| author | krauss | 
| Wed, 08 Jun 2011 00:01:20 +0200 | |
| changeset 43257 | b81fd5c8f2dc | 
| parent 41959 | b460124855b8 | 
| child 45607 | 16b4f5774621 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Parity.thy | 
| 2 | Author: Jeremy Avigad | |
| 3 | Author: Jacques D. Fleuriot | |
| 21256 | 4 | *) | 
| 5 | ||
| 6 | header {* Even and Odd for int and nat *}
 | |
| 7 | ||
| 8 | theory Parity | |
| 30738 | 9 | imports Main | 
| 21256 | 10 | begin | 
| 11 | ||
| 29608 | 12 | class even_odd = | 
| 22390 | 13 | fixes even :: "'a \<Rightarrow> bool" | 
| 21256 | 14 | |
| 15 | abbreviation | |
| 22390 | 16 | odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where | 
| 17 | "odd x \<equiv> \<not> even x" | |
| 18 | ||
| 26259 | 19 | instantiation nat and int :: even_odd | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 20 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 21 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 22 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 23 | even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0" | 
| 22390 | 24 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 25 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 26 | even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 27 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 28 | instance .. | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 29 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 30 | end | 
| 21256 | 31 | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 32 | lemma transfer_int_nat_relations: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 33 | "even (int x) \<longleftrightarrow> even x" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 34 | by (simp add: even_nat_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 35 | |
| 35644 | 36 | declare transfer_morphism_int_nat[transfer add return: | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 37 | transfer_int_nat_relations | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 38 | ] | 
| 21256 | 39 | |
| 31148 | 40 | lemma even_zero_int[simp]: "even (0::int)" by presburger | 
| 41 | ||
| 42 | lemma odd_one_int[simp]: "odd (1::int)" by presburger | |
| 43 | ||
| 44 | lemma even_zero_nat[simp]: "even (0::nat)" by presburger | |
| 45 | ||
| 31718 | 46 | lemma odd_1_nat [simp]: "odd (1::nat)" by presburger | 
| 31148 | 47 | |
| 48 | declare even_def[of "number_of v", standard, simp] | |
| 49 | ||
| 50 | declare even_nat_def[of "number_of v", standard, simp] | |
| 51 | ||
| 21256 | 52 | subsection {* Even and odd are mutually exclusive *}
 | 
| 53 | ||
| 21263 | 54 | lemma int_pos_lt_two_imp_zero_or_one: | 
| 21256 | 55 | "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1" | 
| 23522 | 56 | by presburger | 
| 21256 | 57 | |
| 23522 | 58 | lemma neq_one_mod_two [simp, presburger]: | 
| 59 | "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger | |
| 21256 | 60 | |
| 25600 | 61 | |
| 21256 | 62 | subsection {* Behavior under integer arithmetic operations *}
 | 
| 27668 | 63 | declare dvd_def[algebra] | 
| 64 | lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x" | |
| 36840 | 65 | by presburger | 
| 27668 | 66 | lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x" | 
| 67 | by presburger | |
| 21256 | 68 | |
| 69 | lemma even_times_anything: "even (x::int) ==> even (x * y)" | |
| 27668 | 70 | by algebra | 
| 21256 | 71 | |
| 27668 | 72 | lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra | 
| 21256 | 73 | |
| 27668 | 74 | lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" | 
| 21256 | 75 | by (simp add: even_def zmod_zmult1_eq) | 
| 76 | ||
| 31148 | 77 | lemma even_product[simp,presburger]: "even((x::int) * y) = (even x | even y)" | 
| 21263 | 78 | apply (auto simp add: even_times_anything anything_times_even) | 
| 21256 | 79 | apply (rule ccontr) | 
| 80 | apply (auto simp add: odd_times_odd) | |
| 81 | done | |
| 82 | ||
| 83 | lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" | |
| 31148 | 84 | by presburger | 
| 21256 | 85 | |
| 86 | lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" | |
| 31148 | 87 | by presburger | 
| 21256 | 88 | |
| 89 | lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" | |
| 31148 | 90 | by presburger | 
| 21256 | 91 | |
| 23522 | 92 | lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger | 
| 21256 | 93 | |
| 31148 | 94 | lemma even_sum[simp,presburger]: | 
| 95 | "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" | |
| 96 | by presburger | |
| 21256 | 97 | |
| 31148 | 98 | lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x" | 
| 99 | by presburger | |
| 21256 | 100 | |
| 31148 | 101 | lemma even_difference[simp]: | 
| 23522 | 102 | "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger | 
| 21256 | 103 | |
| 31148 | 104 | lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)" | 
| 105 | by (induct n) auto | |
| 21256 | 106 | |
| 31148 | 107 | lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp | 
| 21256 | 108 | |
| 109 | ||
| 110 | subsection {* Equivalent definitions *}
 | |
| 111 | ||
| 23522 | 112 | lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" | 
| 31148 | 113 | by presburger | 
| 21256 | 114 | |
| 31148 | 115 | lemma two_times_odd_div_two_plus_one: | 
| 116 | "odd (x::int) ==> 2 * (x div 2) + 1 = x" | |
| 117 | by presburger | |
| 21256 | 118 | |
| 23522 | 119 | lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger | 
| 21256 | 120 | |
| 23522 | 121 | lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger | 
| 21256 | 122 | |
| 123 | subsection {* even and odd for nats *}
 | |
| 124 | ||
| 125 | lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)" | |
| 31148 | 126 | by (simp add: even_nat_def) | 
| 21256 | 127 | |
| 31148 | 128 | lemma even_product_nat[simp,presburger,algebra]: | 
| 129 | "even((x::nat) * y) = (even x | even y)" | |
| 130 | by (simp add: even_nat_def int_mult) | |
| 21256 | 131 | |
| 31148 | 132 | lemma even_sum_nat[simp,presburger,algebra]: | 
| 133 | "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" | |
| 23522 | 134 | by presburger | 
| 21256 | 135 | |
| 31148 | 136 | lemma even_difference_nat[simp,presburger,algebra]: | 
| 137 | "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" | |
| 138 | by presburger | |
| 21256 | 139 | |
| 31148 | 140 | lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x" | 
| 141 | by presburger | |
| 21256 | 142 | |
| 31148 | 143 | lemma even_power_nat[simp,presburger,algebra]: | 
| 144 | "even ((x::nat)^y) = (even x & 0 < y)" | |
| 145 | by (simp add: even_nat_def int_power) | |
| 21256 | 146 | |
| 147 | ||
| 148 | subsection {* Equivalent definitions *}
 | |
| 149 | ||
| 31148 | 150 | lemma nat_lt_two_imp_zero_or_one: | 
| 151 | "(x::nat) < Suc (Suc 0) ==> x = 0 | x = Suc 0" | |
| 152 | by presburger | |
| 21256 | 153 | |
| 154 | lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" | |
| 31148 | 155 | by presburger | 
| 21256 | 156 | |
| 157 | lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" | |
| 23522 | 158 | by presburger | 
| 21256 | 159 | |
| 21263 | 160 | lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" | 
| 31148 | 161 | by presburger | 
| 21256 | 162 | |
| 163 | lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" | |
| 31148 | 164 | by presburger | 
| 21256 | 165 | |
| 21263 | 166 | lemma even_nat_div_two_times_two: "even (x::nat) ==> | 
| 23522 | 167 | Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger | 
| 21256 | 168 | |
| 21263 | 169 | lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> | 
| 23522 | 170 | Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger | 
| 21256 | 171 | |
| 172 | lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" | |
| 31148 | 173 | by presburger | 
| 21256 | 174 | |
| 175 | lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" | |
| 31148 | 176 | by presburger | 
| 21256 | 177 | |
| 25600 | 178 | |
| 21256 | 179 | subsection {* Parity and powers *}
 | 
| 180 | ||
| 21263 | 181 | lemma minus_one_even_odd_power: | 
| 31017 | 182 |      "(even x --> (- 1::'a::{comm_ring_1})^x = 1) &
 | 
| 21256 | 183 | (odd x --> (- 1::'a)^x = - 1)" | 
| 184 | apply (induct x) | |
| 185 | apply (rule conjI) | |
| 186 | apply simp | |
| 31148 | 187 | apply (insert even_zero_nat, blast) | 
| 35216 | 188 | apply simp | 
| 21263 | 189 | done | 
| 21256 | 190 | |
| 191 | lemma minus_one_even_power [simp]: | |
| 31017 | 192 |     "even x ==> (- 1::'a::{comm_ring_1})^x = 1"
 | 
| 21263 | 193 | using minus_one_even_odd_power by blast | 
| 21256 | 194 | |
| 195 | lemma minus_one_odd_power [simp]: | |
| 31017 | 196 |     "odd x ==> (- 1::'a::{comm_ring_1})^x = - 1"
 | 
| 21263 | 197 | using minus_one_even_odd_power by blast | 
| 21256 | 198 | |
| 199 | lemma neg_one_even_odd_power: | |
| 31017 | 200 |      "(even x --> (-1::'a::{number_ring})^x = 1) &
 | 
| 21256 | 201 | (odd x --> (-1::'a)^x = -1)" | 
| 202 | apply (induct x) | |
| 35216 | 203 | apply (simp, simp) | 
| 21256 | 204 | done | 
| 205 | ||
| 206 | lemma neg_one_even_power [simp]: | |
| 31017 | 207 |     "even x ==> (-1::'a::{number_ring})^x = 1"
 | 
| 21263 | 208 | using neg_one_even_odd_power by blast | 
| 21256 | 209 | |
| 210 | lemma neg_one_odd_power [simp]: | |
| 31017 | 211 |     "odd x ==> (-1::'a::{number_ring})^x = -1"
 | 
| 21263 | 212 | using neg_one_even_odd_power by blast | 
| 21256 | 213 | |
| 214 | lemma neg_power_if: | |
| 31017 | 215 |      "(-x::'a::{comm_ring_1}) ^ n =
 | 
| 21256 | 216 | (if even n then (x ^ n) else -(x ^ n))" | 
| 21263 | 217 | apply (induct n) | 
| 35216 | 218 | apply simp_all | 
| 21263 | 219 | done | 
| 21256 | 220 | |
| 21263 | 221 | lemma zero_le_even_power: "even n ==> | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 222 |     0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n"
 | 
| 21256 | 223 | apply (simp add: even_nat_equiv_def2) | 
| 224 | apply (erule exE) | |
| 225 | apply (erule ssubst) | |
| 226 | apply (subst power_add) | |
| 227 | apply (rule zero_le_square) | |
| 228 | done | |
| 229 | ||
| 21263 | 230 | lemma zero_le_odd_power: "odd n ==> | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 231 |     (0 <= (x::'a::{linordered_idom}) ^ n) = (0 <= x)"
 | 
| 35216 | 232 | apply (auto simp: odd_nat_equiv_def2 power_add zero_le_mult_iff) | 
| 36722 | 233 | apply (metis field_power_not_zero divisors_zero order_antisym_conv zero_le_square) | 
| 30056 | 234 | done | 
| 21256 | 235 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 236 | lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) =
 | 
| 21256 | 237 | (even n | (odd n & 0 <= x))" | 
| 238 | apply auto | |
| 21263 | 239 | apply (subst zero_le_odd_power [symmetric]) | 
| 21256 | 240 | apply assumption+ | 
| 241 | apply (erule zero_le_even_power) | |
| 21263 | 242 | done | 
| 21256 | 243 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 244 | lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) =
 | 
| 21256 | 245 | (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" | 
| 27668 | 246 | |
| 247 | unfolding order_less_le zero_le_power_eq by auto | |
| 21256 | 248 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 249 | lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) =
 | 
| 27668 | 250 | (odd n & x < 0)" | 
| 21263 | 251 | apply (subst linorder_not_le [symmetric])+ | 
| 21256 | 252 | apply (subst zero_le_power_eq) | 
| 253 | apply auto | |
| 21263 | 254 | done | 
| 21256 | 255 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 256 | lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) =
 | 
| 21256 | 257 | (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" | 
| 21263 | 258 | apply (subst linorder_not_less [symmetric])+ | 
| 21256 | 259 | apply (subst zero_less_power_eq) | 
| 260 | apply auto | |
| 21263 | 261 | done | 
| 21256 | 262 | |
| 21263 | 263 | lemma power_even_abs: "even n ==> | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 264 |     (abs (x::'a::{linordered_idom}))^n = x^n"
 | 
| 21263 | 265 | apply (subst power_abs [symmetric]) | 
| 21256 | 266 | apply (simp add: zero_le_even_power) | 
| 21263 | 267 | done | 
| 21256 | 268 | |
| 23522 | 269 | lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)" | 
| 21263 | 270 | by (induct n) auto | 
| 21256 | 271 | |
| 21263 | 272 | lemma power_minus_even [simp]: "even n ==> | 
| 31017 | 273 |     (- x)^n = (x^n::'a::{comm_ring_1})"
 | 
| 21256 | 274 | apply (subst power_minus) | 
| 275 | apply simp | |
| 21263 | 276 | done | 
| 21256 | 277 | |
| 21263 | 278 | lemma power_minus_odd [simp]: "odd n ==> | 
| 31017 | 279 |     (- x)^n = - (x^n::'a::{comm_ring_1})"
 | 
| 21256 | 280 | apply (subst power_minus) | 
| 281 | apply simp | |
| 21263 | 282 | done | 
| 21256 | 283 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 284 | lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}"
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 285 | assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 286 | shows "x^n \<le> y^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 287 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 288 | have "0 \<le> \<bar>x\<bar>" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 289 | with `\<bar>x\<bar> \<le> \<bar>y\<bar>` | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 290 | have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 291 | thus ?thesis unfolding power_even_abs[OF `even n`] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 292 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 293 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 294 | lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 295 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 296 | lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}"
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 297 | assumes "odd n" and "x \<le> y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 298 | shows "x^n \<le> y^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 299 | proof (cases "y < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 300 | case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 301 | hence "(-y)^n \<le> (-x)^n" by (rule power_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 302 | thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 303 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 304 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 305 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 306 | proof (cases "x < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 307 | case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 308 | hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 309 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 310 | from `\<not> y < 0` have "0 \<le> y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 311 | hence "0 \<le> y^n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 312 | ultimately show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 313 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 314 | case False hence "0 \<le> x" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 315 | with `x \<le> y` show ?thesis using power_mono by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 316 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 317 | qed | 
| 21263 | 318 | |
| 25600 | 319 | |
| 320 | subsection {* More Even/Odd Results *}
 | |
| 321 | ||
| 27668 | 322 | lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger | 
| 323 | lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger | |
| 324 | lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger | |
| 25600 | 325 | |
| 27668 | 326 | lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger | 
| 25600 | 327 | |
| 328 | lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + | |
| 329 | (a mod c + Suc 0 mod c) div c" | |
| 330 | apply (subgoal_tac "Suc a = a + Suc 0") | |
| 331 | apply (erule ssubst) | |
| 332 | apply (rule div_add1_eq, simp) | |
| 333 | done | |
| 334 | ||
| 27668 | 335 | lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger | 
| 25600 | 336 | |
| 337 | lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)" | |
| 27668 | 338 | by presburger | 
| 25600 | 339 | |
| 27668 | 340 | lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger | 
| 341 | lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger | |
| 25600 | 342 | |
| 27668 | 343 | lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger | 
| 25600 | 344 | |
| 345 | lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" | |
| 27668 | 346 | by presburger | 
| 25600 | 347 | |
| 21263 | 348 | text {* Simplify, when the exponent is a numeral *}
 | 
| 21256 | 349 | |
| 350 | lemmas power_0_left_number_of = power_0_left [of "number_of w", standard] | |
| 351 | declare power_0_left_number_of [simp] | |
| 352 | ||
| 21263 | 353 | lemmas zero_le_power_eq_number_of [simp] = | 
| 21256 | 354 | zero_le_power_eq [of _ "number_of w", standard] | 
| 355 | ||
| 21263 | 356 | lemmas zero_less_power_eq_number_of [simp] = | 
| 21256 | 357 | zero_less_power_eq [of _ "number_of w", standard] | 
| 358 | ||
| 21263 | 359 | lemmas power_le_zero_eq_number_of [simp] = | 
| 21256 | 360 | power_le_zero_eq [of _ "number_of w", standard] | 
| 361 | ||
| 21263 | 362 | lemmas power_less_zero_eq_number_of [simp] = | 
| 21256 | 363 | power_less_zero_eq [of _ "number_of w", standard] | 
| 364 | ||
| 21263 | 365 | lemmas zero_less_power_nat_eq_number_of [simp] = | 
| 21256 | 366 | zero_less_power_nat_eq [of _ "number_of w", standard] | 
| 367 | ||
| 21263 | 368 | lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard] | 
| 21256 | 369 | |
| 21263 | 370 | lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard] | 
| 21256 | 371 | |
| 372 | ||
| 373 | subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
 | |
| 374 | ||
| 375 | lemma even_power_le_0_imp_0: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 376 |     "a ^ (2*k) \<le> (0::'a::{linordered_idom}) ==> a=0"
 | 
| 35216 | 377 | by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff) | 
| 21256 | 378 | |
| 23522 | 379 | lemma zero_le_power_iff[presburger]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 380 |   "(0 \<le> a^n) = (0 \<le> (a::'a::{linordered_idom}) | even n)"
 | 
| 21256 | 381 | proof cases | 
| 382 | assume even: "even n" | |
| 383 | then obtain k where "n = 2*k" | |
| 384 | by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) | |
| 21263 | 385 | thus ?thesis by (simp add: zero_le_even_power even) | 
| 21256 | 386 | next | 
| 387 | assume odd: "odd n" | |
| 388 | then obtain k where "n = Suc(2*k)" | |
| 389 | by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) | |
| 390 | thus ?thesis | |
| 35216 | 391 | by (auto simp add: zero_le_mult_iff zero_le_even_power | 
| 21263 | 392 | dest!: even_power_le_0_imp_0) | 
| 393 | qed | |
| 394 | ||
| 21256 | 395 | |
| 396 | subsection {* Miscellaneous *}
 | |
| 397 | ||
| 23522 | 398 | lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger | 
| 399 | lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger | |
| 400 | lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger | |
| 401 | lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger | |
| 21256 | 402 | |
| 23522 | 403 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | 
| 404 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | |
| 21263 | 405 | lemma even_nat_plus_one_div_two: "even (x::nat) ==> | 
| 23522 | 406 | (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger | 
| 21256 | 407 | |
| 21263 | 408 | lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> | 
| 23522 | 409 | (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger | 
| 21256 | 410 | |
| 411 | end |