| author | wenzelm | 
| Wed, 04 Jul 2007 16:49:34 +0200 | |
| changeset 23566 | b65692d4adcd | 
| parent 22845 | 5f9138bcb3d7 | 
| child 23857 | ad26287a9ccb | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Set.thy | 
| 2 | ID: $Id$ | |
| 12257 | 3 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | 
| 923 | 4 | *) | 
| 5 | ||
| 11979 | 6 | header {* Set theory for higher-order logic *}
 | 
| 7 | ||
| 15131 | 8 | theory Set | 
| 21333 | 9 | imports Lattices | 
| 15131 | 10 | begin | 
| 11979 | 11 | |
| 12 | text {* A set in HOL is simply a predicate. *}
 | |
| 923 | 13 | |
| 2261 | 14 | |
| 11979 | 15 | subsection {* Basic syntax *}
 | 
| 2261 | 16 | |
| 3947 | 17 | global | 
| 18 | ||
| 11979 | 19 | typedecl 'a set | 
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12257diff
changeset | 20 | arities set :: (type) type | 
| 3820 | 21 | |
| 923 | 22 | consts | 
| 11979 | 23 |   "{}"          :: "'a set"                             ("{}")
 | 
| 24 | UNIV :: "'a set" | |
| 25 | insert :: "'a => 'a set => 'a set" | |
| 26 |   Collect       :: "('a => bool) => 'a set"              -- "comprehension"
 | |
| 22845 | 27 | "op Int" :: "'a set => 'a set => 'a set" (infixl "Int" 70) | 
| 28 | "op Un" :: "'a set => 'a set => 'a set" (infixl "Un" 65) | |
| 11979 | 29 |   UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
 | 
| 30 |   INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
 | |
| 31 | Union :: "'a set set => 'a set" -- "union of a set" | |
| 32 | Inter :: "'a set set => 'a set" -- "intersection of a set" | |
| 33 | Pow :: "'a set => 'a set set" -- "powerset" | |
| 34 |   Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
 | |
| 35 |   Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 36 |   Bex1          :: "'a set => ('a => bool) => bool"      -- "bounded unique existential quantifiers"
 | 
| 11979 | 37 |   image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 38 | "op :" :: "'a => 'a set => bool" -- "membership" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 39 | |
| 21210 | 40 | notation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 41 |   "op :"  ("op :") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 42 |   "op :"  ("(_/ : _)" [50, 51] 50)
 | 
| 11979 | 43 | |
| 44 | local | |
| 45 | ||
| 923 | 46 | |
| 11979 | 47 | subsection {* Additional concrete syntax *}
 | 
| 2261 | 48 | |
| 19363 | 49 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 50 |   range :: "('a => 'b) => 'b set" where -- "of function"
 | 
| 19363 | 51 | "range f == f ` UNIV" | 
| 19323 | 52 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 53 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 54 | "not_mem x A == ~ (x : A)" -- "non-membership" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 55 | |
| 21210 | 56 | notation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 57 |   not_mem  ("op ~:") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 58 |   not_mem  ("(_/ ~: _)" [50, 51] 50)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 59 | |
| 21210 | 60 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 61 | "op Int" (infixl "\<inter>" 70) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 62 | "op Un" (infixl "\<union>" 65) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 63 |   "op :"  ("op \<in>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 64 |   "op :"  ("(_/ \<in> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 65 |   not_mem  ("op \<notin>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 66 |   not_mem  ("(_/ \<notin> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 67 |   Union  ("\<Union>_" [90] 90) and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 68 |   Inter  ("\<Inter>_" [90] 90)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 69 | |
| 21210 | 70 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 71 | "op Int" (infixl "\<inter>" 70) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 72 | "op Un" (infixl "\<union>" 65) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 73 |   "op :"  ("op \<in>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 74 |   "op :"  ("(_/ \<in> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 75 |   not_mem  ("op \<notin>") and
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 76 |   not_mem  ("(_/ \<notin> _)" [50, 51] 50)
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 77 | |
| 923 | 78 | syntax | 
| 11979 | 79 |   "@Finset"     :: "args => 'a set"                       ("{(_)}")
 | 
| 80 |   "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
 | |
| 81 |   "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
 | |
| 15535 | 82 |   "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ :/ _./ _})")
 | 
| 22439 | 83 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" [0, 10] 10)
 | 
| 84 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" [0, 10] 10)
 | |
| 85 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" [0, 10] 10)
 | |
| 86 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" [0, 10] 10)
 | |
| 11979 | 87 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
 | 
| 88 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 89 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3EX! _:_./ _)" [0, 0, 10] 10)
 | 
| 22478 | 90 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST _:_./ _)" [0, 0, 10] 10)
 | 
| 18674 | 91 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 92 | syntax (HOL) | 
| 11979 | 93 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
 | 
| 94 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 95 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3?! _:_./ _)" [0, 0, 10] 10)
 | 
| 923 | 96 | |
| 97 | translations | |
| 98 |   "{x, xs}"     == "insert x {xs}"
 | |
| 99 |   "{x}"         == "insert x {}"
 | |
| 13764 | 100 |   "{x. P}"      == "Collect (%x. P)"
 | 
| 15535 | 101 |   "{x:A. P}"    => "{x. x:A & P}"
 | 
| 4159 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 102 | "UN x y. B" == "UN x. UN y. B" | 
| 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 103 | "UN x. B" == "UNION UNIV (%x. B)" | 
| 13858 | 104 | "UN x. B" == "UN x:UNIV. B" | 
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 105 | "INT x y. B" == "INT x. INT y. B" | 
| 4159 
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
 paulson parents: 
4151diff
changeset | 106 | "INT x. B" == "INTER UNIV (%x. B)" | 
| 13858 | 107 | "INT x. B" == "INT x:UNIV. B" | 
| 13764 | 108 | "UN x:A. B" == "UNION A (%x. B)" | 
| 109 | "INT x:A. B" == "INTER A (%x. B)" | |
| 110 | "ALL x:A. P" == "Ball A (%x. P)" | |
| 111 | "EX x:A. P" == "Bex A (%x. P)" | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 112 | "EX! x:A. P" == "Bex1 A (%x. P)" | 
| 18674 | 113 | "LEAST x:A. P" => "LEAST x. x:A & P" | 
| 114 | ||
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
12023diff
changeset | 115 | syntax (xsymbols) | 
| 14381 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 116 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 117 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 118 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 18674 | 119 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 14381 
1189a8212a12
Modified UN and INT xsymbol syntax: made index subscript
 nipkow parents: 
14335diff
changeset | 120 | |
| 14565 | 121 | syntax (HTML output) | 
| 122 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 123 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 124 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 14565 | 125 | |
| 15120 | 126 | syntax (xsymbols) | 
| 15535 | 127 |   "@Collect"    :: "idt => 'a set => bool => 'a set"      ("(1{_ \<in>/ _./ _})")
 | 
| 22439 | 128 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" [0, 10] 10)
 | 
| 129 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" [0, 10] 10)
 | |
| 130 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" [0, 10] 10)
 | |
| 131 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" [0, 10] 10)
 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 132 | |
| 15120 | 133 | syntax (latex output) | 
| 22439 | 134 |   "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | 
| 135 |   "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 136 |   "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 137 |   "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
 | |
| 15120 | 138 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 139 | text{*
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 140 | Note the difference between ordinary xsymbol syntax of indexed | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 141 |   unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 142 |   and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
 | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 143 | former does not make the index expression a subscript of the | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 144 | union/intersection symbol because this leads to problems with nested | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 145 | subscripts in Proof General. *} | 
| 2261 | 146 | |
| 21333 | 147 | instance set :: (type) ord | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22478diff
changeset | 148 | subset_def: "A \<le> B \<equiv> \<forall>x\<in>A. x \<in> B" | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22478diff
changeset | 149 | psubset_def: "A < B \<equiv> A \<le> B \<and> A \<noteq> B" .. | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22478diff
changeset | 150 | |
| 22845 | 151 | lemmas [code func del] = subset_def psubset_def | 
| 21333 | 152 | |
| 153 | abbreviation | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 154 | subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 21819 | 155 | "subset \<equiv> less" | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 156 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 157 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 158 | subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 21819 | 159 | "subset_eq \<equiv> less_eq" | 
| 21333 | 160 | |
| 161 | notation (output) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 162 |   subset  ("op <") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 163 |   subset  ("(_/ < _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 164 |   subset_eq  ("op <=") and
 | 
| 21333 | 165 |   subset_eq  ("(_/ <= _)" [50, 51] 50)
 | 
| 166 | ||
| 167 | notation (xsymbols) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 168 |   subset  ("op \<subset>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 169 |   subset  ("(_/ \<subset> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 170 |   subset_eq  ("op \<subseteq>") and
 | 
| 21333 | 171 |   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 | 
| 172 | ||
| 173 | notation (HTML output) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 174 |   subset  ("op \<subset>") and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 175 |   subset  ("(_/ \<subset> _)" [50, 51] 50) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 176 |   subset_eq  ("op \<subseteq>") and
 | 
| 21333 | 177 |   subset_eq  ("(_/ \<subseteq> _)" [50, 51] 50)
 | 
| 178 | ||
| 179 | abbreviation (input) | |
| 21819 | 180 | supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 181 | "supset \<equiv> greater" | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 182 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21384diff
changeset | 183 | abbreviation (input) | 
| 21819 | 184 | supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | 
| 185 | "supset_eq \<equiv> greater_eq" | |
| 186 | ||
| 187 | notation (xsymbols) | |
| 188 |   supset  ("op \<supset>") and
 | |
| 189 |   supset  ("(_/ \<supset> _)" [50, 51] 50) and
 | |
| 190 |   supset_eq  ("op \<supseteq>") and
 | |
| 191 |   supset_eq  ("(_/ \<supseteq> _)" [50, 51] 50)
 | |
| 21333 | 192 | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 193 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 194 | subsubsection "Bounded quantifiers" | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 195 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 196 | syntax (output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 197 |   "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 198 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 199 |   "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 200 |   "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 201 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 202 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 203 | syntax (xsymbols) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 204 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 205 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 206 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 207 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 208 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 209 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 210 | syntax (HOL output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 211 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 212 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 213 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 214 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 215 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3?! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 216 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 217 | syntax (HTML output) | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 218 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 219 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 220 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 221 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 222 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 223 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 224 | translations | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 225 | "\<forall>A\<subset>B. P" => "ALL A. A \<subset> B --> P" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 226 | "\<exists>A\<subset>B. P" => "EX A. A \<subset> B & P" | 
| 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 227 | "\<forall>A\<subseteq>B. P" => "ALL A. A \<subseteq> B --> P" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 228 | "\<exists>A\<subseteq>B. P" => "EX A. A \<subseteq> B & P" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 229 | "\<exists>!A\<subseteq>B. P" => "EX! A. A \<subseteq> B & P" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 230 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 231 | print_translation {*
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 232 | let | 
| 22377 | 233 |   val Type (set_type, _) = @{typ "'a set"};
 | 
| 234 |   val All_binder = Syntax.binder_name @{const_syntax "All"};
 | |
| 235 |   val Ex_binder = Syntax.binder_name @{const_syntax "Ex"};
 | |
| 236 |   val impl = @{const_syntax "op -->"};
 | |
| 237 |   val conj = @{const_syntax "op &"};
 | |
| 238 |   val sbset = @{const_syntax "subset"};
 | |
| 239 |   val sbset_eq = @{const_syntax "subset_eq"};
 | |
| 21819 | 240 | |
| 241 | val trans = | |
| 242 | [((All_binder, impl, sbset), "_setlessAll"), | |
| 243 | ((All_binder, impl, sbset_eq), "_setleAll"), | |
| 244 | ((Ex_binder, conj, sbset), "_setlessEx"), | |
| 245 | ((Ex_binder, conj, sbset_eq), "_setleEx")]; | |
| 246 | ||
| 247 | fun mk v v' c n P = | |
| 248 | if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) | |
| 249 | then Syntax.const c $ Syntax.mark_bound v' $ n $ P else raise Match; | |
| 250 | ||
| 251 | fun tr' q = (q, | |
| 252 |     fn [Const ("_bound", _) $ Free (v, Type (T, _)), Const (c, _) $ (Const (d, _) $ (Const ("_bound", _) $ Free (v', _)) $ n) $ P] =>
 | |
| 253 | if T = (set_type) then case AList.lookup (op =) trans (q, c, d) | |
| 254 | of NONE => raise Match | |
| 255 | | SOME l => mk v v' l n P | |
| 256 | else raise Match | |
| 257 | | _ => raise Match); | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 258 | in | 
| 21819 | 259 | [tr' All_binder, tr' Ex_binder] | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 260 | end | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 261 | *} | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 262 | |
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 263 | |
| 11979 | 264 | text {*
 | 
| 265 |   \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
 | |
| 266 |   "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
 | |
| 267 |   only translated if @{text "[0..n] subset bvs(e)"}.
 | |
| 268 | *} | |
| 269 | ||
| 270 | parse_translation {*
 | |
| 271 | let | |
| 272 |     val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
 | |
| 3947 | 273 | |
| 11979 | 274 |     fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
 | 
| 275 | | nvars _ = 1; | |
| 276 | ||
| 277 | fun setcompr_tr [e, idts, b] = | |
| 278 | let | |
| 279 | val eq = Syntax.const "op =" $ Bound (nvars idts) $ e; | |
| 280 | val P = Syntax.const "op &" $ eq $ b; | |
| 281 | val exP = ex_tr [idts, P]; | |
| 17784 | 282 | in Syntax.const "Collect" $ Term.absdummy (dummyT, exP) end; | 
| 11979 | 283 | |
| 284 |   in [("@SetCompr", setcompr_tr)] end;
 | |
| 285 | *} | |
| 923 | 286 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 287 | (* To avoid eta-contraction of body: *) | 
| 11979 | 288 | print_translation {*
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 289 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 290 | fun btr' syn [A,Abs abs] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 291 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 292 | in Syntax.const syn $ x $ A $ t end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 293 | in | 
| 13858 | 294 | [("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
 | 
| 295 |  ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 296 | end | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 297 | *} | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 298 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 299 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 300 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 301 |   val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 302 | |
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 303 | fun setcompr_tr' [Abs (abs as (_, _, P))] = | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 304 | let | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 305 |       fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 306 |         | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 307 | n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 308 | ((0 upto (n - 1)) subset add_loose_bnos (e, 0, [])) | 
| 13764 | 309 | | check _ = false | 
| 923 | 310 | |
| 11979 | 311 | fun tr' (_ $ abs) = | 
| 312 | let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs] | |
| 313 | in Syntax.const "@SetCompr" $ e $ idts $ Q end; | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 314 | in if check (P, 0) then tr' P | 
| 15535 | 315 | else let val (x as _ $ Free(xN,_), t) = atomic_abs_tr' abs | 
| 316 | val M = Syntax.const "@Coll" $ x $ t | |
| 317 | in case t of | |
| 318 |                  Const("op &",_)
 | |
| 319 |                    $ (Const("op :",_) $ (Const("_bound",_) $ Free(yN,_)) $ A)
 | |
| 320 | $ P => | |
| 321 | if xN=yN then Syntax.const "@Collect" $ x $ A $ P else M | |
| 322 | | _ => M | |
| 323 | end | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 324 | end; | 
| 11979 | 325 |   in [("Collect", setcompr_tr')] end;
 | 
| 326 | *} | |
| 327 | ||
| 328 | ||
| 329 | subsection {* Rules and definitions *}
 | |
| 330 | ||
| 331 | text {* Isomorphisms between predicates and sets. *}
 | |
| 923 | 332 | |
| 11979 | 333 | axioms | 
| 17085 | 334 |   mem_Collect_eq: "(a : {x. P(x)}) = P(a)"
 | 
| 335 |   Collect_mem_eq: "{x. x:A} = A"
 | |
| 17702 | 336 | finalconsts | 
| 337 | Collect | |
| 338 | "op :" | |
| 11979 | 339 | |
| 340 | defs | |
| 341 | Ball_def: "Ball A P == ALL x. x:A --> P(x)" | |
| 342 | Bex_def: "Bex A P == EX x. x:A & P(x)" | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 343 | Bex1_def: "Bex1 A P == EX! x. x:A & P(x)" | 
| 11979 | 344 | |
| 21333 | 345 | instance set :: (type) minus | 
| 11979 | 346 |   Compl_def:    "- A            == {x. ~x:A}"
 | 
| 21333 | 347 |   set_diff_def: "A - B          == {x. x:A & ~x:B}" ..
 | 
| 923 | 348 | |
| 22845 | 349 | lemmas [code func del] = Compl_def set_diff_def | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22478diff
changeset | 350 | |
| 923 | 351 | defs | 
| 11979 | 352 |   Un_def:       "A Un B         == {x. x:A | x:B}"
 | 
| 353 |   Int_def:      "A Int B        == {x. x:A & x:B}"
 | |
| 354 |   INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
 | |
| 355 |   UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
 | |
| 356 | Inter_def: "Inter S == (INT x:S. x)" | |
| 357 | Union_def: "Union S == (UN x:S. x)" | |
| 358 |   Pow_def:      "Pow A          == {B. B <= A}"
 | |
| 359 |   empty_def:    "{}             == {x. False}"
 | |
| 360 |   UNIV_def:     "UNIV           == {x. True}"
 | |
| 361 |   insert_def:   "insert a B     == {x. x=a} Un B"
 | |
| 362 |   image_def:    "f`A            == {y. EX x:A. y = f(x)}"
 | |
| 363 | ||
| 364 | ||
| 365 | subsection {* Lemmas and proof tool setup *}
 | |
| 366 | ||
| 367 | subsubsection {* Relating predicates and sets *}
 | |
| 368 | ||
| 17085 | 369 | declare mem_Collect_eq [iff] Collect_mem_eq [simp] | 
| 370 | ||
| 12257 | 371 | lemma CollectI: "P(a) ==> a : {x. P(x)}"
 | 
| 11979 | 372 | by simp | 
| 373 | ||
| 374 | lemma CollectD: "a : {x. P(x)} ==> P(a)"
 | |
| 375 | by simp | |
| 376 | ||
| 377 | lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
 | |
| 378 | by simp | |
| 379 | ||
| 12257 | 380 | lemmas CollectE = CollectD [elim_format] | 
| 11979 | 381 | |
| 382 | ||
| 383 | subsubsection {* Bounded quantifiers *}
 | |
| 384 | ||
| 385 | lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" | |
| 386 | by (simp add: Ball_def) | |
| 387 | ||
| 388 | lemmas strip = impI allI ballI | |
| 389 | ||
| 390 | lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" | |
| 391 | by (simp add: Ball_def) | |
| 392 | ||
| 393 | lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" | |
| 394 | by (unfold Ball_def) blast | |
| 22139 | 395 | |
| 396 | ML {* bind_thm ("rev_ballE", permute_prems 1 1 @{thm ballE}) *}
 | |
| 11979 | 397 | |
| 398 | text {*
 | |
| 399 |   \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
 | |
| 400 |   @{prop "a:A"}; creates assumption @{prop "P a"}.
 | |
| 401 | *} | |
| 402 | ||
| 403 | ML {*
 | |
| 22139 | 404 |   fun ball_tac i = etac @{thm ballE} i THEN contr_tac (i + 1)
 | 
| 11979 | 405 | *} | 
| 406 | ||
| 407 | text {*
 | |
| 408 | Gives better instantiation for bound: | |
| 409 | *} | |
| 410 | ||
| 411 | ML_setup {*
 | |
| 22139 | 412 |   change_claset (fn cs => cs addbefore ("bspec", datac @{thm bspec} 1))
 | 
| 11979 | 413 | *} | 
| 414 | ||
| 415 | lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" | |
| 416 |   -- {* Normally the best argument order: @{prop "P x"} constrains the
 | |
| 417 |     choice of @{prop "x:A"}. *}
 | |
| 418 | by (unfold Bex_def) blast | |
| 419 | ||
| 13113 | 420 | lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" | 
| 11979 | 421 |   -- {* The best argument order when there is only one @{prop "x:A"}. *}
 | 
| 422 | by (unfold Bex_def) blast | |
| 423 | ||
| 424 | lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" | |
| 425 | by (unfold Bex_def) blast | |
| 426 | ||
| 427 | lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" | |
| 428 | by (unfold Bex_def) blast | |
| 429 | ||
| 430 | lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" | |
| 431 |   -- {* Trival rewrite rule. *}
 | |
| 432 | by (simp add: Ball_def) | |
| 433 | ||
| 434 | lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" | |
| 435 |   -- {* Dual form for existentials. *}
 | |
| 436 | by (simp add: Bex_def) | |
| 437 | ||
| 438 | lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" | |
| 439 | by blast | |
| 440 | ||
| 441 | lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" | |
| 442 | by blast | |
| 443 | ||
| 444 | lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" | |
| 445 | by blast | |
| 446 | ||
| 447 | lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" | |
| 448 | by blast | |
| 449 | ||
| 450 | lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" | |
| 451 | by blast | |
| 452 | ||
| 453 | lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" | |
| 454 | by blast | |
| 455 | ||
| 456 | ML_setup {*
 | |
| 13462 | 457 | local | 
| 22139 | 458 |     val unfold_bex_tac = unfold_tac @{thms "Bex_def"};
 | 
| 18328 | 459 | fun prove_bex_tac ss = unfold_bex_tac ss THEN Quantifier1.prove_one_point_ex_tac; | 
| 11979 | 460 | val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac; | 
| 461 | ||
| 22139 | 462 |     val unfold_ball_tac = unfold_tac @{thms "Ball_def"};
 | 
| 18328 | 463 | fun prove_ball_tac ss = unfold_ball_tac ss THEN Quantifier1.prove_one_point_all_tac; | 
| 11979 | 464 | val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac; | 
| 465 | in | |
| 18328 | 466 | val defBEX_regroup = Simplifier.simproc (the_context ()) | 
| 13462 | 467 | "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex; | 
| 18328 | 468 | val defBALL_regroup = Simplifier.simproc (the_context ()) | 
| 13462 | 469 | "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball; | 
| 11979 | 470 | end; | 
| 13462 | 471 | |
| 472 | Addsimprocs [defBALL_regroup, defBEX_regroup]; | |
| 11979 | 473 | *} | 
| 474 | ||
| 475 | ||
| 476 | subsubsection {* Congruence rules *}
 | |
| 477 | ||
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 478 | lemma ball_cong: | 
| 11979 | 479 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 480 | (ALL x:A. P x) = (ALL x:B. Q x)" | |
| 481 | by (simp add: Ball_def) | |
| 482 | ||
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 483 | lemma strong_ball_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 484 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 485 | (ALL x:A. P x) = (ALL x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 486 | by (simp add: simp_implies_def Ball_def) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 487 | |
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 488 | lemma bex_cong: | 
| 11979 | 489 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 490 | (EX x:A. P x) = (EX x:B. Q x)" | |
| 491 | by (simp add: Bex_def cong: conj_cong) | |
| 1273 | 492 | |
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 493 | lemma strong_bex_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 494 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 495 | (EX x:A. P x) = (EX x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 496 | by (simp add: simp_implies_def Bex_def cong: conj_cong) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 497 | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 498 | |
| 11979 | 499 | subsubsection {* Subsets *}
 | 
| 500 | ||
| 19295 | 501 | lemma subsetI [atp,intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B" | 
| 11979 | 502 | by (simp add: subset_def) | 
| 503 | ||
| 504 | text {*
 | |
| 505 |   \medskip Map the type @{text "'a set => anything"} to just @{typ
 | |
| 506 |   'a}; for overloading constants whose first argument has type @{typ
 | |
| 507 | "'a set"}. | |
| 508 | *} | |
| 509 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 510 | lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" | 
| 11979 | 511 |   -- {* Rule in Modus Ponens style. *}
 | 
| 512 | by (unfold subset_def) blast | |
| 513 | ||
| 514 | declare subsetD [intro?] -- FIXME | |
| 515 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 516 | lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" | 
| 11979 | 517 |   -- {* The same, with reversed premises for use with @{text erule} --
 | 
| 518 |       cf @{text rev_mp}. *}
 | |
| 519 | by (rule subsetD) | |
| 520 | ||
| 521 | declare rev_subsetD [intro?] -- FIXME | |
| 522 | ||
| 523 | text {*
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 524 |   \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
 | 
| 11979 | 525 | *} | 
| 526 | ||
| 527 | ML {*
 | |
| 22139 | 528 |   fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 11979 | 529 | *} | 
| 530 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 531 | lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" | 
| 11979 | 532 |   -- {* Classical elimination rule. *}
 | 
| 533 | by (unfold subset_def) blast | |
| 534 | ||
| 535 | text {*
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 536 |   \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 537 |   creates the assumption @{prop "c \<in> B"}.
 | 
| 11979 | 538 | *} | 
| 539 | ||
| 540 | ML {*
 | |
| 22139 | 541 |   fun set_mp_tac i = etac @{thm subsetCE} i THEN mp_tac i
 | 
| 11979 | 542 | *} | 
| 543 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 544 | lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" | 
| 11979 | 545 | by blast | 
| 546 | ||
| 19175 | 547 | lemma subset_refl [simp,atp]: "A \<subseteq> A" | 
| 11979 | 548 | by fast | 
| 549 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 550 | lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" | 
| 11979 | 551 | by blast | 
| 923 | 552 | |
| 2261 | 553 | |
| 11979 | 554 | subsubsection {* Equality *}
 | 
| 555 | ||
| 13865 | 556 | lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B" | 
| 557 | apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals]) | |
| 558 | apply (rule Collect_mem_eq) | |
| 559 | apply (rule Collect_mem_eq) | |
| 560 | done | |
| 561 | ||
| 15554 | 562 | (* Due to Brian Huffman *) | 
| 563 | lemma expand_set_eq: "(A = B) = (ALL x. (x:A) = (x:B))" | |
| 564 | by(auto intro:set_ext) | |
| 565 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 566 | lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" | 
| 11979 | 567 |   -- {* Anti-symmetry of the subset relation. *}
 | 
| 17589 | 568 | by (iprover intro: set_ext subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 569 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 570 | lemmas equalityI [intro!] = subset_antisym | 
| 11979 | 571 | |
| 572 | text {*
 | |
| 573 | \medskip Equality rules from ZF set theory -- are they appropriate | |
| 574 | here? | |
| 575 | *} | |
| 576 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 577 | lemma equalityD1: "A = B ==> A \<subseteq> B" | 
| 11979 | 578 | by (simp add: subset_refl) | 
| 579 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 580 | lemma equalityD2: "A = B ==> B \<subseteq> A" | 
| 11979 | 581 | by (simp add: subset_refl) | 
| 582 | ||
| 583 | text {*
 | |
| 584 |   \medskip Be careful when adding this to the claset as @{text
 | |
| 585 |   subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 586 |   \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
 | 
| 11979 | 587 | *} | 
| 588 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 589 | lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" | 
| 11979 | 590 | by (simp add: subset_refl) | 
| 923 | 591 | |
| 11979 | 592 | lemma equalityCE [elim]: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 593 | "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" | 
| 11979 | 594 | by blast | 
| 595 | ||
| 596 | lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" | |
| 597 | by simp | |
| 598 | ||
| 13865 | 599 | lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" | 
| 600 | by simp | |
| 601 | ||
| 11979 | 602 | |
| 603 | subsubsection {* The universal set -- UNIV *}
 | |
| 604 | ||
| 605 | lemma UNIV_I [simp]: "x : UNIV" | |
| 606 | by (simp add: UNIV_def) | |
| 607 | ||
| 608 | declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
 | |
| 609 | ||
| 610 | lemma UNIV_witness [intro?]: "EX x. x : UNIV" | |
| 611 | by simp | |
| 612 | ||
| 18144 
4edcb5fdc3b0
duplicate axioms in ATP linkup, and general fixes
 paulson parents: 
17875diff
changeset | 613 | lemma subset_UNIV [simp]: "A \<subseteq> UNIV" | 
| 11979 | 614 | by (rule subsetI) (rule UNIV_I) | 
| 2388 | 615 | |
| 11979 | 616 | text {*
 | 
| 617 |   \medskip Eta-contracting these two rules (to remove @{text P})
 | |
| 618 | causes them to be ignored because of their interaction with | |
| 619 | congruence rules. | |
| 620 | *} | |
| 621 | ||
| 622 | lemma ball_UNIV [simp]: "Ball UNIV P = All P" | |
| 623 | by (simp add: Ball_def) | |
| 624 | ||
| 625 | lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" | |
| 626 | by (simp add: Bex_def) | |
| 627 | ||
| 628 | ||
| 629 | subsubsection {* The empty set *}
 | |
| 630 | ||
| 631 | lemma empty_iff [simp]: "(c : {}) = False"
 | |
| 632 | by (simp add: empty_def) | |
| 633 | ||
| 634 | lemma emptyE [elim!]: "a : {} ==> P"
 | |
| 635 | by simp | |
| 636 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 637 | lemma empty_subsetI [iff]: "{} \<subseteq> A"
 | 
| 11979 | 638 |     -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
 | 
| 639 | by blast | |
| 640 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 641 | lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
 | 
| 11979 | 642 | by blast | 
| 2388 | 643 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 644 | lemma equals0D: "A = {} ==> a \<notin> A"
 | 
| 11979 | 645 |     -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
 | 
| 646 | by blast | |
| 647 | ||
| 648 | lemma ball_empty [simp]: "Ball {} P = True"
 | |
| 649 | by (simp add: Ball_def) | |
| 650 | ||
| 651 | lemma bex_empty [simp]: "Bex {} P = False"
 | |
| 652 | by (simp add: Bex_def) | |
| 653 | ||
| 654 | lemma UNIV_not_empty [iff]: "UNIV ~= {}"
 | |
| 655 | by (blast elim: equalityE) | |
| 656 | ||
| 657 | ||
| 12023 | 658 | subsubsection {* The Powerset operator -- Pow *}
 | 
| 11979 | 659 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 660 | lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" | 
| 11979 | 661 | by (simp add: Pow_def) | 
| 662 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 663 | lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" | 
| 11979 | 664 | by (simp add: Pow_def) | 
| 665 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 666 | lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" | 
| 11979 | 667 | by (simp add: Pow_def) | 
| 668 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 669 | lemma Pow_bottom: "{} \<in> Pow B"
 | 
| 11979 | 670 | by simp | 
| 671 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 672 | lemma Pow_top: "A \<in> Pow A" | 
| 11979 | 673 | by (simp add: subset_refl) | 
| 2684 | 674 | |
| 2388 | 675 | |
| 11979 | 676 | subsubsection {* Set complement *}
 | 
| 677 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 678 | lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" | 
| 11979 | 679 | by (unfold Compl_def) blast | 
| 680 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 681 | lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" | 
| 11979 | 682 | by (unfold Compl_def) blast | 
| 683 | ||
| 684 | text {*
 | |
| 685 | \medskip This form, with negated conclusion, works well with the | |
| 686 | Classical prover. Negated assumptions behave like formulae on the | |
| 687 | right side of the notional turnstile ... *} | |
| 688 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 689 | lemma ComplD [dest!]: "c : -A ==> c~:A" | 
| 11979 | 690 | by (unfold Compl_def) blast | 
| 691 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 692 | lemmas ComplE = ComplD [elim_format] | 
| 11979 | 693 | |
| 694 | ||
| 695 | subsubsection {* Binary union -- Un *}
 | |
| 923 | 696 | |
| 11979 | 697 | lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" | 
| 698 | by (unfold Un_def) blast | |
| 699 | ||
| 700 | lemma UnI1 [elim?]: "c:A ==> c : A Un B" | |
| 701 | by simp | |
| 702 | ||
| 703 | lemma UnI2 [elim?]: "c:B ==> c : A Un B" | |
| 704 | by simp | |
| 923 | 705 | |
| 11979 | 706 | text {*
 | 
| 707 |   \medskip Classical introduction rule: no commitment to @{prop A} vs
 | |
| 708 |   @{prop B}.
 | |
| 709 | *} | |
| 710 | ||
| 711 | lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" | |
| 712 | by auto | |
| 713 | ||
| 714 | lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" | |
| 715 | by (unfold Un_def) blast | |
| 716 | ||
| 717 | ||
| 12023 | 718 | subsubsection {* Binary intersection -- Int *}
 | 
| 923 | 719 | |
| 11979 | 720 | lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" | 
| 721 | by (unfold Int_def) blast | |
| 722 | ||
| 723 | lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" | |
| 724 | by simp | |
| 725 | ||
| 726 | lemma IntD1: "c : A Int B ==> c:A" | |
| 727 | by simp | |
| 728 | ||
| 729 | lemma IntD2: "c : A Int B ==> c:B" | |
| 730 | by simp | |
| 731 | ||
| 732 | lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" | |
| 733 | by simp | |
| 734 | ||
| 735 | ||
| 12023 | 736 | subsubsection {* Set difference *}
 | 
| 11979 | 737 | |
| 738 | lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" | |
| 739 | by (unfold set_diff_def) blast | |
| 923 | 740 | |
| 11979 | 741 | lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" | 
| 742 | by simp | |
| 743 | ||
| 744 | lemma DiffD1: "c : A - B ==> c : A" | |
| 745 | by simp | |
| 746 | ||
| 747 | lemma DiffD2: "c : A - B ==> c : B ==> P" | |
| 748 | by simp | |
| 749 | ||
| 750 | lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" | |
| 751 | by simp | |
| 752 | ||
| 753 | ||
| 754 | subsubsection {* Augmenting a set -- insert *}
 | |
| 755 | ||
| 756 | lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" | |
| 757 | by (unfold insert_def) blast | |
| 758 | ||
| 759 | lemma insertI1: "a : insert a B" | |
| 760 | by simp | |
| 761 | ||
| 762 | lemma insertI2: "a : B ==> a : insert b B" | |
| 763 | by simp | |
| 923 | 764 | |
| 11979 | 765 | lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" | 
| 766 | by (unfold insert_def) blast | |
| 767 | ||
| 768 | lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" | |
| 769 |   -- {* Classical introduction rule. *}
 | |
| 770 | by auto | |
| 771 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 772 | lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
 | 
| 11979 | 773 | by auto | 
| 774 | ||
| 775 | ||
| 776 | subsubsection {* Singletons, using insert *}
 | |
| 777 | ||
| 778 | lemma singletonI [intro!]: "a : {a}"
 | |
| 779 |     -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
 | |
| 780 | by (rule insertI1) | |
| 781 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 782 | lemma singletonD [dest!]: "b : {a} ==> b = a"
 | 
| 11979 | 783 | by blast | 
| 784 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
17002diff
changeset | 785 | lemmas singletonE = singletonD [elim_format] | 
| 11979 | 786 | |
| 787 | lemma singleton_iff: "(b : {a}) = (b = a)"
 | |
| 788 | by blast | |
| 789 | ||
| 790 | lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
 | |
| 791 | by blast | |
| 792 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 793 | lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A \<subseteq> {b})"
 | 
| 11979 | 794 | by blast | 
| 795 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 796 | lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
 | 
| 11979 | 797 | by blast | 
| 798 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 799 | lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
 | 
| 11979 | 800 | by fast | 
| 801 | ||
| 802 | lemma singleton_conv [simp]: "{x. x = a} = {a}"
 | |
| 803 | by blast | |
| 804 | ||
| 805 | lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
 | |
| 806 | by blast | |
| 923 | 807 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 808 | lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
 | 
| 11979 | 809 | by blast | 
| 810 | ||
| 19870 | 811 | lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
 | 
| 812 | by (blast elim: equalityE) | |
| 813 | ||
| 11979 | 814 | |
| 815 | subsubsection {* Unions of families *}
 | |
| 816 | ||
| 817 | text {*
 | |
| 818 |   @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
 | |
| 819 | *} | |
| 820 | ||
| 821 | lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)" | |
| 822 | by (unfold UNION_def) blast | |
| 823 | ||
| 824 | lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)" | |
| 825 |   -- {* The order of the premises presupposes that @{term A} is rigid;
 | |
| 826 |     @{term b} may be flexible. *}
 | |
| 827 | by auto | |
| 828 | ||
| 829 | lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R" | |
| 830 | by (unfold UNION_def) blast | |
| 923 | 831 | |
| 11979 | 832 | lemma UN_cong [cong]: | 
| 833 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)" | |
| 834 | by (simp add: UNION_def) | |
| 835 | ||
| 836 | ||
| 837 | subsubsection {* Intersections of families *}
 | |
| 838 | ||
| 839 | text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
 | |
| 840 | ||
| 841 | lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)" | |
| 842 | by (unfold INTER_def) blast | |
| 923 | 843 | |
| 11979 | 844 | lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)" | 
| 845 | by (unfold INTER_def) blast | |
| 846 | ||
| 847 | lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a" | |
| 848 | by auto | |
| 849 | ||
| 850 | lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R" | |
| 851 |   -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
 | |
| 852 | by (unfold INTER_def) blast | |
| 853 | ||
| 854 | lemma INT_cong [cong]: | |
| 855 | "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)" | |
| 856 | by (simp add: INTER_def) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
5931diff
changeset | 857 | |
| 923 | 858 | |
| 11979 | 859 | subsubsection {* Union *}
 | 
| 860 | ||
| 861 | lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)" | |
| 862 | by (unfold Union_def) blast | |
| 863 | ||
| 864 | lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C" | |
| 865 |   -- {* The order of the premises presupposes that @{term C} is rigid;
 | |
| 866 |     @{term A} may be flexible. *}
 | |
| 867 | by auto | |
| 868 | ||
| 869 | lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R" | |
| 870 | by (unfold Union_def) blast | |
| 871 | ||
| 872 | ||
| 873 | subsubsection {* Inter *}
 | |
| 874 | ||
| 875 | lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)" | |
| 876 | by (unfold Inter_def) blast | |
| 877 | ||
| 878 | lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C" | |
| 879 | by (simp add: Inter_def) | |
| 880 | ||
| 881 | text {*
 | |
| 882 |   \medskip A ``destruct'' rule -- every @{term X} in @{term C}
 | |
| 883 |   contains @{term A} as an element, but @{prop "A:X"} can hold when
 | |
| 884 |   @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
 | |
| 885 | *} | |
| 886 | ||
| 887 | lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X" | |
| 888 | by auto | |
| 889 | ||
| 890 | lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R" | |
| 891 |   -- {* ``Classical'' elimination rule -- does not require proving
 | |
| 892 |     @{prop "X:C"}. *}
 | |
| 893 | by (unfold Inter_def) blast | |
| 894 | ||
| 895 | text {*
 | |
| 896 |   \medskip Image of a set under a function.  Frequently @{term b} does
 | |
| 897 |   not have the syntactic form of @{term "f x"}.
 | |
| 898 | *} | |
| 899 | ||
| 900 | lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A" | |
| 901 | by (unfold image_def) blast | |
| 902 | ||
| 903 | lemma imageI: "x : A ==> f x : f ` A" | |
| 904 | by (rule image_eqI) (rule refl) | |
| 905 | ||
| 906 | lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A" | |
| 907 |   -- {* This version's more effective when we already have the
 | |
| 908 |     required @{term x}. *}
 | |
| 909 | by (unfold image_def) blast | |
| 910 | ||
| 911 | lemma imageE [elim!]: | |
| 912 | "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P" | |
| 913 |   -- {* The eta-expansion gives variable-name preservation. *}
 | |
| 914 | by (unfold image_def) blast | |
| 915 | ||
| 916 | lemma image_Un: "f`(A Un B) = f`A Un f`B" | |
| 917 | by blast | |
| 918 | ||
| 919 | lemma image_iff: "(z : f`A) = (EX x:A. z = f x)" | |
| 920 | by blast | |
| 921 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 922 | lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)" | 
| 11979 | 923 |   -- {* This rewrite rule would confuse users if made default. *}
 | 
| 924 | by blast | |
| 925 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 926 | lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)" | 
| 11979 | 927 | apply safe | 
| 928 | prefer 2 apply fast | |
| 14208 | 929 |   apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
 | 
| 11979 | 930 | done | 
| 931 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 932 | lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B" | 
| 11979 | 933 |   -- {* Replaces the three steps @{text subsetI}, @{text imageE},
 | 
| 934 |     @{text hypsubst}, but breaks too many existing proofs. *}
 | |
| 935 | by blast | |
| 936 | ||
| 937 | text {*
 | |
| 938 | \medskip Range of a function -- just a translation for image! | |
| 939 | *} | |
| 940 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 941 | lemma range_eqI: "b = f x ==> b \<in> range f" | 
| 11979 | 942 | by simp | 
| 943 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 944 | lemma rangeI: "f x \<in> range f" | 
| 11979 | 945 | by simp | 
| 946 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 947 | lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P" | 
| 11979 | 948 | by blast | 
| 949 | ||
| 950 | ||
| 951 | subsubsection {* Set reasoning tools *}
 | |
| 952 | ||
| 953 | text {*
 | |
| 954 |   Rewrite rules for boolean case-splitting: faster than @{text
 | |
| 955 | "split_if [split]"}. | |
| 956 | *} | |
| 957 | ||
| 958 | lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" | |
| 959 | by (rule split_if) | |
| 960 | ||
| 961 | lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" | |
| 962 | by (rule split_if) | |
| 963 | ||
| 964 | text {*
 | |
| 965 |   Split ifs on either side of the membership relation.  Not for @{text
 | |
| 966 | "[simp]"} -- can cause goals to blow up! | |
| 967 | *} | |
| 968 | ||
| 969 | lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" | |
| 970 | by (rule split_if) | |
| 971 | ||
| 972 | lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" | |
| 973 | by (rule split_if) | |
| 974 | ||
| 975 | lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 | |
| 976 | ||
| 977 | lemmas mem_simps = | |
| 978 | insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff | |
| 979 | mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff | |
| 980 |   -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
 | |
| 981 | ||
| 982 | (*Would like to add these, but the existing code only searches for the | |
| 983 | outer-level constant, which in this case is just "op :"; we instead need | |
| 984 | to use term-nets to associate patterns with rules. Also, if a rule fails to | |
| 985 | apply, then the formula should be kept. | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
19175diff
changeset | 986 |   [("HOL.uminus", Compl_iff RS iffD1), ("HOL.minus", [Diff_iff RS iffD1]),
 | 
| 11979 | 987 |    ("op Int", [IntD1,IntD2]),
 | 
| 988 |    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
 | |
| 989 | *) | |
| 990 | ||
| 991 | ML_setup {*
 | |
| 22139 | 992 |   val mksimps_pairs = [("Ball", @{thms bspec})] @ mksimps_pairs;
 | 
| 17875 | 993 | change_simpset (fn ss => ss setmksimps (mksimps mksimps_pairs)); | 
| 11979 | 994 | *} | 
| 995 | ||
| 996 | ||
| 997 | subsubsection {* The ``proper subset'' relation *}
 | |
| 998 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 999 | lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" | 
| 11979 | 1000 | by (unfold psubset_def) blast | 
| 1001 | ||
| 13624 | 1002 | lemma psubsetE [elim!]: | 
| 1003 | "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" | |
| 1004 | by (unfold psubset_def) blast | |
| 1005 | ||
| 11979 | 1006 | lemma psubset_insert_iff: | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1007 |   "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1008 | by (auto simp add: psubset_def subset_insert_iff) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1009 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1010 | lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" | 
| 11979 | 1011 | by (simp only: psubset_def) | 
| 1012 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1013 | lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" | 
| 11979 | 1014 | by (simp add: psubset_eq) | 
| 1015 | ||
| 14335 | 1016 | lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C" | 
| 1017 | apply (unfold psubset_def) | |
| 1018 | apply (auto dest: subset_antisym) | |
| 1019 | done | |
| 1020 | ||
| 1021 | lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B" | |
| 1022 | apply (unfold psubset_def) | |
| 1023 | apply (auto dest: subsetD) | |
| 1024 | done | |
| 1025 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1026 | lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" | 
| 11979 | 1027 | by (auto simp add: psubset_eq) | 
| 1028 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1029 | lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" | 
| 11979 | 1030 | by (auto simp add: psubset_eq) | 
| 1031 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1032 | lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" | 
| 11979 | 1033 | by (unfold psubset_def) blast | 
| 1034 | ||
| 1035 | lemma atomize_ball: | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1036 | "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" | 
| 11979 | 1037 | by (simp only: Ball_def atomize_all atomize_imp) | 
| 1038 | ||
| 18832 | 1039 | lemmas [symmetric, rulify] = atomize_ball | 
| 1040 | and [symmetric, defn] = atomize_ball | |
| 11979 | 1041 | |
| 1042 | ||
| 22455 | 1043 | subsection {* Order on sets *}
 | 
| 11979 | 1044 | |
| 21384 | 1045 | instance set :: (type) order | 
| 1046 | by (intro_classes, | |
| 1047 | (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) | |
| 1048 | ||
| 22455 | 1049 | |
| 1050 | subsection {* Further set-theory lemmas *}
 | |
| 1051 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1052 | subsubsection {* Derived rules involving subsets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1053 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1054 | text {* @{text insert}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1055 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1056 | lemma subset_insertI: "B \<subseteq> insert a B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1057 | apply (rule subsetI) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1058 | apply (erule insertI2) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1059 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1060 | |
| 14302 | 1061 | lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" | 
| 1062 | by blast | |
| 1063 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1064 | lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1065 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1066 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1067 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1068 | text {* \medskip Big Union -- least upper bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1069 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1070 | lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A" | 
| 17589 | 1071 | by (iprover intro: subsetI UnionI) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1072 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1073 | lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C" | 
| 17589 | 1074 | by (iprover intro: subsetI elim: UnionE dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1075 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1076 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1077 | text {* \medskip General union. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1078 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1079 | lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1080 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1081 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1082 | lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C" | 
| 17589 | 1083 | by (iprover intro: subsetI elim: UN_E dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1084 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1085 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1086 | text {* \medskip Big Intersection -- greatest lower bound of a set. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1087 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1088 | lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1089 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1090 | |
| 14551 | 1091 | lemma Inter_subset: | 
| 1092 |   "[| !!X. X \<in> A ==> X \<subseteq> B; A ~= {} |] ==> \<Inter>A \<subseteq> B"
 | |
| 1093 | by blast | |
| 1094 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1095 | lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A" | 
| 17589 | 1096 | by (iprover intro: InterI subsetI dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1097 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1098 | lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1099 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1100 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1101 | lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)" | 
| 17589 | 1102 | by (iprover intro: INT_I subsetI dest: subsetD) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1103 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1104 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1105 | text {* \medskip Finite Union -- the least upper bound of two sets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1106 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1107 | lemma Un_upper1: "A \<subseteq> A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1108 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1109 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1110 | lemma Un_upper2: "B \<subseteq> A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1111 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1112 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1113 | lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1114 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1115 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1116 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1117 | text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1118 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1119 | lemma Int_lower1: "A \<inter> B \<subseteq> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1120 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1121 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1122 | lemma Int_lower2: "A \<inter> B \<subseteq> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1123 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1124 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1125 | lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1126 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1127 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1128 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1129 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1130 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1131 | lemma Diff_subset: "A - B \<subseteq> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1132 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1133 | |
| 14302 | 1134 | lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)" | 
| 1135 | by blast | |
| 1136 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1137 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1138 | text {* \medskip Monotonicity. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1139 | |
| 15206 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1140 | lemma mono_Un: "mono f ==> f A \<union> f B \<subseteq> f (A \<union> B)" | 
| 16773 | 1141 | by (auto simp add: mono_def) | 
| 15206 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1142 | |
| 
09d78ec709c7
Modified locales: improved implementation of "includes".
 ballarin parents: 
15140diff
changeset | 1143 | lemma mono_Int: "mono f ==> f (A \<inter> B) \<subseteq> f A \<inter> f B" | 
| 16773 | 1144 | by (auto simp add: mono_def) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1145 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1146 | subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1147 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1148 | text {* @{text "{}"}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1149 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1150 | lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1151 |   -- {* supersedes @{text "Collect_False_empty"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1152 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1153 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1154 | lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1155 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1156 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1157 | lemma not_psubset_empty [iff]: "\<not> (A < {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1158 | by (unfold psubset_def) blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1159 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1160 | lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
 | 
| 18423 | 1161 | by blast | 
| 1162 | ||
| 1163 | lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
 | |
| 1164 | by blast | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1165 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1166 | lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1167 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1168 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1169 | lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1170 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1171 | |
| 14812 | 1172 | lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
 | 
| 1173 | by blast | |
| 1174 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1175 | lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1176 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1177 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1178 | lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1179 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1180 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1181 | lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1182 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1183 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1184 | lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1185 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1186 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1187 | lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1188 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1189 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1190 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1191 | text {* \medskip @{text insert}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1192 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1193 | lemma insert_is_Un: "insert a A = {a} Un A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1194 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1195 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1196 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1197 | lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1198 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1199 | |
| 17715 | 1200 | lemmas empty_not_insert = insert_not_empty [symmetric, standard] | 
| 1201 | declare empty_not_insert [simp] | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1202 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1203 | lemma insert_absorb: "a \<in> A ==> insert a A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1204 |   -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1205 |   -- {* with \emph{quadratic} running time *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1206 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1207 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1208 | lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1209 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1210 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1211 | lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1212 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1213 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1214 | lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1215 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1216 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1217 | lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1218 |   -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
 | 
| 14208 | 1219 |   apply (rule_tac x = "A - {a}" in exI, blast)
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1220 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1221 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1222 | lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1223 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1224 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1225 | lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1226 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1227 | |
| 14302 | 1228 | lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" | 
| 14742 | 1229 | by blast | 
| 14302 | 1230 | |
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1231 | lemma insert_disjoint[simp]: | 
| 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1232 |  "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
 | 
| 14742 | 1233 |  "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
 | 
| 16773 | 1234 | by auto | 
| 13103 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1235 | |
| 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1236 | lemma disjoint_insert[simp]: | 
| 
66659a4b16f6
Added insert_disjoint and disjoint_insert [simp], and simplified proofs
 nipkow parents: 
12937diff
changeset | 1237 |  "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
 | 
| 14742 | 1238 |  "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
 | 
| 16773 | 1239 | by auto | 
| 14742 | 1240 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1241 | text {* \medskip @{text image}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1242 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1243 | lemma image_empty [simp]: "f`{} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1244 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1245 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1246 | lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1247 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1248 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1249 | lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
 | 
| 16773 | 1250 | by auto | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1251 | |
| 21316 | 1252 | lemma image_constant_conv: "(%x. c) ` A = (if A = {} then {} else {c})"
 | 
| 21312 | 1253 | by auto | 
| 1254 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1255 | lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1256 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1257 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1258 | lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1259 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1260 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1261 | lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1262 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1263 | |
| 16773 | 1264 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1265 | lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
 | 
| 16773 | 1266 |   -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
 | 
| 1267 | with its implicit quantifier and conjunction. Also image enjoys better | |
| 1268 | equational properties than does the RHS. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1269 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1270 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1271 | lemma if_image_distrib [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1272 | "(\<lambda>x. if P x then f x else g x) ` S | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1273 |     = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1274 | by (auto simp add: image_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1275 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1276 | lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1277 | by (simp add: image_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1278 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1279 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1280 | text {* \medskip @{text range}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1281 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1282 | lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1283 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1284 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1285 | lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g" | 
| 14208 | 1286 | by (subst image_image, simp) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1287 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1288 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1289 | text {* \medskip @{text Int} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1290 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1291 | lemma Int_absorb [simp]: "A \<inter> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1292 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1293 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1294 | lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1295 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1296 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1297 | lemma Int_commute: "A \<inter> B = B \<inter> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1298 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1299 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1300 | lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1301 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1302 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1303 | lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1304 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1305 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1306 | lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1307 |   -- {* Intersection is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1308 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1309 | lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1310 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1311 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1312 | lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1313 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1314 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1315 | lemma Int_empty_left [simp]: "{} \<inter> B = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1316 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1317 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1318 | lemma Int_empty_right [simp]: "A \<inter> {} = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1319 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1320 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1321 | lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1322 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1323 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1324 | lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1325 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1326 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1327 | lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1328 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1329 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1330 | lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1331 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1332 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1333 | lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1334 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1335 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1336 | lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1337 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1338 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1339 | lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1340 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1341 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1342 | lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1343 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1344 | |
| 15102 | 1345 | lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1346 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1347 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1348 | lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1349 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1350 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1351 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1352 | text {* \medskip @{text Un}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1353 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1354 | lemma Un_absorb [simp]: "A \<union> A = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1355 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1356 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1357 | lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1358 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1359 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1360 | lemma Un_commute: "A \<union> B = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1361 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1362 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1363 | lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1364 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1365 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1366 | lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1367 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1368 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1369 | lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1370 |   -- {* Union is an AC-operator *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1371 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1372 | lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1373 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1374 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1375 | lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1376 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1377 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1378 | lemma Un_empty_left [simp]: "{} \<union> B = B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1379 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1380 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1381 | lemma Un_empty_right [simp]: "A \<union> {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1382 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1383 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1384 | lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1385 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1386 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1387 | lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1388 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1389 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1390 | lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1391 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1392 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1393 | lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1394 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1395 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1396 | lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1397 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1398 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1399 | lemma Int_insert_left: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1400 | "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1401 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1402 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1403 | lemma Int_insert_right: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1404 | "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1405 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1406 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1407 | lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1408 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1409 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1410 | lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1411 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1412 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1413 | lemma Un_Int_crazy: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1414 | "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1415 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1416 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1417 | lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1418 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1419 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1420 | lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1421 | by blast | 
| 15102 | 1422 | |
| 1423 | lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1424 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1425 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1426 | lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1427 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1428 | |
| 22172 | 1429 | lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B" | 
| 1430 | by blast | |
| 1431 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1432 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1433 | text {* \medskip Set complement *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1434 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1435 | lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1436 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1437 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1438 | lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1439 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1440 | |
| 13818 | 1441 | lemma Compl_partition: "A \<union> -A = UNIV" | 
| 1442 | by blast | |
| 1443 | ||
| 1444 | lemma Compl_partition2: "-A \<union> A = UNIV" | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1445 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1446 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1447 | lemma double_complement [simp]: "- (-A) = (A::'a set)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1448 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1449 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1450 | lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1451 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1452 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1453 | lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1454 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1455 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1456 | lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1457 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1458 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1459 | lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1460 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1461 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1462 | lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1463 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1464 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1465 | lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1466 |   -- {* Halmos, Naive Set Theory, page 16. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1467 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1468 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1469 | lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1470 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1471 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1472 | lemma Compl_empty_eq [simp]: "-{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1473 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1474 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1475 | lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1476 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1477 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1478 | lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1479 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1480 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1481 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1482 | text {* \medskip @{text Union}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1483 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1484 | lemma Union_empty [simp]: "Union({}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1485 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1486 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1487 | lemma Union_UNIV [simp]: "Union UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1488 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1489 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1490 | lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1491 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1492 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1493 | lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1494 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1495 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1496 | lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1497 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1498 | |
| 18447 | 1499 | lemma Union_empty_conv [simp]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1500 | by blast | 
| 1501 | ||
| 18447 | 1502 | lemma empty_Union_conv [simp]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
 | 
| 13653 | 1503 | by blast | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1504 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1505 | lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1506 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1507 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1508 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1509 | text {* \medskip @{text Inter}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1510 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1511 | lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1512 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1513 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1514 | lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1515 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1516 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1517 | lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1518 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1519 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1520 | lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1521 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1522 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1523 | lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1524 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1525 | |
| 18447 | 1526 | lemma Inter_UNIV_conv [simp]: | 
| 13653 | 1527 | "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)" | 
| 1528 | "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)" | |
| 14208 | 1529 | by blast+ | 
| 13653 | 1530 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1531 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1532 | text {*
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1533 |   \medskip @{text UN} and @{text INT}.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1534 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1535 | Basic identities: *} | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1536 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1537 | lemma UN_empty [simp]: "(\<Union>x\<in>{}. B x) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1538 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1539 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1540 | lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1541 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1542 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1543 | lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1544 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1545 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1546 | lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)" | 
| 15102 | 1547 | by auto | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1548 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1549 | lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1550 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1551 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1552 | lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1553 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1554 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1555 | lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1556 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1557 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1558 | lemma UN_Un: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1559 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1560 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1561 | lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1562 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1563 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1564 | lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1565 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1566 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1567 | lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1568 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1569 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1570 | lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1571 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1572 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1573 | lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1574 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1575 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1576 | lemma INT_insert_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1577 | "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1578 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1579 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1580 | lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1581 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1582 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1583 | lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1584 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1585 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1586 | lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1587 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1588 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1589 | lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1590 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1591 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1592 | lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1593 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1594 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1595 | lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1596 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1597 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1598 | lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1599 |   -- {* Look: it has an \emph{existential} quantifier *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1600 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1601 | |
| 18447 | 1602 | lemma UNION_empty_conv[simp]: | 
| 13653 | 1603 |   "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
 | 
| 1604 |   "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
 | |
| 1605 | by blast+ | |
| 1606 | ||
| 18447 | 1607 | lemma INTER_UNIV_conv[simp]: | 
| 13653 | 1608 | "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)" | 
| 1609 | "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)" | |
| 1610 | by blast+ | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1611 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1612 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1613 | text {* \medskip Distributive laws: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1614 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1615 | lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1616 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1617 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1618 | lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1619 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1620 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1621 | lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1622 |   -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1623 |   -- {* Union of a family of unions *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1624 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1625 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1626 | lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1627 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1628 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1629 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1630 | lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1631 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1632 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1633 | lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1634 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1635 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1636 | lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1637 |   -- {* Equivalent version *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1638 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1639 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1640 | lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1641 |   -- {* Halmos, Naive Set Theory, page 35. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1642 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1643 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1644 | lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1645 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1646 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1647 | lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1648 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1649 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1650 | lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1651 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1652 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1653 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1654 | text {* \medskip Bounded quantifiers.
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1655 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1656 | The following are not added to the default simpset because | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1657 |   (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1658 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1659 | lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1660 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1661 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1662 | lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1663 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1664 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1665 | lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1666 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1667 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1668 | lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1669 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1670 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1671 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1672 | text {* \medskip Set difference. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1673 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1674 | lemma Diff_eq: "A - B = A \<inter> (-B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1675 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1676 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1677 | lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1678 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1679 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1680 | lemma Diff_cancel [simp]: "A - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1681 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1682 | |
| 14302 | 1683 | lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)" | 
| 1684 | by blast | |
| 1685 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1686 | lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1687 | by (blast elim: equalityE) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1688 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1689 | lemma empty_Diff [simp]: "{} - A = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1690 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1691 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1692 | lemma Diff_empty [simp]: "A - {} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1693 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1694 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1695 | lemma Diff_UNIV [simp]: "A - UNIV = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1696 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1697 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1698 | lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1699 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1700 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1701 | lemma Diff_insert: "A - insert a B = A - B - {a}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1702 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1703 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1704 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1705 | lemma Diff_insert2: "A - insert a B = A - {a} - B"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1706 |   -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1707 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1708 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1709 | lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1710 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1711 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1712 | lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1713 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1714 | |
| 14302 | 1715 | lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
 | 
| 1716 | by blast | |
| 1717 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1718 | lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1719 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1720 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1721 | lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1722 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1723 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1724 | lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1725 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1726 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1727 | lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1728 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1729 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1730 | lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1731 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1732 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1733 | lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1734 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1735 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1736 | lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1737 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1738 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1739 | lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1740 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1741 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1742 | lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1743 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1744 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1745 | lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1746 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1747 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1748 | lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1749 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1750 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1751 | lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1752 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1753 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1754 | lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1755 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1756 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1757 | lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1758 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1759 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1760 | lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1761 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1762 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1763 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1764 | text {* \medskip Quantification over type @{typ bool}. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1765 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1766 | lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" | 
| 21549 | 1767 | by (cases x) auto | 
| 1768 | ||
| 1769 | lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False" | |
| 1770 | by (auto intro: bool_induct) | |
| 1771 | ||
| 1772 | lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True" | |
| 1773 | by (cases x) auto | |
| 1774 | ||
| 1775 | lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False" | |
| 1776 | by (auto intro: bool_contrapos) | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1777 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1778 | lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1779 | by (auto simp add: split_if_mem2) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1780 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1781 | lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)" | 
| 21549 | 1782 | by (auto intro: bool_contrapos) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1783 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1784 | lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)" | 
| 21549 | 1785 | by (auto intro: bool_induct) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1786 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1787 | text {* \medskip @{text Pow} *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1788 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1789 | lemma Pow_empty [simp]: "Pow {} = {{}}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1790 | by (auto simp add: Pow_def) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1791 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1792 | lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1793 |   by (blast intro: image_eqI [where ?x = "u - {a}", standard])
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1794 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1795 | lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1796 | by (blast intro: exI [where ?x = "- u", standard]) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1797 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1798 | lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1799 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1800 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1801 | lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1802 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1803 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1804 | lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1805 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1806 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1807 | lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1808 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1809 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1810 | lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1811 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1812 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1813 | lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1814 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1815 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1816 | lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1817 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1818 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1819 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1820 | text {* \medskip Miscellany. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1821 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1822 | lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1823 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1824 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1825 | lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1826 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1827 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1828 | lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1829 | by (unfold psubset_def) blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1830 | |
| 18447 | 1831 | lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
 | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1832 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1833 | |
| 13831 | 1834 | lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
 | 
| 1835 | by blast | |
| 1836 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1837 | lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y" | 
| 17589 | 1838 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1839 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1840 | |
| 13860 | 1841 | text {* \medskip Miniscoping: pushing in quantifiers and big Unions
 | 
| 1842 | and Intersections. *} | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1843 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1844 | lemma UN_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1845 |   "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1846 |   "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1847 |   "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1848 | "!!A B C. (UN x:C. A x Int B) = ((UN x:C. A x) Int B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1849 | "!!A B C. (UN x:C. A Int B x) = (A Int (UN x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1850 | "!!A B C. (UN x:C. A x - B) = ((UN x:C. A x) - B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1851 | "!!A B C. (UN x:C. A - B x) = (A - (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1852 | "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1853 | "!!A B C. (UN z: UNION A B. C z) = (UN x:A. UN z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1854 | "!!A B f. (UN x:f`A. B x) = (UN a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1855 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1856 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1857 | lemma INT_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1858 |   "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1859 |   "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1860 |   "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1861 |   "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1862 | "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1863 | "!!A B C. (INT x:C. A x Un B) = ((INT x:C. A x) Un B)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1864 | "!!A B C. (INT x:C. A Un B x) = (A Un (INT x:C. B x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1865 | "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1866 | "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1867 | "!!A B f. (INT x:f`A. B x) = (INT a:A. B (f a))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1868 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1869 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1870 | lemma ball_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1871 | "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1872 | "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1873 | "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1874 | "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1875 |   "!!P. (ALL x:{}. P x) = True"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1876 | "!!P. (ALL x:UNIV. P x) = (ALL x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1877 | "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1878 | "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1879 | "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1880 | "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1881 | "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1882 | "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1883 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1884 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1885 | lemma bex_simps [simp]: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1886 | "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1887 | "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1888 |   "!!P. (EX x:{}. P x) = False"
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1889 | "!!P. (EX x:UNIV. P x) = (EX x. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1890 | "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1891 | "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1892 | "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1893 | "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1894 | "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1895 | "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1896 | by auto | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1897 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1898 | lemma ball_conj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1899 | "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1900 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1901 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1902 | lemma bex_disj_distrib: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1903 | "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1904 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1905 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1906 | |
| 13860 | 1907 | text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
 | 
| 1908 | ||
| 1909 | lemma UN_extend_simps: | |
| 1910 |   "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
 | |
| 1911 |   "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
 | |
| 1912 |   "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
 | |
| 1913 | "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)" | |
| 1914 | "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)" | |
| 1915 | "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)" | |
| 1916 | "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)" | |
| 1917 | "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)" | |
| 1918 | "!!A B C. (UN x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)" | |
| 1919 | "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)" | |
| 1920 | by auto | |
| 1921 | ||
| 1922 | lemma INT_extend_simps: | |
| 1923 |   "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
 | |
| 1924 |   "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
 | |
| 1925 |   "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
 | |
| 1926 |   "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
 | |
| 1927 | "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))" | |
| 1928 | "!!A B C. ((INT x:C. A x) Un B) = (INT x:C. A x Un B)" | |
| 1929 | "!!A B C. A Un (INT x:C. B x) = (INT x:C. A Un B x)" | |
| 1930 | "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)" | |
| 1931 | "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)" | |
| 1932 | "!!A B f. (INT a:A. B (f a)) = (INT x:f`A. B x)" | |
| 1933 | by auto | |
| 1934 | ||
| 1935 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1936 | subsubsection {* Monotonicity of various operations *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1937 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1938 | lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1939 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1940 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1941 | lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1942 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1943 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1944 | lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1945 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1946 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1947 | lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1948 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1949 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1950 | lemma UN_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1951 | "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1952 | (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1953 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1954 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1955 | lemma INT_anti_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1956 | "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==> | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1957 | (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1958 |   -- {* The last inclusion is POSITIVE! *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1959 | by (blast dest: subsetD) | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1960 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1961 | lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1962 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1963 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1964 | lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1965 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1966 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1967 | lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1968 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1969 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1970 | lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1971 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1972 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1973 | lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1974 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1975 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1976 | text {* \medskip Monotonicity of implications. *}
 | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1977 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1978 | lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1979 | apply (rule impI) | 
| 14208 | 1980 | apply (erule subsetD, assumption) | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1981 | done | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1982 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1983 | lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" | 
| 17589 | 1984 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1985 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1986 | lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" | 
| 17589 | 1987 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1988 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1989 | lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" | 
| 17589 | 1990 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1991 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1992 | lemma imp_refl: "P --> P" .. | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1993 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1994 | lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" | 
| 17589 | 1995 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1996 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1997 | lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" | 
| 17589 | 1998 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 1999 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2000 | lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2001 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2002 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2003 | lemma Int_Collect_mono: | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2004 | "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2005 | by blast | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2006 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2007 | lemmas basic_monos = | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2008 | subset_refl imp_refl disj_mono conj_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2009 | ex_mono Collect_mono in_mono | 
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2010 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2011 | lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" | 
| 17589 | 2012 | by iprover | 
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2013 | |
| 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2014 | lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c" | 
| 17589 | 2015 | by iprover | 
| 11979 | 2016 | |
| 11982 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2017 | lemma Least_mono: | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2018 | "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2019 | ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2020 |     -- {* Courtesy of Stephan Merz *}
 | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2021 | apply clarify | 
| 15950 | 2022 | apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) | 
| 2023 | apply (rule LeastI2_order) | |
| 11982 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2024 | apply (auto elim: monoD intro!: order_antisym) | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2025 | done | 
| 
65e2822d83dd
lemma Least_mono moved from Typedef.thy to Set.thy;
 wenzelm parents: 
11979diff
changeset | 2026 | |
| 12020 | 2027 | |
| 12257 | 2028 | subsection {* Inverse image of a function *}
 | 
| 2029 | ||
| 2030 | constdefs | |
| 2031 |   vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
 | |
| 2032 |   "f -` B == {x. f x : B}"
 | |
| 2033 | ||
| 2034 | ||
| 2035 | subsubsection {* Basic rules *}
 | |
| 2036 | ||
| 2037 | lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" | |
| 2038 | by (unfold vimage_def) blast | |
| 2039 | ||
| 2040 | lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
 | |
| 2041 | by simp | |
| 2042 | ||
| 2043 | lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" | |
| 2044 | by (unfold vimage_def) blast | |
| 2045 | ||
| 2046 | lemma vimageI2: "f a : A ==> a : f -` A" | |
| 2047 | by (unfold vimage_def) fast | |
| 2048 | ||
| 2049 | lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" | |
| 2050 | by (unfold vimage_def) blast | |
| 2051 | ||
| 2052 | lemma vimageD: "a : f -` A ==> f a : A" | |
| 2053 | by (unfold vimage_def) fast | |
| 2054 | ||
| 2055 | ||
| 2056 | subsubsection {* Equations *}
 | |
| 2057 | ||
| 2058 | lemma vimage_empty [simp]: "f -` {} = {}"
 | |
| 2059 | by blast | |
| 2060 | ||
| 2061 | lemma vimage_Compl: "f -` (-A) = -(f -` A)" | |
| 2062 | by blast | |
| 2063 | ||
| 2064 | lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" | |
| 2065 | by blast | |
| 2066 | ||
| 2067 | lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" | |
| 2068 | by fast | |
| 2069 | ||
| 2070 | lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)" | |
| 2071 | by blast | |
| 2072 | ||
| 2073 | lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)" | |
| 2074 | by blast | |
| 2075 | ||
| 2076 | lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)" | |
| 2077 | by blast | |
| 2078 | ||
| 2079 | lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
 | |
| 2080 | by blast | |
| 2081 | ||
| 2082 | lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" | |
| 2083 | by blast | |
| 2084 | ||
| 2085 | lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
 | |
| 2086 |   -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
 | |
| 2087 | by blast | |
| 2088 | ||
| 2089 | lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" | |
| 2090 | by blast | |
| 2091 | ||
| 2092 | lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" | |
| 2093 | by blast | |
| 2094 | ||
| 2095 | lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
 | |
| 2096 |   -- {* NOT suitable for rewriting *}
 | |
| 2097 | by blast | |
| 2098 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2099 | lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" | 
| 12257 | 2100 |   -- {* monotonicity *}
 | 
| 2101 | by blast | |
| 2102 | ||
| 2103 | ||
| 14479 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2104 | subsection {* Getting the Contents of a Singleton Set *}
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2105 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2106 | constdefs | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2107 | contents :: "'a set => 'a" | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2108 |    "contents X == THE x. X = {x}"
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2109 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2110 | lemma contents_eq [simp]: "contents {x} = x"
 | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2111 | by (simp add: contents_def) | 
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2112 | |
| 
0eca4aabf371
streamlined treatment of quotients for the integers
 paulson parents: 
14398diff
changeset | 2113 | |
| 12023 | 2114 | subsection {* Transitivity rules for calculational reasoning *}
 | 
| 12020 | 2115 | |
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2116 | lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" | 
| 12020 | 2117 | by (rule subsetD) | 
| 2118 | ||
| 12897 
f4d10ad0ea7b
converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
 wenzelm parents: 
12633diff
changeset | 2119 | lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" | 
| 12020 | 2120 | by (rule subsetD) | 
| 2121 | ||
| 2122 | lemmas basic_trans_rules [trans] = | |
| 21384 | 2123 | order_trans_rules set_rev_mp set_mp | 
| 12020 | 2124 | |
| 21669 | 2125 | |
| 22455 | 2126 | subsection {* Sets as lattice *}
 | 
| 2127 | ||
| 2128 | instance set :: (type) distrib_lattice | |
| 2129 | inf_set_eq: "inf A B \<equiv> A \<inter> B" | |
| 2130 | sup_set_eq: "sup A B \<equiv> A \<union> B" | |
| 2131 | by intro_classes (auto simp add: inf_set_eq sup_set_eq) | |
| 2132 | ||
| 22845 | 2133 | lemmas [code func del] = inf_set_eq sup_set_eq | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22478diff
changeset | 2134 | |
| 22455 | 2135 | |
| 21669 | 2136 | subsection {* Basic ML bindings *}
 | 
| 2137 | ||
| 2138 | ML {*
 | |
| 22139 | 2139 | val Ball_def = @{thm Ball_def}
 | 
| 2140 | val Bex_def = @{thm Bex_def}
 | |
| 2141 | val CollectD = @{thm CollectD}
 | |
| 2142 | val CollectE = @{thm CollectE}
 | |
| 2143 | val CollectI = @{thm CollectI}
 | |
| 2144 | val Collect_conj_eq = @{thm Collect_conj_eq}
 | |
| 2145 | val Collect_mem_eq = @{thm Collect_mem_eq}
 | |
| 2146 | val IntD1 = @{thm IntD1}
 | |
| 2147 | val IntD2 = @{thm IntD2}
 | |
| 2148 | val IntE = @{thm IntE}
 | |
| 2149 | val IntI = @{thm IntI}
 | |
| 2150 | val Int_Collect = @{thm Int_Collect}
 | |
| 2151 | val UNIV_I = @{thm UNIV_I}
 | |
| 2152 | val UNIV_witness = @{thm UNIV_witness}
 | |
| 2153 | val UnE = @{thm UnE}
 | |
| 2154 | val UnI1 = @{thm UnI1}
 | |
| 2155 | val UnI2 = @{thm UnI2}
 | |
| 2156 | val ballE = @{thm ballE}
 | |
| 2157 | val ballI = @{thm ballI}
 | |
| 2158 | val bexCI = @{thm bexCI}
 | |
| 2159 | val bexE = @{thm bexE}
 | |
| 2160 | val bexI = @{thm bexI}
 | |
| 2161 | val bex_triv = @{thm bex_triv}
 | |
| 2162 | val bspec = @{thm bspec}
 | |
| 2163 | val contra_subsetD = @{thm contra_subsetD}
 | |
| 2164 | val distinct_lemma = @{thm distinct_lemma}
 | |
| 2165 | val eq_to_mono = @{thm eq_to_mono}
 | |
| 2166 | val eq_to_mono2 = @{thm eq_to_mono2}
 | |
| 2167 | val equalityCE = @{thm equalityCE}
 | |
| 2168 | val equalityD1 = @{thm equalityD1}
 | |
| 2169 | val equalityD2 = @{thm equalityD2}
 | |
| 2170 | val equalityE = @{thm equalityE}
 | |
| 2171 | val equalityI = @{thm equalityI}
 | |
| 2172 | val imageE = @{thm imageE}
 | |
| 2173 | val imageI = @{thm imageI}
 | |
| 2174 | val image_Un = @{thm image_Un}
 | |
| 2175 | val image_insert = @{thm image_insert}
 | |
| 2176 | val insert_commute = @{thm insert_commute}
 | |
| 2177 | val insert_iff = @{thm insert_iff}
 | |
| 2178 | val mem_Collect_eq = @{thm mem_Collect_eq}
 | |
| 2179 | val rangeE = @{thm rangeE}
 | |
| 2180 | val rangeI = @{thm rangeI}
 | |
| 2181 | val range_eqI = @{thm range_eqI}
 | |
| 2182 | val subsetCE = @{thm subsetCE}
 | |
| 2183 | val subsetD = @{thm subsetD}
 | |
| 2184 | val subsetI = @{thm subsetI}
 | |
| 2185 | val subset_refl = @{thm subset_refl}
 | |
| 2186 | val subset_trans = @{thm subset_trans}
 | |
| 2187 | val vimageD = @{thm vimageD}
 | |
| 2188 | val vimageE = @{thm vimageE}
 | |
| 2189 | val vimageI = @{thm vimageI}
 | |
| 2190 | val vimageI2 = @{thm vimageI2}
 | |
| 2191 | val vimage_Collect = @{thm vimage_Collect}
 | |
| 2192 | val vimage_Int = @{thm vimage_Int}
 | |
| 2193 | val vimage_Un = @{thm vimage_Un}
 | |
| 21669 | 2194 | *} | 
| 2195 | ||
| 11979 | 2196 | end |