author | wenzelm |
Mon, 30 Aug 1999 14:11:47 +0200 | |
changeset 7391 | b7ca64c8fa64 |
parent 7082 | f444e632cdf5 |
child 7493 | e6f74eebfab3 |
permissions | -rw-r--r-- |
3366 | 1 |
(* Title: HOL/Divides.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
The division operators div, mod and the divides relation "dvd" |
|
7 |
*) |
|
8 |
||
9 |
||
10 |
(** Less-then properties **) |
|
11 |
||
12 |
val wf_less_trans = [eq_reflection, wf_pred_nat RS wf_trancl] MRS |
|
13 |
def_wfrec RS trans; |
|
14 |
||
5069 | 15 |
Goal "(%m. m mod n) = wfrec (trancl pred_nat) \ |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
16 |
\ (%f j. if j<n | n=0 then j else f (j-n))"; |
4089 | 17 |
by (simp_tac (simpset() addsimps [mod_def]) 1); |
3366 | 18 |
qed "mod_eq"; |
19 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
20 |
Goal "(%m. m div n) = wfrec (trancl pred_nat) \ |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
21 |
\ (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
22 |
by (simp_tac (simpset() addsimps [div_def]) 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
23 |
qed "div_eq"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
24 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
25 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
26 |
(** Aribtrary definitions for division by zero. Useful to simplify |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
27 |
certain equations **) |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
28 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
29 |
Goal "a div 0 = 0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
30 |
by (rtac (div_eq RS wf_less_trans) 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
31 |
by (Asm_simp_tac 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
32 |
qed "DIVISION_BY_ZERO_DIV"; (*NOT for adding to default simpset*) |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
33 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
34 |
Goal "a mod 0 = a"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
35 |
by (rtac (mod_eq RS wf_less_trans) 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
36 |
by (Asm_simp_tac 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
37 |
qed "DIVISION_BY_ZERO_MOD"; (*NOT for adding to default simpset*) |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
38 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
39 |
fun div_undefined_case_tac s i = |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
40 |
case_tac s i THEN |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
41 |
Full_simp_tac (i+1) THEN |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
42 |
asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_DIV, |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
43 |
DIVISION_BY_ZERO_MOD]) i; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
44 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
45 |
(*** Remainder ***) |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
46 |
|
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
47 |
Goal "m<n ==> m mod n = (m::nat)"; |
3366 | 48 |
by (rtac (mod_eq RS wf_less_trans) 1); |
49 |
by (Asm_simp_tac 1); |
|
50 |
qed "mod_less"; |
|
51 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
52 |
Goal "~ m < (n::nat) ==> m mod n = (m-n) mod n"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
53 |
by (div_undefined_case_tac "n=0" 1); |
3366 | 54 |
by (rtac (mod_eq RS wf_less_trans) 1); |
4089 | 55 |
by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1); |
3366 | 56 |
qed "mod_geq"; |
57 |
||
5415 | 58 |
(*Avoids the ugly ~m<n above*) |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
59 |
Goal "(n::nat) <= m ==> m mod n = (m-n) mod n"; |
5415 | 60 |
by (asm_simp_tac (simpset() addsimps [mod_geq, not_less_iff_le]) 1); |
61 |
qed "le_mod_geq"; |
|
62 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
63 |
Goal "m mod (n::nat) = (if m<n then m else (m-n) mod n)"; |
4774 | 64 |
by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]) 1); |
65 |
qed "mod_if"; |
|
66 |
||
5069 | 67 |
Goal "m mod 1 = 0"; |
3366 | 68 |
by (induct_tac "m" 1); |
4089 | 69 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]))); |
3366 | 70 |
qed "mod_1"; |
71 |
Addsimps [mod_1]; |
|
72 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
73 |
Goal "n mod n = 0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
74 |
by (div_undefined_case_tac "n=0" 1); |
4089 | 75 |
by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]) 1); |
3366 | 76 |
qed "mod_self"; |
77 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
78 |
Goal "(m+n) mod n = m mod (n::nat)"; |
3366 | 79 |
by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1); |
80 |
by (stac (mod_geq RS sym) 2); |
|
4089 | 81 |
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute]))); |
4811 | 82 |
qed "mod_add_self2"; |
4810 | 83 |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
84 |
Goal "(n+m) mod n = m mod (n::nat)"; |
4811 | 85 |
by (asm_simp_tac (simpset() addsimps [add_commute, mod_add_self2]) 1); |
86 |
qed "mod_add_self1"; |
|
4810 | 87 |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
88 |
Goal "(m + k*n) mod n = m mod (n::nat)"; |
4810 | 89 |
by (induct_tac "k" 1); |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
90 |
by (ALLGOALS |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
91 |
(asm_simp_tac |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
92 |
(simpset() addsimps [read_instantiate [("y","n")] add_left_commute, |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
93 |
mod_add_self1]))); |
4811 | 94 |
qed "mod_mult_self1"; |
4810 | 95 |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
96 |
Goal "(m + n*k) mod n = m mod (n::nat)"; |
4811 | 97 |
by (asm_simp_tac (simpset() addsimps [mult_commute, mod_mult_self1]) 1); |
98 |
qed "mod_mult_self2"; |
|
4810 | 99 |
|
4811 | 100 |
Addsimps [mod_mult_self1, mod_mult_self2]; |
3366 | 101 |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
102 |
Goal "(m mod n) * (k::nat) = (m*k) mod (n*k)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
103 |
by (div_undefined_case_tac "n=0" 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
104 |
by (div_undefined_case_tac "k=0" 1); |
3366 | 105 |
by (res_inst_tac [("n","m")] less_induct 1); |
4774 | 106 |
by (stac mod_if 1); |
107 |
by (Asm_simp_tac 1); |
|
108 |
by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq, |
|
109 |
diff_less, diff_mult_distrib]) 1); |
|
3366 | 110 |
qed "mod_mult_distrib"; |
111 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
112 |
Goal "(k::nat) * (m mod n) = (k*m) mod (k*n)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
113 |
by (asm_simp_tac |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
114 |
(simpset() addsimps [read_instantiate [("m","k")] mult_commute, |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
115 |
mod_mult_distrib]) 1); |
3366 | 116 |
qed "mod_mult_distrib2"; |
117 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
118 |
Goal "(m*n) mod n = 0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
119 |
by (div_undefined_case_tac "n=0" 1); |
3366 | 120 |
by (induct_tac "m" 1); |
4089 | 121 |
by (asm_simp_tac (simpset() addsimps [mod_less]) 1); |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
122 |
by (rename_tac "k" 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
123 |
by (cut_inst_tac [("m","k*n"),("n","n")] mod_add_self2 1); |
4089 | 124 |
by (asm_full_simp_tac (simpset() addsimps [add_commute]) 1); |
3366 | 125 |
qed "mod_mult_self_is_0"; |
7082 | 126 |
|
127 |
Goal "(n*m) mod n = 0"; |
|
128 |
by (simp_tac (simpset() addsimps [mult_commute, mod_mult_self_is_0]) 1); |
|
129 |
qed "mod_mult_self1_is_0"; |
|
130 |
Addsimps [mod_mult_self_is_0, mod_mult_self1_is_0]; |
|
3366 | 131 |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
132 |
|
3366 | 133 |
(*** Quotient ***) |
134 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
135 |
Goal "m<n ==> m div n = 0"; |
3366 | 136 |
by (rtac (div_eq RS wf_less_trans) 1); |
137 |
by (Asm_simp_tac 1); |
|
138 |
qed "div_less"; |
|
139 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
140 |
Goal "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"; |
3366 | 141 |
by (rtac (div_eq RS wf_less_trans) 1); |
4089 | 142 |
by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1); |
3366 | 143 |
qed "div_geq"; |
144 |
||
5415 | 145 |
(*Avoids the ugly ~m<n above*) |
146 |
Goal "[| 0<n; n<=m |] ==> m div n = Suc((m-n) div n)"; |
|
147 |
by (asm_simp_tac (simpset() addsimps [div_geq, not_less_iff_le]) 1); |
|
148 |
qed "le_div_geq"; |
|
149 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
150 |
Goal "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"; |
4774 | 151 |
by (asm_simp_tac (simpset() addsimps [div_less, div_geq]) 1); |
152 |
qed "div_if"; |
|
153 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
154 |
|
3366 | 155 |
(*Main Result about quotient and remainder.*) |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
156 |
Goal "(m div n)*n + m mod n = (m::nat)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
157 |
by (div_undefined_case_tac "n=0" 1); |
3366 | 158 |
by (res_inst_tac [("n","m")] less_induct 1); |
4774 | 159 |
by (stac mod_if 1); |
160 |
by (ALLGOALS (asm_simp_tac |
|
5537 | 161 |
(simpset() addsimps [add_assoc, div_less, div_geq, |
162 |
add_diff_inverse, diff_less]))); |
|
3366 | 163 |
qed "mod_div_equality"; |
164 |
||
4358 | 165 |
(* a simple rearrangement of mod_div_equality: *) |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
166 |
Goal "(n::nat) * (m div n) = m - (m mod n)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
167 |
by (cut_inst_tac [("m","m"),("n","n")] mod_div_equality 1); |
4358 | 168 |
by (EVERY1[etac subst, simp_tac (simpset() addsimps mult_ac), |
169 |
K(IF_UNSOLVED no_tac)]); |
|
170 |
qed "mult_div_cancel"; |
|
171 |
||
5069 | 172 |
Goal "m div 1 = m"; |
3366 | 173 |
by (induct_tac "m" 1); |
4089 | 174 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [div_less, div_geq]))); |
3366 | 175 |
qed "div_1"; |
176 |
Addsimps [div_1]; |
|
177 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
178 |
Goal "0<n ==> n div n = 1"; |
4089 | 179 |
by (asm_simp_tac (simpset() addsimps [div_less, div_geq]) 1); |
3366 | 180 |
qed "div_self"; |
181 |
||
4811 | 182 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
183 |
Goal "0<n ==> (m+n) div n = Suc (m div n)"; |
4811 | 184 |
by (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n)" 1); |
185 |
by (stac (div_geq RS sym) 2); |
|
186 |
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute]))); |
|
187 |
qed "div_add_self2"; |
|
188 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
189 |
Goal "0<n ==> (n+m) div n = Suc (m div n)"; |
4811 | 190 |
by (asm_simp_tac (simpset() addsimps [add_commute, div_add_self2]) 1); |
191 |
qed "div_add_self1"; |
|
192 |
||
5069 | 193 |
Goal "!!n. 0<n ==> (m + k*n) div n = k + m div n"; |
4811 | 194 |
by (induct_tac "k" 1); |
5537 | 195 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps add_ac @ [div_add_self1]))); |
4811 | 196 |
qed "div_mult_self1"; |
197 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
198 |
Goal "0<n ==> (m + n*k) div n = k + m div n"; |
4811 | 199 |
by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self1]) 1); |
200 |
qed "div_mult_self2"; |
|
201 |
||
202 |
Addsimps [div_mult_self1, div_mult_self2]; |
|
203 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
204 |
(** A dividend of zero **) |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
205 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
206 |
Goal "0 div m = 0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
207 |
by (div_undefined_case_tac "m=0" 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
208 |
by (asm_simp_tac (simpset() addsimps [div_less]) 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
209 |
qed "div_0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
210 |
|
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
211 |
Goal "0 mod m = 0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
212 |
by (div_undefined_case_tac "m=0" 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
213 |
by (asm_simp_tac (simpset() addsimps [mod_less]) 1); |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
214 |
qed "mod_0"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
215 |
Addsimps [div_0, mod_0]; |
4811 | 216 |
|
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
217 |
(* Monotonicity of div in first argument *) |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
218 |
Goal "ALL m::nat. m <= n --> (m div k) <= (n div k)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
219 |
by (div_undefined_case_tac "k=0" 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
220 |
by (res_inst_tac [("n","n")] less_induct 1); |
3718 | 221 |
by (Clarify_tac 1); |
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
222 |
by (case_tac "n<k" 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
223 |
(* 1 case n<k *) |
4089 | 224 |
by (asm_simp_tac (simpset() addsimps [div_less]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
225 |
(* 2 case n >= k *) |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
226 |
by (case_tac "m<k" 1); |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
227 |
(* 2.1 case m<k *) |
4089 | 228 |
by (asm_simp_tac (simpset() addsimps [div_less]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
229 |
(* 2.2 case m>=k *) |
4089 | 230 |
by (asm_simp_tac (simpset() addsimps [div_geq, diff_less, diff_le_mono]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
231 |
qed_spec_mp "div_le_mono"; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
232 |
|
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
233 |
(* Antimonotonicity of div in second argument *) |
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
234 |
Goal "[| 0<m; m<=n |] ==> (k div n) <= (k div m)"; |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
235 |
by (subgoal_tac "0<n" 1); |
6073 | 236 |
by (Asm_simp_tac 2); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
237 |
by (res_inst_tac [("n","k")] less_induct 1); |
3496 | 238 |
by (rename_tac "k" 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
239 |
by (case_tac "k<n" 1); |
4089 | 240 |
by (asm_simp_tac (simpset() addsimps [div_less]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
241 |
by (subgoal_tac "~(k<m)" 1); |
6073 | 242 |
by (Asm_simp_tac 2); |
4089 | 243 |
by (asm_simp_tac (simpset() addsimps [div_geq]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
244 |
by (subgoal_tac "(k-n) div n <= (k-m) div n" 1); |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
245 |
by (REPEAT (ares_tac [div_le_mono,diff_le_mono2] 2)); |
5318 | 246 |
by (rtac le_trans 1); |
5316 | 247 |
by (Asm_simp_tac 1); |
248 |
by (asm_simp_tac (simpset() addsimps [diff_less]) 1); |
|
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
249 |
qed "div_le_mono2"; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
250 |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
251 |
Goal "m div n <= (m::nat)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
252 |
by (div_undefined_case_tac "n=0" 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
253 |
by (subgoal_tac "m div n <= m div 1" 1); |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
254 |
by (Asm_full_simp_tac 1); |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
255 |
by (rtac div_le_mono2 1); |
6073 | 256 |
by (ALLGOALS Asm_simp_tac); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
257 |
qed "div_le_dividend"; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
258 |
Addsimps [div_le_dividend]; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
259 |
|
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
260 |
(* Similar for "less than" *) |
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
261 |
Goal "1<n ==> (0 < m) --> (m div n < m)"; |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
262 |
by (res_inst_tac [("n","m")] less_induct 1); |
3496 | 263 |
by (rename_tac "m" 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
264 |
by (case_tac "m<n" 1); |
4089 | 265 |
by (asm_full_simp_tac (simpset() addsimps [div_less]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
266 |
by (subgoal_tac "0<n" 1); |
6073 | 267 |
by (Asm_simp_tac 2); |
4089 | 268 |
by (asm_full_simp_tac (simpset() addsimps [div_geq]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
269 |
by (case_tac "n<m" 1); |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
270 |
by (subgoal_tac "(m-n) div n < (m-n)" 1); |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
271 |
by (REPEAT (ares_tac [impI,less_trans_Suc] 1)); |
4089 | 272 |
by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1); |
273 |
by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1); |
|
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
274 |
(* case n=m *) |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
275 |
by (subgoal_tac "m=n" 1); |
6073 | 276 |
by (Asm_simp_tac 2); |
4089 | 277 |
by (asm_simp_tac (simpset() addsimps [div_less]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
278 |
qed_spec_mp "div_less_dividend"; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
279 |
Addsimps [div_less_dividend]; |
3366 | 280 |
|
281 |
(*** Further facts about mod (mainly for the mutilated chess board ***) |
|
282 |
||
5278 | 283 |
Goal "0<n ==> Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"; |
3366 | 284 |
by (res_inst_tac [("n","m")] less_induct 1); |
285 |
by (excluded_middle_tac "Suc(na)<n" 1); |
|
286 |
(* case Suc(na) < n *) |
|
287 |
by (forward_tac [lessI RS less_trans] 2); |
|
5355 | 288 |
by (asm_simp_tac (simpset() addsimps [mod_less, less_not_refl3]) 2); |
3366 | 289 |
(* case n <= Suc(na) *) |
5415 | 290 |
by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, le_Suc_eq, |
291 |
mod_geq]) 1); |
|
292 |
by (etac disjE 1); |
|
293 |
by (asm_simp_tac (simpset() addsimps [mod_less]) 2); |
|
7059 | 294 |
by (asm_simp_tac (simpset() addsimps [Suc_diff_le, diff_less, |
5415 | 295 |
le_mod_geq]) 1); |
3366 | 296 |
qed "mod_Suc"; |
297 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
298 |
Goal "0<n ==> m mod n < n"; |
3366 | 299 |
by (res_inst_tac [("n","m")] less_induct 1); |
5498 | 300 |
by (case_tac "na<n" 1); |
301 |
(*case n le na*) |
|
302 |
by (asm_full_simp_tac (simpset() addsimps [mod_geq, diff_less]) 2); |
|
3366 | 303 |
(*case na<n*) |
5498 | 304 |
by (asm_simp_tac (simpset() addsimps [mod_less]) 1); |
3366 | 305 |
qed "mod_less_divisor"; |
306 |
||
307 |
||
308 |
(** Evens and Odds **) |
|
309 |
||
310 |
(*With less_zeroE, causes case analysis on b<2*) |
|
311 |
AddSEs [less_SucE]; |
|
312 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
313 |
Goal "b<2 ==> (k mod 2 = b) | (k mod 2 = (if b=1 then 0 else 1))"; |
3366 | 314 |
by (subgoal_tac "k mod 2 < 2" 1); |
4089 | 315 |
by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2); |
4686 | 316 |
by (Asm_simp_tac 1); |
4356 | 317 |
by Safe_tac; |
3366 | 318 |
qed "mod2_cases"; |
319 |
||
5069 | 320 |
Goal "Suc(Suc(m)) mod 2 = m mod 2"; |
3366 | 321 |
by (subgoal_tac "m mod 2 < 2" 1); |
4089 | 322 |
by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2); |
3724 | 323 |
by Safe_tac; |
4089 | 324 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_Suc]))); |
3366 | 325 |
qed "mod2_Suc_Suc"; |
326 |
Addsimps [mod2_Suc_Suc]; |
|
327 |
||
5069 | 328 |
Goal "(0 < m mod 2) = (m mod 2 = 1)"; |
3366 | 329 |
by (subgoal_tac "m mod 2 < 2" 1); |
4089 | 330 |
by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2); |
4477
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
paulson
parents:
4423
diff
changeset
|
331 |
by Auto_tac; |
4356 | 332 |
qed "mod2_gr_0"; |
333 |
Addsimps [mod2_gr_0]; |
|
334 |
||
5069 | 335 |
Goal "(m+m) mod 2 = 0"; |
3366 | 336 |
by (induct_tac "m" 1); |
4089 | 337 |
by (simp_tac (simpset() addsimps [mod_less]) 1); |
3427
e7cef2081106
Removed a few redundant additions of simprules or classical rules
paulson
parents:
3366
diff
changeset
|
338 |
by (Asm_simp_tac 1); |
4385 | 339 |
qed "mod2_add_self_eq_0"; |
340 |
Addsimps [mod2_add_self_eq_0]; |
|
341 |
||
5069 | 342 |
Goal "((m+m)+n) mod 2 = n mod 2"; |
4385 | 343 |
by (induct_tac "m" 1); |
344 |
by (simp_tac (simpset() addsimps [mod_less]) 1); |
|
345 |
by (Asm_simp_tac 1); |
|
3366 | 346 |
qed "mod2_add_self"; |
347 |
Addsimps [mod2_add_self]; |
|
348 |
||
5498 | 349 |
(*Restore the default*) |
3366 | 350 |
Delrules [less_SucE]; |
351 |
||
352 |
(*** More division laws ***) |
|
353 |
||
7007 | 354 |
Goal "0<n ==> (m*n) div n = m"; |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
355 |
by (cut_inst_tac [("m", "m*n"),("n","n")] mod_div_equality 1); |
4089 | 356 |
by (asm_full_simp_tac (simpset() addsimps [mod_mult_self_is_0]) 1); |
3366 | 357 |
qed "div_mult_self_is_m"; |
7082 | 358 |
|
359 |
Goal "0<n ==> (n*m) div n = m"; |
|
360 |
by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self_is_m]) 1); |
|
361 |
qed "div_mult_self1_is_m"; |
|
362 |
Addsimps [div_mult_self_is_m, div_mult_self1_is_m]; |
|
3366 | 363 |
|
364 |
(*Cancellation law for division*) |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
365 |
Goal "0<k ==> (k*m) div (k*n) = m div n"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
366 |
by (div_undefined_case_tac "n=0" 1); |
3366 | 367 |
by (res_inst_tac [("n","m")] less_induct 1); |
368 |
by (case_tac "na<n" 1); |
|
4089 | 369 |
by (asm_simp_tac (simpset() addsimps [div_less, zero_less_mult_iff, |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
370 |
mult_less_mono2]) 1); |
3366 | 371 |
by (subgoal_tac "~ k*na < k*n" 1); |
372 |
by (asm_simp_tac |
|
4089 | 373 |
(simpset() addsimps [zero_less_mult_iff, div_geq, |
5415 | 374 |
diff_mult_distrib2 RS sym, diff_less]) 1); |
4089 | 375 |
by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, |
3366 | 376 |
le_refl RS mult_le_mono]) 1); |
377 |
qed "div_cancel"; |
|
378 |
Addsimps [div_cancel]; |
|
379 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
380 |
(*mod_mult_distrib2 above is the counterpart for remainder*) |
3366 | 381 |
|
382 |
||
383 |
(************************************************) |
|
384 |
(** Divides Relation **) |
|
385 |
(************************************************) |
|
386 |
||
5069 | 387 |
Goalw [dvd_def] "m dvd 0"; |
4089 | 388 |
by (blast_tac (claset() addIs [mult_0_right RS sym]) 1); |
3366 | 389 |
qed "dvd_0_right"; |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
390 |
AddIffs [dvd_0_right]; |
3366 | 391 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
392 |
Goalw [dvd_def] "0 dvd m ==> m = 0"; |
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
393 |
by Auto_tac; |
3366 | 394 |
qed "dvd_0_left"; |
395 |
||
5069 | 396 |
Goalw [dvd_def] "1 dvd k"; |
3366 | 397 |
by (Simp_tac 1); |
398 |
qed "dvd_1_left"; |
|
399 |
AddIffs [dvd_1_left]; |
|
400 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
401 |
Goalw [dvd_def] "m dvd (m::nat)"; |
4089 | 402 |
by (blast_tac (claset() addIs [mult_1_right RS sym]) 1); |
3366 | 403 |
qed "dvd_refl"; |
404 |
Addsimps [dvd_refl]; |
|
405 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
406 |
Goalw [dvd_def] "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"; |
4089 | 407 |
by (blast_tac (claset() addIs [mult_assoc] ) 1); |
3366 | 408 |
qed "dvd_trans"; |
409 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
410 |
Goalw [dvd_def] "[| m dvd n; n dvd m |] ==> m = (n::nat)"; |
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
411 |
by (force_tac (claset() addDs [mult_eq_self_implies_10], |
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
412 |
simpset() addsimps [mult_assoc, mult_eq_1_iff]) 1); |
3366 | 413 |
qed "dvd_anti_sym"; |
414 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
415 |
Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"; |
4089 | 416 |
by (blast_tac (claset() addIs [add_mult_distrib2 RS sym]) 1); |
3366 | 417 |
qed "dvd_add"; |
418 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
419 |
Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"; |
4089 | 420 |
by (blast_tac (claset() addIs [diff_mult_distrib2 RS sym]) 1); |
3366 | 421 |
qed "dvd_diff"; |
422 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
423 |
Goal "[| k dvd (m-n); k dvd n; n<=m |] ==> k dvd (m::nat)"; |
3457 | 424 |
by (etac (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1); |
4089 | 425 |
by (blast_tac (claset() addIs [dvd_add]) 1); |
3366 | 426 |
qed "dvd_diffD"; |
427 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
428 |
Goalw [dvd_def] "k dvd n ==> k dvd (m*n :: nat)"; |
4089 | 429 |
by (blast_tac (claset() addIs [mult_left_commute]) 1); |
3366 | 430 |
qed "dvd_mult"; |
431 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
432 |
Goal "k dvd m ==> k dvd (m*n :: nat)"; |
3366 | 433 |
by (stac mult_commute 1); |
434 |
by (etac dvd_mult 1); |
|
435 |
qed "dvd_mult2"; |
|
436 |
||
437 |
(* k dvd (m*k) *) |
|
438 |
AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2]; |
|
439 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
440 |
Goalw [dvd_def] "[| f dvd m; f dvd n; 0<n |] ==> f dvd (m mod n)"; |
3718 | 441 |
by (Clarify_tac 1); |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
442 |
by (Full_simp_tac 1); |
3366 | 443 |
by (res_inst_tac |
444 |
[("x", "(((k div ka)*ka + k mod ka) - ((f*k) div (f*ka)) * ka)")] |
|
445 |
exI 1); |
|
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
446 |
by (asm_simp_tac |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
447 |
(simpset() addsimps [diff_mult_distrib2, mod_mult_distrib2 RS sym, |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
448 |
add_mult_distrib2]) 1); |
3366 | 449 |
qed "dvd_mod"; |
450 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
451 |
Goal "[| (k::nat) dvd (m mod n); k dvd n |] ==> k dvd m"; |
3366 | 452 |
by (subgoal_tac "k dvd ((m div n)*n + m mod n)" 1); |
4089 | 453 |
by (asm_simp_tac (simpset() addsimps [dvd_add, dvd_mult]) 2); |
4356 | 454 |
by (asm_full_simp_tac (simpset() addsimps [mod_div_equality]) 1); |
3366 | 455 |
qed "dvd_mod_imp_dvd"; |
456 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
457 |
Goalw [dvd_def] "!!k::nat. [| (k*m) dvd (k*n); 0<k |] ==> m dvd n"; |
3366 | 458 |
by (etac exE 1); |
4089 | 459 |
by (asm_full_simp_tac (simpset() addsimps mult_ac) 1); |
3366 | 460 |
by (Blast_tac 1); |
461 |
qed "dvd_mult_cancel"; |
|
462 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
463 |
Goalw [dvd_def] "[| i dvd m; j dvd n|] ==> (i*j) dvd (m*n :: nat)"; |
3718 | 464 |
by (Clarify_tac 1); |
3366 | 465 |
by (res_inst_tac [("x","k*ka")] exI 1); |
4089 | 466 |
by (asm_simp_tac (simpset() addsimps mult_ac) 1); |
3366 | 467 |
qed "mult_dvd_mono"; |
468 |
||
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
6073
diff
changeset
|
469 |
Goalw [dvd_def] "(i*j :: nat) dvd k ==> i dvd k"; |
4089 | 470 |
by (full_simp_tac (simpset() addsimps [mult_assoc]) 1); |
3366 | 471 |
by (Blast_tac 1); |
472 |
qed "dvd_mult_left"; |
|
473 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
474 |
Goalw [dvd_def] "[| k dvd n; 0 < n |] ==> k <= n"; |
3718 | 475 |
by (Clarify_tac 1); |
4089 | 476 |
by (ALLGOALS (full_simp_tac (simpset() addsimps [zero_less_mult_iff]))); |
3457 | 477 |
by (etac conjE 1); |
478 |
by (rtac le_trans 1); |
|
479 |
by (rtac (le_refl RS mult_le_mono) 2); |
|
3366 | 480 |
by (etac Suc_leI 2); |
481 |
by (Simp_tac 1); |
|
482 |
qed "dvd_imp_le"; |
|
483 |
||
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
484 |
Goalw [dvd_def] "(k dvd n) = (n mod k = 0)"; |
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
485 |
by (div_undefined_case_tac "k=0" 1); |
3724 | 486 |
by Safe_tac; |
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5069
diff
changeset
|
487 |
by (asm_simp_tac (simpset() addsimps [mult_commute]) 1); |
7029
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
paulson
parents:
7007
diff
changeset
|
488 |
by (res_inst_tac [("t","n"),("n1","k")] (mod_div_equality RS subst) 1); |
3366 | 489 |
by (stac mult_commute 1); |
490 |
by (Asm_simp_tac 1); |
|
491 |
qed "dvd_eq_mod_eq_0"; |