.split) | 
| 22191 | 677 | |
| 13449 | 678 | lemma max_0L [simp]: "max 0 n = (n::nat)" | 
| 25162 | 679 | by (rule max_leastL) simp | 
| 13449 | 680 | |
| 681 | lemma max_0R [simp]: "max n 0 = (n::nat)" | |
| 25162 | 682 | by (rule max_leastR) simp | 
| 13449 | 683 | |
| 684 | lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)" | |
| 25162 | 685 | by (simp add: mono_Suc max_of_mono) | 
| 13449 | 686 | |
| 22191 | 687 | lemma max_Suc1: | 
| 688 | "max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))" | |
| 25162 | 689 | by (simp split: nat.split) | 
| 22191 | 690 | |
| 691 | lemma max_Suc2: | |
| 692 | "max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))" | |
| 25162 | 693 | by (simp split: nat.split) | 
| 22191 | 694 | |
| 13449 | 695 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 696 | subsubsection {* Monotonicity of Addition *}
 | 
| 13449 | 697 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 698 | lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 699 | by (simp add: diff_Suc split: nat.split) | 
| 13449 | 700 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 701 | lemma Suc_diff_1 [simp]: "0 < n ==> Suc (n - 1) = n" | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 702 | unfolding One_nat_def by (rule Suc_pred) | 
| 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 703 | |
| 14331 | 704 | lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))" | 
| 25162 | 705 | by (induct k) simp_all | 
| 13449 | 706 | |
| 14331 | 707 | lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))" | 
| 25162 | 708 | by (induct k) simp_all | 
| 13449 | 709 | |
| 25162 | 710 | lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)" | 
| 711 | by(auto dest:gr0_implies_Suc) | |
| 13449 | 712 | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 713 | text {* strict, in 1st argument *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 714 | lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)" | 
| 25162 | 715 | by (induct k) simp_all | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 716 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 717 | text {* strict, in both arguments *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 718 | lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)" | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 719 | apply (rule add_less_mono1 [THEN less_trans], assumption+) | 
| 15251 | 720 | apply (induct j, simp_all) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 721 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 722 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 723 | text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
 | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 724 | lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))" | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 725 | apply (induct n) | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 726 | apply (simp_all add: order_le_less) | 
| 22718 | 727 | apply (blast elim!: less_SucE | 
| 35047 
1b2bae06c796
hide fact Nat.add_0_right; make add_0_right from Groups priority
 haftmann parents: 
35028diff
changeset | 728 | intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric]) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 729 | done | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 730 | |
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 731 | text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
 | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 732 | lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 733 | apply(auto simp: gr0_conv_Suc) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 734 | apply (induct_tac m) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 735 | apply (simp_all add: add_less_mono) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25111diff
changeset | 736 | done | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 737 | |
| 14740 | 738 | text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
 | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 739 | instance nat :: linordered_semidom | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 740 | proof | 
| 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 741 | fix i j k :: nat | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 742 | show "0 < (1::nat)" by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 743 | show "i \<le> j ==> k + i \<le> k + j" by simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 744 | show "i < j ==> 0 < k ==> k * i < k * j" by (simp add: mult_less_mono2) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 745 | qed | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 746 | |
| 30056 | 747 | instance nat :: no_zero_divisors | 
| 748 | proof | |
| 749 | fix a::nat and b::nat show "a ~= 0 \<Longrightarrow> b ~= 0 \<Longrightarrow> a * b ~= 0" by auto | |
| 750 | qed | |
| 751 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 752 | lemma nat_mult_1: "(1::nat) * n = n" | 
| 25162 | 753 | by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 754 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 755 | lemma nat_mult_1_right: "n * (1::nat) = n" | 
| 25162 | 756 | by simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 757 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 758 | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 759 | subsubsection {* Additional theorems about @{term "op \<le>"} *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 760 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 761 | text {* Complete induction, aka course-of-values induction *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 762 | |
| 27823 | 763 | instance nat :: wellorder proof | 
| 764 | fix P and n :: nat | |
| 765 | assume step: "\<And>n::nat. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n" | |
| 766 | have "\<And>q. q \<le> n \<Longrightarrow> P q" | |
| 767 | proof (induct n) | |
| 768 | case (0 n) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 769 | have "P 0" by (rule step) auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 770 | thus ?case using 0 by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 771 | next | 
| 27823 | 772 | case (Suc m n) | 
| 773 | then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 774 | thus ?case | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 775 | proof | 
| 27823 | 776 | assume "n \<le> m" thus "P n" by (rule Suc(1)) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 777 | next | 
| 27823 | 778 | assume n: "n = Suc m" | 
| 779 | show "P n" | |
| 780 | by (rule step) (rule Suc(1), simp add: n le_simps) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 781 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 782 | qed | 
| 27823 | 783 | then show "P n" by auto | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 784 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 785 | |
| 27823 | 786 | lemma Least_Suc: | 
| 787 | "[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))" | |
| 788 | apply (case_tac "n", auto) | |
| 789 | apply (frule LeastI) | |
| 790 | apply (drule_tac P = "%x. P (Suc x) " in LeastI) | |
| 791 | apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))") | |
| 792 | apply (erule_tac [2] Least_le) | |
| 793 | apply (case_tac "LEAST x. P x", auto) | |
| 794 | apply (drule_tac P = "%x. P (Suc x) " in Least_le) | |
| 795 | apply (blast intro: order_antisym) | |
| 796 | done | |
| 797 | ||
| 798 | lemma Least_Suc2: | |
| 799 | "[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)" | |
| 800 | apply (erule (1) Least_Suc [THEN ssubst]) | |
| 801 | apply simp | |
| 802 | done | |
| 803 | ||
| 804 | lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)" | |
| 805 | apply (cases n) | |
| 806 | apply blast | |
| 807 | apply (rule_tac x="LEAST k. P(k)" in exI) | |
| 808 | apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex) | |
| 809 | done | |
| 810 | ||
| 811 | lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)" | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 812 | unfolding One_nat_def | 
| 27823 | 813 | apply (cases n) | 
| 814 | apply blast | |
| 815 | apply (frule (1) ex_least_nat_le) | |
| 816 | apply (erule exE) | |
| 817 | apply (case_tac k) | |
| 818 | apply simp | |
| 819 | apply (rename_tac k1) | |
| 820 | apply (rule_tac x=k1 in exI) | |
| 821 | apply (auto simp add: less_eq_Suc_le) | |
| 822 | done | |
| 823 | ||
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 824 | lemma nat_less_induct: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 825 | assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 826 | using assms less_induct by blast | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 827 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 828 | lemma measure_induct_rule [case_names less]: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 829 | fixes f :: "'a \<Rightarrow> nat" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 830 | assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 831 | shows "P a" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 832 | by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 833 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 834 | text {* old style induction rules: *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 835 | lemma measure_induct: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 836 | fixes f :: "'a \<Rightarrow> nat" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 837 | shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 838 | by (rule measure_induct_rule [of f P a]) iprover | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 839 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 840 | lemma full_nat_induct: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 841 | assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 842 | shows "P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 843 | by (rule less_induct) (auto intro: step simp:le_simps) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 844 | |
| 19870 | 845 | text{*An induction rule for estabilishing binary relations*}
 | 
| 22718 | 846 | lemma less_Suc_induct: | 
| 19870 | 847 | assumes less: "i < j" | 
| 848 | and step: "!!i. P i (Suc i)" | |
| 31714 | 849 | and trans: "!!i j k. i < j ==> j < k ==> P i j ==> P j k ==> P i k" | 
| 19870 | 850 | shows "P i j" | 
| 851 | proof - | |
| 31714 | 852 | from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add) | 
| 22718 | 853 | have "P i (Suc (i + k))" | 
| 19870 | 854 | proof (induct k) | 
| 22718 | 855 | case 0 | 
| 856 | show ?case by (simp add: step) | |
| 19870 | 857 | next | 
| 858 | case (Suc k) | |
| 31714 | 859 | have "0 + i < Suc k + i" by (rule add_less_mono1) simp | 
| 860 | hence "i < Suc (i + k)" by (simp add: add_commute) | |
| 861 | from trans[OF this lessI Suc step] | |
| 862 | show ?case by simp | |
| 19870 | 863 | qed | 
| 22718 | 864 | thus "P i j" by (simp add: j) | 
| 19870 | 865 | qed | 
| 866 | ||
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 867 | text {* The method of infinite descent, frequently used in number theory.
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 868 | Provided by Roelof Oosterhuis. | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 869 | $P(n)$ is true for all $n\in\mathbb{N}$ if
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 870 | \begin{itemize}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 871 | \item case ``0'': given $n=0$ prove $P(n)$, | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 872 | \item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 873 | a smaller integer $m$ such that $\neg P(m)$. | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 874 | \end{itemize} *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 875 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 876 | text{* A compact version without explicit base case: *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 877 | lemma infinite_descent: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 878 | "\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m \<rbrakk> \<Longrightarrow> P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 879 | by (induct n rule: less_induct, auto) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 880 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 881 | lemma infinite_descent0[case_names 0 smaller]: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 882 | "\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 883 | by (rule infinite_descent) (case_tac "n>0", auto) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 884 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 885 | text {*
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 886 | Infinite descent using a mapping to $\mathbb{N}$:
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 887 | $P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 888 | \begin{itemize}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 889 | \item case ``0'': given $V(x)=0$ prove $P(x)$, | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 890 | \item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$. | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 891 | \end{itemize}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 892 | NB: the proof also shows how to use the previous lemma. *} | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 893 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 894 | corollary infinite_descent0_measure [case_names 0 smaller]: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 895 | assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 896 | and A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 897 | shows "P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 898 | proof - | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 899 | obtain n where "n = V x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 900 | moreover have "\<And>x. V x = n \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 901 | proof (induct n rule: infinite_descent0) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 902 | case 0 -- "i.e. $V(x) = 0$" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 903 | with A0 show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 904 | next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 905 | case (smaller n) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 906 | then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 907 | with A1 obtain y where "V y < V x \<and> \<not> P y" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 908 | with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 909 | then show ?case by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 910 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 911 | ultimately show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 912 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 913 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 914 | text{* Again, without explicit base case: *}
 | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 915 | lemma infinite_descent_measure: | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 916 | assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 917 | proof - | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 918 | from assms obtain n where "n = V x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 919 | moreover have "!!x. V x = n \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 920 | proof (induct n rule: infinite_descent, auto) | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 921 | fix x assume "\<not> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 922 | with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 923 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 924 | ultimately show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 925 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 926 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 927 | text {* A [clumsy] way of lifting @{text "<"}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 928 |   monotonicity to @{text "\<le>"} monotonicity *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 929 | lemma less_mono_imp_le_mono: | 
| 24438 | 930 | "\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)" | 
| 931 | by (simp add: order_le_less) (blast) | |
| 932 | ||
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 933 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 934 | text {* non-strict, in 1st argument *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 935 | lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)" | 
| 24438 | 936 | by (rule add_right_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 937 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 938 | text {* non-strict, in both arguments *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 939 | lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)" | 
| 24438 | 940 | by (rule add_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 941 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 942 | lemma le_add2: "n \<le> ((m + n)::nat)" | 
| 24438 | 943 | by (insert add_right_mono [of 0 m n], simp) | 
| 13449 | 944 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 945 | lemma le_add1: "n \<le> ((n + m)::nat)" | 
| 24438 | 946 | by (simp add: add_commute, rule le_add2) | 
| 13449 | 947 | |
| 948 | lemma less_add_Suc1: "i < Suc (i + m)" | |
| 24438 | 949 | by (rule le_less_trans, rule le_add1, rule lessI) | 
| 13449 | 950 | |
| 951 | lemma less_add_Suc2: "i < Suc (m + i)" | |
| 24438 | 952 | by (rule le_less_trans, rule le_add2, rule lessI) | 
| 13449 | 953 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 954 | lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))" | 
| 24438 | 955 | by (iprover intro!: less_add_Suc1 less_imp_Suc_add) | 
| 13449 | 956 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 957 | lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m" | 
| 24438 | 958 | by (rule le_trans, assumption, rule le_add1) | 
| 13449 | 959 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 960 | lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j" | 
| 24438 | 961 | by (rule le_trans, assumption, rule le_add2) | 
| 13449 | 962 | |
| 963 | lemma trans_less_add1: "(i::nat) < j ==> i < j + m" | |
| 24438 | 964 | by (rule less_le_trans, assumption, rule le_add1) | 
| 13449 | 965 | |
| 966 | lemma trans_less_add2: "(i::nat) < j ==> i < m + j" | |
| 24438 | 967 | by (rule less_le_trans, assumption, rule le_add2) | 
| 13449 | 968 | |
| 969 | lemma add_lessD1: "i + j < (k::nat) ==> i < k" | |
| 24438 | 970 | apply (rule le_less_trans [of _ "i+j"]) | 
| 971 | apply (simp_all add: le_add1) | |
| 972 | done | |
| 13449 | 973 | |
| 974 | lemma not_add_less1 [iff]: "~ (i + j < (i::nat))" | |
| 24438 | 975 | apply (rule notI) | 
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 976 | apply (drule add_lessD1) | 
| 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 977 | apply (erule less_irrefl [THEN notE]) | 
| 24438 | 978 | done | 
| 13449 | 979 | |
| 980 | lemma not_add_less2 [iff]: "~ (j + i < (i::nat))" | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 981 | by (simp add: add_commute) | 
| 13449 | 982 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 983 | lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)" | 
| 24438 | 984 | apply (rule order_trans [of _ "m+k"]) | 
| 985 | apply (simp_all add: le_add1) | |
| 986 | done | |
| 13449 | 987 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 988 | lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)" | 
| 24438 | 989 | apply (simp add: add_commute) | 
| 990 | apply (erule add_leD1) | |
| 991 | done | |
| 13449 | 992 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 993 | lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R" | 
| 24438 | 994 | by (blast dest: add_leD1 add_leD2) | 
| 13449 | 995 | |
| 996 | text {* needs @{text "!!k"} for @{text add_ac} to work *}
 | |
| 997 | lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n" | |
| 24438 | 998 | by (force simp del: add_Suc_right | 
| 13449 | 999 | simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac) | 
| 1000 | ||
| 1001 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1002 | subsubsection {* More results about difference *}
 | 
| 13449 | 1003 | |
| 1004 | text {* Addition is the inverse of subtraction:
 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1005 |   if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
 | 
| 13449 | 1006 | lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" | 
| 24438 | 1007 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1008 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1009 | lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)" | 
| 24438 | 1010 | by (simp add: add_diff_inverse linorder_not_less) | 
| 13449 | 1011 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1012 | lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1013 | by (simp add: add_commute) | 
| 13449 | 1014 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1015 | lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)" | 
| 24438 | 1016 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1017 | |
| 1018 | lemma diff_less_Suc: "m - n < Suc m" | |
| 24438 | 1019 | apply (induct m n rule: diff_induct) | 
| 1020 | apply (erule_tac [3] less_SucE) | |
| 1021 | apply (simp_all add: less_Suc_eq) | |
| 1022 | done | |
| 13449 | 1023 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1024 | lemma diff_le_self [simp]: "m - n \<le> (m::nat)" | 
| 24438 | 1025 | by (induct m n rule: diff_induct) (simp_all add: le_SucI) | 
| 13449 | 1026 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1027 | lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1028 | by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1029 | |
| 13449 | 1030 | lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k" | 
| 24438 | 1031 | by (rule le_less_trans, rule diff_le_self) | 
| 13449 | 1032 | |
| 1033 | lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n" | |
| 24438 | 1034 | by (cases n) (auto simp add: le_simps) | 
| 13449 | 1035 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1036 | lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)" | 
| 24438 | 1037 | by (induct j k rule: diff_induct) simp_all | 
| 13449 | 1038 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1039 | lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i" | 
| 24438 | 1040 | by (simp add: add_commute diff_add_assoc) | 
| 13449 | 1041 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1042 | lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)" | 
| 24438 | 1043 | by (auto simp add: diff_add_inverse2) | 
| 13449 | 1044 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1045 | lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)" | 
| 24438 | 1046 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1047 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1048 | lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0" | 
| 24438 | 1049 | by (rule iffD2, rule diff_is_0_eq) | 
| 13449 | 1050 | |
| 1051 | lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)" | |
| 24438 | 1052 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1053 | |
| 22718 | 1054 | lemma less_imp_add_positive: | 
| 1055 | assumes "i < j" | |
| 1056 | shows "\<exists>k::nat. 0 < k & i + k = j" | |
| 1057 | proof | |
| 1058 | from assms show "0 < j - i & i + (j - i) = j" | |
| 23476 | 1059 | by (simp add: order_less_imp_le) | 
| 22718 | 1060 | qed | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1061 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1062 | text {* a nice rewrite for bounded subtraction *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1063 | lemma nat_minus_add_max: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1064 | fixes n m :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1065 | shows "n - m + m = max n m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1066 | by (simp add: max_def not_le order_less_imp_le) | 
| 13449 | 1067 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1068 | lemma nat_diff_split: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1069 | "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1070 |     -- {* elimination of @{text -} on @{text nat} *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1071 | by (cases "a < b") | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1072 | (auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1073 | not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero) | 
| 13449 | 1074 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1075 | lemma nat_diff_split_asm: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1076 | "P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1077 |     -- {* elimination of @{text -} on @{text nat} in assumptions *}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1078 | by (auto split: nat_diff_split) | 
| 13449 | 1079 | |
| 1080 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1081 | subsubsection {* Monotonicity of Multiplication *}
 | 
| 13449 | 1082 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1083 | lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k" | 
| 24438 | 1084 | by (simp add: mult_right_mono) | 
| 13449 | 1085 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1086 | lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j" | 
| 24438 | 1087 | by (simp add: mult_left_mono) | 
| 13449 | 1088 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1089 | text {* @{text "\<le>"} monotonicity, BOTH arguments *}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1090 | lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l" | 
| 24438 | 1091 | by (simp add: mult_mono) | 
| 13449 | 1092 | |
| 1093 | lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k" | |
| 24438 | 1094 | by (simp add: mult_strict_right_mono) | 
| 13449 | 1095 | |
| 14266 | 1096 | text{*Differs from the standard @{text zero_less_mult_iff} in that
 | 
| 1097 | there are no negative numbers.*} | |
| 1098 | lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)" | |
| 13449 | 1099 | apply (induct m) | 
| 22718 | 1100 | apply simp | 
| 1101 | apply (case_tac n) | |
| 1102 | apply simp_all | |
| 13449 | 1103 | done | 
| 1104 | ||
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 1105 | lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (Suc 0 \<le> m & Suc 0 \<le> n)" | 
| 13449 | 1106 | apply (induct m) | 
| 22718 | 1107 | apply simp | 
| 1108 | apply (case_tac n) | |
| 1109 | apply simp_all | |
| 13449 | 1110 | done | 
| 1111 | ||
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 1112 | lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)" | 
| 13449 | 1113 | apply (safe intro!: mult_less_mono1) | 
| 14208 | 1114 | apply (case_tac k, auto) | 
| 13449 | 1115 | apply (simp del: le_0_eq add: linorder_not_le [symmetric]) | 
| 1116 | apply (blast intro: mult_le_mono1) | |
| 1117 | done | |
| 1118 | ||
| 1119 | lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)" | |
| 24438 | 1120 | by (simp add: mult_commute [of k]) | 
| 13449 | 1121 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1122 | lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)" | 
| 24438 | 1123 | by (simp add: linorder_not_less [symmetric], auto) | 
| 13449 | 1124 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1125 | lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)" | 
| 24438 | 1126 | by (simp add: linorder_not_less [symmetric], auto) | 
| 13449 | 1127 | |
| 1128 | lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)" | |
| 24438 | 1129 | by (subst mult_less_cancel1) simp | 
| 13449 | 1130 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1131 | lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)" | 
| 24438 | 1132 | by (subst mult_le_cancel1) simp | 
| 13449 | 1133 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1134 | lemma le_square: "m \<le> m * (m::nat)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1135 | by (cases m) (auto intro: le_add1) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1136 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1137 | lemma le_cube: "(m::nat) \<le> m * (m * m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1138 | by (cases m) (auto intro: le_add1) | 
| 13449 | 1139 | |
| 1140 | text {* Lemma for @{text gcd} *}
 | |
| 30128 
365ee7319b86
revert some Suc 0 lemmas back to their original forms; added some simp rules for (1::nat)
 huffman parents: 
30093diff
changeset | 1141 | lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0" | 
| 13449 | 1142 | apply (drule sym) | 
| 1143 | apply (rule disjCI) | |
| 1144 | apply (rule nat_less_cases, erule_tac [2] _) | |
| 25157 | 1145 | apply (drule_tac [2] mult_less_mono2) | 
| 25162 | 1146 | apply (auto) | 
| 13449 | 1147 | done | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1148 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1149 | text {* the lattice order on @{typ nat} *}
 | 
| 24995 | 1150 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1151 | instantiation nat :: distrib_lattice | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1152 | begin | 
| 24995 | 1153 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1154 | definition | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1155 | "(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min" | 
| 24995 | 1156 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1157 | definition | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1158 | "(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max" | 
| 24995 | 1159 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1160 | instance by intro_classes | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1161 | (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1162 | intro: order_less_imp_le antisym elim!: order_trans order_less_trans) | 
| 24995 | 1163 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1164 | end | 
| 24995 | 1165 | |
| 1166 | ||
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1167 | subsection {* Natural operation of natural numbers on functions *}
 | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1168 | |
| 30971 | 1169 | text {*
 | 
| 1170 | We use the same logical constant for the power operations on | |
| 1171 | functions and relations, in order to share the same syntax. | |
| 1172 | *} | |
| 1173 | ||
| 1174 | consts compow :: "nat \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | |
| 1175 | ||
| 1176 | abbreviation compower :: "('a \<Rightarrow> 'b) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'b" (infixr "^^" 80) where
 | |
| 1177 | "f ^^ n \<equiv> compow n f" | |
| 1178 | ||
| 1179 | notation (latex output) | |
| 1180 |   compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 1181 | ||
| 1182 | notation (HTML output) | |
| 1183 |   compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 1184 | ||
| 1185 | text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
 | |
| 1186 | ||
| 1187 | overloading | |
| 1188 |   funpow == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
 | |
| 1189 | begin | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1190 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1191 | primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1192 | "funpow 0 f = id" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1193 | | "funpow (Suc n) f = f o funpow n f" | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1194 | |
| 30971 | 1195 | end | 
| 1196 | ||
| 1197 | text {* for code generation *}
 | |
| 1198 | ||
| 1199 | definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31714diff
changeset | 1200 | funpow_code_def [code_post]: "funpow = compow" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1201 | |
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31714diff
changeset | 1202 | lemmas [code_unfold] = funpow_code_def [symmetric] | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1203 | |
| 30971 | 1204 | lemma [code]: | 
| 37430 | 1205 | "funpow (Suc n) f = f o funpow n f" | 
| 30971 | 1206 | "funpow 0 f = id" | 
| 37430 | 1207 | by (simp_all add: funpow_code_def) | 
| 30971 | 1208 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 1209 | hide_const (open) funpow | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1210 | |
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1211 | lemma funpow_add: | 
| 30971 | 1212 | "f ^^ (m + n) = f ^^ m \<circ> f ^^ n" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1213 | by (induct m) simp_all | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1214 | |
| 37430 | 1215 | lemma funpow_mult: | 
| 1216 | fixes f :: "'a \<Rightarrow> 'a" | |
| 1217 | shows "(f ^^ m) ^^ n = f ^^ (m * n)" | |
| 1218 | by (induct n) (simp_all add: funpow_add) | |
| 1219 | ||
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1220 | lemma funpow_swap1: | 
| 30971 | 1221 | "f ((f ^^ n) x) = (f ^^ n) (f x)" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1222 | proof - | 
| 30971 | 1223 | have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp | 
| 1224 | also have "\<dots> = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add) | |
| 1225 | also have "\<dots> = (f ^^ n) (f x)" by simp | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1226 | finally show ?thesis . | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1227 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1228 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1229 | lemma comp_funpow: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1230 | fixes f :: "'a \<Rightarrow> 'a" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1231 | shows "comp f ^^ n = comp (f ^^ n)" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1232 | by (induct n) simp_all | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1233 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1234 | |
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1235 | subsection {* Embedding of the Naturals into any @{text semiring_1}: @{term of_nat} *}
 | 
| 24196 | 1236 | |
| 1237 | context semiring_1 | |
| 1238 | begin | |
| 1239 | ||
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1240 | definition of_nat :: "nat \<Rightarrow> 'a" where | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1241 | "of_nat n = (plus 1 ^^ n) 0" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1242 | |
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1243 | lemma of_nat_simps [simp]: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1244 | shows of_nat_0: "of_nat 0 = 0" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1245 | and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1246 | by (simp_all add: of_nat_def) | 
| 25193 | 1247 | |
| 1248 | lemma of_nat_1 [simp]: "of_nat 1 = 1" | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1249 | by (simp add: of_nat_def) | 
| 25193 | 1250 | |
| 1251 | lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n" | |
| 1252 | by (induct m) (simp_all add: add_ac) | |
| 1253 | ||
| 1254 | lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n" | |
| 1255 | by (induct m) (simp_all add: add_ac left_distrib) | |
| 1256 | ||
| 28514 | 1257 | primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
| 1258 | "of_nat_aux inc 0 i = i" | |
| 1259 |   | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" -- {* tail recursive *}
 | |
| 25928 | 1260 | |
| 30966 | 1261 | lemma of_nat_code: | 
| 28514 | 1262 | "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0" | 
| 1263 | proof (induct n) | |
| 1264 | case 0 then show ?case by simp | |
| 1265 | next | |
| 1266 | case (Suc n) | |
| 1267 | have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1" | |
| 1268 | by (induct n) simp_all | |
| 1269 | from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1" | |
| 1270 | by simp | |
| 1271 | with Suc show ?case by (simp add: add_commute) | |
| 1272 | qed | |
| 30966 | 1273 | |
| 24196 | 1274 | end | 
| 1275 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31714diff
changeset | 1276 | declare of_nat_code [code, code_unfold, code_inline del] | 
| 30966 | 1277 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1278 | text{*Class for unital semirings with characteristic zero.
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1279 | Includes non-ordered rings like the complex numbers.*} | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1280 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1281 | class semiring_char_0 = semiring_1 + | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1282 | assumes inj_of_nat: "inj of_nat" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1283 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1284 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1285 | lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1286 | by (auto intro: inj_of_nat injD) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1287 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1288 | text{*Special cases where either operand is zero*}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1289 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 1290 | lemma of_nat_0_eq_iff [simp, no_atp]: "0 = of_nat n \<longleftrightarrow> 0 = n" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1291 | by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1292 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 1293 | lemma of_nat_eq_0_iff [simp, no_atp]: "of_nat m = 0 \<longleftrightarrow> m = 0" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1294 | by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1295 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1296 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1297 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1298 | context linordered_semidom | 
| 25193 | 1299 | begin | 
| 1300 | ||
| 1301 | lemma zero_le_imp_of_nat: "0 \<le> of_nat m" | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36176diff
changeset | 1302 | by (induct m) simp_all | 
| 25193 | 1303 | |
| 1304 | lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n" | |
| 1305 | apply (induct m n rule: diff_induct, simp_all) | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36176diff
changeset | 1306 | apply (rule add_pos_nonneg [OF zero_less_one zero_le_imp_of_nat]) | 
| 25193 | 1307 | done | 
| 1308 | ||
| 1309 | lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n" | |
| 1310 | apply (induct m n rule: diff_induct, simp_all) | |
| 1311 | apply (insert zero_le_imp_of_nat) | |
| 1312 | apply (force simp add: not_less [symmetric]) | |
| 1313 | done | |
| 1314 | ||
| 1315 | lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n" | |
| 1316 | by (blast intro: of_nat_less_imp_less less_imp_of_nat_less) | |
| 1317 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1318 | lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1319 | by (simp add: not_less [symmetric] linorder_not_less [symmetric]) | 
| 25193 | 1320 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1321 | text{*Every @{text linordered_semidom} has characteristic zero.*}
 | 
| 25193 | 1322 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1323 | subclass semiring_char_0 proof | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1324 | qed (auto intro!: injI simp add: eq_iff) | 
| 25193 | 1325 | |
| 1326 | text{*Special cases where either operand is zero*}
 | |
| 1327 | ||
| 1328 | lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n" | |
| 1329 | by (rule of_nat_le_iff [of 0, simplified]) | |
| 1330 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35633diff
changeset | 1331 | lemma of_nat_le_0_iff [simp, no_atp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0" | 
| 25193 | 1332 | by (rule of_nat_le_iff [of _ 0, simplified]) | 
| 1333 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1334 | lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1335 | by (rule of_nat_less_iff [of 0, simplified]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1336 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1337 | lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1338 | by (rule of_nat_less_iff [of _ 0, simplified]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1339 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1340 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1341 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1342 | context ring_1 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1343 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1344 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1345 | lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n" | 
| 29667 | 1346 | by (simp add: algebra_simps of_nat_add [symmetric]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1347 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1348 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1349 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1350 | context linordered_idom | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1351 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1352 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1353 | lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1354 | unfolding abs_if by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1355 | |
| 25193 | 1356 | end | 
| 1357 | ||
| 1358 | lemma of_nat_id [simp]: "of_nat n = n" | |
| 35216 | 1359 | by (induct n) simp_all | 
| 25193 | 1360 | |
| 1361 | lemma of_nat_eq_id [simp]: "of_nat = id" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1362 | by (auto simp add: fun_eq_iff) | 
| 25193 | 1363 | |
| 1364 | ||
| 26149 | 1365 | subsection {* The Set of Natural Numbers *}
 | 
| 25193 | 1366 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1367 | context semiring_1 | 
| 25193 | 1368 | begin | 
| 1369 | ||
| 37767 | 1370 | definition Nats :: "'a set" where | 
| 1371 | "Nats = range of_nat" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1372 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1373 | notation (xsymbols) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1374 |   Nats  ("\<nat>")
 | 
| 25193 | 1375 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1376 | lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1377 | by (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1378 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1379 | lemma Nats_0 [simp]: "0 \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1380 | apply (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1381 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1382 | apply (rule of_nat_0 [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1383 | done | 
| 25193 | 1384 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1385 | lemma Nats_1 [simp]: "1 \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1386 | apply (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1387 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1388 | apply (rule of_nat_1 [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1389 | done | 
| 25193 | 1390 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1391 | lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1392 | apply (auto simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1393 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1394 | apply (rule of_nat_add [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1395 | done | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1396 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1397 | lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1398 | apply (auto simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1399 | apply (rule range_eqI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1400 | apply (rule of_nat_mult [symmetric]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1401 | done | 
| 25193 | 1402 | |
| 35633 | 1403 | lemma Nats_cases [cases set: Nats]: | 
| 1404 | assumes "x \<in> \<nat>" | |
| 1405 | obtains (of_nat) n where "x = of_nat n" | |
| 1406 | unfolding Nats_def | |
| 1407 | proof - | |
| 1408 | from `x \<in> \<nat>` have "x \<in> range of_nat" unfolding Nats_def . | |
| 1409 | then obtain n where "x = of_nat n" .. | |
| 1410 | then show thesis .. | |
| 1411 | qed | |
| 1412 | ||
| 1413 | lemma Nats_induct [case_names of_nat, induct set: Nats]: | |
| 1414 | "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x" | |
| 1415 | by (rule Nats_cases) auto | |
| 1416 | ||
| 25193 | 1417 | end | 
| 1418 | ||
| 1419 | ||
| 21243 | 1420 | subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
 | 
| 1421 | ||
| 22845 | 1422 | lemma subst_equals: | 
| 1423 | assumes 1: "t = s" and 2: "u = t" | |
| 1424 | shows "u = s" | |
| 1425 | using 2 1 by (rule trans) | |
| 1426 | ||
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 1427 | setup Arith_Data.setup | 
| 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 1428 | |
| 30496 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 1429 | use "Tools/nat_arith.ML" | 
| 
7cdcc9dd95cb
vague cleanup in arith proof tools setup: deleted dead code, more proper structures, clearer arrangement
 haftmann parents: 
30242diff
changeset | 1430 | declaration {* K Nat_Arith.setup *}
 | 
| 24091 | 1431 | |
| 1432 | use "Tools/lin_arith.ML" | |
| 31100 | 1433 | setup {* Lin_Arith.global_setup *}
 | 
| 30686 
47a32dd1b86e
moved generic arith_tac (formerly silent_arith_tac), verbose_arith_tac (formerly arith_tac) to Arith_Data; simple_arith-tac now named linear_arith_tac
 haftmann parents: 
30496diff
changeset | 1434 | declaration {* K Lin_Arith.setup *}
 | 
| 24091 | 1435 | |
| 21243 | 1436 | lemmas [arith_split] = nat_diff_split split_min split_max | 
| 1437 | ||
| 27625 | 1438 | context order | 
| 1439 | begin | |
| 1440 | ||
| 1441 | lemma lift_Suc_mono_le: | |
| 27627 | 1442 | assumes mono: "!!n. f n \<le> f(Suc n)" and "n\<le>n'" | 
| 1443 | shows "f n \<le> f n'" | |
| 1444 | proof (cases "n < n'") | |
| 1445 | case True | |
| 1446 | thus ?thesis | |
| 1447 | by (induct n n' rule: less_Suc_induct[consumes 1]) (auto intro: mono) | |
| 1448 | qed (insert `n \<le> n'`, auto) -- {*trivial for @{prop "n = n'"} *}
 | |
| 27625 | 1449 | |
| 1450 | lemma lift_Suc_mono_less: | |
| 27627 | 1451 | assumes mono: "!!n. f n < f(Suc n)" and "n < n'" | 
| 1452 | shows "f n < f n'" | |
| 1453 | using `n < n'` | |
| 1454 | by (induct n n' rule: less_Suc_induct[consumes 1]) (auto intro: mono) | |
| 27625 | 1455 | |
| 27789 | 1456 | lemma lift_Suc_mono_less_iff: | 
| 1457 | "(!!n. f n < f(Suc n)) \<Longrightarrow> f(n) < f(m) \<longleftrightarrow> n<m" | |
| 1458 | by(blast intro: less_asym' lift_Suc_mono_less[of f] | |
| 1459 | dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq[THEN iffD1]) | |
| 1460 | ||
| 27625 | 1461 | end | 
| 1462 | ||
| 29879 | 1463 | lemma mono_iff_le_Suc: "mono f = (\<forall>n. f n \<le> f (Suc n))" | 
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36977diff
changeset | 1464 | unfolding mono_def by (auto intro: lift_Suc_mono_le [of f]) | 
| 27625 | 1465 | |
| 27789 | 1466 | lemma mono_nat_linear_lb: | 
| 1467 | "(!!m n::nat. m<n \<Longrightarrow> f m < f n) \<Longrightarrow> f(m)+k \<le> f(m+k)" | |
| 1468 | apply(induct_tac k) | |
| 1469 | apply simp | |
| 1470 | apply(erule_tac x="m+n" in meta_allE) | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 1471 | apply(erule_tac x="Suc(m+n)" in meta_allE) | 
| 27789 | 1472 | apply simp | 
| 1473 | done | |
| 1474 | ||
| 1475 | ||
| 21243 | 1476 | text{*Subtraction laws, mostly by Clemens Ballarin*}
 | 
| 1477 | ||
| 1478 | lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c" | |
| 24438 | 1479 | by arith | 
| 21243 | 1480 | |
| 1481 | lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))" | |
| 24438 | 1482 | by arith | 
| 21243 | 1483 | |
| 1484 | lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)" | |
| 24438 | 1485 | by arith | 
| 21243 | 1486 | |
| 1487 | lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))" | |
| 24438 | 1488 | by arith | 
| 21243 | 1489 | |
| 1490 | lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i" | |
| 24438 | 1491 | by arith | 
| 21243 | 1492 | |
| 1493 | lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k" | |
| 24438 | 1494 | by arith | 
| 21243 | 1495 | |
| 1496 | (*Replaces the previous diff_less and le_diff_less, which had the stronger | |
| 1497 | second premise n\<le>m*) | |
| 1498 | lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m" | |
| 24438 | 1499 | by arith | 
| 21243 | 1500 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1501 | text {* Simplification of relational expressions involving subtraction *}
 | 
| 21243 | 1502 | |
| 1503 | lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)" | |
| 24438 | 1504 | by (simp split add: nat_diff_split) | 
| 21243 | 1505 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 1506 | hide_fact (open) diff_diff_eq | 
| 35064 
1bdef0c013d3
hide fact names clashing with fact names from Group.thy
 haftmann parents: 
35047diff
changeset | 1507 | |
| 21243 | 1508 | lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)" | 
| 24438 | 1509 | by (auto split add: nat_diff_split) | 
| 21243 | 1510 | |
| 1511 | lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)" | |
| 24438 | 1512 | by (auto split add: nat_diff_split) | 
| 21243 | 1513 | |
| 1514 | lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)" | |
| 24438 | 1515 | by (auto split add: nat_diff_split) | 
| 21243 | 1516 | |
| 1517 | text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
 | |
| 1518 | ||
| 1519 | (* Monotonicity of subtraction in first argument *) | |
| 1520 | lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)" | |
| 24438 | 1521 | by (simp split add: nat_diff_split) | 
| 21243 | 1522 | |
| 1523 | lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)" | |
| 24438 | 1524 | by (simp split add: nat_diff_split) | 
| 21243 | 1525 | |
| 1526 | lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)" | |
| 24438 | 1527 | by (simp split add: nat_diff_split) | 
| 21243 | 1528 | |
| 1529 | lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n" | |
| 24438 | 1530 | by (simp split add: nat_diff_split) | 
| 21243 | 1531 | |
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1532 | lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i" | 
| 32437 | 1533 | by auto | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1534 | |
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1535 | lemma inj_on_diff_nat: | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1536 | assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1537 | shows "inj_on (\<lambda>n. n - k) N" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1538 | proof (rule inj_onI) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1539 | fix x y | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1540 | assume a: "x \<in> N" "y \<in> N" "x - k = y - k" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1541 | with k_le_n have "x - k + k = y - k + k" by auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1542 | with a k_le_n show "x = y" by auto | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1543 | qed | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 1544 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1545 | text{*Rewriting to pull differences out*}
 | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1546 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1547 | lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1548 | by arith | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1549 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1550 | lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1551 | by arith | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1552 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1553 | lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1554 | by arith | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1555 | |
| 21243 | 1556 | text{*Lemmas for ex/Factorization*}
 | 
| 1557 | ||
| 1558 | lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n" | |
| 24438 | 1559 | by (cases m) auto | 
| 21243 | 1560 | |
| 1561 | lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n" | |
| 24438 | 1562 | by (cases m) auto | 
| 21243 | 1563 | |
| 1564 | lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m" | |
| 24438 | 1565 | by (cases m) auto | 
| 21243 | 1566 | |
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1567 | text {* Specialized induction principles that work "backwards": *}
 | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1568 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1569 | lemma inc_induct[consumes 1, case_names base step]: | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1570 | assumes less: "i <= j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1571 | assumes base: "P j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1572 | assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1573 | shows "P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1574 | using less | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1575 | proof (induct d=="j - i" arbitrary: i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1576 | case (0 i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1577 | hence "i = j" by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1578 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1579 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1580 | case (Suc d i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1581 | hence "i < j" "P (Suc i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1582 | by simp_all | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1583 | thus "P i" by (rule step) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1584 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1585 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1586 | lemma strict_inc_induct[consumes 1, case_names base step]: | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1587 | assumes less: "i < j" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1588 | assumes base: "!!i. j = Suc i ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1589 | assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1590 | shows "P i" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1591 | using less | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1592 | proof (induct d=="j - i - 1" arbitrary: i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1593 | case (0 i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1594 | with `i < j` have "j = Suc i" by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1595 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1596 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1597 | case (Suc d i) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1598 | hence "i < j" "P (Suc i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1599 | by simp_all | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1600 | thus "P i" by (rule step) | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1601 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1602 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1603 | lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1604 | using inc_induct[of "k - i" k P, simplified] by blast | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1605 | |
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1606 | lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0" | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 1607 | using inc_induct[of 0 k P] by blast | 
| 21243 | 1608 | |
| 1609 | (*The others are | |
| 1610 | i - j - k = i - (j + k), | |
| 1611 | k \<le> j ==> j - k + i = j + i - k, | |
| 1612 | k \<le> j ==> i + (j - k) = i + j - k *) | |
| 1613 | lemmas add_diff_assoc = diff_add_assoc [symmetric] | |
| 1614 | lemmas add_diff_assoc2 = diff_add_assoc2[symmetric] | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1615 | declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp] | 
| 21243 | 1616 | |
| 1617 | text{*At present we prove no analogue of @{text not_less_Least} or @{text
 | |
| 1618 | Least_Suc}, since there appears to be no need.*} | |
| 1619 | ||
| 27625 | 1620 | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1621 | subsection {* The divides relation on @{typ nat} *}
 | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1622 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1623 | lemma dvd_1_left [iff]: "Suc 0 dvd k" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1624 | unfolding dvd_def by simp | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1625 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1626 | lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1627 | by (simp add: dvd_def) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1628 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1629 | lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1630 | by (simp add: dvd_def) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1631 | |
| 33657 | 1632 | lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)" | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1633 | unfolding dvd_def | 
| 35216 | 1634 | by (force dest: mult_eq_self_implies_10 simp add: mult_assoc) | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1635 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1636 | text {* @{term "op dvd"} is a partial order *}
 | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1637 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1638 | interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n" | 
| 33657 | 1639 | proof qed (auto intro: dvd_refl dvd_trans dvd_antisym) | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1640 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1641 | lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1642 | unfolding dvd_def | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1643 | by (blast intro: diff_mult_distrib2 [symmetric]) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1644 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1645 | lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1646 | apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst]) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1647 | apply (blast intro: dvd_add) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1648 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1649 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1650 | lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1651 | by (drule_tac m = m in dvd_diff_nat, auto) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1652 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1653 | lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1654 | apply (rule iffI) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1655 | apply (erule_tac [2] dvd_add) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1656 | apply (rule_tac [2] dvd_refl) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1657 | apply (subgoal_tac "n = (n+k) -k") | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1658 | prefer 2 apply simp | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1659 | apply (erule ssubst) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1660 | apply (erule dvd_diff_nat) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1661 | apply (rule dvd_refl) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1662 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1663 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1664 | lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1665 | unfolding dvd_def | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1666 | apply (erule exE) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1667 | apply (simp add: mult_ac) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1668 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1669 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1670 | lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1671 | apply auto | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1672 | apply (subgoal_tac "m*n dvd m*1") | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1673 | apply (drule dvd_mult_cancel, auto) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1674 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1675 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1676 | lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1677 | apply (subst mult_commute) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1678 | apply (erule dvd_mult_cancel1) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1679 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1680 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1681 | lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1682 | by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1683 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1684 | lemma nat_dvd_not_less: | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1685 | fixes m n :: nat | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1686 | shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1687 | by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1688 | |
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 1689 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1690 | subsection {* size of a datatype value *}
 | 
| 25193 | 1691 | |
| 29608 | 1692 | class size = | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1693 |   fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
 | 
| 23852 | 1694 | |
| 33364 | 1695 | |
| 1696 | subsection {* code module namespace *}
 | |
| 1697 | ||
| 1698 | code_modulename SML | |
| 1699 | Nat Arith | |
| 1700 | ||
| 1701 | code_modulename OCaml | |
| 1702 | Nat Arith | |
| 1703 | ||
| 1704 | code_modulename Haskell | |
| 1705 | Nat Arith | |
| 1706 | ||
| 25193 | 1707 | end |