| author | wenzelm | 
| Fri, 07 Mar 2014 19:28:34 +0100 | |
| changeset 55982 | b719781c7396 | 
| parent 55735 | 81ba62493610 | 
| child 56403 | ae4f904c98b0 | 
| permissions | -rw-r--r-- | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 1 | (* Author: Amine Chaieb, TU Muenchen *) | 
| 26123 | 2 | |
| 3 | header{*Fundamental Theorem of Algebra*}
 | |
| 4 | ||
| 5 | theory Fundamental_Theorem_Algebra | |
| 51537 | 6 | imports Polynomial Complex_Main | 
| 26123 | 7 | begin | 
| 8 | ||
| 27445 | 9 | subsection {* Square root of complex numbers *}
 | 
| 55734 | 10 | |
| 26123 | 11 | definition csqrt :: "complex \<Rightarrow> complex" where | 
| 12 | "csqrt z = (if Im z = 0 then | |
| 13 | if 0 \<le> Re z then Complex (sqrt(Re z)) 0 | |
| 14 | else Complex 0 (sqrt(- Re z)) | |
| 15 | else Complex (sqrt((cmod z + Re z) /2)) | |
| 16 | ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))" | |
| 17 | ||
| 53077 | 18 | lemma csqrt[algebra]: "(csqrt z)\<^sup>2 = z" | 
| 26123 | 19 | proof- | 
| 29292 | 20 | obtain x y where xy: "z = Complex x y" by (cases z) | 
| 26123 | 21 |   {assume y0: "y = 0"
 | 
| 30488 | 22 |     {assume x0: "x \<ge> 0"
 | 
| 26123 | 23 | then have ?thesis using y0 xy real_sqrt_pow2[OF x0] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 24 | by (simp add: csqrt_def power2_eq_square)} | 
| 26123 | 25 | moreover | 
| 26 |     {assume "\<not> x \<ge> 0" hence x0: "- x \<ge> 0" by arith
 | |
| 30488 | 27 | then have ?thesis using y0 xy real_sqrt_pow2[OF x0] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 28 | by (simp add: csqrt_def power2_eq_square) } | 
| 26123 | 29 | ultimately have ?thesis by blast} | 
| 30 | moreover | |
| 31 |   {assume y0: "y\<noteq>0"
 | |
| 32 |     {fix x y
 | |
| 33 | let ?z = "Complex x y" | |
| 34 | from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z" by auto | |
| 30488 | 35 | hence "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0" by arith+ | 
| 26123 | 36 | hence "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0" by (simp_all add: power2_eq_square) } | 
| 37 | note th = this | |
| 53077 | 38 | have sq4: "\<And>x::real. x\<^sup>2 / 4 = (x / 2)\<^sup>2" | 
| 30488 | 39 | by (simp add: power2_eq_square) | 
| 26123 | 40 | from th[of x y] | 
| 53077 | 41 | have sq4': "sqrt (((sqrt (x * x + y * y) + x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) + x) / 2" | 
| 42 | "sqrt (((sqrt (x * x + y * y) - x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) - x) / 2" | |
| 43 | unfolding sq4 by simp_all | |
| 26123 | 44 | then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) - sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x" | 
| 30488 | 45 | unfolding power2_eq_square by simp | 
| 53077 | 46 | have "sqrt 4 = sqrt (2\<^sup>2)" by simp | 
| 26123 | 47 | hence sqrt4: "sqrt 4 = 2" by (simp only: real_sqrt_abs) | 
| 48 | have th2: "2 *(y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y" | |
| 49 | using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0 | |
| 30488 | 50 | unfolding power2_eq_square | 
| 29667 | 51 | by (simp add: algebra_simps real_sqrt_divide sqrt4) | 
| 26123 | 52 | from y0 xy have ?thesis apply (simp add: csqrt_def power2_eq_square) | 
| 53 | apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y] real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square] real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square] real_sqrt_mult[symmetric]) | |
| 54 | using th1 th2 ..} | |
| 55 | ultimately show ?thesis by blast | |
| 56 | qed | |
| 57 | ||
| 55734 | 58 | lemma csqrt_Complex: "x \<ge> 0 \<Longrightarrow> csqrt (Complex x 0) = Complex (sqrt x) 0" | 
| 59 | by (simp add: csqrt_def) | |
| 60 | ||
| 61 | lemma csqrt_0 [simp]: "csqrt 0 = 0" | |
| 62 | by (simp add: csqrt_def) | |
| 63 | ||
| 64 | lemma csqrt_1 [simp]: "csqrt 1 = 1" | |
| 65 | by (simp add: csqrt_def) | |
| 66 | ||
| 67 | lemma csqrt_principal: "0 < Re(csqrt(z)) | Re(csqrt(z)) = 0 & 0 \<le> Im(csqrt(z))" | |
| 68 | proof (cases z) | |
| 69 | case (Complex x y) | |
| 70 | then show ?thesis | |
| 71 | using real_sqrt_sum_squares_ge1 [of "x" y] | |
| 72 | real_sqrt_sum_squares_ge1 [of "-x" y] | |
| 73 | real_sqrt_sum_squares_eq_cancel [of x y] | |
| 74 | apply (auto simp: csqrt_def intro!: Rings.ordered_ring_class.split_mult_pos_le) | |
| 75 | apply (metis add_commute diff_add_cancel le_add_same_cancel1 real_sqrt_sum_squares_ge1) | |
| 76 | by (metis add_commute less_eq_real_def power_minus_Bit0 real_0_less_add_iff real_sqrt_sum_squares_eq_cancel) | |
| 77 | qed | |
| 78 | ||
| 79 | lemma Re_csqrt: "0 \<le> Re(csqrt z)" | |
| 80 | by (metis csqrt_principal le_less) | |
| 81 | ||
| 82 | lemma csqrt_square: "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> csqrt (z^2) = z" | |
| 83 | using csqrt [of "z^2"] csqrt_principal [of "z^2"] | |
| 84 | by (cases z) (auto simp: power2_eq_iff) | |
| 85 | ||
| 86 | lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0" | |
| 87 | by auto (metis csqrt power_eq_0_iff) | |
| 88 | ||
| 89 | lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1" | |
| 90 | by auto (metis csqrt power2_eq_1_iff) | |
| 26123 | 91 | |
| 27445 | 92 | subsection{* More lemmas about module of complex numbers *}
 | 
| 26123 | 93 | |
| 94 | lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)" | |
| 27514 | 95 | by (rule of_real_power [symmetric]) | 
| 26123 | 96 | |
| 97 | text{* The triangle inequality for cmod *}
 | |
| 98 | lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z" | |
| 99 | using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto | |
| 100 | ||
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 101 | subsection{* Basic lemmas about polynomials *}
 | 
| 26123 | 102 | |
| 103 | lemma poly_bound_exists: | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 104 |   fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" 
 | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 105 | shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z <= r \<longrightarrow> norm (poly p z) \<le> m)" | 
| 26123 | 106 | proof(induct p) | 
| 30488 | 107 | case 0 thus ?case by (rule exI[where x=1], simp) | 
| 26123 | 108 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 109 | case (pCons c cs) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 110 | from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m" | 
| 26123 | 111 | by blast | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 112 | let ?k = " 1 + norm c + \<bar>r * m\<bar>" | 
| 27514 | 113 | have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 114 |   {fix z :: 'a 
 | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 115 | assume H: "norm z \<le> r" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 116 | from m H have th: "norm (poly cs z) \<le> m" by blast | 
| 27514 | 117 | from H have rp: "r \<ge> 0" using norm_ge_zero[of z] by arith | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 118 | have "norm (poly (pCons c cs) z) \<le> norm c + norm (z* poly cs z)" | 
| 27514 | 119 | using norm_triangle_ineq[of c "z* poly cs z"] by simp | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 120 | also have "\<dots> \<le> norm c + r*m" using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 121 | by (simp add: norm_mult) | 
| 26123 | 122 | also have "\<dots> \<le> ?k" by simp | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 123 | finally have "norm (poly (pCons c cs) z) \<le> ?k" .} | 
| 26123 | 124 | with kp show ?case by blast | 
| 125 | qed | |
| 126 | ||
| 127 | ||
| 128 | text{* Offsetting the variable in a polynomial gives another of same degree *}
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 129 | |
| 52380 | 130 | definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly" | 
| 131 | where | |
| 132 | "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 133 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 134 | lemma offset_poly_0: "offset_poly 0 h = 0" | 
| 52380 | 135 | by (simp add: offset_poly_def) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 136 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 137 | lemma offset_poly_pCons: | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 138 | "offset_poly (pCons a p) h = | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 139 | smult h (offset_poly p h) + pCons a (offset_poly p h)" | 
| 52380 | 140 | by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 141 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 142 | lemma offset_poly_single: "offset_poly [:a:] h = [:a:]" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 143 | by (simp add: offset_poly_pCons offset_poly_0) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 144 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 145 | lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 146 | apply (induct p) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 147 | apply (simp add: offset_poly_0) | 
| 29667 | 148 | apply (simp add: offset_poly_pCons algebra_simps) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 149 | done | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 150 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 151 | lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 152 | by (induct p arbitrary: a, simp, force) | 
| 26123 | 153 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 154 | lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 155 | apply (safe intro!: offset_poly_0) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 156 | apply (induct p, simp) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 157 | apply (simp add: offset_poly_pCons) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 158 | apply (frule offset_poly_eq_0_lemma, simp) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 159 | done | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 160 | |
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 161 | lemma degree_offset_poly: "degree (offset_poly p h) = degree p" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 162 | apply (induct p) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 163 | apply (simp add: offset_poly_0) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 164 | apply (case_tac "p = 0") | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 165 | apply (simp add: offset_poly_0 offset_poly_pCons) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 166 | apply (simp add: offset_poly_pCons) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 167 | apply (subst degree_add_eq_right) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 168 | apply (rule le_less_trans [OF degree_smult_le]) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 169 | apply (simp add: offset_poly_eq_0_iff) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 170 | apply (simp add: offset_poly_eq_0_iff) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 171 | done | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 172 | |
| 29478 | 173 | definition | 
| 29538 | 174 | "psize p = (if p = 0 then 0 else Suc (degree p))" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 175 | |
| 29538 | 176 | lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0" | 
| 177 | unfolding psize_def by simp | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 178 | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 179 | lemma poly_offset: | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 180 |   fixes p:: "('a::comm_ring_1) poly" 
 | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 181 | shows "\<exists> q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 182 | proof (intro exI conjI) | 
| 29538 | 183 | show "psize (offset_poly p a) = psize p" | 
| 184 | unfolding psize_def | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 185 | by (simp add: offset_poly_eq_0_iff degree_offset_poly) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 186 | show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 187 | by (simp add: poly_offset_poly) | 
| 26123 | 188 | qed | 
| 189 | ||
| 190 | text{* An alternative useful formulation of completeness of the reals *}
 | |
| 191 | lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z" | |
| 192 | shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s" | |
| 54263 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 193 | proof | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 194 | from bz have "bdd_above (Collect P)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 195 | by (force intro: less_imp_le) | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 196 | then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)" | 
| 
c4159fe6fa46
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
 hoelzl parents: 
54230diff
changeset | 197 | using ex bz by (subst less_cSup_iff) auto | 
| 26123 | 198 | qed | 
| 199 | ||
| 27445 | 200 | subsection {* Fundamental theorem of algebra *}
 | 
| 26123 | 201 | lemma unimodular_reduce_norm: | 
| 202 | assumes md: "cmod z = 1" | |
| 203 | shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1" | |
| 204 | proof- | |
| 205 | obtain x y where z: "z = Complex x y " by (cases z, auto) | |
| 53077 | 206 | from md z have xy: "x\<^sup>2 + y\<^sup>2 = 1" by (simp add: cmod_def) | 
| 26123 | 207 |   {assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
 | 
| 208 | from C z xy have "2*x \<le> 1" "2*x \<ge> -1" "2*y \<le> 1" "2*y \<ge> -1" | |
| 29667 | 209 | by (simp_all add: cmod_def power2_eq_square algebra_simps) | 
| 26123 | 210 | hence "abs (2*x) \<le> 1" "abs (2*y) \<le> 1" by simp_all | 
| 53077 | 211 | hence "(abs (2 * x))\<^sup>2 <= 1\<^sup>2" "(abs (2 * y))\<^sup>2 <= 1\<^sup>2" | 
| 26123 | 212 | by - (rule power_mono, simp, simp)+ | 
| 53077 | 213 | hence th0: "4*x\<^sup>2 \<le> 1" "4*y\<^sup>2 \<le> 1" | 
| 51541 | 214 | by (simp_all add: power_mult_distrib) | 
| 26123 | 215 | from add_mono[OF th0] xy have False by simp } | 
| 216 | thus ?thesis unfolding linorder_not_le[symmetric] by blast | |
| 217 | qed | |
| 218 | ||
| 26135 | 219 | text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
 | 
| 26123 | 220 | lemma reduce_poly_simple: | 
| 221 | assumes b: "b \<noteq> 0" and n: "n\<noteq>0" | |
| 222 | shows "\<exists>z. cmod (1 + b * z^n) < 1" | |
| 223 | using n | |
| 224 | proof(induct n rule: nat_less_induct) | |
| 225 | fix n | |
| 226 | assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" and n: "n \<noteq> 0" | |
| 227 | let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1" | |
| 228 |   {assume e: "even n"
 | |
| 229 | hence "\<exists>m. n = 2*m" by presburger | |
| 230 | then obtain m where m: "n = 2*m" by blast | |
| 231 | from n m have "m\<noteq>0" "m < n" by presburger+ | |
| 232 | with IH[rule_format, of m] obtain z where z: "?P z m" by blast | |
| 233 | from z have "?P (csqrt z) n" by (simp add: m power_mult csqrt) | |
| 234 | hence "\<exists>z. ?P z n" ..} | |
| 235 | moreover | |
| 236 |   {assume o: "odd n"
 | |
| 237 | have th0: "cmod (complex_of_real (cmod b) / b) = 1" | |
| 36975 | 238 | using b by (simp add: norm_divide) | 
| 26123 | 239 | from o have "\<exists>m. n = Suc (2*m)" by presburger+ | 
| 240 | then obtain m where m: "n = Suc (2*m)" by blast | |
| 241 | from unimodular_reduce_norm[OF th0] o | |
| 242 | have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1" | |
| 243 | apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp) | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 244 | apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp) | 
| 26123 | 245 | apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1") | 
| 246 | apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult) | |
| 247 | apply (rule_tac x="- ii" in exI, simp add: m power_mult) | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 248 | apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult) | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 249 | apply (auto simp add: m power_mult) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 250 | apply (rule_tac x="ii" in exI) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 251 | apply (auto simp add: m power_mult) | 
| 26123 | 252 | done | 
| 253 | then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast | |
| 254 | let ?w = "v / complex_of_real (root n (cmod b))" | |
| 255 | from odd_real_root_pow[OF o, of "cmod b"] | |
| 30488 | 256 | have th1: "?w ^ n = v^n / complex_of_real (cmod b)" | 
| 26123 | 257 | by (simp add: power_divide complex_of_real_power) | 
| 27514 | 258 | have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: norm_divide) | 
| 26123 | 259 | hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp | 
| 260 | have th4: "cmod (complex_of_real (cmod b) / b) * | |
| 261 | cmod (1 + b * (v ^ n / complex_of_real (cmod b))) | |
| 262 | < cmod (complex_of_real (cmod b) / b) * 1" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
46240diff
changeset | 263 | apply (simp only: norm_mult[symmetric] distrib_left) | 
| 26123 | 264 | using b v by (simp add: th2) | 
| 265 | ||
| 266 | from mult_less_imp_less_left[OF th4 th3] | |
| 30488 | 267 | have "?P ?w n" unfolding th1 . | 
| 26123 | 268 | hence "\<exists>z. ?P z n" .. } | 
| 269 | ultimately show "\<exists>z. ?P z n" by blast | |
| 270 | qed | |
| 271 | ||
| 272 | text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
 | |
| 273 | ||
| 274 | lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>" | |
| 275 | using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ] | |
| 276 | unfolding cmod_def by simp | |
| 277 | ||
| 278 | lemma bolzano_weierstrass_complex_disc: | |
| 279 | assumes r: "\<forall>n. cmod (s n) \<le> r" | |
| 280 | shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)" | |
| 281 | proof- | |
| 30488 | 282 | from seq_monosub[of "Re o s"] | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 283 | obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))" | 
| 26123 | 284 | unfolding o_def by blast | 
| 30488 | 285 | from seq_monosub[of "Im o s o f"] | 
| 286 | obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast | |
| 26123 | 287 | let ?h = "f o g" | 
| 30488 | 288 | from r[rule_format, of 0] have rp: "r \<ge> 0" using norm_ge_zero[of "s 0"] by arith | 
| 289 | have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>" | |
| 26123 | 290 | proof | 
| 291 | fix n | |
| 292 | from abs_Re_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith | |
| 293 | qed | |
| 294 | have conv1: "convergent (\<lambda>n. Re (s ( f n)))" | |
| 295 | apply (rule Bseq_monoseq_convergent) | |
| 296 | apply (simp add: Bseq_def) | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 297 | apply (metis gt_ex le_less_linear less_trans order.trans th) | 
| 26123 | 298 | using f(2) . | 
| 30488 | 299 | have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>" | 
| 26123 | 300 | proof | 
| 301 | fix n | |
| 302 | from abs_Im_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith | |
| 303 | qed | |
| 304 | ||
| 305 | have conv2: "convergent (\<lambda>n. Im (s (f (g n))))" | |
| 306 | apply (rule Bseq_monoseq_convergent) | |
| 307 | apply (simp add: Bseq_def) | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 308 | apply (metis gt_ex le_less_linear less_trans order.trans th) | 
| 26123 | 309 | using g(2) . | 
| 310 | ||
| 30488 | 311 | from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x" | 
| 312 | by blast | |
| 313 | hence x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r" | |
| 31337 | 314 | unfolding LIMSEQ_iff real_norm_def . | 
| 26123 | 315 | |
| 30488 | 316 | from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y" | 
| 317 | by blast | |
| 318 | hence y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r" | |
| 31337 | 319 | unfolding LIMSEQ_iff real_norm_def . | 
| 26123 | 320 | let ?w = "Complex x y" | 
| 30488 | 321 | from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto | 
| 26123 | 322 |   {fix e assume ep: "e > (0::real)"
 | 
| 323 | hence e2: "e/2 > 0" by simp | |
| 324 | from x[rule_format, OF e2] y[rule_format, OF e2] | |
| 325 | obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast | |
| 326 |     {fix n assume nN12: "n \<ge> N1 + N2"
 | |
| 327 | hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+ | |
| 328 | from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]] | |
| 30488 | 329 | have "cmod (s (?h n) - ?w) < e" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 330 | using metric_bound_lemma[of "s (f (g n))" ?w] by simp } | 
| 26123 | 331 | hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast } | 
| 30488 | 332 | with hs show ?thesis by blast | 
| 26123 | 333 | qed | 
| 334 | ||
| 335 | text{* Polynomial is continuous. *}
 | |
| 336 | ||
| 337 | lemma poly_cont: | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 338 |   fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" 
 | 
| 30488 | 339 | assumes ep: "e > 0" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 340 | shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e" | 
| 26123 | 341 | proof- | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 342 | obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 343 | proof | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 344 | show "degree (offset_poly p z) = degree p" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 345 | by (rule degree_offset_poly) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 346 | show "\<And>x. poly (offset_poly p z) x = poly p (z + x)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 347 | by (rule poly_offset_poly) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 348 | qed | 
| 26123 | 349 |   {fix w
 | 
| 350 | note q(2)[of "w - z", simplified]} | |
| 351 | note th = this | |
| 352 | show ?thesis unfolding th[symmetric] | |
| 353 | proof(induct q) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 354 | case 0 thus ?case using ep by auto | 
| 26123 | 355 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 356 | case (pCons c cs) | 
| 30488 | 357 | from poly_bound_exists[of 1 "cs"] | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 358 | obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" by blast | 
| 26123 | 359 | from ep m(1) have em0: "e/m > 0" by (simp add: field_simps) | 
| 360 | have one0: "1 > (0::real)" by arith | |
| 30488 | 361 | from real_lbound_gt_zero[OF one0 em0] | 
| 26123 | 362 | obtain d where d: "d >0" "d < 1" "d < e / m" by blast | 
| 30488 | 363 | from d(1,3) m(1) have dm: "d*m > 0" "d*m < e" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
34915diff
changeset | 364 | by (simp_all add: field_simps mult_pos_pos) | 
| 30488 | 365 | show ?case | 
| 27514 | 366 | proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 367 | fix d w | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 368 | assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "norm (w-z) < d" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 369 | hence d1: "norm (w-z) \<le> 1" "d \<ge> 0" by simp_all | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 370 | from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 371 | from H have th: "norm (w-z) \<le> d" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 372 | from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 373 | show "norm (w - z) * norm (poly cs (w - z)) < e" by simp | 
| 30488 | 374 | qed | 
| 26123 | 375 | qed | 
| 376 | qed | |
| 377 | ||
| 30488 | 378 | text{* Hence a polynomial attains minimum on a closed disc
 | 
| 26123 | 379 | in the complex plane. *} | 
| 380 | lemma poly_minimum_modulus_disc: | |
| 381 | "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)" | |
| 382 | proof- | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 383 |   {assume "\<not> r \<ge> 0" hence ?thesis
 | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 384 | by (metis norm_ge_zero order.trans)} | 
| 26123 | 385 | moreover | 
| 386 |   {assume rp: "r \<ge> 0"
 | |
| 30488 | 387 | from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp | 
| 26123 | 388 | hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" by blast | 
| 389 |     {fix x z
 | |
| 390 | assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1" | |
| 391 | hence "- x < 0 " by arith | |
| 27514 | 392 | with H(2) norm_ge_zero[of "poly p z"] have False by simp } | 
| 26123 | 393 | then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast | 
| 30488 | 394 | from real_sup_exists[OF mth1 mth2] obtain s where | 
| 26123 | 395 | s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast | 
| 396 | let ?m = "-s" | |
| 397 |     {fix y
 | |
| 30488 | 398 | from s[rule_format, of "-y"] have | 
| 399 | "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 400 | unfolding minus_less_iff[of y ] equation_minus_iff by blast } | 
| 26123 | 401 | note s1 = this[unfolded minus_minus] | 
| 30488 | 402 | from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m" | 
| 26123 | 403 | by auto | 
| 404 |     {fix n::nat
 | |
| 30488 | 405 | from s1[rule_format, of "?m + 1/real (Suc n)"] | 
| 26123 | 406 | have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 407 | by simp} | 
| 26123 | 408 | hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" .. | 
| 30488 | 409 | from choice[OF th] obtain g where | 
| 410 | g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)" | |
| 26123 | 411 | by blast | 
| 30488 | 412 | from bolzano_weierstrass_complex_disc[OF g(1)] | 
| 26123 | 413 | obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e" | 
| 30488 | 414 | by blast | 
| 415 |     {fix w
 | |
| 26123 | 416 | assume wr: "cmod w \<le> r" | 
| 417 | let ?e = "\<bar>cmod (poly p z) - ?m\<bar>" | |
| 418 |       {assume e: "?e > 0"
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 419 | hence e2: "?e/2 > 0" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 420 | from poly_cont[OF e2, of z p] obtain d where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 421 | d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 422 |         {fix w assume w: "cmod (w - z) < d"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 423 | have "cmod(poly p w - poly p z) < ?e / 2" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 424 | using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 425 | note th1 = this | 
| 30488 | 426 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 427 | from fz(2)[rule_format, OF d(1)] obtain N1 where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 428 | N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 429 | from reals_Archimedean2[of "2/?e"] obtain N2::nat where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 430 | N2: "2/?e < real N2" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 431 | have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 432 | using N1[rule_format, of "N1 + N2"] th1 by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 433 |         {fix a b e2 m :: real
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 434 | have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a | 
| 26123 | 435 | ==> False" by arith} | 
| 436 | note th0 = this | |
| 30488 | 437 | have ath: | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 438 | "\<And>m x e. m <= x \<Longrightarrow> x < m + e ==> abs(x - m::real) < e" by arith | 
| 26123 | 439 | from s1m[OF g(1)[rule_format]] | 
| 440 | have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" . | |
| 441 | from seq_suble[OF fz(1), of "N1+N2"] | |
| 442 | have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp | |
| 30488 | 443 | have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 444 | using N2 by auto | 
| 26123 | 445 | from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp | 
| 446 | from g(2)[rule_format, of "f (N1 + N2)"] | |
| 447 | have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" . | |
| 448 | from order_less_le_trans[OF th01 th00] | |
| 449 | have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" . | |
| 450 | from N2 have "2/?e < real (Suc (N1 + N2))" by arith | |
| 451 | with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"] | |
| 452 | have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide) | |
| 453 | with ath[OF th31 th32] | |
| 30488 | 454 | have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith | 
| 455 | have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 456 | by arith | 
| 26123 | 457 | have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> | 
| 30488 | 458 | \<le> cmod (poly p (g (f (N1 + N2))) - poly p z)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 459 | by (simp add: norm_triangle_ineq3) | 
| 26123 | 460 | from ath2[OF th22, of ?m] | 
| 461 | have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp | |
| 462 | from th0[OF th2 thc1 thc2] have False .} | |
| 463 | hence "?e = 0" by auto | |
| 30488 | 464 | then have "cmod (poly p z) = ?m" by simp | 
| 26123 | 465 | with s1m[OF wr] | 
| 466 | have "cmod (poly p z) \<le> cmod (poly p w)" by simp } | |
| 467 | hence ?thesis by blast} | |
| 468 | ultimately show ?thesis by blast | |
| 469 | qed | |
| 470 | ||
| 53077 | 471 | lemma "(rcis (sqrt (abs r)) (a/2))\<^sup>2 = rcis (abs r) a" | 
| 26123 | 472 | unfolding power2_eq_square | 
| 473 | apply (simp add: rcis_mult) | |
| 474 | apply (simp add: power2_eq_square[symmetric]) | |
| 475 | done | |
| 476 | ||
| 30488 | 477 | lemma cispi: "cis pi = -1" | 
| 26123 | 478 | unfolding cis_def | 
| 479 | by simp | |
| 480 | ||
| 53077 | 481 | lemma "(rcis (sqrt (abs r)) ((pi + a)/2))\<^sup>2 = rcis (- abs r) a" | 
| 26123 | 482 | unfolding power2_eq_square | 
| 483 | apply (simp add: rcis_mult add_divide_distrib) | |
| 484 | apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric]) | |
| 485 | done | |
| 486 | ||
| 487 | text {* Nonzero polynomial in z goes to infinity as z does. *}
 | |
| 488 | ||
| 489 | lemma poly_infinity: | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 490 |   fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" 
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 491 | assumes ex: "p \<noteq> 0" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 492 | shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)" | 
| 26123 | 493 | using ex | 
| 494 | proof(induct p arbitrary: a d) | |
| 30488 | 495 | case (pCons c cs a d) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 496 |   {assume H: "cs \<noteq> 0"
 | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 497 | with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)" by blast | 
| 26123 | 498 | let ?r = "1 + \<bar>r\<bar>" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 499 |     {fix z::'a assume h: "1 + \<bar>r\<bar> \<le> norm z"
 | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 500 | have r0: "r \<le> norm z" using h by arith | 
| 26123 | 501 | from r[rule_format, OF r0] | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 502 | have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)" by arith | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 503 | from h have z1: "norm z \<ge> 1" by arith | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 504 | from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]] | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 505 | have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 506 | unfolding norm_mult by (simp add: algebra_simps) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 507 | from norm_diff_ineq[of "z * poly (pCons c cs) z" a] | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 508 | have th2: "norm(z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)" | 
| 51541 | 509 | by (simp add: algebra_simps) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 510 | from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)" by arith} | 
| 26123 | 511 | hence ?case by blast} | 
| 512 | moreover | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 513 |   {assume cs0: "\<not> (cs \<noteq> 0)"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 514 | with pCons.prems have c0: "c \<noteq> 0" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 515 | from cs0 have cs0': "cs = 0" by simp | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 516 |     {fix z::'a
 | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 517 | assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 518 | from c0 have "norm c > 0" by simp | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 519 | from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z*c)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 520 | by (simp add: field_simps norm_mult) | 
| 26123 | 521 | have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 522 | from norm_diff_ineq[of "z*c" a ] | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 523 | have th1: "norm (z * c) \<le> norm (a + z * c) + norm a" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 524 | by (simp add: algebra_simps) | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 525 | from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 526 | using cs0' by simp} | 
| 26123 | 527 | then have ?case by blast} | 
| 528 | ultimately show ?case by blast | |
| 529 | qed simp | |
| 530 | ||
| 531 | text {* Hence polynomial's modulus attains its minimum somewhere. *}
 | |
| 532 | lemma poly_minimum_modulus: | |
| 533 | "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)" | |
| 534 | proof(induct p) | |
| 30488 | 535 | case (pCons c cs) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 536 |   {assume cs0: "cs \<noteq> 0"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 537 | from poly_infinity[OF cs0, of "cmod (poly (pCons c cs) 0)" c] | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 538 | obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" by blast | 
| 26123 | 539 | have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith | 
| 30488 | 540 | from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"] | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 541 | obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" by blast | 
| 26123 | 542 |     {fix z assume z: "r \<le> cmod z"
 | 
| 30488 | 543 | from v[of 0] r[OF z] | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 544 | have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 545 | by simp } | 
| 26123 | 546 | note v0 = this | 
| 547 | from v0 v ath[of r] have ?case by blast} | |
| 548 | moreover | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 549 |   {assume cs0: "\<not> (cs \<noteq> 0)"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 550 | hence th:"cs = 0" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 551 | from th pCons.hyps have ?case by simp} | 
| 26123 | 552 | ultimately show ?case by blast | 
| 553 | qed simp | |
| 554 | ||
| 555 | text{* Constant function (non-syntactic characterization). *}
 | |
| 556 | definition "constant f = (\<forall>x y. f x = f y)" | |
| 557 | ||
| 29538 | 558 | lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> psize p \<ge> 2" | 
| 559 | unfolding constant_def psize_def | |
| 26123 | 560 | apply (induct p, auto) | 
| 561 | done | |
| 30488 | 562 | |
| 26123 | 563 | lemma poly_replicate_append: | 
| 31021 | 564 |   "poly (monom 1 n * p) (x::'a::{comm_ring_1}) = x^n * poly p x"
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 565 | by (simp add: poly_monom) | 
| 26123 | 566 | |
| 30488 | 567 | text {* Decomposition of polynomial, skipping zero coefficients
 | 
| 26123 | 568 | after the first. *} | 
| 569 | ||
| 570 | lemma poly_decompose_lemma: | |
| 31021 | 571 |  assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{idom}))"
 | 
| 30488 | 572 | shows "\<exists>k a q. a\<noteq>0 \<and> Suc (psize q + k) = psize p \<and> | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 573 | (\<forall>z. poly p z = z^k * poly (pCons a q) z)" | 
| 29538 | 574 | unfolding psize_def | 
| 26123 | 575 | using nz | 
| 576 | proof(induct p) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 577 | case 0 thus ?case by simp | 
| 26123 | 578 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 579 | case (pCons c cs) | 
| 26123 | 580 |   {assume c0: "c = 0"
 | 
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
31337diff
changeset | 581 | from pCons.hyps pCons.prems c0 have ?case | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
31337diff
changeset | 582 | apply (auto) | 
| 26123 | 583 | apply (rule_tac x="k+1" in exI) | 
| 584 | apply (rule_tac x="a" in exI, clarsimp) | |
| 585 | apply (rule_tac x="q" in exI) | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
31337diff
changeset | 586 | by (auto)} | 
| 26123 | 587 | moreover | 
| 588 |   {assume c0: "c\<noteq>0"
 | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 589 | have ?case | 
| 26123 | 590 | apply (rule exI[where x=0]) | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 591 | apply (rule exI[where x=c], auto simp add: c0) | 
| 26123 | 592 | done} | 
| 593 | ultimately show ?case by blast | |
| 594 | qed | |
| 595 | ||
| 596 | lemma poly_decompose: | |
| 597 | assumes nc: "~constant(poly p)" | |
| 31021 | 598 |   shows "\<exists>k a q. a\<noteq>(0::'a::{idom}) \<and> k\<noteq>0 \<and>
 | 
| 30488 | 599 | psize q + k + 1 = psize p \<and> | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 600 | (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)" | 
| 30488 | 601 | using nc | 
| 26123 | 602 | proof(induct p) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 603 | case 0 thus ?case by (simp add: constant_def) | 
| 26123 | 604 | next | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 605 | case (pCons c cs) | 
| 26123 | 606 |   {assume C:"\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
 | 
| 607 |     {fix x y
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 608 | from C have "poly (pCons c cs) x = poly (pCons c cs) y" by (cases "x=0", auto)} | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 609 | with pCons.prems have False by (auto simp add: constant_def)} | 
| 26123 | 610 | hence th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" .. | 
| 30488 | 611 | from poly_decompose_lemma[OF th] | 
| 612 | show ?case | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 613 | apply clarsimp | 
| 26123 | 614 | apply (rule_tac x="k+1" in exI) | 
| 615 | apply (rule_tac x="a" in exI) | |
| 616 | apply simp | |
| 617 | apply (rule_tac x="q" in exI) | |
| 29538 | 618 | apply (auto simp add: psize_def split: if_splits) | 
| 26123 | 619 | done | 
| 620 | qed | |
| 621 | ||
| 34915 | 622 | text{* Fundamental theorem of algebra *}
 | 
| 26123 | 623 | |
| 624 | lemma fundamental_theorem_of_algebra: | |
| 625 | assumes nc: "~constant(poly p)" | |
| 626 | shows "\<exists>z::complex. poly p z = 0" | |
| 627 | using nc | |
| 34915 | 628 | proof(induct "psize p" arbitrary: p rule: less_induct) | 
| 629 | case less | |
| 26123 | 630 | let ?p = "poly p" | 
| 631 | let ?ths = "\<exists>z. ?p z = 0" | |
| 632 | ||
| 34915 | 633 | from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" . | 
| 30488 | 634 | from poly_minimum_modulus obtain c where | 
| 26123 | 635 | c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" by blast | 
| 636 |   {assume pc: "?p c = 0" hence ?ths by blast}
 | |
| 637 | moreover | |
| 638 |   {assume pc0: "?p c \<noteq> 0"
 | |
| 639 | from poly_offset[of p c] obtain q where | |
| 29538 | 640 | q: "psize q = psize p" "\<forall>x. poly q x = ?p (c+x)" by blast | 
| 26123 | 641 |     {assume h: "constant (poly q)"
 | 
| 642 | from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto | |
| 643 |       {fix x y
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 644 | from th have "?p x = poly q (x - c)" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 645 | also have "\<dots> = poly q (y - c)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 646 | using h unfolding constant_def by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 647 | also have "\<dots> = ?p y" using th by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 648 | finally have "?p x = ?p y" .} | 
| 34915 | 649 | with less(2) have False unfolding constant_def by blast } | 
| 26123 | 650 | hence qnc: "\<not> constant (poly q)" by blast | 
| 651 | from q(2) have pqc0: "?p c = poly q 0" by simp | |
| 30488 | 652 | from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp | 
| 26123 | 653 | let ?a0 = "poly q 0" | 
| 30488 | 654 | from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp | 
| 655 | from a00 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 656 | have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 657 | by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 658 | let ?r = "smult (inverse ?a0) q" | 
| 29538 | 659 | have lgqr: "psize q = psize ?r" | 
| 660 | using a00 unfolding psize_def degree_def | |
| 52380 | 661 | by (simp add: poly_eq_iff) | 
| 26123 | 662 |     {assume h: "\<And>x y. poly ?r x = poly ?r y"
 | 
| 663 |       {fix x y
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 664 | from qr[rule_format, of x] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 665 | have "poly q x = poly ?r x * ?a0" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 666 | also have "\<dots> = poly ?r y * ?a0" using h by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 667 | also have "\<dots> = poly q y" using qr[rule_format, of y] by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 668 | finally have "poly q x = poly q y" .} | 
| 26123 | 669 | with qnc have False unfolding constant_def by blast} | 
| 670 | hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast | |
| 671 | from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" by auto | |
| 30488 | 672 |     {fix w
 | 
| 26123 | 673 | have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 674 | using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac) | 
| 26123 | 675 | also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 676 | using a00 unfolding norm_divide by (simp add: field_simps) | 
| 26123 | 677 | finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .} | 
| 678 | note mrmq_eq = this | |
| 30488 | 679 | from poly_decompose[OF rnc] obtain k a s where | 
| 680 | kas: "a\<noteq>0" "k\<noteq>0" "psize s + k + 1 = psize ?r" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 681 | "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast | 
| 34915 | 682 |     {assume "psize p = k + 1"
 | 
| 683 | with kas(3) lgqr[symmetric] q(1) have s0:"s=0" by auto | |
| 26123 | 684 |       {fix w
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 685 | have "cmod (poly ?r w) = cmod (1 + a * w ^ k)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 686 | using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)} | 
| 26123 | 687 | note hth = this [symmetric] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 688 | from reduce_poly_simple[OF kas(1,2)] | 
| 26123 | 689 | have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast} | 
| 690 | moreover | |
| 34915 | 691 |     {assume kn: "psize p \<noteq> k+1"
 | 
| 692 | from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" by simp | |
| 30488 | 693 | have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 694 | unfolding constant_def poly_pCons poly_monom | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 695 | using kas(1) apply simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 696 | by (rule exI[where x=0], rule exI[where x=1], simp) | 
| 29538 | 697 | from kas(1) kas(2) have th02: "k+1 = psize (pCons 1 (monom a (k - 1)))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 698 | by (simp add: psize_def degree_monom_eq) | 
| 34915 | 699 | from less(1) [OF k1n [simplified th02] th01] | 
| 26123 | 700 | obtain w where w: "1 + w^k * a = 0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 701 | unfolding poly_pCons poly_monom | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 702 | using kas(2) by (cases k, auto simp add: algebra_simps) | 
| 30488 | 703 | from poly_bound_exists[of "cmod w" s] obtain m where | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 704 | m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast | 
| 26123 | 705 | have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left) | 
| 706 | from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp | |
| 707 | then have wm1: "w^k * a = - 1" by simp | |
| 30488 | 708 | have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 709 | using norm_ge_zero[of w] w0 m(1) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 710 | by (simp add: inverse_eq_divide zero_less_mult_iff) | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 711 | with real_lbound_gt_zero[OF zero_less_one] obtain t where | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 712 | t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast | 
| 26123 | 713 | let ?ct = "complex_of_real t" | 
| 714 | let ?w = "?ct * w" | |
| 29667 | 715 | have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: algebra_simps power_mult_distrib) | 
| 26123 | 716 | also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 717 | unfolding wm1 by (simp) | 
| 30488 | 718 | finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 719 | by metis | 
| 30488 | 720 | with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"] | 
| 721 | have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding norm_of_real by simp | |
| 26123 | 722 | have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith | 
| 723 | have "t *cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto | |
| 30488 | 724 | then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: norm_mult) | 
| 26123 | 725 | from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 726 | by (simp add: inverse_eq_divide field_simps) | 
| 30488 | 727 | with zero_less_power[OF t(1), of k] | 
| 728 | have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 729 | by (metis comm_mult_strict_left_mono) | 
| 26123 | 730 | have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))" using w0 t(1) | 
| 51541 | 731 | by (simp add: algebra_simps power_mult_distrib norm_power norm_mult) | 
| 26123 | 732 | then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 733 | using t(1,2) m(2)[rule_format, OF tw] w0 | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 734 | by auto | 
| 30488 | 735 | with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp | 
| 736 | from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 737 | by auto | 
| 27514 | 738 | from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121] | 
| 30488 | 739 | have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" . | 
| 26123 | 740 | from th11 th12 | 
| 30488 | 741 | have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" by arith | 
| 742 | then have "cmod (poly ?r ?w) < 1" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 743 | unfolding kas(4)[rule_format, of ?w] r01 by simp | 
| 26123 | 744 | then have "\<exists>w. cmod (poly ?r w) < 1" by blast} | 
| 745 | ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast | |
| 746 | from cr0_contr cq0 q(2) | |
| 747 | have ?ths unfolding mrmq_eq not_less[symmetric] by auto} | |
| 748 | ultimately show ?ths by blast | |
| 749 | qed | |
| 750 | ||
| 751 | text {* Alternative version with a syntactic notion of constant polynomial. *}
 | |
| 752 | ||
| 753 | lemma fundamental_theorem_of_algebra_alt: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 754 | assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> l = 0 \<and> p = pCons a l)" | 
| 26123 | 755 | shows "\<exists>z. poly p z = (0::complex)" | 
| 756 | using nc | |
| 757 | proof(induct p) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 758 | case (pCons c cs) | 
| 26123 | 759 |   {assume "c=0" hence ?case by auto}
 | 
| 760 | moreover | |
| 761 |   {assume c0: "c\<noteq>0"
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 762 |     {assume nc: "constant (poly (pCons c cs))"
 | 
| 30488 | 763 | from nc[unfolded constant_def, rule_format, of 0] | 
| 764 | have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 765 | hence "cs = 0" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 766 | proof(induct cs) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 767 | case (pCons d ds) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 768 |           {assume "d=0" hence ?case using pCons.prems pCons.hyps by simp}
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 769 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 770 |           {assume d0: "d\<noteq>0"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 771 | from poly_bound_exists[of 1 ds] obtain m where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 772 | m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 773 | have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps) | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 774 | from real_lbound_gt_zero[OF dm zero_less_one] obtain x where | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 775 | x: "x > 0" "x < cmod d / m" "x < 1" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 776 | let ?x = "complex_of_real x" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 777 | from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" by simp_all | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 778 | from pCons.prems[rule_format, OF cx(1)] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 779 | have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 780 | from m(2)[rule_format, OF cx(2)] x(1) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 781 | have th0: "cmod (?x*poly ds ?x) \<le> x*m" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 782 | by (simp add: norm_mult) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 783 | from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 784 | with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 785 | with cth have ?case by blast} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 786 | ultimately show ?case by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 787 | qed simp} | 
| 30488 | 788 | then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems c0 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 789 | by blast | 
| 26123 | 790 | from fundamental_theorem_of_algebra[OF nc] have ?case .} | 
| 30488 | 791 | ultimately show ?case by blast | 
| 26123 | 792 | qed simp | 
| 793 | ||
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 794 | |
| 37093 | 795 | subsection{* Nullstellensatz, degrees and divisibility of polynomials *}
 | 
| 26123 | 796 | |
| 797 | lemma nullstellensatz_lemma: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 798 | fixes p :: "complex poly" | 
| 26123 | 799 | assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" | 
| 800 | and "degree p = n" and "n \<noteq> 0" | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 801 | shows "p dvd (q ^ n)" | 
| 41529 | 802 | using assms | 
| 26123 | 803 | proof(induct n arbitrary: p q rule: nat_less_induct) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 804 | fix n::nat fix p q :: "complex poly" | 
| 26123 | 805 | assume IH: "\<forall>m<n. \<forall>p q. | 
| 806 | (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow> | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 807 | degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)" | 
| 30488 | 808 | and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" | 
| 26123 | 809 | and dpn: "degree p = n" and n0: "n \<noteq> 0" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 810 | from dpn n0 have pne: "p \<noteq> 0" by auto | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 811 | let ?ths = "p dvd (q ^ n)" | 
| 26123 | 812 |   {fix a assume a: "poly p a = 0"
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 813 |     {assume oa: "order a p \<noteq> 0"
 | 
| 26123 | 814 | let ?op = "order a p" | 
| 30488 | 815 | from pne have ap: "([:- a, 1:] ^ ?op) dvd p" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 816 | "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" using order by blast+ | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 817 | note oop = order_degree[OF pne, unfolded dpn] | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 818 |       {assume q0: "q = 0"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 819 | hence ?ths using n0 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 820 | by (simp add: power_0_left)} | 
| 26123 | 821 | moreover | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 822 |       {assume q0: "q \<noteq> 0"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 823 | from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 824 | obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 825 | from ap(1) obtain s where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 826 | s: "p = [:- a, 1:] ^ ?op * s" by (rule dvdE) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 827 | have sne: "s \<noteq> 0" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 828 | using s pne by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 829 |         {assume ds0: "degree s = 0"
 | 
| 51541 | 830 | from ds0 obtain k where kpn: "s = [:k:]" | 
| 831 | by (cases s) (auto split: if_splits) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 832 | from sne kpn have k: "k \<noteq> 0" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 833 | let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 834 | have "q ^ n = p * ?w" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 835 | apply (subst r, subst s, subst kpn) | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 836 | using k oop [of a] | 
| 29472 | 837 | apply (subst power_mult_distrib, simp) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 838 | apply (subst power_add [symmetric], simp) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 839 | done | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 840 | hence ?ths unfolding dvd_def by blast} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 841 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 842 |         {assume ds0: "degree s \<noteq> 0"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 843 | from ds0 sne dpn s oa | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 844 | have dsn: "degree s < n" apply auto | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 845 | apply (erule ssubst) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 846 | apply (simp add: degree_mult_eq degree_linear_power) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 847 | done | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 848 |             {fix x assume h: "poly s x = 0"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 849 |               {assume xa: "x = a"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 850 | from h[unfolded xa poly_eq_0_iff_dvd] obtain u where | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 851 | u: "s = [:- a, 1:] * u" by (rule dvdE) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 852 | have "p = [:- a, 1:] ^ (Suc ?op) * u" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 853 | by (subst s, subst u, simp only: power_Suc mult_ac) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 854 | with ap(2)[unfolded dvd_def] have False by blast} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 855 | note xa = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 856 | from h have "poly p x = 0" by (subst s, simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 857 | with pq0 have "poly q x = 0" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 858 | with r xa have "poly r x = 0" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 859 | by auto} | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 860 | note impth = this | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 861 | from IH[rule_format, OF dsn, of s r] impth ds0 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 862 | have "s dvd (r ^ (degree s))" by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 863 | then obtain u where u: "r ^ (degree s) = s * u" .. | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 864 | hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s" | 
| 29470 
1851088a1f87
convert Deriv.thy to use new Polynomial library (incomplete)
 huffman parents: 
29464diff
changeset | 865 | by (simp only: poly_mult[symmetric] poly_power[symmetric]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 866 | let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 867 | from oop[of a] dsn have "q ^ n = p * ?w" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 868 | apply - | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 869 | apply (subst s, subst r) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 870 | apply (simp only: power_mult_distrib) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 871 | apply (subst mult_assoc [where b=s]) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 872 | apply (subst mult_assoc [where a=u]) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 873 | apply (subst mult_assoc [where b=u, symmetric]) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 874 | apply (subst u [symmetric]) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 875 | apply (simp add: mult_ac power_add [symmetric]) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 876 | done | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 877 | hence ?ths unfolding dvd_def by blast} | 
| 26123 | 878 | ultimately have ?ths by blast } | 
| 879 | ultimately have ?ths by blast} | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 880 | then have ?ths using a order_root pne by blast} | 
| 26123 | 881 | moreover | 
| 882 |   {assume exa: "\<not> (\<exists>a. poly p a = 0)"
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 883 | from fundamental_theorem_of_algebra_alt[of p] exa obtain c where | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 884 | ccs: "c\<noteq>0" "p = pCons c 0" by blast | 
| 30488 | 885 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 886 | then have pp: "\<And>x. poly p x = c" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 887 | let ?w = "[:1/c:] * (q ^ n)" | 
| 51541 | 888 | from ccs have "(q ^ n) = (p * ?w)" by simp | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 889 | hence ?ths unfolding dvd_def by blast} | 
| 26123 | 890 | ultimately show ?ths by blast | 
| 891 | qed | |
| 892 | ||
| 893 | lemma nullstellensatz_univariate: | |
| 30488 | 894 | "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 895 | p dvd (q ^ (degree p)) \<or> (p = 0 \<and> q = 0)" | 
| 26123 | 896 | proof- | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 897 |   {assume pe: "p = 0"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 898 | hence eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> q = 0" | 
| 52380 | 899 | by (auto simp add: poly_all_0_iff_0) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 900 |     {assume "p dvd (q ^ (degree p))"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 901 | then obtain r where r: "q ^ (degree p) = p * r" .. | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 902 | from r pe have False by simp} | 
| 26123 | 903 | with eq pe have ?thesis by blast} | 
| 904 | moreover | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 905 |   {assume pe: "p \<noteq> 0"
 | 
| 26123 | 906 |     {assume dp: "degree p = 0"
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 907 | then obtain k where k: "p = [:k:]" "k\<noteq>0" using pe | 
| 51541 | 908 | by (cases p) (simp split: if_splits) | 
| 26123 | 909 | hence th1: "\<forall>x. poly p x \<noteq> 0" by simp | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 910 | from k dp have "q ^ (degree p) = p * [:1/k:]" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 911 | by (simp add: one_poly_def) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 912 | hence th2: "p dvd (q ^ (degree p))" .. | 
| 26123 | 913 | from th1 th2 pe have ?thesis by blast} | 
| 914 | moreover | |
| 915 |     {assume dp: "degree p \<noteq> 0"
 | |
| 916 | then obtain n where n: "degree p = Suc n " by (cases "degree p", auto) | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 917 |       {assume "p dvd (q ^ (Suc n))"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 918 | then obtain u where u: "q ^ (Suc n) = p * u" .. | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 919 |         {fix x assume h: "poly p x = 0" "poly q x \<noteq> 0"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 920 | hence "poly (q ^ (Suc n)) x \<noteq> 0" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 921 | hence False using u h(1) by (simp only: poly_mult) simp}} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 922 | with n nullstellensatz_lemma[of p q "degree p"] dp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32456diff
changeset | 923 | have ?thesis by auto} | 
| 26123 | 924 | ultimately have ?thesis by blast} | 
| 925 | ultimately show ?thesis by blast | |
| 926 | qed | |
| 927 | ||
| 928 | text{* Useful lemma *}
 | |
| 929 | ||
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 930 | lemma constant_degree: | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 931 |   fixes p :: "'a::{idom,ring_char_0} poly"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 932 | shows "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs") | 
| 26123 | 933 | proof | 
| 934 | assume l: ?lhs | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 935 | from l[unfolded constant_def, rule_format, of _ "0"] | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 936 | have th: "poly p = poly [:poly p 0:]" apply - by (rule ext, simp) | 
| 52380 | 937 | then have "p = [:poly p 0:]" by (simp add: poly_eq_poly_eq_iff) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 938 | then have "degree p = degree [:poly p 0:]" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 939 | then show ?rhs by simp | 
| 26123 | 940 | next | 
| 941 | assume r: ?rhs | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 942 | then obtain k where "p = [:k:]" | 
| 51541 | 943 | by (cases p) (simp split: if_splits) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 944 | then show ?lhs unfolding constant_def by auto | 
| 26123 | 945 | qed | 
| 946 | ||
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 947 | lemma divides_degree: assumes pq: "p dvd (q:: complex poly)" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 948 | shows "degree p \<le> degree q \<or> q = 0" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 949 | by (metis dvd_imp_degree_le pq) | 
| 26123 | 950 | |
| 951 | (* Arithmetic operations on multivariate polynomials. *) | |
| 952 | ||
| 30488 | 953 | lemma mpoly_base_conv: | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 954 | fixes x :: "'a::comm_ring_1" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 955 | shows "0 = poly 0 x" "c = poly [:c:] x" "x = poly [:0,1:] x" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 956 | by simp_all | 
| 26123 | 957 | |
| 30488 | 958 | lemma mpoly_norm_conv: | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 959 | fixes x :: "'a::comm_ring_1" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 960 | shows "poly [:0:] x = poly 0 x" "poly [:poly 0 y:] x = poly 0 x" by simp_all | 
| 26123 | 961 | |
| 30488 | 962 | lemma mpoly_sub_conv: | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 963 | fixes x :: "'a::comm_ring_1" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 964 | shows "poly p x - poly q x = poly p x + -1 * poly q x" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 965 | by simp | 
| 26123 | 966 | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 967 | lemma poly_pad_rule: "poly p x = 0 ==> poly (pCons 0 p) x = 0" by simp | 
| 26123 | 968 | |
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 969 | lemma poly_cancel_eq_conv: | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 970 | fixes x :: "'a::field" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 971 | shows "x = 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (y = 0) = (a * y - b * x = 0)" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 972 | by auto | 
| 26123 | 973 | |
| 30488 | 974 | lemma poly_divides_pad_rule: | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 975 |   fixes p:: "('a::comm_ring_1) poly" 
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 976 | assumes pq: "p dvd q" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 977 | shows "p dvd (pCons 0 q)" | 
| 26123 | 978 | proof- | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 979 | have "pCons 0 q = q * [:0,1:]" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 980 | then have "q dvd (pCons 0 q)" .. | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 981 | with pq show ?thesis by (rule dvd_trans) | 
| 26123 | 982 | qed | 
| 983 | ||
| 30488 | 984 | lemma poly_divides_conv0: | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 985 |   fixes p:: "('a::field) poly" 
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 986 | assumes lgpq: "degree q < degree p" and lq:"p \<noteq> 0" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 987 | shows "p dvd q \<equiv> q = 0" (is "?lhs \<equiv> ?rhs") | 
| 26123 | 988 | proof- | 
| 30488 | 989 |   {assume r: ?rhs
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 990 | hence "q = p * 0" by simp | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 991 | hence ?lhs ..} | 
| 26123 | 992 | moreover | 
| 993 |   {assume l: ?lhs
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 994 |     {assume q0: "q = 0"
 | 
| 26123 | 995 | hence ?rhs by simp} | 
| 996 | moreover | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 997 |     {assume q0: "q \<noteq> 0"
 | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 998 | from l q0 have "degree p \<le> degree q" | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 999 | by (rule dvd_imp_degree_le) | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1000 | with lgpq have ?rhs by simp } | 
| 26123 | 1001 | ultimately have ?rhs by blast } | 
| 30488 | 1002 | ultimately show "?lhs \<equiv> ?rhs" by - (atomize (full), blast) | 
| 26123 | 1003 | qed | 
| 1004 | ||
| 30488 | 1005 | lemma poly_divides_conv1: | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1006 |   fixes p:: "('a::field) poly" 
 | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1007 | assumes a0: "a\<noteq> 0" and pp': "p dvd p'" | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1008 | and qrp': "smult a q - p' \<equiv> r" | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1009 | shows "p dvd q \<equiv> p dvd r" (is "?lhs \<equiv> ?rhs") | 
| 26123 | 1010 | proof- | 
| 1011 |   {
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1012 | from pp' obtain t where t: "p' = p * t" .. | 
| 26123 | 1013 |   {assume l: ?lhs
 | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1014 | then obtain u where u: "q = p * u" .. | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1015 | have "r = p * (smult a u - t)" | 
| 51541 | 1016 | using u qrp' [symmetric] t by (simp add: algebra_simps) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1017 | then have ?rhs ..} | 
| 26123 | 1018 | moreover | 
| 1019 |   {assume r: ?rhs
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1020 | then obtain u where u: "r = p * u" .. | 
| 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1021 | from u [symmetric] t qrp' [symmetric] a0 | 
| 51541 | 1022 | have "q = p * smult (1/a) (u + t)" by (simp add: algebra_simps) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1023 | hence ?lhs ..} | 
| 26123 | 1024 | ultimately have "?lhs = ?rhs" by blast } | 
| 30488 | 1025 | thus "?lhs \<equiv> ?rhs" by - (atomize(full), blast) | 
| 26123 | 1026 | qed | 
| 1027 | ||
| 1028 | lemma basic_cqe_conv1: | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1029 | "(\<exists>x. poly p x = 0 \<and> poly 0 x \<noteq> 0) \<longleftrightarrow> False" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1030 | "(\<exists>x. poly 0 x \<noteq> 0) \<longleftrightarrow> False" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1031 | "(\<exists>x. poly [:c:] x \<noteq> 0) \<longleftrightarrow> c\<noteq>0" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1032 | "(\<exists>x. poly 0 x = 0) \<longleftrightarrow> True" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1033 | "(\<exists>x. poly [:c:] x = 0) \<longleftrightarrow> c = 0" by simp_all | 
| 26123 | 1034 | |
| 30488 | 1035 | lemma basic_cqe_conv2: | 
| 1036 | assumes l:"p \<noteq> 0" | |
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1037 | shows "(\<exists>x. poly (pCons a (pCons b p)) x = (0::complex))" | 
| 26123 | 1038 | proof- | 
| 1039 |   {fix h t
 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1040 | assume h: "h\<noteq>0" "t=0" "pCons a (pCons b p) = pCons h t" | 
| 26123 | 1041 | with l have False by simp} | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1042 | hence th: "\<not> (\<exists> h t. h\<noteq>0 \<and> t=0 \<and> pCons a (pCons b p) = pCons h t)" | 
| 26123 | 1043 | by blast | 
| 30488 | 1044 | from fundamental_theorem_of_algebra_alt[OF th] | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1045 | show ?thesis by auto | 
| 26123 | 1046 | qed | 
| 1047 | ||
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1048 | lemma basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<longleftrightarrow> (p \<noteq> 0)" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1049 | by (metis poly_all_0_iff_0) | 
| 26123 | 1050 | |
| 1051 | lemma basic_cqe_conv3: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1052 | fixes p q :: "complex poly" | 
| 30488 | 1053 | assumes l: "p \<noteq> 0" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1054 | shows "(\<exists>x. poly (pCons a p) x = 0 \<and> poly q x \<noteq> 0) \<longleftrightarrow> \<not> ((pCons a p) dvd (q ^ (psize p)))" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1055 | proof - | 
| 29538 | 1056 | from l have dp:"degree (pCons a p) = psize p" by (simp add: psize_def) | 
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1057 | from nullstellensatz_univariate[of "pCons a p" q] l | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1058 | show ?thesis | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1059 | by (metis dp pCons_eq_0_iff) | 
| 26123 | 1060 | qed | 
| 1061 | ||
| 1062 | lemma basic_cqe_conv4: | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1063 | fixes p q :: "complex poly" | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1064 | assumes h: "\<And>x. poly (q ^ n) x = poly r x" | 
| 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1065 | shows "p dvd (q ^ n) \<longleftrightarrow> p dvd r" | 
| 26123 | 1066 | proof- | 
| 51541 | 1067 | from h have "poly (q ^ n) = poly r" by auto | 
| 52380 | 1068 | then have "(q ^ n) = r" by (simp add: poly_eq_poly_eq_iff) | 
| 55358 
85d81bc281d0
Simplified some proofs, deleting a lot of strange unused material at the end of the theory.
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1069 | thus "p dvd (q ^ n) \<longleftrightarrow> p dvd r" by simp | 
| 26123 | 1070 | qed | 
| 1071 | ||
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1072 | lemma poly_const_conv: | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1073 | fixes x :: "'a::comm_ring_1" | 
| 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1074 | shows "poly [:c:] x = y \<longleftrightarrow> c = y" by simp | 
| 26123 | 1075 | |
| 29464 
c0d225a7f6ff
convert Fundamental_Theorem_Algebra.thy to use new Polynomial library
 huffman parents: 
29292diff
changeset | 1076 | end | 
| 55735 
81ba62493610
generalised some results using type classes
 paulson <lp15@cam.ac.uk> parents: 
55734diff
changeset | 1077 |