author | wenzelm |
Tue, 24 Sep 2024 21:31:20 +0200 | |
changeset 80946 | b76f64d7d493 |
parent 80934 | 8e72f55295fd |
child 81094 | 2a8afc91ce9c |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Transitive_Closure.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1992 University of Cambridge |
|
4 |
*) |
|
5 |
||
60758 | 6 |
section \<open>Reflexive and Transitive closure of a relation\<close> |
12691 | 7 |
|
15131 | 8 |
theory Transitive_Closure |
77695
93531ba2c784
reversed import dependency between Relation and Finite_Set; and move theorems around
desharna
parents:
76751
diff
changeset
|
9 |
imports Finite_Set |
67723 | 10 |
abbrevs "^*" = "\<^sup>*" "\<^sup>*\<^sup>*" |
11 |
and "^+" = "\<^sup>+" "\<^sup>+\<^sup>+" |
|
12 |
and "^=" = "\<^sup>=" "\<^sup>=\<^sup>=" |
|
15131 | 13 |
begin |
12691 | 14 |
|
69605 | 15 |
ML_file \<open>~~/src/Provers/trancl.ML\<close> |
48891 | 16 |
|
60758 | 17 |
text \<open> |
61799 | 18 |
\<open>rtrancl\<close> is reflexive/transitive closure, |
19 |
\<open>trancl\<close> is transitive closure, |
|
20 |
\<open>reflcl\<close> is reflexive closure. |
|
12691 | 21 |
|
63612 | 22 |
These postfix operators have \<^emph>\<open>maximum priority\<close>, forcing their |
12691 | 23 |
operands to be atomic. |
60758 | 24 |
\<close> |
10213 | 25 |
|
63612 | 26 |
context notes [[inductive_internals]] |
61681
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
27 |
begin |
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
28 |
|
80934 | 29 |
inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (\<open>(\<open>notation=\<open>postfix *\<close>\<close>_\<^sup>*)\<close> [1000] 999) |
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
30 |
for r :: "('a \<times> 'a) set" |
63612 | 31 |
where |
32 |
rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" |
|
33 |
| rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*" |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
34 |
|
80934 | 35 |
inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (\<open>(\<open>notation=\<open>postfix +\<close>\<close>_\<^sup>+)\<close> [1000] 999) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
36 |
for r :: "('a \<times> 'a) set" |
63612 | 37 |
where |
38 |
r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" |
|
39 |
| trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" |
|
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
40 |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
41 |
notation |
80934 | 42 |
rtranclp (\<open>(\<open>notation=\<open>postfix **\<close>\<close>_\<^sup>*\<^sup>*)\<close> [1000] 1000) and |
43 |
tranclp (\<open>(\<open>notation=\<open>postfix ++\<close>\<close>_\<^sup>+\<^sup>+)\<close> [1000] 1000) |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
44 |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
45 |
declare |
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
46 |
rtrancl_def [nitpick_unfold del] |
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
47 |
rtranclp_def [nitpick_unfold del] |
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
48 |
trancl_def [nitpick_unfold del] |
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
49 |
tranclp_def [nitpick_unfold del] |
33878
85102f57b4a8
removed "nitpick_def" attributes from (r)trancl(p), since "Nitpick.thy" overrides these
blanchet
parents:
33656
diff
changeset
|
50 |
|
61681
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
51 |
end |
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
52 |
|
80934 | 53 |
abbreviation reflcl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (\<open>(\<open>notation=\<open>postfix =\<close>\<close>_\<^sup>=)\<close> [1000] 999) |
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
54 |
where "r\<^sup>= \<equiv> r \<union> Id" |
10213 | 55 |
|
80934 | 56 |
abbreviation reflclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" (\<open>(\<open>notation=\<open>postfix ==\<close>\<close>_\<^sup>=\<^sup>=)\<close> [1000] 1000) |
67399 | 57 |
where "r\<^sup>=\<^sup>= \<equiv> sup r (=)" |
22262 | 58 |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61799
diff
changeset
|
59 |
notation (ASCII) |
80934 | 60 |
rtrancl (\<open>(\<open>notation=\<open>postfix *\<close>\<close>_^*)\<close> [1000] 999) and |
61 |
trancl (\<open>(\<open>notation=\<open>postfix +\<close>\<close>_^+)\<close> [1000] 999) and |
|
62 |
reflcl (\<open>(\<open>notation=\<open>postfix =\<close>\<close>_^=)\<close> [1000] 999) and |
|
63 |
rtranclp (\<open>(\<open>notation=\<open>postfix **\<close>\<close>_^**)\<close> [1000] 1000) and |
|
64 |
tranclp (\<open>(\<open>notation=\<open>postfix ++\<close>\<close>_^++)\<close> [1000] 1000) and |
|
65 |
reflclp (\<open>(\<open>notation=\<open>postfix ==\<close>\<close>_^==)\<close> [1000] 1000) |
|
12691 | 66 |
|
67 |
||
60758 | 68 |
subsection \<open>Reflexive closure\<close> |
26271 | 69 |
|
76638 | 70 |
lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) (=)) = (\<lambda>x y. (x, y) \<in> r \<union> Id)" |
71 |
by (auto simp: fun_eq_iff) |
|
72 |
||
63404 | 73 |
lemma refl_reflcl[simp]: "refl (r\<^sup>=)" |
74 |
by (simp add: refl_on_def) |
|
26271 | 75 |
|
76496 | 76 |
lemma reflp_on_reflclp[simp]: "reflp_on A R\<^sup>=\<^sup>=" |
77 |
by (simp add: reflp_on_def) |
|
78 |
||
76638 | 79 |
lemma antisym_on_reflcl[simp]: "antisym_on A (r\<^sup>=) \<longleftrightarrow> antisym_on A r" |
80 |
by (simp add: antisym_on_def) |
|
81 |
||
79940
5e85ea359563
renamed lemma antisymp_on_reflcp to antisymp_on_reflclp
desharna
parents:
79939
diff
changeset
|
82 |
lemma antisymp_on_reflclp[simp]: "antisymp_on A R\<^sup>=\<^sup>= \<longleftrightarrow> antisymp_on A R" |
76638 | 83 |
by (rule antisym_on_reflcl[to_pred]) |
26271 | 84 |
|
76751 | 85 |
lemma trans_on_reflcl[simp]: "trans_on A r \<Longrightarrow> trans_on A (r\<^sup>=)" |
86 |
by (auto intro: trans_onI dest: trans_onD) |
|
26271 | 87 |
|
76750 | 88 |
lemma transp_on_reflclp[simp]: "transp_on A R \<Longrightarrow> transp_on A R\<^sup>=\<^sup>=" |
76751 | 89 |
by (rule trans_on_reflcl[to_pred]) |
76498 | 90 |
|
79937
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
91 |
lemma antisymp_on_reflclp_if_asymp_on: |
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
92 |
assumes "asymp_on A R" |
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
93 |
shows "antisymp_on A R\<^sup>=\<^sup>=" |
79940
5e85ea359563
renamed lemma antisymp_on_reflcp to antisymp_on_reflclp
desharna
parents:
79939
diff
changeset
|
94 |
unfolding antisymp_on_reflclp |
79939 | 95 |
using antisymp_on_if_asymp_on[OF \<open>asymp_on A R\<close>] . |
79937
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
96 |
|
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
97 |
lemma antisym_on_reflcl_if_asym_on: "asym_on A R \<Longrightarrow> antisym_on A (R\<^sup>=)" |
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
98 |
using antisymp_on_reflclp_if_asymp_on[to_set] . |
d26c53bc6ce1
added lemmas antisym_on_reflcl_if_asym_on and antisymp_on_reflclp_if_asymp_on
desharna
parents:
79806
diff
changeset
|
99 |
|
63404 | 100 |
lemma reflclp_idemp [simp]: "(P\<^sup>=\<^sup>=)\<^sup>=\<^sup>= = P\<^sup>=\<^sup>=" |
101 |
by blast |
|
102 |
||
76497 | 103 |
lemma reflclp_ident_if_reflp[simp]: "reflp R \<Longrightarrow> R\<^sup>=\<^sup>= = R" |
104 |
by (auto dest: reflpD) |
|
105 |
||
79806
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
106 |
text \<open>The following are special cases of @{thm [source] reflclp_ident_if_reflp}, |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
107 |
but they appear duplicated in multiple, independent theories, which causes name clashes.\<close> |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
108 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
109 |
lemma (in preorder) reflclp_less_eq[simp]: "(\<le>)\<^sup>=\<^sup>= = (\<le>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
110 |
using reflp_on_le by (simp only: reflclp_ident_if_reflp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
111 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
112 |
lemma (in preorder) reflclp_greater_eq[simp]: "(\<ge>)\<^sup>=\<^sup>= = (\<ge>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
113 |
using reflp_on_ge by (simp only: reflclp_ident_if_reflp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
114 |
|
79938 | 115 |
lemma order_reflclp_if_transp_and_asymp: |
116 |
assumes "transp R" and "asymp R" |
|
117 |
shows "class.order R\<^sup>=\<^sup>= R" |
|
118 |
proof unfold_locales |
|
119 |
show "\<And>x y. R x y = (R\<^sup>=\<^sup>= x y \<and> \<not> R\<^sup>=\<^sup>= y x)" |
|
120 |
using \<open>asymp R\<close> asympD by fastforce |
|
121 |
next |
|
122 |
show "\<And>x. R\<^sup>=\<^sup>= x x" |
|
123 |
by simp |
|
124 |
next |
|
125 |
show "\<And>x y z. R\<^sup>=\<^sup>= x y \<Longrightarrow> R\<^sup>=\<^sup>= y z \<Longrightarrow> R\<^sup>=\<^sup>= x z" |
|
126 |
using transp_on_reflclp[OF \<open>transp R\<close>, THEN transpD] . |
|
127 |
next |
|
128 |
show "\<And>x y. R\<^sup>=\<^sup>= x y \<Longrightarrow> R\<^sup>=\<^sup>= y x \<Longrightarrow> x = y" |
|
129 |
using antisymp_on_reflclp_if_asymp_on[OF \<open>asymp R\<close>, THEN antisympD] . |
|
130 |
qed |
|
131 |
||
26271 | 132 |
|
60758 | 133 |
subsection \<open>Reflexive-transitive closure\<close> |
12691 | 134 |
|
63404 | 135 |
lemma r_into_rtrancl [intro]: "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>*" |
61799 | 136 |
\<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> |
71627 | 137 |
by (simp add: split_tupled_all rtrancl_refl [THEN rtrancl_into_rtrancl]) |
12691 | 138 |
|
63404 | 139 |
lemma r_into_rtranclp [intro]: "r x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" |
61799 | 140 |
\<comment> \<open>\<open>rtrancl\<close> of \<open>r\<close> contains \<open>r\<close>\<close> |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
141 |
by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) |
22262 | 142 |
|
63404 | 143 |
lemma rtranclp_mono: "r \<le> s \<Longrightarrow> r\<^sup>*\<^sup>* \<le> s\<^sup>*\<^sup>*" |
61799 | 144 |
\<comment> \<open>monotonicity of \<open>rtrancl\<close>\<close> |
71627 | 145 |
proof (rule predicate2I) |
146 |
show "s\<^sup>*\<^sup>* x y" if "r \<le> s" "r\<^sup>*\<^sup>* x y" for x y |
|
147 |
using \<open>r\<^sup>*\<^sup>* x y\<close> \<open>r \<le> s\<close> |
|
148 |
by (induction rule: rtranclp.induct) (blast intro: rtranclp.rtrancl_into_rtrancl)+ |
|
149 |
qed |
|
12691 | 150 |
|
63404 | 151 |
lemma mono_rtranclp[mono]: "(\<And>a b. x a b \<longrightarrow> y a b) \<Longrightarrow> x\<^sup>*\<^sup>* a b \<longrightarrow> y\<^sup>*\<^sup>* a b" |
60681 | 152 |
using rtranclp_mono[of x y] by auto |
153 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
154 |
lemmas rtrancl_mono = rtranclp_mono [to_set] |
22262 | 155 |
|
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
156 |
theorem rtranclp_induct [consumes 1, case_names base step, induct set: rtranclp]: |
63404 | 157 |
assumes a: "r\<^sup>*\<^sup>* a b" |
158 |
and cases: "P a" "\<And>y z. r\<^sup>*\<^sup>* a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z" |
|
159 |
shows "P b" |
|
160 |
using a by (induct x\<equiv>a b) (rule cases)+ |
|
12691 | 161 |
|
25425
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
berghofe
parents:
25295
diff
changeset
|
162 |
lemmas rtrancl_induct [induct set: rtrancl] = rtranclp_induct [to_set] |
22262 | 163 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
164 |
lemmas rtranclp_induct2 = |
63404 | 165 |
rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, consumes 1, case_names refl step] |
22262 | 166 |
|
14404
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
167 |
lemmas rtrancl_induct2 = |
63404 | 168 |
rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), consumes 1, case_names refl step] |
18372 | 169 |
|
63404 | 170 |
lemma refl_rtrancl: "refl (r\<^sup>*)" |
171 |
unfolding refl_on_def by fast |
|
19228 | 172 |
|
60758 | 173 |
text \<open>Transitivity of transitive closure.\<close> |
63404 | 174 |
lemma trans_rtrancl: "trans (r\<^sup>*)" |
12823 | 175 |
proof (rule transI) |
176 |
fix x y z |
|
177 |
assume "(x, y) \<in> r\<^sup>*" |
|
178 |
assume "(y, z) \<in> r\<^sup>*" |
|
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
179 |
then show "(x, z) \<in> r\<^sup>*" |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
180 |
proof induct |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
181 |
case base |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
182 |
show "(x, y) \<in> r\<^sup>*" by fact |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
183 |
next |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
184 |
case (step u v) |
60758 | 185 |
from \<open>(x, u) \<in> r\<^sup>*\<close> and \<open>(u, v) \<in> r\<close> |
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
186 |
show "(x, v) \<in> r\<^sup>*" .. |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
187 |
qed |
12823 | 188 |
qed |
12691 | 189 |
|
45607 | 190 |
lemmas rtrancl_trans = trans_rtrancl [THEN transD] |
12691 | 191 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
192 |
lemma rtranclp_trans: |
63404 | 193 |
assumes "r\<^sup>*\<^sup>* x y" |
194 |
and "r\<^sup>*\<^sup>* y z" |
|
195 |
shows "r\<^sup>*\<^sup>* x z" |
|
196 |
using assms(2,1) by induct iprover+ |
|
22262 | 197 |
|
26174
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
wenzelm
parents:
25425
diff
changeset
|
198 |
lemma rtranclE [cases set: rtrancl]: |
63404 | 199 |
fixes a b :: 'a |
200 |
assumes major: "(a, b) \<in> r\<^sup>*" |
|
26174
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
wenzelm
parents:
25425
diff
changeset
|
201 |
obtains |
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
wenzelm
parents:
25425
diff
changeset
|
202 |
(base) "a = b" |
63404 | 203 |
| (step) y where "(a, y) \<in> r\<^sup>*" and "(y, b) \<in> r" |
61799 | 204 |
\<comment> \<open>elimination of \<open>rtrancl\<close> -- by induction on a special formula\<close> |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
205 |
proof - |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
206 |
have "a = b \<or> (\<exists>y. (a, y) \<in> r\<^sup>* \<and> (y, b) \<in> r)" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
207 |
by (rule major [THEN rtrancl_induct]) blast+ |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
208 |
then show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
209 |
by (auto intro: base step) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
210 |
qed |
12691 | 211 |
|
63404 | 212 |
lemma rtrancl_Int_subset: "Id \<subseteq> s \<Longrightarrow> (r\<^sup>* \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>* \<subseteq> s" |
71627 | 213 |
by (fastforce elim: rtrancl_induct) |
22080
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
214 |
|
63404 | 215 |
lemma converse_rtranclp_into_rtranclp: "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
216 |
by (rule rtranclp_trans) iprover+ |
22262 | 217 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
218 |
lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] |
12691 | 219 |
|
69593 | 220 |
text \<open>\<^medskip> More \<^term>\<open>r\<^sup>*\<close> equations and inclusions.\<close> |
12691 | 221 |
|
63404 | 222 |
lemma rtranclp_idemp [simp]: "(r\<^sup>*\<^sup>*)\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" |
71627 | 223 |
proof - |
224 |
have "r\<^sup>*\<^sup>*\<^sup>*\<^sup>* x y \<Longrightarrow> r\<^sup>*\<^sup>* x y" for x y |
|
225 |
by (induction rule: rtranclp_induct) (blast intro: rtranclp_trans)+ |
|
226 |
then show ?thesis |
|
227 |
by (auto intro!: order_antisym) |
|
228 |
qed |
|
12691 | 229 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
230 |
lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] |
22262 | 231 |
|
63404 | 232 |
lemma rtrancl_idemp_self_comp [simp]: "R\<^sup>* O R\<^sup>* = R\<^sup>*" |
71627 | 233 |
by (force intro: rtrancl_trans) |
12691 | 234 |
|
63404 | 235 |
lemma rtrancl_subset_rtrancl: "r \<subseteq> s\<^sup>* \<Longrightarrow> r\<^sup>* \<subseteq> s\<^sup>*" |
71627 | 236 |
by (drule rtrancl_mono, simp) |
12691 | 237 |
|
63404 | 238 |
lemma rtranclp_subset: "R \<le> S \<Longrightarrow> S \<le> R\<^sup>*\<^sup>* \<Longrightarrow> S\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" |
71627 | 239 |
by (fastforce dest: rtranclp_mono) |
12691 | 240 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
241 |
lemmas rtrancl_subset = rtranclp_subset [to_set] |
22262 | 242 |
|
63404 | 243 |
lemma rtranclp_sup_rtranclp: "(sup (R\<^sup>*\<^sup>*) (S\<^sup>*\<^sup>*))\<^sup>*\<^sup>* = (sup R S)\<^sup>*\<^sup>*" |
244 |
by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) |
|
12691 | 245 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
246 |
lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] |
22262 | 247 |
|
63404 | 248 |
lemma rtranclp_reflclp [simp]: "(R\<^sup>=\<^sup>=)\<^sup>*\<^sup>* = R\<^sup>*\<^sup>*" |
249 |
by (blast intro!: rtranclp_subset) |
|
22262 | 250 |
|
50616 | 251 |
lemmas rtrancl_reflcl [simp] = rtranclp_reflclp [to_set] |
12691 | 252 |
|
63404 | 253 |
lemma rtrancl_r_diff_Id: "(r - Id)\<^sup>* = r\<^sup>*" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
254 |
by (rule rtrancl_subset [symmetric]) auto |
12691 | 255 |
|
67399 | 256 |
lemma rtranclp_r_diff_Id: "(inf r (\<noteq>))\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
257 |
by (rule rtranclp_subset [symmetric]) auto |
22262 | 258 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
259 |
theorem rtranclp_converseD: |
63404 | 260 |
assumes "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y" |
261 |
shows "r\<^sup>*\<^sup>* y x" |
|
262 |
using assms by induct (iprover intro: rtranclp_trans dest!: conversepD)+ |
|
12691 | 263 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
264 |
lemmas rtrancl_converseD = rtranclp_converseD [to_set] |
22262 | 265 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
266 |
theorem rtranclp_converseI: |
63404 | 267 |
assumes "r\<^sup>*\<^sup>* y x" |
268 |
shows "(r\<inverse>\<inverse>)\<^sup>*\<^sup>* x y" |
|
269 |
using assms by induct (iprover intro: rtranclp_trans conversepI)+ |
|
12691 | 270 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
271 |
lemmas rtrancl_converseI = rtranclp_converseI [to_set] |
22262 | 272 |
|
67613 | 273 |
lemma rtrancl_converse: "(r\<inverse>)\<^sup>* = (r\<^sup>*)\<inverse>" |
12691 | 274 |
by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) |
275 |
||
63404 | 276 |
lemma sym_rtrancl: "sym r \<Longrightarrow> sym (r\<^sup>*)" |
19228 | 277 |
by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) |
278 |
||
34909
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
berghofe
parents:
33878
diff
changeset
|
279 |
theorem converse_rtranclp_induct [consumes 1, case_names base step]: |
63404 | 280 |
assumes major: "r\<^sup>*\<^sup>* a b" |
281 |
and cases: "P b" "\<And>y z. r y z \<Longrightarrow> r\<^sup>*\<^sup>* z b \<Longrightarrow> P z \<Longrightarrow> P y" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12823
diff
changeset
|
282 |
shows "P a" |
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
283 |
using rtranclp_converseI [OF major] |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
284 |
by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+ |
12691 | 285 |
|
25425
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
berghofe
parents:
25295
diff
changeset
|
286 |
lemmas converse_rtrancl_induct = converse_rtranclp_induct [to_set] |
22262 | 287 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
288 |
lemmas converse_rtranclp_induct2 = |
63612 | 289 |
converse_rtranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names refl step] |
22262 | 290 |
|
14404
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
291 |
lemmas converse_rtrancl_induct2 = |
63612 | 292 |
converse_rtrancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete), |
63404 | 293 |
consumes 1, case_names refl step] |
12691 | 294 |
|
34909
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
berghofe
parents:
33878
diff
changeset
|
295 |
lemma converse_rtranclpE [consumes 1, case_names base step]: |
63404 | 296 |
assumes major: "r\<^sup>*\<^sup>* x z" |
297 |
and cases: "x = z \<Longrightarrow> P" "\<And>y. r x y \<Longrightarrow> r\<^sup>*\<^sup>* y z \<Longrightarrow> P" |
|
18372 | 298 |
shows P |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
299 |
proof - |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
300 |
have "x = z \<or> (\<exists>y. r x y \<and> r\<^sup>*\<^sup>* y z)" |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
75652
diff
changeset
|
301 |
by (rule major [THEN converse_rtranclp_induct]) iprover+ |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
302 |
then show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
303 |
by (auto intro: cases) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
304 |
qed |
12691 | 305 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
306 |
lemmas converse_rtranclE = converse_rtranclpE [to_set] |
22262 | 307 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
308 |
lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule] |
22262 | 309 |
|
310 |
lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule] |
|
12691 | 311 |
|
63404 | 312 |
lemma r_comp_rtrancl_eq: "r O r\<^sup>* = r\<^sup>* O r" |
12691 | 313 |
by (blast elim: rtranclE converse_rtranclE |
63612 | 314 |
intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) |
12691 | 315 |
|
63404 | 316 |
lemma rtrancl_unfold: "r\<^sup>* = Id \<union> r\<^sup>* O r" |
15551 | 317 |
by (auto intro: rtrancl_into_rtrancl elim: rtranclE) |
318 |
||
31690 | 319 |
lemma rtrancl_Un_separatorE: |
63404 | 320 |
"(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (a, x) \<in> P\<^sup>* \<longrightarrow> (x, y) \<in> Q \<longrightarrow> x = y \<Longrightarrow> (a, b) \<in> P\<^sup>*" |
63612 | 321 |
proof (induct rule: rtrancl.induct) |
322 |
case rtrancl_refl |
|
323 |
then show ?case by blast |
|
324 |
next |
|
325 |
case rtrancl_into_rtrancl |
|
326 |
then show ?case by (blast intro: rtrancl_trans) |
|
327 |
qed |
|
31690 | 328 |
|
329 |
lemma rtrancl_Un_separator_converseE: |
|
63404 | 330 |
"(a, b) \<in> (P \<union> Q)\<^sup>* \<Longrightarrow> \<forall>x y. (x, b) \<in> P\<^sup>* \<longrightarrow> (y, x) \<in> Q \<longrightarrow> y = x \<Longrightarrow> (a, b) \<in> P\<^sup>*" |
63612 | 331 |
proof (induct rule: converse_rtrancl_induct) |
332 |
case base |
|
333 |
then show ?case by blast |
|
334 |
next |
|
335 |
case step |
|
336 |
then show ?case by (blast intro: rtrancl_trans) |
|
337 |
qed |
|
31690 | 338 |
|
34970 | 339 |
lemma Image_closed_trancl: |
63404 | 340 |
assumes "r `` X \<subseteq> X" |
341 |
shows "r\<^sup>* `` X = X" |
|
34970 | 342 |
proof - |
63404 | 343 |
from assms have **: "{y. \<exists>x\<in>X. (x, y) \<in> r} \<subseteq> X" |
344 |
by auto |
|
345 |
have "x \<in> X" if 1: "(y, x) \<in> r\<^sup>*" and 2: "y \<in> X" for x y |
|
34970 | 346 |
proof - |
63404 | 347 |
from 1 show "x \<in> X" |
34970 | 348 |
proof induct |
63404 | 349 |
case base |
350 |
show ?case by (fact 2) |
|
34970 | 351 |
next |
63404 | 352 |
case step |
353 |
with ** show ?case by auto |
|
34970 | 354 |
qed |
355 |
qed |
|
356 |
then show ?thesis by auto |
|
357 |
qed |
|
358 |
||
79773
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
359 |
lemma rtranclp_ident_if_reflp_and_transp: |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
360 |
assumes "reflp R" and "transp R" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
361 |
shows "R\<^sup>*\<^sup>* = R" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
362 |
proof (intro ext iffI) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
363 |
fix x y |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
364 |
show "R\<^sup>*\<^sup>* x y \<Longrightarrow> R x y" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
365 |
proof (induction y rule: rtranclp_induct) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
366 |
case base |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
367 |
show ?case |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
368 |
using \<open>reflp R\<close>[THEN reflpD] . |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
369 |
next |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
370 |
case (step y z) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
371 |
thus ?case |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
372 |
using \<open>transp R\<close>[THEN transpD, of x y z] by simp |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
373 |
qed |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
374 |
next |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
375 |
fix x y |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
376 |
show "R x y \<Longrightarrow> R\<^sup>*\<^sup>* x y" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
377 |
using r_into_rtranclp . |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
378 |
qed |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
379 |
|
79806
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
380 |
text \<open>The following are special cases of @{thm [source] rtranclp_ident_if_reflp_and_transp}, |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
381 |
but they appear duplicated in multiple, independent theories, which causes name clashes.\<close> |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
382 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
383 |
lemma (in preorder) rtranclp_less_eq[simp]: "(\<le>)\<^sup>*\<^sup>* = (\<le>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
384 |
using reflp_on_le transp_on_le by (simp only: rtranclp_ident_if_reflp_and_transp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
385 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
386 |
lemma (in preorder) rtranclp_greater_eq[simp]: "(\<ge>)\<^sup>*\<^sup>* = (\<ge>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
387 |
using reflp_on_ge transp_on_ge by (simp only: rtranclp_ident_if_reflp_and_transp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
388 |
|
12691 | 389 |
|
60758 | 390 |
subsection \<open>Transitive closure\<close> |
10331 | 391 |
|
75652
c4a1088d0081
added lemmas total_on_trancl and totalp_on_tranclp
desharna
parents:
74375
diff
changeset
|
392 |
lemma totalp_on_tranclp: "totalp_on A R \<Longrightarrow> totalp_on A (tranclp R)" |
c4a1088d0081
added lemmas total_on_trancl and totalp_on_tranclp
desharna
parents:
74375
diff
changeset
|
393 |
by (auto intro: totalp_onI dest: totalp_onD) |
c4a1088d0081
added lemmas total_on_trancl and totalp_on_tranclp
desharna
parents:
74375
diff
changeset
|
394 |
|
c4a1088d0081
added lemmas total_on_trancl and totalp_on_tranclp
desharna
parents:
74375
diff
changeset
|
395 |
lemma total_on_trancl: "total_on A r \<Longrightarrow> total_on A (trancl r)" |
c4a1088d0081
added lemmas total_on_trancl and totalp_on_tranclp
desharna
parents:
74375
diff
changeset
|
396 |
by (rule totalp_on_tranclp[to_set]) |
c4a1088d0081
added lemmas total_on_trancl and totalp_on_tranclp
desharna
parents:
74375
diff
changeset
|
397 |
|
71627 | 398 |
lemma trancl_mono: |
399 |
assumes "p \<in> r\<^sup>+" "r \<subseteq> s" |
|
400 |
shows "p \<in> s\<^sup>+" |
|
401 |
proof - |
|
402 |
have "\<lbrakk>(a, b) \<in> r\<^sup>+; r \<subseteq> s\<rbrakk> \<Longrightarrow> (a, b) \<in> s\<^sup>+" for a b |
|
403 |
by (induction rule: trancl.induct) (iprover dest: subsetD)+ |
|
404 |
with assms show ?thesis |
|
405 |
by (cases p) force |
|
406 |
qed |
|
12691 | 407 |
|
63404 | 408 |
lemma r_into_trancl': "\<And>p. p \<in> r \<Longrightarrow> p \<in> r\<^sup>+" |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
409 |
by (simp only: split_tupled_all) (erule r_into_trancl) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
410 |
|
63404 | 411 |
text \<open>\<^medskip> Conversions between \<open>trancl\<close> and \<open>rtrancl\<close>.\<close> |
12691 | 412 |
|
63404 | 413 |
lemma tranclp_into_rtranclp: "r\<^sup>+\<^sup>+ a b \<Longrightarrow> r\<^sup>*\<^sup>* a b" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
414 |
by (erule tranclp.induct) iprover+ |
12691 | 415 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
416 |
lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set] |
22262 | 417 |
|
63404 | 418 |
lemma rtranclp_into_tranclp1: |
419 |
assumes "r\<^sup>*\<^sup>* a b" |
|
420 |
shows "r b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
|
421 |
using assms by (induct arbitrary: c) iprover+ |
|
12691 | 422 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
423 |
lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] |
22262 | 424 |
|
71627 | 425 |
lemma rtranclp_into_tranclp2: |
426 |
assumes "r a b" "r\<^sup>*\<^sup>* b c" shows "r\<^sup>+\<^sup>+ a c" |
|
61799 | 427 |
\<comment> \<open>intro rule from \<open>r\<close> and \<open>rtrancl\<close>\<close> |
71627 | 428 |
using \<open>r\<^sup>*\<^sup>* b c\<close> |
429 |
proof (cases rule: rtranclp.cases) |
|
430 |
case rtrancl_refl |
|
431 |
with assms show ?thesis |
|
432 |
by iprover |
|
433 |
next |
|
434 |
case rtrancl_into_rtrancl |
|
435 |
with assms show ?thesis |
|
436 |
by (auto intro: rtranclp_trans [THEN rtranclp_into_tranclp1]) |
|
437 |
qed |
|
12691 | 438 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
439 |
lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] |
22262 | 440 |
|
61799 | 441 |
text \<open>Nice induction rule for \<open>trancl\<close>\<close> |
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
442 |
lemma tranclp_induct [consumes 1, case_names base step, induct pred: tranclp]: |
63404 | 443 |
assumes a: "r\<^sup>+\<^sup>+ a b" |
444 |
and cases: "\<And>y. r a y \<Longrightarrow> P y" "\<And>y z. r\<^sup>+\<^sup>+ a y \<Longrightarrow> r y z \<Longrightarrow> P y \<Longrightarrow> P z" |
|
445 |
shows "P b" |
|
446 |
using a by (induct x\<equiv>a b) (iprover intro: cases)+ |
|
12691 | 447 |
|
25425
9191942c4ead
Removed some case_names and consumes attributes that are now no longer
berghofe
parents:
25295
diff
changeset
|
448 |
lemmas trancl_induct [induct set: trancl] = tranclp_induct [to_set] |
22262 | 449 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
450 |
lemmas tranclp_induct2 = |
63612 | 451 |
tranclp_induct [of _ "(ax, ay)" "(bx, by)", split_rule, consumes 1, case_names base step] |
22262 | 452 |
|
22172 | 453 |
lemmas trancl_induct2 = |
63612 | 454 |
trancl_induct [of "(ax, ay)" "(bx, by)", split_format (complete), |
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
455 |
consumes 1, case_names base step] |
22172 | 456 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
457 |
lemma tranclp_trans_induct: |
63404 | 458 |
assumes major: "r\<^sup>+\<^sup>+ x y" |
459 |
and cases: "\<And>x y. r x y \<Longrightarrow> P x y" "\<And>x y z. r\<^sup>+\<^sup>+ x y \<Longrightarrow> P x y \<Longrightarrow> r\<^sup>+\<^sup>+ y z \<Longrightarrow> P y z \<Longrightarrow> P x z" |
|
18372 | 460 |
shows "P x y" |
61799 | 461 |
\<comment> \<open>Another induction rule for trancl, incorporating transitivity\<close> |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
462 |
by (iprover intro: major [THEN tranclp_induct] cases) |
12691 | 463 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
464 |
lemmas trancl_trans_induct = tranclp_trans_induct [to_set] |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
465 |
|
26174
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
wenzelm
parents:
25425
diff
changeset
|
466 |
lemma tranclE [cases set: trancl]: |
63404 | 467 |
assumes "(a, b) \<in> r\<^sup>+" |
26174
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
wenzelm
parents:
25425
diff
changeset
|
468 |
obtains |
63404 | 469 |
(base) "(a, b) \<in> r" |
470 |
| (step) c where "(a, c) \<in> r\<^sup>+" and "(c, b) \<in> r" |
|
26174
9efd4c04eaa4
rtranclE, tranclE: tuned statement, added case_names;
wenzelm
parents:
25425
diff
changeset
|
471 |
using assms by cases simp_all |
10980 | 472 |
|
63404 | 473 |
lemma trancl_Int_subset: "r \<subseteq> s \<Longrightarrow> (r\<^sup>+ \<inter> s) O r \<subseteq> s \<Longrightarrow> r\<^sup>+ \<subseteq> s" |
71627 | 474 |
by (fastforce simp add: elim: trancl_induct) |
22080
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
475 |
|
63404 | 476 |
lemma trancl_unfold: "r\<^sup>+ = r \<union> r\<^sup>+ O r" |
15551 | 477 |
by (auto intro: trancl_into_trancl elim: tranclE) |
478 |
||
69593 | 479 |
text \<open>Transitivity of \<^term>\<open>r\<^sup>+\<close>\<close> |
63404 | 480 |
lemma trans_trancl [simp]: "trans (r\<^sup>+)" |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
481 |
proof (rule transI) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
482 |
fix x y z |
63404 | 483 |
assume "(x, y) \<in> r\<^sup>+" |
484 |
assume "(y, z) \<in> r\<^sup>+" |
|
485 |
then show "(x, z) \<in> r\<^sup>+" |
|
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
486 |
proof induct |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
487 |
case (base u) |
63404 | 488 |
from \<open>(x, y) \<in> r\<^sup>+\<close> and \<open>(y, u) \<in> r\<close> |
489 |
show "(x, u) \<in> r\<^sup>+" .. |
|
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
490 |
next |
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
491 |
case (step u v) |
63404 | 492 |
from \<open>(x, u) \<in> r\<^sup>+\<close> and \<open>(u, v) \<in> r\<close> |
493 |
show "(x, v) \<in> r\<^sup>+" .. |
|
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
494 |
qed |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
495 |
qed |
12691 | 496 |
|
45607 | 497 |
lemmas trancl_trans = trans_trancl [THEN transD] |
12691 | 498 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
499 |
lemma tranclp_trans: |
63404 | 500 |
assumes "r\<^sup>+\<^sup>+ x y" |
501 |
and "r\<^sup>+\<^sup>+ y z" |
|
502 |
shows "r\<^sup>+\<^sup>+ x z" |
|
503 |
using assms(2,1) by induct iprover+ |
|
22262 | 504 |
|
63404 | 505 |
lemma trancl_id [simp]: "trans r \<Longrightarrow> r\<^sup>+ = r" |
71627 | 506 |
unfolding trans_def by (fastforce simp add: elim: trancl_induct) |
19623 | 507 |
|
26179
bc5d582d6cfe
rtranclp_induct, tranclp_induct: added case_names;
wenzelm
parents:
26174
diff
changeset
|
508 |
lemma rtranclp_tranclp_tranclp: |
63404 | 509 |
assumes "r\<^sup>*\<^sup>* x y" |
510 |
shows "\<And>z. r\<^sup>+\<^sup>+ y z \<Longrightarrow> r\<^sup>+\<^sup>+ x z" |
|
511 |
using assms by induct (iprover intro: tranclp_trans)+ |
|
12691 | 512 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
513 |
lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set] |
22262 | 514 |
|
63404 | 515 |
lemma tranclp_into_tranclp2: "r a b \<Longrightarrow> r\<^sup>+\<^sup>+ b c \<Longrightarrow> r\<^sup>+\<^sup>+ a c" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
516 |
by (erule tranclp_trans [OF tranclp.r_into_trancl]) |
22262 | 517 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
518 |
lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] |
12691 | 519 |
|
71627 | 520 |
lemma tranclp_converseI: |
521 |
assumes "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" shows "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" |
|
522 |
using conversepD [OF assms] |
|
523 |
proof (induction rule: tranclp_induct) |
|
524 |
case (base y) |
|
525 |
then show ?case |
|
526 |
by (iprover intro: conversepI) |
|
527 |
next |
|
528 |
case (step y z) |
|
529 |
then show ?case |
|
530 |
by (iprover intro: conversepI tranclp_trans) |
|
531 |
qed |
|
12691 | 532 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
533 |
lemmas trancl_converseI = tranclp_converseI [to_set] |
22262 | 534 |
|
71627 | 535 |
lemma tranclp_converseD: |
536 |
assumes "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ x y" shows "(r\<^sup>+\<^sup>+)\<inverse>\<inverse> x y" |
|
537 |
proof - |
|
538 |
have "r\<^sup>+\<^sup>+ y x" |
|
539 |
using assms |
|
540 |
by (induction rule: tranclp_induct) (iprover dest: conversepD intro: tranclp_trans)+ |
|
541 |
then show ?thesis |
|
542 |
by (rule conversepI) |
|
543 |
qed |
|
12691 | 544 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
545 |
lemmas trancl_converseD = tranclp_converseD [to_set] |
22262 | 546 |
|
63404 | 547 |
lemma tranclp_converse: "(r\<inverse>\<inverse>)\<^sup>+\<^sup>+ = (r\<^sup>+\<^sup>+)\<inverse>\<inverse>" |
548 |
by (fastforce simp add: fun_eq_iff intro!: tranclp_converseI dest!: tranclp_converseD) |
|
22262 | 549 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
550 |
lemmas trancl_converse = tranclp_converse [to_set] |
12691 | 551 |
|
63404 | 552 |
lemma sym_trancl: "sym r \<Longrightarrow> sym (r\<^sup>+)" |
19228 | 553 |
by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) |
554 |
||
34909
a799687944af
Tuned some proofs; nicer case names for some of the induction / cases rules.
berghofe
parents:
33878
diff
changeset
|
555 |
lemma converse_tranclp_induct [consumes 1, case_names base step]: |
63404 | 556 |
assumes major: "r\<^sup>+\<^sup>+ a b" |
557 |
and cases: "\<And>y. r y b \<Longrightarrow> P y" "\<And>y z. r y z \<Longrightarrow> r\<^sup>+\<^sup>+ z b \<Longrightarrow> P z \<Longrightarrow> P y" |
|
18372 | 558 |
shows "P a" |
71627 | 559 |
proof - |
560 |
have "r\<inverse>\<inverse>\<^sup>+\<^sup>+ b a" |
|
561 |
by (intro tranclp_converseI conversepI major) |
|
562 |
then show ?thesis |
|
563 |
by (induction rule: tranclp_induct) (blast intro: cases dest: tranclp_converseD)+ |
|
564 |
qed |
|
12691 | 565 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
566 |
lemmas converse_trancl_induct = converse_tranclp_induct [to_set] |
22262 | 567 |
|
63404 | 568 |
lemma tranclpD: "R\<^sup>+\<^sup>+ x y \<Longrightarrow> \<exists>z. R x z \<and> R\<^sup>*\<^sup>* z y" |
71627 | 569 |
proof (induction rule: converse_tranclp_induct) |
570 |
case (step u v) |
|
571 |
then show ?case |
|
572 |
by (blast intro: rtranclp_trans) |
|
573 |
qed auto |
|
12691 | 574 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
575 |
lemmas tranclD = tranclpD [to_set] |
22262 | 576 |
|
31577 | 577 |
lemma converse_tranclpE: |
578 |
assumes major: "tranclp r x z" |
|
63404 | 579 |
and base: "r x z \<Longrightarrow> P" |
63612 | 580 |
and step: "\<And>y. r x y \<Longrightarrow> tranclp r y z \<Longrightarrow> P" |
31577 | 581 |
shows P |
582 |
proof - |
|
63404 | 583 |
from tranclpD [OF major] obtain y where "r x y" and "rtranclp r y z" |
584 |
by iprover |
|
31577 | 585 |
from this(2) show P |
586 |
proof (cases rule: rtranclp.cases) |
|
587 |
case rtrancl_refl |
|
63404 | 588 |
with \<open>r x y\<close> base show P |
589 |
by iprover |
|
31577 | 590 |
next |
591 |
case rtrancl_into_rtrancl |
|
71627 | 592 |
then have "tranclp r y z" |
31577 | 593 |
by (iprover intro: rtranclp_into_tranclp1) |
63404 | 594 |
with \<open>r x y\<close> step show P |
595 |
by iprover |
|
31577 | 596 |
qed |
597 |
qed |
|
598 |
||
599 |
lemmas converse_tranclE = converse_tranclpE [to_set] |
|
600 |
||
63404 | 601 |
lemma tranclD2: "(x, y) \<in> R\<^sup>+ \<Longrightarrow> \<exists>z. (x, z) \<in> R\<^sup>* \<and> (z, y) \<in> R" |
25295
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
kleing
parents:
23743
diff
changeset
|
602 |
by (blast elim: tranclE intro: trancl_into_rtrancl) |
12985023be5e
tranclD2 (tranclD at the other end) + trancl_power
kleing
parents:
23743
diff
changeset
|
603 |
|
63404 | 604 |
lemma irrefl_tranclI: "r\<inverse> \<inter> r\<^sup>* = {} \<Longrightarrow> (x, x) \<notin> r\<^sup>+" |
18372 | 605 |
by (blast elim: tranclE dest: trancl_into_rtrancl) |
12691 | 606 |
|
63404 | 607 |
lemma irrefl_trancl_rD: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> x \<noteq> y" |
12691 | 608 |
by (blast dest: r_into_trancl) |
609 |
||
63404 | 610 |
lemma trancl_subset_Sigma_aux: "(a, b) \<in> r\<^sup>* \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> a = b \<or> a \<in> A" |
18372 | 611 |
by (induct rule: rtrancl_induct) auto |
12691 | 612 |
|
71627 | 613 |
lemma trancl_subset_Sigma: |
614 |
assumes "r \<subseteq> A \<times> A" shows "r\<^sup>+ \<subseteq> A \<times> A" |
|
615 |
proof (rule trancl_Int_subset [OF assms]) |
|
616 |
show "(r\<^sup>+ \<inter> A \<times> A) O r \<subseteq> A \<times> A" |
|
617 |
using assms by auto |
|
618 |
qed |
|
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
619 |
|
63404 | 620 |
lemma reflclp_tranclp [simp]: "(r\<^sup>+\<^sup>+)\<^sup>=\<^sup>= = r\<^sup>*\<^sup>*" |
71627 | 621 |
by (fast elim: rtranclp.cases tranclp_into_rtranclp dest: rtranclp_into_tranclp1) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
622 |
|
50616 | 623 |
lemmas reflcl_trancl [simp] = reflclp_tranclp [to_set] |
22262 | 624 |
|
63404 | 625 |
lemma trancl_reflcl [simp]: "(r\<^sup>=)\<^sup>+ = r\<^sup>*" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
626 |
proof - |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
627 |
have "(a, b) \<in> (r\<^sup>=)\<^sup>+ \<Longrightarrow> (a, b) \<in> r\<^sup>*" for a b |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
628 |
by (force dest: trancl_into_rtrancl) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
629 |
moreover have "(a, b) \<in> (r\<^sup>=)\<^sup>+" if "(a, b) \<in> r\<^sup>*" for a b |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
630 |
using that |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
631 |
proof (cases a b rule: rtranclE) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
632 |
case step |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
633 |
show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
634 |
by (rule rtrancl_into_trancl1) (use step in auto) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
635 |
qed auto |
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
636 |
ultimately show ?thesis |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
637 |
by auto |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
638 |
qed |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
639 |
|
63404 | 640 |
lemma rtrancl_trancl_reflcl [code]: "r\<^sup>* = (r\<^sup>+)\<^sup>=" |
45140 | 641 |
by simp |
642 |
||
63404 | 643 |
lemma trancl_empty [simp]: "{}\<^sup>+ = {}" |
11084 | 644 |
by (auto elim: trancl_induct) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
645 |
|
63404 | 646 |
lemma rtrancl_empty [simp]: "{}\<^sup>* = Id" |
11084 | 647 |
by (rule subst [OF reflcl_trancl]) simp |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
648 |
|
63404 | 649 |
lemma rtranclpD: "R\<^sup>*\<^sup>* a b \<Longrightarrow> a = b \<or> a \<noteq> b \<and> R\<^sup>+\<^sup>+ a b" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
650 |
by (force simp: reflclp_tranclp [symmetric] simp del: reflclp_tranclp) |
22262 | 651 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
652 |
lemmas rtranclD = rtranclpD [to_set] |
11084 | 653 |
|
63404 | 654 |
lemma rtrancl_eq_or_trancl: "(x,y) \<in> R\<^sup>* \<longleftrightarrow> x = y \<or> x \<noteq> y \<and> (x, y) \<in> R\<^sup>+" |
16514 | 655 |
by (fast elim: trancl_into_rtrancl dest: rtranclD) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
656 |
|
63404 | 657 |
lemma trancl_unfold_right: "r\<^sup>+ = r\<^sup>* O r" |
658 |
by (auto dest: tranclD2 intro: rtrancl_into_trancl1) |
|
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
659 |
|
63404 | 660 |
lemma trancl_unfold_left: "r\<^sup>+ = r O r\<^sup>*" |
661 |
by (auto dest: tranclD intro: rtrancl_into_trancl2) |
|
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
662 |
|
63404 | 663 |
lemma trancl_insert: "(insert (y, x) r)\<^sup>+ = r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}" |
61799 | 664 |
\<comment> \<open>primitive recursion for \<open>trancl\<close> over finite relations\<close> |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
665 |
proof - |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
666 |
have "\<And>a b. (a, b) \<in> (insert (y, x) r)\<^sup>+ \<Longrightarrow> |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
667 |
(a, b) \<in> r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*}" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
668 |
by (erule trancl_induct) (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl trancl_trans)+ |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
669 |
moreover have "r\<^sup>+ \<union> {(a, b). (a, y) \<in> r\<^sup>* \<and> (x, b) \<in> r\<^sup>*} \<subseteq> (insert (y, x) r)\<^sup>+" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
670 |
by (blast intro: trancl_mono rtrancl_mono [THEN [2] rev_subsetD] |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
671 |
rtrancl_trancl_trancl rtrancl_into_trancl2) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
672 |
ultimately show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
673 |
by auto |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
674 |
qed |
57178 | 675 |
|
676 |
lemma trancl_insert2: |
|
63404 | 677 |
"(insert (a, b) r)\<^sup>+ = r\<^sup>+ \<union> {(x, y). ((x, a) \<in> r\<^sup>+ \<or> x = a) \<and> ((b, y) \<in> r\<^sup>+ \<or> y = b)}" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
678 |
by (auto simp: trancl_insert rtrancl_eq_or_trancl) |
57178 | 679 |
|
63404 | 680 |
lemma rtrancl_insert: "(insert (a,b) r)\<^sup>* = r\<^sup>* \<union> {(x, y). (x, a) \<in> r\<^sup>* \<and> (b, y) \<in> r\<^sup>*}" |
681 |
using trancl_insert[of a b r] |
|
682 |
by (simp add: rtrancl_trancl_reflcl del: reflcl_trancl) blast |
|
57178 | 683 |
|
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
684 |
|
60758 | 685 |
text \<open>Simplifying nested closures\<close> |
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
686 |
|
63404 | 687 |
lemma rtrancl_trancl_absorb[simp]: "(R\<^sup>*)\<^sup>+ = R\<^sup>*" |
688 |
by (simp add: trans_rtrancl) |
|
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
689 |
|
63404 | 690 |
lemma trancl_rtrancl_absorb[simp]: "(R\<^sup>+)\<^sup>* = R\<^sup>*" |
691 |
by (subst reflcl_trancl[symmetric]) simp |
|
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
692 |
|
63404 | 693 |
lemma rtrancl_reflcl_absorb[simp]: "(R\<^sup>*)\<^sup>= = R\<^sup>*" |
694 |
by auto |
|
33656
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
695 |
|
fc1af6753233
a few lemmas for point-free reasoning about transitive closure
krauss
parents:
32901
diff
changeset
|
696 |
|
61799 | 697 |
text \<open>\<open>Domain\<close> and \<open>Range\<close>\<close> |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
698 |
|
63404 | 699 |
lemma Domain_rtrancl [simp]: "Domain (R\<^sup>*) = UNIV" |
11084 | 700 |
by blast |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
701 |
|
63404 | 702 |
lemma Range_rtrancl [simp]: "Range (R\<^sup>*) = UNIV" |
11084 | 703 |
by blast |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
704 |
|
63404 | 705 |
lemma rtrancl_Un_subset: "(R\<^sup>* \<union> S\<^sup>*) \<subseteq> (R \<union> S)\<^sup>*" |
11084 | 706 |
by (rule rtrancl_Un_rtrancl [THEN subst]) fast |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
707 |
|
63404 | 708 |
lemma in_rtrancl_UnI: "x \<in> R\<^sup>* \<or> x \<in> S\<^sup>* \<Longrightarrow> x \<in> (R \<union> S)\<^sup>*" |
11084 | 709 |
by (blast intro: subsetD [OF rtrancl_Un_subset]) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
710 |
|
63404 | 711 |
lemma trancl_domain [simp]: "Domain (r\<^sup>+) = Domain r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46664
diff
changeset
|
712 |
by (unfold Domain_unfold) (blast dest: tranclD) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
713 |
|
63404 | 714 |
lemma trancl_range [simp]: "Range (r\<^sup>+) = Range r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46664
diff
changeset
|
715 |
unfolding Domain_converse [symmetric] by (simp add: trancl_converse [symmetric]) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
716 |
|
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
717 |
lemma Not_Domain_rtrancl: |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
718 |
assumes "x \<notin> Domain R" shows "(x, y) \<in> R\<^sup>* \<longleftrightarrow> x = y" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
719 |
proof - |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
720 |
have "(x, y) \<in> R\<^sup>* \<Longrightarrow> x = y" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
721 |
by (erule rtrancl_induct) (use assms in auto) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
722 |
then show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
723 |
by auto |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
724 |
qed |
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
725 |
|
63404 | 726 |
lemma trancl_subset_Field2: "r\<^sup>+ \<subseteq> Field r \<times> Field r" |
71627 | 727 |
by (rule trancl_Int_subset) (auto simp: Field_def) |
29609 | 728 |
|
63404 | 729 |
lemma finite_trancl[simp]: "finite (r\<^sup>+) = finite r" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
730 |
proof |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
731 |
show "finite (r\<^sup>+) \<Longrightarrow> finite r" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
732 |
by (blast intro: r_into_trancl' finite_subset) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
733 |
show "finite r \<Longrightarrow> finite (r\<^sup>+)" |
71627 | 734 |
by (auto simp: finite_Field trancl_subset_Field2 [THEN finite_subset]) |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
735 |
qed |
29609 | 736 |
|
68456 | 737 |
lemma finite_rtrancl_Image[simp]: assumes "finite R" "finite A" shows "finite (R\<^sup>* `` A)" |
68455 | 738 |
proof (rule ccontr) |
739 |
assume "infinite (R\<^sup>* `` A)" |
|
740 |
with assms show False |
|
741 |
by(simp add: rtrancl_trancl_reflcl Un_Image del: reflcl_trancl) |
|
742 |
qed |
|
743 |
||
61799 | 744 |
text \<open>More about converse \<open>rtrancl\<close> and \<open>trancl\<close>, should |
60758 | 745 |
be merged with main body.\<close> |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
746 |
|
14337
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
747 |
lemma single_valued_confluent: |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
748 |
assumes "single_valued r" and xy: "(x, y) \<in> r\<^sup>*" and xz: "(x, z) \<in> r\<^sup>*" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
749 |
shows "(y, z) \<in> r\<^sup>* \<or> (z, y) \<in> r\<^sup>*" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
750 |
using xy |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
751 |
proof (induction rule: rtrancl_induct) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
752 |
case base |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
753 |
show ?case |
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
754 |
by (simp add: assms) |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
755 |
next |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
756 |
case (step y z) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
757 |
with xz \<open>single_valued r\<close> show ?case |
71627 | 758 |
by (auto elim: converse_rtranclE dest: single_valuedD intro: rtrancl_trans) |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
759 |
qed |
14337
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
760 |
|
63404 | 761 |
lemma r_r_into_trancl: "(a, b) \<in> R \<Longrightarrow> (b, c) \<in> R \<Longrightarrow> (a, c) \<in> R\<^sup>+" |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
762 |
by (fast intro: trancl_trans) |
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
763 |
|
63404 | 764 |
lemma trancl_into_trancl: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" |
63612 | 765 |
by (induct rule: trancl_induct) (fast intro: r_r_into_trancl trancl_trans)+ |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
766 |
|
71627 | 767 |
lemma tranclp_rtranclp_tranclp: |
768 |
assumes "r\<^sup>+\<^sup>+ a b" "r\<^sup>*\<^sup>* b c" shows "r\<^sup>+\<^sup>+ a c" |
|
769 |
proof - |
|
770 |
obtain z where "r a z" "r\<^sup>*\<^sup>* z c" |
|
771 |
using assms by (iprover dest: tranclpD rtranclp_trans) |
|
772 |
then show ?thesis |
|
773 |
by (blast dest: rtranclp_into_tranclp2) |
|
774 |
qed |
|
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
775 |
|
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
776 |
lemma rtranclp_conversep: "r\<inverse>\<inverse>\<^sup>*\<^sup>* = r\<^sup>*\<^sup>*\<inverse>\<inverse>" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
777 |
by(auto simp add: fun_eq_iff intro: rtranclp_converseI rtranclp_converseD) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
778 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
779 |
lemmas symp_rtranclp = sym_rtrancl[to_pred] |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
780 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
781 |
lemmas symp_conv_conversep_eq = sym_conv_converse_eq[to_pred] |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
782 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
783 |
lemmas rtranclp_tranclp_absorb [simp] = rtrancl_trancl_absorb[to_pred] |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
784 |
lemmas tranclp_rtranclp_absorb [simp] = trancl_rtrancl_absorb[to_pred] |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
785 |
lemmas rtranclp_reflclp_absorb [simp] = rtrancl_reflcl_absorb[to_pred] |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
786 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
787 |
lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set] |
22262 | 788 |
|
12691 | 789 |
lemmas transitive_closure_trans [trans] = |
790 |
r_r_into_trancl trancl_trans rtrancl_trans |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
791 |
trancl.trancl_into_trancl trancl_into_trancl2 |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
792 |
rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl |
12691 | 793 |
rtrancl_trancl_trancl trancl_rtrancl_trancl |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
794 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
795 |
lemmas transitive_closurep_trans' [trans] = |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
796 |
tranclp_trans rtranclp_trans |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
797 |
tranclp.trancl_into_trancl tranclp_into_tranclp2 |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
798 |
rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
799 |
rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp |
22262 | 800 |
|
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
801 |
declare trancl_into_rtrancl [elim] |
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
802 |
|
79773
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
803 |
lemma tranclp_ident_if_transp: |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
804 |
assumes "transp R" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
805 |
shows "R\<^sup>+\<^sup>+ = R" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
806 |
proof (intro ext iffI) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
807 |
fix x y |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
808 |
show "R\<^sup>+\<^sup>+ x y \<Longrightarrow> R x y" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
809 |
proof (induction y rule: tranclp_induct) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
810 |
case (base y) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
811 |
thus ?case |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
812 |
by simp |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
813 |
next |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
814 |
case (step y z) |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
815 |
thus ?case |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
816 |
using \<open>transp R\<close>[THEN transpD, of x y z] by simp |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
817 |
qed |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
818 |
next |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
819 |
fix x y |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
820 |
show "R x y \<Longrightarrow> R\<^sup>+\<^sup>+ x y" |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
821 |
using tranclp.r_into_trancl . |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
822 |
qed |
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
823 |
|
79806
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
824 |
text \<open>The following are special cases of @{thm [source] tranclp_ident_if_transp}, |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
825 |
but they appear duplicated in multiple, independent theories, which causes name clashes.\<close> |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
826 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
827 |
lemma (in preorder) tranclp_less[simp]: "(<)\<^sup>+\<^sup>+ = (<)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
828 |
using transp_on_less by (simp only: tranclp_ident_if_transp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
829 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
830 |
lemma (in preorder) tranclp_less_eq[simp]: "(\<le>)\<^sup>+\<^sup>+ = (\<le>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
831 |
using transp_on_le by (simp only: tranclp_ident_if_transp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
832 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
833 |
lemma (in preorder) tranclp_greater[simp]: "(>)\<^sup>+\<^sup>+ = (>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
834 |
using transp_on_greater by (simp only: tranclp_ident_if_transp) |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
835 |
|
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
836 |
lemma (in preorder) tranclp_greater_eq[simp]: "(\<ge>)\<^sup>+\<^sup>+ = (\<ge>)" |
ba8fb71587ae
added lemmas reflclp_(less|greater)_eq[simp], rtranclp_(less|greater)_eq[simp], and tranclp_(less|greater|less_eq|greater_eq)[simp]
desharna
parents:
79773
diff
changeset
|
837 |
using transp_on_ge by (simp only: tranclp_ident_if_transp) |
79773
0e8620af9c91
added lemmas rtranclp_ident_if_reflp_and_transp and tranclp_ident_if_transp
desharna
parents:
79668
diff
changeset
|
838 |
|
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
839 |
subsection \<open>Symmetric closure\<close> |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
840 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
841 |
definition symclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
842 |
where "symclp r x y \<longleftrightarrow> r x y \<or> r y x" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
843 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
844 |
lemma symclpI [simp, intro?]: |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
845 |
shows symclpI1: "r x y \<Longrightarrow> symclp r x y" |
71627 | 846 |
and symclpI2: "r y x \<Longrightarrow> symclp r x y" |
847 |
by(simp_all add: symclp_def) |
|
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
848 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
849 |
lemma symclpE [consumes 1, cases pred]: |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
850 |
assumes "symclp r x y" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
851 |
obtains (base) "r x y" | (sym) "r y x" |
71627 | 852 |
using assms by(auto simp add: symclp_def) |
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
853 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
854 |
lemma symclp_pointfree: "symclp r = sup r r\<inverse>\<inverse>" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
855 |
by(auto simp add: symclp_def fun_eq_iff) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
856 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
857 |
lemma symclp_greater: "r \<le> symclp r" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
858 |
by(simp add: symclp_pointfree) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
859 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
860 |
lemma symclp_conversep [simp]: "symclp r\<inverse>\<inverse> = symclp r" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
861 |
by(simp add: symclp_pointfree sup.commute) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
862 |
|
76675 | 863 |
lemma symp_on_symclp [simp]: "symp_on A (symclp R)" |
864 |
by(auto simp add: symp_on_def elim: symclpE intro: symclpI) |
|
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
865 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
866 |
lemma symp_symclp_eq: "symp r \<Longrightarrow> symclp r = r" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
867 |
by(simp add: symclp_pointfree symp_conv_conversep_eq) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
868 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
869 |
lemma symp_rtranclp_symclp [simp]: "symp (symclp r)\<^sup>*\<^sup>*" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
870 |
by(simp add: symp_rtranclp) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
871 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
872 |
lemma rtranclp_symclp_sym [sym]: "(symclp r)\<^sup>*\<^sup>* x y \<Longrightarrow> (symclp r)\<^sup>*\<^sup>* y x" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
873 |
by(rule sympD[OF symp_rtranclp_symclp]) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
874 |
|
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
875 |
lemma symclp_idem [simp]: "symclp (symclp r) = symclp r" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
876 |
by(simp add: symclp_pointfree sup_commute converse_join) |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
877 |
|
76495
a718547c3493
strengthened lemma reflp_rtranclp and renamed to reflp_on_rtranclp
desharna
parents:
75669
diff
changeset
|
878 |
lemma reflp_on_rtranclp [simp]: "reflp_on A R\<^sup>*\<^sup>*" |
a718547c3493
strengthened lemma reflp_rtranclp and renamed to reflp_on_rtranclp
desharna
parents:
75669
diff
changeset
|
879 |
by (simp add: reflp_on_def) |
a718547c3493
strengthened lemma reflp_rtranclp and renamed to reflp_on_rtranclp
desharna
parents:
75669
diff
changeset
|
880 |
|
63404 | 881 |
|
60758 | 882 |
subsection \<open>The power operation on relations\<close> |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
883 |
|
63404 | 884 |
text \<open>\<open>R ^^ n = R O \<dots> O R\<close>, the n-fold composition of \<open>R\<close>\<close> |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
885 |
|
30971 | 886 |
overloading |
63404 | 887 |
relpow \<equiv> "compow :: nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" |
888 |
relpowp \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)" |
|
30971 | 889 |
begin |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
890 |
|
63404 | 891 |
primrec relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" |
63612 | 892 |
where |
893 |
"relpow 0 R = Id" |
|
894 |
| "relpow (Suc n) R = (R ^^ n) O R" |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
895 |
|
63404 | 896 |
primrec relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)" |
63612 | 897 |
where |
898 |
"relpowp 0 R = HOL.eq" |
|
899 |
| "relpowp (Suc n) R = (R ^^ n) OO R" |
|
47202 | 900 |
|
30971 | 901 |
end |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
902 |
|
47202 | 903 |
lemma relpowp_relpow_eq [pred_set_conv]: |
63404 | 904 |
"(\<lambda>x y. (x, y) \<in> R) ^^ n = (\<lambda>x y. (x, y) \<in> R ^^ n)" for R :: "'a rel" |
47433
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents:
47202
diff
changeset
|
905 |
by (induct n) (simp_all add: relcompp_relcomp_eq) |
47202 | 906 |
|
63404 | 907 |
text \<open>For code generation:\<close> |
46360
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
908 |
|
63404 | 909 |
definition relpow :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" |
910 |
where relpow_code_def [code_abbrev]: "relpow = compow" |
|
46360
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
911 |
|
63404 | 912 |
definition relpowp :: "nat \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool)" |
913 |
where relpowp_code_def [code_abbrev]: "relpowp = compow" |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
914 |
|
46360
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
915 |
lemma [code]: |
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
916 |
"relpow (Suc n) R = (relpow n R) O R" |
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
917 |
"relpow 0 R = Id" |
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
918 |
by (simp_all add: relpow_code_def) |
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
919 |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
920 |
lemma [code]: |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
921 |
"relpowp (Suc n) R = (R ^^ n) OO R" |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
922 |
"relpowp 0 R = HOL.eq" |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
923 |
by (simp_all add: relpowp_code_def) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
924 |
|
46360
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
925 |
hide_const (open) relpow |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
926 |
hide_const (open) relpowp |
46360
5cb81e3fa799
adding code generation for relpow by copying the ideas for code generation of funpow
bulwahn
parents:
46347
diff
changeset
|
927 |
|
63612 | 928 |
lemma relpow_1 [simp]: "R ^^ 1 = R" |
929 |
for R :: "('a \<times> 'a) set" |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
930 |
by simp |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
931 |
|
63612 | 932 |
lemma relpowp_1 [simp]: "P ^^ 1 = P" |
933 |
for P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
934 |
by (fact relpow_1 [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
935 |
|
63404 | 936 |
lemma relpow_0_I: "(x, x) \<in> R ^^ 0" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
937 |
by simp |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
938 |
|
63404 | 939 |
lemma relpowp_0_I: "(P ^^ 0) x x" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
940 |
by (fact relpow_0_I [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
941 |
|
63404 | 942 |
lemma relpow_Suc_I: "(x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
943 |
by auto |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
944 |
|
63404 | 945 |
lemma relpowp_Suc_I: "(P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> (P ^^ Suc n) x z" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
946 |
by (fact relpow_Suc_I [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
947 |
|
63404 | 948 |
lemma relpow_Suc_I2: "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n" |
44890
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
nipkow
parents:
43596
diff
changeset
|
949 |
by (induct n arbitrary: z) (simp, fastforce) |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
950 |
|
63404 | 951 |
lemma relpowp_Suc_I2: "P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> (P ^^ Suc n) x z" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
952 |
by (fact relpow_Suc_I2 [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
953 |
|
63404 | 954 |
lemma relpow_0_E: "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
955 |
by simp |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
956 |
|
63404 | 957 |
lemma relpowp_0_E: "(P ^^ 0) x y \<Longrightarrow> (x = y \<Longrightarrow> Q) \<Longrightarrow> Q" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
958 |
by (fact relpow_0_E [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
959 |
|
63404 | 960 |
lemma relpow_Suc_E: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
961 |
by auto |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
962 |
|
63404 | 963 |
lemma relpowp_Suc_E: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. (P ^^ n) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
964 |
by (fact relpow_Suc_E [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
965 |
|
46362 | 966 |
lemma relpow_E: |
63612 | 967 |
"(x, z) \<in> R ^^ n \<Longrightarrow> |
968 |
(n = 0 \<Longrightarrow> x = z \<Longrightarrow> P) \<Longrightarrow> |
|
969 |
(\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P" |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
970 |
by (cases n) auto |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
971 |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
972 |
lemma relpowp_E: |
63612 | 973 |
"(P ^^ n) x z \<Longrightarrow> |
974 |
(n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow> |
|
975 |
(\<And>y m. n = Suc m \<Longrightarrow> (P ^^ m) x y \<Longrightarrow> P y z \<Longrightarrow> Q) \<Longrightarrow> Q" |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
976 |
by (fact relpow_E [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
977 |
|
63404 | 978 |
lemma relpow_Suc_D2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)" |
63612 | 979 |
by (induct n arbitrary: x z) |
980 |
(blast intro: relpow_0_I relpow_Suc_I elim: relpow_0_E relpow_Suc_E)+ |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
981 |
|
63404 | 982 |
lemma relpowp_Suc_D2: "(P ^^ Suc n) x z \<Longrightarrow> \<exists>y. P x y \<and> (P ^^ n) y z" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
983 |
by (fact relpow_Suc_D2 [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
984 |
|
63404 | 985 |
lemma relpow_Suc_E2: "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> P) \<Longrightarrow> P" |
46362 | 986 |
by (blast dest: relpow_Suc_D2) |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
987 |
|
63404 | 988 |
lemma relpowp_Suc_E2: "(P ^^ Suc n) x z \<Longrightarrow> (\<And>y. P x y \<Longrightarrow> (P ^^ n) y z \<Longrightarrow> Q) \<Longrightarrow> Q" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
989 |
by (fact relpow_Suc_E2 [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
990 |
|
63404 | 991 |
lemma relpow_Suc_D2': "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
992 |
by (induct n) (simp_all, blast) |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
993 |
|
63404 | 994 |
lemma relpowp_Suc_D2': "\<forall>x y z. (P ^^ n) x y \<and> P y z \<longrightarrow> (\<exists>w. P x w \<and> (P ^^ n) w z)" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
995 |
by (fact relpow_Suc_D2' [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
996 |
|
46362 | 997 |
lemma relpow_E2: |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
998 |
assumes "(x, z) \<in> R ^^ n" "n = 0 \<Longrightarrow> x = z \<Longrightarrow> P" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
999 |
"\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1000 |
shows "P" |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1001 |
proof (cases n) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1002 |
case 0 |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1003 |
with assms show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1004 |
by simp |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1005 |
next |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1006 |
case (Suc m) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1007 |
with assms relpow_Suc_D2' [of m R] show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1008 |
by force |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1009 |
qed |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1010 |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1011 |
lemma relpowp_E2: |
63612 | 1012 |
"(P ^^ n) x z \<Longrightarrow> |
1013 |
(n = 0 \<Longrightarrow> x = z \<Longrightarrow> Q) \<Longrightarrow> |
|
1014 |
(\<And>y m. n = Suc m \<Longrightarrow> P x y \<Longrightarrow> (P ^^ m) y z \<Longrightarrow> Q) \<Longrightarrow> Q" |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1015 |
by (fact relpow_E2 [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1016 |
|
79611
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1017 |
lemma relpowp_trans[trans]: "(R ^^ i) x y \<Longrightarrow> (R ^^ j) y z \<Longrightarrow> (R ^^ (i + j)) x z" |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1018 |
proof (induction i arbitrary: x) |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1019 |
case 0 |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1020 |
thus ?case by simp |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1021 |
next |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1022 |
case (Suc i) |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1023 |
obtain x' where "R x x'" and "(R ^^ i) x' y" |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1024 |
using \<open>(R ^^ Suc i) x y\<close>[THEN relpowp_Suc_D2] by auto |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1025 |
|
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1026 |
show "(R ^^ (Suc i + j)) x z" |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1027 |
unfolding add_Suc |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1028 |
proof (rule relpowp_Suc_I2) |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1029 |
show "R x x'" |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1030 |
using \<open>R x x'\<close> . |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1031 |
next |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1032 |
show "(R ^^ (i + j)) x' z" |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1033 |
using Suc.IH[OF \<open>(R ^^ i) x' y\<close> \<open>(R ^^ j) y z\<close>] . |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1034 |
qed |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1035 |
qed |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1036 |
|
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1037 |
lemma relpow_trans[trans]: "(x, y) \<in> R ^^ i \<Longrightarrow> (y, z) \<in> R ^^ j \<Longrightarrow> (x, z) \<in> R ^^ (i + j)" |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1038 |
using relpowp_trans[to_set] . |
97612262718a
added lemmas relpow_trans[trans] and relpowp_trans[trans]
desharna
parents:
77695
diff
changeset
|
1039 |
|
79668
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1040 |
lemma relpowp_left_unique: |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1041 |
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and n :: nat and x y z :: 'a |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1042 |
assumes lunique: "\<And>x y z. R x z \<Longrightarrow> R y z \<Longrightarrow> x = y" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1043 |
shows "(R ^^ n) x z \<Longrightarrow> (R ^^ n) y z \<Longrightarrow> x = y" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1044 |
proof (induction n arbitrary: x y z) |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1045 |
case 0 |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1046 |
thus ?case |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1047 |
by simp |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1048 |
next |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1049 |
case (Suc n') |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1050 |
then obtain x' y' :: 'a where |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1051 |
"(R ^^ n') x x'" and "R x' z" and |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1052 |
"(R ^^ n') y y'" and "R y' z" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1053 |
by auto |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1054 |
|
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1055 |
have "x' = y'" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1056 |
using lunique[OF \<open>R x' z\<close> \<open>R y' z\<close>] . |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1057 |
|
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1058 |
show "x = y" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1059 |
proof (rule Suc.IH) |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1060 |
show "(R ^^ n') x x'" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1061 |
using \<open>(R ^^ n') x x'\<close> . |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1062 |
next |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1063 |
show "(R ^^ n') y x'" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1064 |
using \<open>(R ^^ n') y y'\<close> |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1065 |
unfolding \<open>x' = y'\<close> . |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1066 |
qed |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1067 |
qed |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1068 |
|
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1069 |
lemma relpow_left_unique: |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1070 |
fixes R :: "('a \<times> 'a) set" and n :: nat and x y z :: 'a |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1071 |
shows "(\<And>x y z. (x, z) \<in> R \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> x = y) \<Longrightarrow> |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1072 |
(x, z) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> x = y" |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1073 |
using relpowp_left_unique[to_set] . |
9f36a31fe7ae
added lemmas relpowp_left_unique and relpow_left_unique
desharna
parents:
79667
diff
changeset
|
1074 |
|
79667
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1075 |
lemma relpowp_right_unique: |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1076 |
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and n :: nat and x y z :: 'a |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1077 |
assumes runique: "\<And>x y z. R x y \<Longrightarrow> R x z \<Longrightarrow> y = z" |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1078 |
shows "(R ^^ n) x y \<Longrightarrow> (R ^^ n) x z \<Longrightarrow> y = z" |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1079 |
proof (induction n arbitrary: x y z) |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1080 |
case 0 |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1081 |
thus ?case |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1082 |
by simp |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1083 |
next |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1084 |
case (Suc n') |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1085 |
then obtain x' :: 'a where |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1086 |
"(R ^^ n') x x'" and "R x' y" and "R x' z" |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1087 |
by auto |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1088 |
thus "y = z" |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1089 |
using runique by simp |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1090 |
qed |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1091 |
|
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1092 |
lemma relpow_right_unique: |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1093 |
fixes R :: "('a \<times> 'a) set" and n :: nat and x y z :: 'a |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1094 |
shows "(\<And>x y z. (x, y) \<in> R \<Longrightarrow> (x, z) \<in> R \<Longrightarrow> y = z) \<Longrightarrow> |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1095 |
(x, y) \<in> (R ^^ n) \<Longrightarrow> (x, z) \<in> (R ^^ n) \<Longrightarrow> y = z" |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1096 |
using relpowp_right_unique[to_set] . |
d4c077078497
added lemmas relpowp_right_unique and relpow_right_unique
desharna
parents:
79611
diff
changeset
|
1097 |
|
63404 | 1098 |
lemma relpow_add: "R ^^ (m + n) = R^^m O R^^n" |
45976 | 1099 |
by (induct n) auto |
31351 | 1100 |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1101 |
lemma relpowp_add: "P ^^ (m + n) = P ^^ m OO P ^^ n" |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1102 |
by (fact relpow_add [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1103 |
|
46362 | 1104 |
lemma relpow_commute: "R O R ^^ n = R ^^ n O R" |
63404 | 1105 |
by (induct n) (simp_all add: O_assoc [symmetric]) |
31970
ccaadfcf6941
move rel_pow_commute: "R O R ^^ n = R ^^ n O R" to Transitive_Closure
krauss
parents:
31690
diff
changeset
|
1106 |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1107 |
lemma relpowp_commute: "P OO P ^^ n = P ^^ n OO P" |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1108 |
by (fact relpow_commute [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1109 |
|
63404 | 1110 |
lemma relpow_empty: "0 < n \<Longrightarrow> ({} :: ('a \<times> 'a) set) ^^ n = {}" |
45153 | 1111 |
by (cases n) auto |
45116
f947eeef6b6f
adding lemma about rel_pow in Transitive_Closure for executable equation of the (refl) transitive closure
bulwahn
parents:
44921
diff
changeset
|
1112 |
|
63404 | 1113 |
lemma relpowp_bot: "0 < n \<Longrightarrow> (\<bottom> :: 'a \<Rightarrow> 'a \<Rightarrow> bool) ^^ n = \<bottom>" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1114 |
by (fact relpow_empty [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1115 |
|
46362 | 1116 |
lemma rtrancl_imp_UN_relpow: |
63404 | 1117 |
assumes "p \<in> R\<^sup>*" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1118 |
shows "p \<in> (\<Union>n. R ^^ n)" |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1119 |
proof (cases p) |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1120 |
case (Pair x y) |
63404 | 1121 |
with assms have "(x, y) \<in> R\<^sup>*" by simp |
63612 | 1122 |
then have "(x, y) \<in> (\<Union>n. R ^^ n)" |
1123 |
proof induct |
|
63404 | 1124 |
case base |
1125 |
show ?case by (blast intro: relpow_0_I) |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1126 |
next |
63404 | 1127 |
case step |
1128 |
then show ?case by (blast intro: relpow_Suc_I) |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1129 |
qed |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1130 |
with Pair show ?thesis by simp |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1131 |
qed |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1132 |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1133 |
lemma rtranclp_imp_Sup_relpowp: |
63404 | 1134 |
assumes "(P\<^sup>*\<^sup>*) x y" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1135 |
shows "(\<Squnion>n. P ^^ n) x y" |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
61378
diff
changeset
|
1136 |
using assms and rtrancl_imp_UN_relpow [of "(x, y)", to_pred] by simp |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1137 |
|
46362 | 1138 |
lemma relpow_imp_rtrancl: |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1139 |
assumes "p \<in> R ^^ n" |
63404 | 1140 |
shows "p \<in> R\<^sup>*" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1141 |
proof (cases p) |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1142 |
case (Pair x y) |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1143 |
with assms have "(x, y) \<in> R ^^ n" by simp |
63612 | 1144 |
then have "(x, y) \<in> R\<^sup>*" |
1145 |
proof (induct n arbitrary: x y) |
|
63404 | 1146 |
case 0 |
1147 |
then show ?case by simp |
|
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1148 |
next |
63404 | 1149 |
case Suc |
1150 |
then show ?case |
|
46362 | 1151 |
by (blast elim: relpow_Suc_E intro: rtrancl_into_rtrancl) |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1152 |
qed |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1153 |
with Pair show ?thesis by simp |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1154 |
qed |
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1155 |
|
63404 | 1156 |
lemma relpowp_imp_rtranclp: "(P ^^ n) x y \<Longrightarrow> (P\<^sup>*\<^sup>*) x y" |
1157 |
using relpow_imp_rtrancl [of "(x, y)", to_pred] by simp |
|
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1158 |
|
63404 | 1159 |
lemma rtrancl_is_UN_relpow: "R\<^sup>* = (\<Union>n. R ^^ n)" |
46362 | 1160 |
by (blast intro: rtrancl_imp_UN_relpow relpow_imp_rtrancl) |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1161 |
|
63404 | 1162 |
lemma rtranclp_is_Sup_relpowp: "P\<^sup>*\<^sup>* = (\<Squnion>n. P ^^ n)" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1163 |
using rtrancl_is_UN_relpow [to_pred, of P] by auto |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1164 |
|
63404 | 1165 |
lemma rtrancl_power: "p \<in> R\<^sup>* \<longleftrightarrow> (\<exists>n. p \<in> R ^^ n)" |
46362 | 1166 |
by (simp add: rtrancl_is_UN_relpow) |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1167 |
|
63404 | 1168 |
lemma rtranclp_power: "(P\<^sup>*\<^sup>*) x y \<longleftrightarrow> (\<exists>n. (P ^^ n) x y)" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1169 |
by (simp add: rtranclp_is_Sup_relpowp) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1170 |
|
63404 | 1171 |
lemma trancl_power: "p \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n > 0. p \<in> R ^^ n)" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1172 |
proof - |
71627 | 1173 |
have "(a, b) \<in> R\<^sup>+ \<longleftrightarrow> (\<exists>n>0. (a, b) \<in> R ^^ n)" for a b |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1174 |
proof safe |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1175 |
show "(a, b) \<in> R\<^sup>+ \<Longrightarrow> \<exists>n>0. (a, b) \<in> R ^^ n" |
71627 | 1176 |
by (fastforce simp: rtrancl_is_UN_relpow relcomp_unfold dest: tranclD2) |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1177 |
show "(a, b) \<in> R\<^sup>+" if "n > 0" "(a, b) \<in> R ^^ n" for n |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1178 |
proof (cases n) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1179 |
case (Suc m) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1180 |
with that show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1181 |
by (auto simp: dest: relpow_imp_rtrancl rtrancl_into_trancl1) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1182 |
qed (use that in auto) |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1183 |
qed |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1184 |
then show ?thesis |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1185 |
by (cases p) auto |
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1186 |
qed |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1187 |
|
63404 | 1188 |
lemma tranclp_power: "(P\<^sup>+\<^sup>+) x y \<longleftrightarrow> (\<exists>n > 0. (P ^^ n) x y)" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1189 |
using trancl_power [to_pred, of P "(x, y)"] by simp |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1190 |
|
63404 | 1191 |
lemma rtrancl_imp_relpow: "p \<in> R\<^sup>* \<Longrightarrow> \<exists>n. p \<in> R ^^ n" |
46362 | 1192 |
by (auto dest: rtrancl_imp_UN_relpow) |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1193 |
|
63404 | 1194 |
lemma rtranclp_imp_relpowp: "(P\<^sup>*\<^sup>*) x y \<Longrightarrow> \<exists>n. (P ^^ n) x y" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1195 |
by (auto dest: rtranclp_imp_Sup_relpowp) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1196 |
|
63404 | 1197 |
text \<open>By Sternagel/Thiemann:\<close> |
1198 |
lemma relpow_fun_conv: "(a, b) \<in> R ^^ n \<longleftrightarrow> (\<exists>f. f 0 = a \<and> f n = b \<and> (\<forall>i<n. (f i, f (Suc i)) \<in> R))" |
|
41987 | 1199 |
proof (induct n arbitrary: b) |
63404 | 1200 |
case 0 |
1201 |
show ?case by auto |
|
41987 | 1202 |
next |
1203 |
case (Suc n) |
|
1204 |
show ?case |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
75652
diff
changeset
|
1205 |
proof - |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
75652
diff
changeset
|
1206 |
have "(\<exists>y. (\<exists>f. f 0 = a \<and> f n = y \<and> (\<forall>i<n. (f i,f(Suc i)) \<in> R)) \<and> (y,b) \<in> R) \<longleftrightarrow> |
63404 | 1207 |
(\<exists>f. f 0 = a \<and> f(Suc n) = b \<and> (\<forall>i<Suc n. (f i, f (Suc i)) \<in> R))" |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
75652
diff
changeset
|
1208 |
(is "?l \<longleftrightarrow> ?r") |
41987 | 1209 |
proof |
1210 |
assume ?l |
|
63404 | 1211 |
then obtain c f |
1212 |
where 1: "f 0 = a" "f n = c" "\<And>i. i < n \<Longrightarrow> (f i, f (Suc i)) \<in> R" "(c,b) \<in> R" |
|
1213 |
by auto |
|
41987 | 1214 |
let ?g = "\<lambda> m. if m = Suc n then b else f m" |
63404 | 1215 |
show ?r by (rule exI[of _ ?g]) (simp add: 1) |
41987 | 1216 |
next |
1217 |
assume ?r |
|
63404 | 1218 |
then obtain f where 1: "f 0 = a" "b = f (Suc n)" "\<And>i. i < Suc n \<Longrightarrow> (f i, f (Suc i)) \<in> R" |
1219 |
by auto |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
75652
diff
changeset
|
1220 |
show ?l by (rule exI[of _ "f n"], rule conjI, rule exI[of _ f], auto simp add: 1) |
41987 | 1221 |
qed |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
75652
diff
changeset
|
1222 |
then show ?thesis by (simp add: relcomp_unfold Suc) |
41987 | 1223 |
qed |
1224 |
qed |
|
1225 |
||
63404 | 1226 |
lemma relpowp_fun_conv: "(P ^^ n) x y \<longleftrightarrow> (\<exists>f. f 0 = x \<and> f n = y \<and> (\<forall>i<n. P (f i) (f (Suc i))))" |
47492
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1227 |
by (fact relpow_fun_conv [to_pred]) |
2631a12fb2d1
duplicate "relpow" facts for "relpowp" (to emphasize that both worlds exist and obtain better search results with "find_theorems")
Christian Sternagel
parents:
47433
diff
changeset
|
1228 |
|
46362 | 1229 |
lemma relpow_finite_bounded1: |
63404 | 1230 |
fixes R :: "('a \<times> 'a) set" |
1231 |
assumes "finite R" and "k > 0" |
|
63612 | 1232 |
shows "R^^k \<subseteq> (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)" |
1233 |
(is "_ \<subseteq> ?r") |
|
63404 | 1234 |
proof - |
1235 |
have "(a, b) \<in> R^^(Suc k) \<Longrightarrow> \<exists>n. 0 < n \<and> n \<le> card R \<and> (a, b) \<in> R^^n" for a b k |
|
1236 |
proof (induct k arbitrary: b) |
|
1237 |
case 0 |
|
1238 |
then have "R \<noteq> {}" by auto |
|
1239 |
with card_0_eq[OF \<open>finite R\<close>] have "card R \<ge> Suc 0" by auto |
|
1240 |
then show ?case using 0 by force |
|
1241 |
next |
|
1242 |
case (Suc k) |
|
1243 |
then obtain a' where "(a, a') \<in> R^^(Suc k)" and "(a', b) \<in> R" |
|
1244 |
by auto |
|
1245 |
from Suc(1)[OF \<open>(a, a') \<in> R^^(Suc k)\<close>] obtain n where "n \<le> card R" and "(a, a') \<in> R ^^ n" |
|
1246 |
by auto |
|
1247 |
have "(a, b) \<in> R^^(Suc n)" |
|
1248 |
using \<open>(a, a') \<in> R^^n\<close> and \<open>(a', b)\<in> R\<close> by auto |
|
1249 |
from \<open>n \<le> card R\<close> consider "n < card R" | "n = card R" by force |
|
1250 |
then show ?case |
|
1251 |
proof cases |
|
1252 |
case 1 |
|
1253 |
then show ?thesis |
|
1254 |
using \<open>(a, b) \<in> R^^(Suc n)\<close> Suc_leI[OF \<open>n < card R\<close>] by blast |
|
41987 | 1255 |
next |
63404 | 1256 |
case 2 |
1257 |
from \<open>(a, b) \<in> R ^^ (Suc n)\<close> [unfolded relpow_fun_conv] |
|
1258 |
obtain f where "f 0 = a" and "f (Suc n) = b" |
|
1259 |
and steps: "\<And>i. i \<le> n \<Longrightarrow> (f i, f (Suc i)) \<in> R" by auto |
|
1260 |
let ?p = "\<lambda>i. (f i, f(Suc i))" |
|
1261 |
let ?N = "{i. i \<le> n}" |
|
1262 |
have "?p ` ?N \<subseteq> R" |
|
1263 |
using steps by auto |
|
1264 |
from card_mono[OF assms(1) this] have "card (?p ` ?N) \<le> card R" . |
|
1265 |
also have "\<dots> < card ?N" |
|
1266 |
using \<open>n = card R\<close> by simp |
|
1267 |
finally have "\<not> inj_on ?p ?N" |
|
1268 |
by (rule pigeonhole) |
|
1269 |
then obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i \<noteq> j" and pij: "?p i = ?p j" |
|
1270 |
by (auto simp: inj_on_def) |
|
1271 |
let ?i = "min i j" |
|
1272 |
let ?j = "max i j" |
|
1273 |
have i: "?i \<le> n" and j: "?j \<le> n" and pij: "?p ?i = ?p ?j" and ij: "?i < ?j" |
|
1274 |
using i j ij pij unfolding min_def max_def by auto |
|
1275 |
from i j pij ij obtain i j where i: "i \<le> n" and j: "j \<le> n" and ij: "i < j" |
|
1276 |
and pij: "?p i = ?p j" |
|
1277 |
by blast |
|
1278 |
let ?g = "\<lambda>l. if l \<le> i then f l else f (l + (j - i))" |
|
1279 |
let ?n = "Suc (n - (j - i))" |
|
1280 |
have abl: "(a, b) \<in> R ^^ ?n" |
|
1281 |
unfolding relpow_fun_conv |
|
1282 |
proof (rule exI[of _ ?g], intro conjI impI allI) |
|
1283 |
show "?g ?n = b" |
|
1284 |
using \<open>f(Suc n) = b\<close> j ij by auto |
|
1285 |
next |
|
1286 |
fix k |
|
1287 |
assume "k < ?n" |
|
1288 |
show "(?g k, ?g (Suc k)) \<in> R" |
|
1289 |
proof (cases "k < i") |
|
1290 |
case True |
|
1291 |
with i have "k \<le> n" |
|
1292 |
by auto |
|
1293 |
from steps[OF this] show ?thesis |
|
1294 |
using True by simp |
|
41987 | 1295 |
next |
63404 | 1296 |
case False |
1297 |
then have "i \<le> k" by auto |
|
1298 |
show ?thesis |
|
1299 |
proof (cases "k = i") |
|
41987 | 1300 |
case True |
63404 | 1301 |
then show ?thesis |
1302 |
using ij pij steps[OF i] by simp |
|
41987 | 1303 |
next |
1304 |
case False |
|
63404 | 1305 |
with \<open>i \<le> k\<close> have "i < k" by auto |
1306 |
then have small: "k + (j - i) \<le> n" |
|
1307 |
using \<open>k<?n\<close> by arith |
|
41987 | 1308 |
show ?thesis |
63404 | 1309 |
using steps[OF small] \<open>i<k\<close> by auto |
41987 | 1310 |
qed |
63404 | 1311 |
qed |
1312 |
qed (simp add: \<open>f 0 = a\<close>) |
|
1313 |
moreover have "?n \<le> n" |
|
1314 |
using i j ij by arith |
|
1315 |
ultimately show ?thesis |
|
1316 |
using \<open>n = card R\<close> by blast |
|
41987 | 1317 |
qed |
63404 | 1318 |
qed |
1319 |
then show ?thesis |
|
1320 |
using gr0_implies_Suc[OF \<open>k > 0\<close>] by auto |
|
41987 | 1321 |
qed |
1322 |
||
46362 | 1323 |
lemma relpow_finite_bounded: |
63404 | 1324 |
fixes R :: "('a \<times> 'a) set" |
1325 |
assumes "finite R" |
|
69276 | 1326 |
shows "R^^k \<subseteq> (\<Union>n\<in>{n. n \<le> card R}. R^^n)" |
71627 | 1327 |
proof (cases k) |
1328 |
case (Suc k') |
|
1329 |
then show ?thesis |
|
1330 |
using relpow_finite_bounded1[OF assms, of k] by auto |
|
1331 |
qed force |
|
41987 | 1332 |
|
63404 | 1333 |
lemma rtrancl_finite_eq_relpow: "finite R \<Longrightarrow> R\<^sup>* = (\<Union>n\<in>{n. n \<le> card R}. R^^n)" |
1334 |
by (fastforce simp: rtrancl_power dest: relpow_finite_bounded) |
|
41987 | 1335 |
|
71627 | 1336 |
lemma trancl_finite_eq_relpow: |
1337 |
assumes "finite R" shows "R\<^sup>+ = (\<Union>n\<in>{n. 0 < n \<and> n \<le> card R}. R^^n)" |
|
1338 |
proof - |
|
1339 |
have "\<And>a b n. \<lbrakk>0 < n; (a, b) \<in> R ^^ n\<rbrakk> \<Longrightarrow> \<exists>x>0. x \<le> card R \<and> (a, b) \<in> R ^^ x" |
|
1340 |
using assms by (auto dest: relpow_finite_bounded1) |
|
1341 |
then show ?thesis |
|
1342 |
by (auto simp: trancl_power) |
|
1343 |
qed |
|
41987 | 1344 |
|
47433
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
griff
parents:
47202
diff
changeset
|
1345 |
lemma finite_relcomp[simp,intro]: |
63404 | 1346 |
assumes "finite R" and "finite S" |
1347 |
shows "finite (R O S)" |
|
41987 | 1348 |
proof- |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
62093
diff
changeset
|
1349 |
have "R O S = (\<Union>(x, y)\<in>R. \<Union>(u, v)\<in>S. if u = y then {(x, v)} else {})" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1350 |
by (force simp: split_def image_constant_conv split: if_splits) |
63404 | 1351 |
then show ?thesis |
1352 |
using assms by clarsimp |
|
41987 | 1353 |
qed |
1354 |
||
63404 | 1355 |
lemma finite_relpow [simp, intro]: |
1356 |
fixes R :: "('a \<times> 'a) set" |
|
1357 |
assumes "finite R" |
|
1358 |
shows "n > 0 \<Longrightarrow> finite (R^^n)" |
|
63612 | 1359 |
proof (induct n) |
1360 |
case 0 |
|
1361 |
then show ?case by simp |
|
1362 |
next |
|
1363 |
case (Suc n) |
|
1364 |
then show ?case by (cases n) (use assms in simp_all) |
|
1365 |
qed |
|
41987 | 1366 |
|
46362 | 1367 |
lemma single_valued_relpow: |
63404 | 1368 |
fixes R :: "('a \<times> 'a) set" |
30954
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
haftmann
parents:
30549
diff
changeset
|
1369 |
shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)" |
63612 | 1370 |
proof (induct n arbitrary: R) |
1371 |
case 0 |
|
1372 |
then show ?case by simp |
|
1373 |
next |
|
1374 |
case (Suc n) |
|
1375 |
show ?case |
|
1376 |
by (rule single_valuedI) |
|
1377 |
(use Suc in \<open>fast dest: single_valuedD elim: relpow_Suc_E\<close>) |
|
1378 |
qed |
|
15551 | 1379 |
|
45140 | 1380 |
|
60758 | 1381 |
subsection \<open>Bounded transitive closure\<close> |
45140 | 1382 |
|
1383 |
definition ntrancl :: "nat \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" |
|
63404 | 1384 |
where "ntrancl n R = (\<Union>i\<in>{i. 0 < i \<and> i \<le> Suc n}. R ^^ i)" |
45140 | 1385 |
|
63404 | 1386 |
lemma ntrancl_Zero [simp, code]: "ntrancl 0 R = R" |
45140 | 1387 |
proof |
1388 |
show "R \<subseteq> ntrancl 0 R" |
|
1389 |
unfolding ntrancl_def by fastforce |
|
63404 | 1390 |
have "0 < i \<and> i \<le> Suc 0 \<longleftrightarrow> i = 1" for i |
1391 |
by auto |
|
1392 |
then show "ntrancl 0 R \<le> R" |
|
45140 | 1393 |
unfolding ntrancl_def by auto |
1394 |
qed |
|
1395 |
||
63404 | 1396 |
lemma ntrancl_Suc [simp]: "ntrancl (Suc n) R = ntrancl n R O (Id \<union> R)" |
45140 | 1397 |
proof |
63612 | 1398 |
have "(a, b) \<in> ntrancl n R O (Id \<union> R)" if "(a, b) \<in> ntrancl (Suc n) R" for a b |
1399 |
proof - |
|
1400 |
from that obtain i where "0 < i" "i \<le> Suc (Suc n)" "(a, b) \<in> R ^^ i" |
|
45140 | 1401 |
unfolding ntrancl_def by auto |
63612 | 1402 |
show ?thesis |
45140 | 1403 |
proof (cases "i = 1") |
1404 |
case True |
|
71627 | 1405 |
with \<open>(a, b) \<in> R ^^ i\<close> show ?thesis |
63612 | 1406 |
by (auto simp: ntrancl_def) |
45140 | 1407 |
next |
1408 |
case False |
|
63612 | 1409 |
with \<open>0 < i\<close> obtain j where j: "i = Suc j" "0 < j" |
45140 | 1410 |
by (cases i) auto |
63612 | 1411 |
with \<open>(a, b) \<in> R ^^ i\<close> obtain c where c1: "(a, c) \<in> R ^^ j" and c2: "(c, b) \<in> R" |
45140 | 1412 |
by auto |
60758 | 1413 |
from c1 j \<open>i \<le> Suc (Suc n)\<close> have "(a, c) \<in> ntrancl n R" |
63612 | 1414 |
by (fastforce simp: ntrancl_def) |
1415 |
with c2 show ?thesis by fastforce |
|
45140 | 1416 |
qed |
63612 | 1417 |
qed |
63404 | 1418 |
then show "ntrancl (Suc n) R \<subseteq> ntrancl n R O (Id \<union> R)" |
45140 | 1419 |
by auto |
1420 |
show "ntrancl n R O (Id \<union> R) \<subseteq> ntrancl (Suc n) R" |
|
63612 | 1421 |
by (fastforce simp: ntrancl_def) |
45140 | 1422 |
qed |
1423 |
||
63404 | 1424 |
lemma [code]: "ntrancl (Suc n) r = (let r' = ntrancl n r in r' \<union> r' O r)" |
1425 |
by (auto simp: Let_def) |
|
46347
54870ad19af4
new code equation for ntrancl that allows computation of the transitive closure of sets on infinite types as well
bulwahn
parents:
46127
diff
changeset
|
1426 |
|
63404 | 1427 |
lemma finite_trancl_ntranl: "finite R \<Longrightarrow> trancl R = ntrancl (card R - 1) R" |
68618
3db8520941a4
de-applying (mostly Set_Interval)
paulson <lp15@cam.ac.uk>
parents:
68456
diff
changeset
|
1428 |
by (cases "card R") (auto simp: trancl_finite_eq_relpow relpow_empty ntrancl_def) |
45140 | 1429 |
|
1430 |
||
60758 | 1431 |
subsection \<open>Acyclic relations\<close> |
45139 | 1432 |
|
63404 | 1433 |
definition acyclic :: "('a \<times> 'a) set \<Rightarrow> bool" |
1434 |
where "acyclic r \<longleftrightarrow> (\<forall>x. (x,x) \<notin> r\<^sup>+)" |
|
45139 | 1435 |
|
63404 | 1436 |
abbreviation acyclicP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
1437 |
where "acyclicP r \<equiv> acyclic {(x, y). r x y}" |
|
45139 | 1438 |
|
63404 | 1439 |
lemma acyclic_irrefl [code]: "acyclic r \<longleftrightarrow> irrefl (r\<^sup>+)" |
45139 | 1440 |
by (simp add: acyclic_def irrefl_def) |
1441 |
||
63404 | 1442 |
lemma acyclicI: "\<forall>x. (x, x) \<notin> r\<^sup>+ \<Longrightarrow> acyclic r" |
45139 | 1443 |
by (simp add: acyclic_def) |
1444 |
||
70749
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
paulson <lp15@cam.ac.uk>
parents:
69605
diff
changeset
|
1445 |
lemma (in preorder) acyclicI_order: |
54412 | 1446 |
assumes *: "\<And>a b. (a, b) \<in> r \<Longrightarrow> f b < f a" |
1447 |
shows "acyclic r" |
|
1448 |
proof - |
|
63404 | 1449 |
have "f b < f a" if "(a, b) \<in> r\<^sup>+" for a b |
1450 |
using that by induct (auto intro: * less_trans) |
|
54412 | 1451 |
then show ?thesis |
1452 |
by (auto intro!: acyclicI) |
|
1453 |
qed |
|
1454 |
||
63404 | 1455 |
lemma acyclic_insert [iff]: "acyclic (insert (y, x) r) \<longleftrightarrow> acyclic r \<and> (x, y) \<notin> r\<^sup>*" |
63612 | 1456 |
by (simp add: acyclic_def trancl_insert) (blast intro: rtrancl_trans) |
45139 | 1457 |
|
63404 | 1458 |
lemma acyclic_converse [iff]: "acyclic (r\<inverse>) \<longleftrightarrow> acyclic r" |
1459 |
by (simp add: acyclic_def trancl_converse) |
|
45139 | 1460 |
|
1461 |
lemmas acyclicP_converse [iff] = acyclic_converse [to_pred] |
|
1462 |
||
63404 | 1463 |
lemma acyclic_impl_antisym_rtrancl: "acyclic r \<Longrightarrow> antisym (r\<^sup>*)" |
63612 | 1464 |
by (simp add: acyclic_def antisym_def) |
1465 |
(blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl) |
|
45139 | 1466 |
|
1467 |
(* Other direction: |
|
1468 |
acyclic = no loops |
|
1469 |
antisym = only self loops |
|
63404 | 1470 |
Goalw [acyclic_def,antisym_def] "antisym( r\<^sup>* ) \<Longrightarrow> acyclic(r - Id) |
1471 |
\<Longrightarrow> antisym( r\<^sup>* ) = acyclic(r - Id)"; |
|
45139 | 1472 |
*) |
1473 |
||
63404 | 1474 |
lemma acyclic_subset: "acyclic s \<Longrightarrow> r \<subseteq> s \<Longrightarrow> acyclic r" |
1475 |
unfolding acyclic_def by (blast intro: trancl_mono) |
|
45139 | 1476 |
|
1477 |
||
60758 | 1478 |
subsection \<open>Setup of transitivity reasoner\<close> |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1479 |
|
60758 | 1480 |
ML \<open> |
32215 | 1481 |
structure Trancl_Tac = Trancl_Tac |
1482 |
( |
|
1483 |
val r_into_trancl = @{thm trancl.r_into_trancl}; |
|
1484 |
val trancl_trans = @{thm trancl_trans}; |
|
1485 |
val rtrancl_refl = @{thm rtrancl.rtrancl_refl}; |
|
1486 |
val r_into_rtrancl = @{thm r_into_rtrancl}; |
|
1487 |
val trancl_into_rtrancl = @{thm trancl_into_rtrancl}; |
|
1488 |
val rtrancl_trancl_trancl = @{thm rtrancl_trancl_trancl}; |
|
1489 |
val trancl_rtrancl_trancl = @{thm trancl_rtrancl_trancl}; |
|
1490 |
val rtrancl_trans = @{thm rtrancl_trans}; |
|
15096 | 1491 |
|
74345 | 1492 |
fun decomp \<^Const_>\<open>Trueprop for t\<close> = |
63404 | 1493 |
let |
74375 | 1494 |
fun dec \<^Const_>\<open>Set.member _ for \<^Const_>\<open>Pair _ _ for a b\<close> rel\<close> = |
63404 | 1495 |
let |
74345 | 1496 |
fun decr \<^Const_>\<open>rtrancl _ for r\<close> = (r,"r*") |
1497 |
| decr \<^Const_>\<open>trancl _ for r\<close> = (r,"r+") |
|
63404 | 1498 |
| decr r = (r,"r"); |
1499 |
val (rel,r) = decr (Envir.beta_eta_contract rel); |
|
1500 |
in SOME (a,b,rel,r) end |
|
1501 |
| dec _ = NONE |
|
1502 |
in dec t end |
|
30107
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
berghofe
parents:
29609
diff
changeset
|
1503 |
| decomp _ = NONE; |
32215 | 1504 |
); |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1505 |
|
32215 | 1506 |
structure Tranclp_Tac = Trancl_Tac |
1507 |
( |
|
1508 |
val r_into_trancl = @{thm tranclp.r_into_trancl}; |
|
1509 |
val trancl_trans = @{thm tranclp_trans}; |
|
1510 |
val rtrancl_refl = @{thm rtranclp.rtrancl_refl}; |
|
1511 |
val r_into_rtrancl = @{thm r_into_rtranclp}; |
|
1512 |
val trancl_into_rtrancl = @{thm tranclp_into_rtranclp}; |
|
1513 |
val rtrancl_trancl_trancl = @{thm rtranclp_tranclp_tranclp}; |
|
1514 |
val trancl_rtrancl_trancl = @{thm tranclp_rtranclp_tranclp}; |
|
1515 |
val rtrancl_trans = @{thm rtranclp_trans}; |
|
22262 | 1516 |
|
74345 | 1517 |
fun decomp \<^Const_>\<open>Trueprop for t\<close> = |
63404 | 1518 |
let |
1519 |
fun dec (rel $ a $ b) = |
|
1520 |
let |
|
74345 | 1521 |
fun decr \<^Const_>\<open>rtranclp _ for r\<close> = (r,"r*") |
1522 |
| decr \<^Const_>\<open>tranclp _ for r\<close> = (r,"r+") |
|
63404 | 1523 |
| decr r = (r,"r"); |
1524 |
val (rel,r) = decr rel; |
|
1525 |
in SOME (a, b, rel, r) end |
|
1526 |
| dec _ = NONE |
|
1527 |
in dec t end |
|
30107
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
berghofe
parents:
29609
diff
changeset
|
1528 |
| decomp _ = NONE; |
32215 | 1529 |
); |
60758 | 1530 |
\<close> |
22262 | 1531 |
|
60758 | 1532 |
setup \<open> |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
50616
diff
changeset
|
1533 |
map_theory_simpset (fn ctxt => ctxt |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
50616
diff
changeset
|
1534 |
addSolver (mk_solver "Trancl" Trancl_Tac.trancl_tac) |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
50616
diff
changeset
|
1535 |
addSolver (mk_solver "Rtrancl" Trancl_Tac.rtrancl_tac) |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
50616
diff
changeset
|
1536 |
addSolver (mk_solver "Tranclp" Tranclp_Tac.trancl_tac) |
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
50616
diff
changeset
|
1537 |
addSolver (mk_solver "Rtranclp" Tranclp_Tac.rtrancl_tac)) |
60758 | 1538 |
\<close> |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1539 |
|
71393
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
1540 |
lemma transp_rtranclp [simp]: "transp R\<^sup>*\<^sup>*" |
fce780f9c9c6
new examples of BNF lifting across quotients using a new theory of confluence,
traytel
parents:
70749
diff
changeset
|
1541 |
by(auto simp add: transp_def) |
32215 | 1542 |
|
60758 | 1543 |
text \<open>Optional methods.\<close> |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1544 |
|
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1545 |
method_setup trancl = |
60758 | 1546 |
\<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.trancl_tac)\<close> |
1547 |
\<open>simple transitivity reasoner\<close> |
|
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1548 |
method_setup rtrancl = |
60758 | 1549 |
\<open>Scan.succeed (SIMPLE_METHOD' o Trancl_Tac.rtrancl_tac)\<close> |
1550 |
\<open>simple transitivity reasoner\<close> |
|
22262 | 1551 |
method_setup tranclp = |
60758 | 1552 |
\<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.trancl_tac)\<close> |
1553 |
\<open>simple transitivity reasoner (predicate version)\<close> |
|
22262 | 1554 |
method_setup rtranclp = |
60758 | 1555 |
\<open>Scan.succeed (SIMPLE_METHOD' o Tranclp_Tac.rtrancl_tac)\<close> |
1556 |
\<open>simple transitivity reasoner (predicate version)\<close> |
|
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
1557 |
|
10213 | 1558 |
end |