| author | wenzelm | 
| Tue, 13 Jan 2009 22:25:04 +0100 | |
| changeset 29477 | b834f95c2532 | 
| parent 29465 | b2cfb5d0a59e | 
| child 29653 | ece6a0e9f8af | 
| child 29667 | 53103fc8ffa3 | 
| permissions | -rw-r--r-- | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1 | (* Title: HOL/Ring_and_Field.thy | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2 | ID: $Id$ | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 3 | Author: Gertrud Bauer, Steven Obua, Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel, | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 5 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 6 | |
| 14738 | 7 | header {* (Ordered) Rings and Fields *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | |
| 15229 | 9 | theory Ring_and_Field | 
| 15140 | 10 | imports OrderedGroup | 
| 15131 | 11 | begin | 
| 14504 | 12 | |
| 14738 | 13 | text {*
 | 
| 14 | The theory of partially ordered rings is taken from the books: | |
| 15 |   \begin{itemize}
 | |
| 16 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 17 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 18 |   \end{itemize}
 | |
| 19 | Most of the used notions can also be looked up in | |
| 20 |   \begin{itemize}
 | |
| 14770 | 21 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 22 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 23 |   \end{itemize}
 | |
| 24 | *} | |
| 14504 | 25 | |
| 22390 | 26 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 25062 | 27 | assumes left_distrib: "(a + b) * c = a * c + b * c" | 
| 28 | assumes right_distrib: "a * (b + c) = a * b + a * c" | |
| 25152 | 29 | begin | 
| 30 | ||
| 31 | text{*For the @{text combine_numerals} simproc*}
 | |
| 32 | lemma combine_common_factor: | |
| 33 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 34 | by (simp add: left_distrib add_ac) | |
| 35 | ||
| 36 | end | |
| 14504 | 37 | |
| 22390 | 38 | class mult_zero = times + zero + | 
| 25062 | 39 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 40 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 41 | |
| 22390 | 42 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 43 | |
| 22390 | 44 | class semiring_0_cancel = semiring + comm_monoid_add + cancel_ab_semigroup_add | 
| 25186 | 45 | begin | 
| 14504 | 46 | |
| 25186 | 47 | subclass semiring_0 | 
| 28823 | 48 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 49 | fix a :: 'a | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 50 | have "0 * a + 0 * a = 0 * a + 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 51 | by (simp add: left_distrib [symmetric]) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 52 | thus "0 * a = 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 53 | by (simp only: add_left_cancel) | 
| 25152 | 54 | next | 
| 55 | fix a :: 'a | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 56 | have "a * 0 + a * 0 = a * 0 + 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 57 | by (simp add: right_distrib [symmetric]) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 58 | thus "a * 0 = 0" | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 59 | by (simp only: add_left_cancel) | 
| 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 60 | qed | 
| 14940 | 61 | |
| 25186 | 62 | end | 
| 25152 | 63 | |
| 22390 | 64 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 65 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 66 | begin | 
| 14504 | 67 | |
| 25152 | 68 | subclass semiring | 
| 28823 | 69 | proof | 
| 14738 | 70 | fix a b c :: 'a | 
| 71 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 72 | have "a * (b + c) = (b + c) * a" by (simp add: mult_ac) | |
| 73 | also have "... = b * a + c * a" by (simp only: distrib) | |
| 74 | also have "... = a * b + a * c" by (simp add: mult_ac) | |
| 75 | finally show "a * (b + c) = a * b + a * c" by blast | |
| 14504 | 76 | qed | 
| 77 | ||
| 25152 | 78 | end | 
| 14504 | 79 | |
| 25152 | 80 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 81 | begin | |
| 82 | ||
| 27516 | 83 | subclass semiring_0 .. | 
| 25152 | 84 | |
| 85 | end | |
| 14504 | 86 | |
| 22390 | 87 | class comm_semiring_0_cancel = comm_semiring + comm_monoid_add + cancel_ab_semigroup_add | 
| 25186 | 88 | begin | 
| 14940 | 89 | |
| 27516 | 90 | subclass semiring_0_cancel .. | 
| 14940 | 91 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 92 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 93 | |
| 25186 | 94 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 95 | |
| 22390 | 96 | class zero_neq_one = zero + one + | 
| 25062 | 97 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 98 | begin | 
| 99 | ||
| 100 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 101 | by (rule not_sym) (rule zero_neq_one) | |
| 102 | ||
| 103 | end | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 104 | |
| 22390 | 105 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 106 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 107 | text {* Abstract divisibility *}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 108 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 109 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 110 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 111 | |
| 28559 | 112 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where | 
| 113 | [code del]: "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 114 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 115 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 116 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 117 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 118 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 119 | unfolding dvd_def by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 120 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 121 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd | 
| 22390 | 124 | (*previously almost_semiring*) | 
| 25152 | 125 | begin | 
| 14738 | 126 | |
| 27516 | 127 | subclass semiring_1 .. | 
| 25152 | 128 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | lemma dvd_refl: "a dvd a" | 
| 28559 | 130 | proof | 
| 131 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 132 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 133 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 134 | lemma dvd_trans: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 137 | proof - | 
| 28559 | 138 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 139 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 140 | ultimately have "c = a * (v * w)" by (simp add: mult_assoc) | 
| 28559 | 141 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 142 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 143 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 144 | lemma dvd_0_left_iff [noatp, simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 28559 | 145 | by (auto intro: dvd_refl elim!: dvdE) | 
| 146 | ||
| 147 | lemma dvd_0_right [iff]: "a dvd 0" | |
| 148 | proof | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | show "0 = a * 0" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 150 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 152 | lemma one_dvd [simp]: "1 dvd a" | 
| 28559 | 153 | by (auto intro!: dvdI) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 154 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 155 | lemma dvd_mult: "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 28559 | 156 | by (auto intro!: mult_left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 157 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 158 | lemma dvd_mult2: "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | apply (subst mult_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 160 | apply (erule dvd_mult) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 161 | done | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 162 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 163 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 164 | by (rule dvd_mult) (rule dvd_refl) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 165 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 166 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 167 | by (rule dvd_mult2) (rule dvd_refl) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 168 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | lemma mult_dvd_mono: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | assumes ab: "a dvd b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 171 | and "cd": "c dvd d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 173 | proof - | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 174 | from ab obtain b' where "b = a * b'" .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 175 | moreover from "cd" obtain d' where "d = c * d'" .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 176 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 177 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 178 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 179 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 180 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | by (simp add: dvd_def mult_assoc, blast) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 183 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 184 | unfolding mult_ac [of a] by (rule dvd_mult_left) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 185 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 186 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 187 | by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 188 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 189 | lemma dvd_add: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 190 | assumes ab: "a dvd b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 191 | and ac: "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 192 | shows "a dvd (b + c)" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 193 | proof - | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 194 | from ab obtain b' where "b = a * b'" .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 195 | moreover from ac obtain c' where "c = a * c'" .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 196 | ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 197 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 198 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 199 | |
| 25152 | 200 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 201 | |
| 22390 | 202 | class no_zero_divisors = zero + times + | 
| 25062 | 203 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 14504 | 204 | |
| 22390 | 205 | class semiring_1_cancel = semiring + comm_monoid_add + zero_neq_one | 
| 206 | + cancel_ab_semigroup_add + monoid_mult | |
| 25267 | 207 | begin | 
| 14940 | 208 | |
| 27516 | 209 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 210 | |
| 27516 | 211 | subclass semiring_1 .. | 
| 25267 | 212 | |
| 213 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 214 | |
| 22390 | 215 | class comm_semiring_1_cancel = comm_semiring + comm_monoid_add + comm_monoid_mult | 
| 216 | + zero_neq_one + cancel_ab_semigroup_add | |
| 25267 | 217 | begin | 
| 14738 | 218 | |
| 27516 | 219 | subclass semiring_1_cancel .. | 
| 220 | subclass comm_semiring_0_cancel .. | |
| 221 | subclass comm_semiring_1 .. | |
| 25267 | 222 | |
| 223 | end | |
| 25152 | 224 | |
| 22390 | 225 | class ring = semiring + ab_group_add | 
| 25267 | 226 | begin | 
| 25152 | 227 | |
| 27516 | 228 | subclass semiring_0_cancel .. | 
| 25152 | 229 | |
| 230 | text {* Distribution rules *}
 | |
| 231 | ||
| 232 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 233 | by (rule equals_zero_I) (simp add: left_distrib [symmetric]) | |
| 234 | ||
| 235 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 236 | by (rule equals_zero_I) (simp add: right_distrib [symmetric]) | |
| 237 | ||
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 238 | text{*Extract signs from products*}
 | 
| 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 239 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 240 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 241 | |
| 25152 | 242 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 243 | by simp | 
| 25152 | 244 | |
| 245 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 246 | by simp | 
| 25152 | 247 | |
| 248 | lemma right_diff_distrib: "a * (b - c) = a * b - a * c" | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 249 | by (simp add: right_distrib diff_minus) | 
| 25152 | 250 | |
| 251 | lemma left_diff_distrib: "(a - b) * c = a * c - b * c" | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 252 | by (simp add: left_distrib diff_minus) | 
| 25152 | 253 | |
| 254 | lemmas ring_distribs = | |
| 255 | right_distrib left_distrib left_diff_distrib right_diff_distrib | |
| 256 | ||
| 25230 | 257 | lemmas ring_simps = | 
| 258 | add_ac | |
| 259 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 260 | diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff | |
| 261 | ring_distribs | |
| 262 | ||
| 263 | lemma eq_add_iff1: | |
| 264 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 265 | by (simp add: ring_simps) | |
| 266 | ||
| 267 | lemma eq_add_iff2: | |
| 268 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 269 | by (simp add: ring_simps) | |
| 270 | ||
| 25152 | 271 | end | 
| 272 | ||
| 273 | lemmas ring_distribs = | |
| 274 | right_distrib left_distrib left_diff_distrib right_diff_distrib | |
| 275 | ||
| 22390 | 276 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 277 | begin | 
| 14738 | 278 | |
| 27516 | 279 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 280 | subclass comm_semiring_0_cancel .. | 
| 25267 | 281 | |
| 282 | end | |
| 14738 | 283 | |
| 22390 | 284 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 285 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 286 | |
| 27516 | 287 | subclass semiring_1_cancel .. | 
| 25267 | 288 | |
| 289 | end | |
| 25152 | 290 | |
| 22390 | 291 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 292 | (*previously ring*) | |
| 25267 | 293 | begin | 
| 14738 | 294 | |
| 27516 | 295 | subclass ring_1 .. | 
| 296 | subclass comm_semiring_1_cancel .. | |
| 25267 | 297 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 298 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 299 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 300 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 301 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 302 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 303 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 304 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 305 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 306 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 307 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 308 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 309 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 310 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 311 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 312 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 313 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 314 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 315 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 316 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 317 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 318 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 319 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 320 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 321 | |
| 29409 | 322 | lemma dvd_diff: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 323 | by (simp add: diff_minus dvd_add dvd_minus_iff) | |
| 324 | ||
| 25267 | 325 | end | 
| 25152 | 326 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 327 | class ring_no_zero_divisors = ring + no_zero_divisors | 
| 25230 | 328 | begin | 
| 329 | ||
| 330 | lemma mult_eq_0_iff [simp]: | |
| 331 | shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)" | |
| 332 | proof (cases "a = 0 \<or> b = 0") | |
| 333 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 334 | then show ?thesis using no_zero_divisors by simp | |
| 335 | next | |
| 336 | case True then show ?thesis by auto | |
| 337 | qed | |
| 338 | ||
| 26193 | 339 | text{*Cancellation of equalities with a common factor*}
 | 
| 340 | lemma mult_cancel_right [simp, noatp]: | |
| 341 | "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | |
| 342 | proof - | |
| 343 | have "(a * c = b * c) = ((a - b) * c = 0)" | |
| 344 | by (simp add: ring_distribs right_minus_eq) | |
| 345 | thus ?thesis | |
| 346 | by (simp add: disj_commute right_minus_eq) | |
| 347 | qed | |
| 348 | ||
| 349 | lemma mult_cancel_left [simp, noatp]: | |
| 350 | "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | |
| 351 | proof - | |
| 352 | have "(c * a = c * b) = (c * (a - b) = 0)" | |
| 353 | by (simp add: ring_distribs right_minus_eq) | |
| 354 | thus ?thesis | |
| 355 | by (simp add: right_minus_eq) | |
| 356 | qed | |
| 357 | ||
| 25230 | 358 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 359 | |
| 23544 | 360 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 361 | begin | 
| 362 | ||
| 363 | lemma mult_cancel_right1 [simp]: | |
| 364 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 365 | by (insert mult_cancel_right [of 1 c b], force) | |
| 366 | ||
| 367 | lemma mult_cancel_right2 [simp]: | |
| 368 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 369 | by (insert mult_cancel_right [of a c 1], simp) | |
| 370 | ||
| 371 | lemma mult_cancel_left1 [simp]: | |
| 372 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 373 | by (insert mult_cancel_left [of c 1 b], force) | |
| 374 | ||
| 375 | lemma mult_cancel_left2 [simp]: | |
| 376 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 377 | by (insert mult_cancel_left [of c a 1], simp) | |
| 378 | ||
| 379 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 380 | |
| 22390 | 381 | class idom = comm_ring_1 + no_zero_divisors | 
| 25186 | 382 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 383 | |
| 27516 | 384 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 385 | |
| 25186 | 386 | end | 
| 25152 | 387 | |
| 22390 | 388 | class division_ring = ring_1 + inverse + | 
| 25062 | 389 | assumes left_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | 
| 390 | assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1" | |
| 25186 | 391 | begin | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 392 | |
| 25186 | 393 | subclass ring_1_no_zero_divisors | 
| 28823 | 394 | proof | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 395 | fix a b :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 396 | assume a: "a \<noteq> 0" and b: "b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 397 | show "a * b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 398 | proof | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 399 | assume ab: "a * b = 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 400 | hence "0 = inverse a * (a * b) * inverse b" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 401 | by simp | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 402 | also have "\<dots> = (inverse a * a) * (b * inverse b)" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 403 | by (simp only: mult_assoc) | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 404 | also have "\<dots> = 1" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 405 | using a b by simp | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 406 | finally show False | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 407 | by simp | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 408 | qed | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 409 | qed | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 410 | |
| 26274 | 411 | lemma nonzero_imp_inverse_nonzero: | 
| 412 | "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0" | |
| 413 | proof | |
| 414 | assume ianz: "inverse a = 0" | |
| 415 | assume "a \<noteq> 0" | |
| 416 | hence "1 = a * inverse a" by simp | |
| 417 | also have "... = 0" by (simp add: ianz) | |
| 418 | finally have "1 = 0" . | |
| 419 | thus False by (simp add: eq_commute) | |
| 420 | qed | |
| 421 | ||
| 422 | lemma inverse_zero_imp_zero: | |
| 423 | "inverse a = 0 \<Longrightarrow> a = 0" | |
| 424 | apply (rule classical) | |
| 425 | apply (drule nonzero_imp_inverse_nonzero) | |
| 426 | apply auto | |
| 427 | done | |
| 428 | ||
| 429 | lemma inverse_unique: | |
| 430 | assumes ab: "a * b = 1" | |
| 431 | shows "inverse a = b" | |
| 432 | proof - | |
| 433 | have "a \<noteq> 0" using ab by (cases "a = 0") simp_all | |
| 29406 | 434 | moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) | 
| 435 | ultimately show ?thesis by (simp add: mult_assoc [symmetric]) | |
| 26274 | 436 | qed | 
| 437 | ||
| 29406 | 438 | lemma nonzero_inverse_minus_eq: | 
| 439 | "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a" | |
| 440 | by (rule inverse_unique) simp | |
| 441 | ||
| 442 | lemma nonzero_inverse_inverse_eq: | |
| 443 | "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a" | |
| 444 | by (rule inverse_unique) simp | |
| 445 | ||
| 446 | lemma nonzero_inverse_eq_imp_eq: | |
| 447 | assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0" | |
| 448 | shows "a = b" | |
| 449 | proof - | |
| 450 | from `inverse a = inverse b` | |
| 451 | have "inverse (inverse a) = inverse (inverse b)" | |
| 452 | by (rule arg_cong) | |
| 453 | with `a \<noteq> 0` and `b \<noteq> 0` show "a = b" | |
| 454 | by (simp add: nonzero_inverse_inverse_eq) | |
| 455 | qed | |
| 456 | ||
| 457 | lemma inverse_1 [simp]: "inverse 1 = 1" | |
| 458 | by (rule inverse_unique) simp | |
| 459 | ||
| 26274 | 460 | lemma nonzero_inverse_mult_distrib: | 
| 29406 | 461 | assumes "a \<noteq> 0" and "b \<noteq> 0" | 
| 26274 | 462 | shows "inverse (a * b) = inverse b * inverse a" | 
| 463 | proof - | |
| 29406 | 464 | have "a * (b * inverse b) * inverse a = 1" | 
| 465 | using assms by simp | |
| 466 | hence "a * b * (inverse b * inverse a) = 1" | |
| 467 | by (simp only: mult_assoc) | |
| 26274 | 468 | thus ?thesis | 
| 29406 | 469 | by (rule inverse_unique) | 
| 26274 | 470 | qed | 
| 471 | ||
| 472 | lemma division_ring_inverse_add: | |
| 473 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b" | |
| 474 | by (simp add: ring_simps mult_assoc) | |
| 475 | ||
| 476 | lemma division_ring_inverse_diff: | |
| 477 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b" | |
| 478 | by (simp add: ring_simps mult_assoc) | |
| 479 | ||
| 25186 | 480 | end | 
| 25152 | 481 | |
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 482 | class field = comm_ring_1 + inverse + | 
| 25062 | 483 | assumes field_inverse: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | 
| 484 | assumes divide_inverse: "a / b = a * inverse b" | |
| 25267 | 485 | begin | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 486 | |
| 25267 | 487 | subclass division_ring | 
| 28823 | 488 | proof | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 489 | fix a :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 490 | assume "a \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 491 | thus "inverse a * a = 1" by (rule field_inverse) | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 492 | thus "a * inverse a = 1" by (simp only: mult_commute) | 
| 14738 | 493 | qed | 
| 25230 | 494 | |
| 27516 | 495 | subclass idom .. | 
| 25230 | 496 | |
| 497 | lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b" | |
| 498 | proof | |
| 499 | assume neq: "b \<noteq> 0" | |
| 500 |   {
 | |
| 501 | hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac) | |
| 502 | also assume "a / b = 1" | |
| 503 | finally show "a = b" by simp | |
| 504 | next | |
| 505 | assume "a = b" | |
| 506 | with neq show "a / b = 1" by (simp add: divide_inverse) | |
| 507 | } | |
| 508 | qed | |
| 509 | ||
| 510 | lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a" | |
| 511 | by (simp add: divide_inverse) | |
| 512 | ||
| 513 | lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1" | |
| 514 | by (simp add: divide_inverse) | |
| 515 | ||
| 516 | lemma divide_zero_left [simp]: "0 / a = 0" | |
| 517 | by (simp add: divide_inverse) | |
| 518 | ||
| 519 | lemma inverse_eq_divide: "inverse a = 1 / a" | |
| 520 | by (simp add: divide_inverse) | |
| 521 | ||
| 522 | lemma add_divide_distrib: "(a+b) / c = a/c + b/c" | |
| 523 | by (simp add: divide_inverse ring_distribs) | |
| 524 | ||
| 525 | end | |
| 526 | ||
| 22390 | 527 | class division_by_zero = zero + inverse + | 
| 25062 | 528 | assumes inverse_zero [simp]: "inverse 0 = 0" | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 529 | |
| 25230 | 530 | lemma divide_zero [simp]: | 
| 531 |   "a / 0 = (0::'a::{field,division_by_zero})"
 | |
| 532 | by (simp add: divide_inverse) | |
| 533 | ||
| 534 | lemma divide_self_if [simp]: | |
| 535 |   "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
 | |
| 28559 | 536 | by simp | 
| 25230 | 537 | |
| 22390 | 538 | class mult_mono = times + zero + ord + | 
| 25062 | 539 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 540 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 541 | |
| 22390 | 542 | class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add | 
| 25230 | 543 | begin | 
| 544 | ||
| 545 | lemma mult_mono: | |
| 546 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c | |
| 547 | \<Longrightarrow> a * c \<le> b * d" | |
| 548 | apply (erule mult_right_mono [THEN order_trans], assumption) | |
| 549 | apply (erule mult_left_mono, assumption) | |
| 550 | done | |
| 551 | ||
| 552 | lemma mult_mono': | |
| 553 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c | |
| 554 | \<Longrightarrow> a * c \<le> b * d" | |
| 555 | apply (rule mult_mono) | |
| 556 | apply (fast intro: order_trans)+ | |
| 557 | done | |
| 558 | ||
| 559 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 560 | |
| 22390 | 561 | class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 562 | + semiring + comm_monoid_add + cancel_ab_semigroup_add | 
| 25267 | 563 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 564 | |
| 27516 | 565 | subclass semiring_0_cancel .. | 
| 566 | subclass pordered_semiring .. | |
| 23521 | 567 | |
| 25230 | 568 | lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 569 | by (drule mult_left_mono [of zero b], auto) | |
| 570 | ||
| 571 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 572 | by (drule mult_left_mono [of b zero], auto) | |
| 573 | ||
| 574 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | |
| 575 | by (drule mult_right_mono [of b zero], auto) | |
| 576 | ||
| 26234 | 577 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 25230 | 578 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 579 | ||
| 580 | end | |
| 581 | ||
| 582 | class ordered_semiring = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + mult_mono | |
| 25267 | 583 | begin | 
| 25230 | 584 | |
| 27516 | 585 | subclass pordered_cancel_semiring .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 586 | |
| 27516 | 587 | subclass pordered_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 588 | |
| 25230 | 589 | lemma mult_left_less_imp_less: | 
| 590 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 591 | by (force simp add: mult_left_mono not_le [symmetric]) | |
| 592 | ||
| 593 | lemma mult_right_less_imp_less: | |
| 594 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 595 | by (force simp add: mult_right_mono not_le [symmetric]) | |
| 23521 | 596 | |
| 25186 | 597 | end | 
| 25152 | 598 | |
| 22390 | 599 | class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + | 
| 25062 | 600 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 601 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 602 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 603 | |
| 27516 | 604 | subclass semiring_0_cancel .. | 
| 14940 | 605 | |
| 25267 | 606 | subclass ordered_semiring | 
| 28823 | 607 | proof | 
| 23550 | 608 | fix a b c :: 'a | 
| 609 | assume A: "a \<le> b" "0 \<le> c" | |
| 610 | from A show "c * a \<le> c * b" | |
| 25186 | 611 | unfolding le_less | 
| 612 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 613 | from A show "a * c \<le> b * c" | 
| 25152 | 614 | unfolding le_less | 
| 25186 | 615 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 616 | qed | 
| 617 | ||
| 25230 | 618 | lemma mult_left_le_imp_le: | 
| 619 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 620 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | |
| 621 | ||
| 622 | lemma mult_right_le_imp_le: | |
| 623 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 624 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | |
| 625 | ||
| 626 | lemma mult_pos_pos: | |
| 627 | "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | |
| 628 | by (drule mult_strict_left_mono [of zero b], auto) | |
| 629 | ||
| 630 | lemma mult_pos_neg: | |
| 631 | "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | |
| 632 | by (drule mult_strict_left_mono [of b zero], auto) | |
| 633 | ||
| 634 | lemma mult_pos_neg2: | |
| 635 | "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | |
| 636 | by (drule mult_strict_right_mono [of b zero], auto) | |
| 637 | ||
| 638 | lemma zero_less_mult_pos: | |
| 639 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 640 | apply (cases "b\<le>0") | |
| 641 | apply (auto simp add: le_less not_less) | |
| 642 | apply (drule_tac mult_pos_neg [of a b]) | |
| 643 | apply (auto dest: less_not_sym) | |
| 644 | done | |
| 645 | ||
| 646 | lemma zero_less_mult_pos2: | |
| 647 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 648 | apply (cases "b\<le>0") | |
| 649 | apply (auto simp add: le_less not_less) | |
| 650 | apply (drule_tac mult_pos_neg2 [of a b]) | |
| 651 | apply (auto dest: less_not_sym) | |
| 652 | done | |
| 653 | ||
| 26193 | 654 | text{*Strict monotonicity in both arguments*}
 | 
| 655 | lemma mult_strict_mono: | |
| 656 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 657 | shows "a * c < b * d" | |
| 658 | using assms apply (cases "c=0") | |
| 659 | apply (simp add: mult_pos_pos) | |
| 660 | apply (erule mult_strict_right_mono [THEN less_trans]) | |
| 661 | apply (force simp add: le_less) | |
| 662 | apply (erule mult_strict_left_mono, assumption) | |
| 663 | done | |
| 664 | ||
| 665 | text{*This weaker variant has more natural premises*}
 | |
| 666 | lemma mult_strict_mono': | |
| 667 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 668 | shows "a * c < b * d" | |
| 669 | by (rule mult_strict_mono) (insert assms, auto) | |
| 670 | ||
| 671 | lemma mult_less_le_imp_less: | |
| 672 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 673 | shows "a * c < b * d" | |
| 674 | using assms apply (subgoal_tac "a * c < b * c") | |
| 675 | apply (erule less_le_trans) | |
| 676 | apply (erule mult_left_mono) | |
| 677 | apply simp | |
| 678 | apply (erule mult_strict_right_mono) | |
| 679 | apply assumption | |
| 680 | done | |
| 681 | ||
| 682 | lemma mult_le_less_imp_less: | |
| 683 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 684 | shows "a * c < b * d" | |
| 685 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 686 | apply (erule le_less_trans) | |
| 687 | apply (erule mult_strict_left_mono) | |
| 688 | apply simp | |
| 689 | apply (erule mult_right_mono) | |
| 690 | apply simp | |
| 691 | done | |
| 692 | ||
| 693 | lemma mult_less_imp_less_left: | |
| 694 | assumes less: "c * a < c * b" and nonneg: "0 \<le> c" | |
| 695 | shows "a < b" | |
| 696 | proof (rule ccontr) | |
| 697 | assume "\<not> a < b" | |
| 698 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 699 | hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono) | |
| 700 | with this and less show False | |
| 701 | by (simp add: not_less [symmetric]) | |
| 702 | qed | |
| 703 | ||
| 704 | lemma mult_less_imp_less_right: | |
| 705 | assumes less: "a * c < b * c" and nonneg: "0 \<le> c" | |
| 706 | shows "a < b" | |
| 707 | proof (rule ccontr) | |
| 708 | assume "\<not> a < b" | |
| 709 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 710 | hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono) | |
| 711 | with this and less show False | |
| 712 | by (simp add: not_less [symmetric]) | |
| 713 | qed | |
| 714 | ||
| 25230 | 715 | end | 
| 716 | ||
| 22390 | 717 | class mult_mono1 = times + zero + ord + | 
| 25230 | 718 | assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 14270 | 719 | |
| 22390 | 720 | class pordered_comm_semiring = comm_semiring_0 | 
| 721 | + pordered_ab_semigroup_add + mult_mono1 | |
| 25186 | 722 | begin | 
| 25152 | 723 | |
| 25267 | 724 | subclass pordered_semiring | 
| 28823 | 725 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 726 | fix a b c :: 'a | 
| 23550 | 727 | assume "a \<le> b" "0 \<le> c" | 
| 25230 | 728 | thus "c * a \<le> c * b" by (rule mult_mono1) | 
| 23550 | 729 | thus "a * c \<le> b * c" by (simp only: mult_commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 730 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 731 | |
| 25267 | 732 | end | 
| 733 | ||
| 734 | class pordered_cancel_comm_semiring = comm_semiring_0_cancel | |
| 735 | + pordered_ab_semigroup_add + mult_mono1 | |
| 736 | begin | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 737 | |
| 27516 | 738 | subclass pordered_comm_semiring .. | 
| 739 | subclass pordered_cancel_semiring .. | |
| 25267 | 740 | |
| 741 | end | |
| 742 | ||
| 743 | class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add + | |
| 26193 | 744 | assumes mult_strict_left_mono_comm: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 745 | begin | 
| 746 | ||
| 747 | subclass ordered_semiring_strict | |
| 28823 | 748 | proof | 
| 23550 | 749 | fix a b c :: 'a | 
| 750 | assume "a < b" "0 < c" | |
| 26193 | 751 | thus "c * a < c * b" by (rule mult_strict_left_mono_comm) | 
| 23550 | 752 | thus "a * c < b * c" by (simp only: mult_commute) | 
| 753 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 754 | |
| 25267 | 755 | subclass pordered_cancel_comm_semiring | 
| 28823 | 756 | proof | 
| 23550 | 757 | fix a b c :: 'a | 
| 758 | assume "a \<le> b" "0 \<le> c" | |
| 759 | thus "c * a \<le> c * b" | |
| 25186 | 760 | unfolding le_less | 
| 26193 | 761 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 762 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 763 | |
| 25267 | 764 | end | 
| 25230 | 765 | |
| 25267 | 766 | class pordered_ring = ring + pordered_cancel_semiring | 
| 767 | begin | |
| 25230 | 768 | |
| 27516 | 769 | subclass pordered_ab_group_add .. | 
| 14270 | 770 | |
| 25230 | 771 | lemmas ring_simps = ring_simps group_simps | 
| 772 | ||
| 773 | lemma less_add_iff1: | |
| 774 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 775 | by (simp add: ring_simps) | |
| 776 | ||
| 777 | lemma less_add_iff2: | |
| 778 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 779 | by (simp add: ring_simps) | |
| 780 | ||
| 781 | lemma le_add_iff1: | |
| 782 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 783 | by (simp add: ring_simps) | |
| 784 | ||
| 785 | lemma le_add_iff2: | |
| 786 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 787 | by (simp add: ring_simps) | |
| 788 | ||
| 789 | lemma mult_left_mono_neg: | |
| 790 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 791 | apply (drule mult_left_mono [of _ _ "uminus c"]) | |
| 792 | apply (simp_all add: minus_mult_left [symmetric]) | |
| 793 | done | |
| 794 | ||
| 795 | lemma mult_right_mono_neg: | |
| 796 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 797 | apply (drule mult_right_mono [of _ _ "uminus c"]) | |
| 798 | apply (simp_all add: minus_mult_right [symmetric]) | |
| 799 | done | |
| 800 | ||
| 801 | lemma mult_nonpos_nonpos: | |
| 802 | "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | |
| 803 | by (drule mult_right_mono_neg [of a zero b]) auto | |
| 804 | ||
| 805 | lemma split_mult_pos_le: | |
| 806 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 807 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | |
| 25186 | 808 | |
| 809 | end | |
| 14270 | 810 | |
| 25762 | 811 | class abs_if = minus + uminus + ord + zero + abs + | 
| 812 | assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 813 | ||
| 814 | class sgn_if = minus + uminus + zero + one + ord + sgn + | |
| 25186 | 815 | assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | 
| 24506 | 816 | |
| 25564 | 817 | lemma (in sgn_if) sgn0[simp]: "sgn 0 = 0" | 
| 818 | by(simp add:sgn_if) | |
| 819 | ||
| 25230 | 820 | class ordered_ring = ring + ordered_semiring | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 821 | + ordered_ab_group_add + abs_if | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 822 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 823 | |
| 27516 | 824 | subclass pordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 825 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 826 | subclass pordered_ab_group_add_abs | 
| 28823 | 827 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 828 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 829 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 830 | by (auto simp add: abs_if not_less neg_less_eq_nonneg less_eq_neg_nonpos) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 831 | (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric] | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 832 | neg_less_eq_nonneg less_eq_neg_nonpos, auto intro: add_nonneg_nonneg, | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 833 | auto intro!: less_imp_le add_neg_neg) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 834 | qed (auto simp add: abs_if less_eq_neg_nonpos neg_equal_zero) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 835 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 836 | end | 
| 23521 | 837 | |
| 25230 | 838 | (* The "strict" suffix can be seen as describing the combination of ordered_ring and no_zero_divisors. | 
| 839 | Basically, ordered_ring + no_zero_divisors = ordered_ring_strict. | |
| 840 | *) | |
| 841 | class ordered_ring_strict = ring + ordered_semiring_strict | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 842 | + ordered_ab_group_add + abs_if | 
| 25230 | 843 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 844 | |
| 27516 | 845 | subclass ordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 846 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 847 | lemma mult_strict_left_mono_neg: | 
| 25230 | 848 | "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 849 | apply (drule mult_strict_left_mono [of _ _ "uminus c"]) | |
| 850 | apply (simp_all add: minus_mult_left [symmetric]) | |
| 851 | done | |
| 14738 | 852 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 853 | lemma mult_strict_right_mono_neg: | 
| 25230 | 854 | "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 855 | apply (drule mult_strict_right_mono [of _ _ "uminus c"]) | |
| 856 | apply (simp_all add: minus_mult_right [symmetric]) | |
| 857 | done | |
| 14738 | 858 | |
| 25230 | 859 | lemma mult_neg_neg: | 
| 860 | "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | |
| 861 | by (drule mult_strict_right_mono_neg, auto) | |
| 14738 | 862 | |
| 25917 | 863 | subclass ring_no_zero_divisors | 
| 28823 | 864 | proof | 
| 25917 | 865 | fix a b | 
| 866 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 867 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 868 | have "a * b < 0 \<or> 0 < a * b" | |
| 869 | proof (cases "a < 0") | |
| 870 | case True note A' = this | |
| 871 | show ?thesis proof (cases "b < 0") | |
| 872 | case True with A' | |
| 873 | show ?thesis by (auto dest: mult_neg_neg) | |
| 874 | next | |
| 875 | case False with B have "0 < b" by auto | |
| 876 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 877 | qed | |
| 878 | next | |
| 879 | case False with A have A': "0 < a" by auto | |
| 880 | show ?thesis proof (cases "b < 0") | |
| 881 | case True with A' | |
| 882 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 883 | next | |
| 884 | case False with B have "0 < b" by auto | |
| 885 | with A' show ?thesis by (auto dest: mult_pos_pos) | |
| 886 | qed | |
| 887 | qed | |
| 888 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 889 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 890 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 891 | lemma zero_less_mult_iff: | 
| 25917 | 892 | "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 893 | apply (auto simp add: mult_pos_pos mult_neg_neg) | |
| 894 | apply (simp_all add: not_less le_less) | |
| 895 | apply (erule disjE) apply assumption defer | |
| 896 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 897 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 898 | apply (erule disjE) apply assumption apply (drule sym) apply simp | |
| 899 | apply (drule sym) apply simp | |
| 900 | apply (blast dest: zero_less_mult_pos) | |
| 25230 | 901 | apply (blast dest: zero_less_mult_pos2) | 
| 902 | done | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 903 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 904 | lemma zero_le_mult_iff: | 
| 25917 | 905 | "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 906 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 907 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 908 | lemma mult_less_0_iff: | 
| 25917 | 909 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 910 | apply (insert zero_less_mult_iff [of "-a" b]) | |
| 911 | apply (force simp add: minus_mult_left[symmetric]) | |
| 912 | done | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 913 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 914 | lemma mult_le_0_iff: | 
| 25917 | 915 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 916 | apply (insert zero_le_mult_iff [of "-a" b]) | |
| 917 | apply (force simp add: minus_mult_left[symmetric]) | |
| 918 | done | |
| 919 | ||
| 920 | lemma zero_le_square [simp]: "0 \<le> a * a" | |
| 921 | by (simp add: zero_le_mult_iff linear) | |
| 922 | ||
| 923 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | |
| 924 | by (simp add: not_less) | |
| 925 | ||
| 26193 | 926 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 927 |    also with the relations @{text "\<le>"} and equality.*}
 | |
| 928 | ||
| 929 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | |
| 930 | an assumption, but effectively four when the comparison is a goal.*} | |
| 931 | ||
| 932 | lemma mult_less_cancel_right_disj: | |
| 933 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 934 | apply (cases "c = 0") | |
| 935 | apply (auto simp add: neq_iff mult_strict_right_mono | |
| 936 | mult_strict_right_mono_neg) | |
| 937 | apply (auto simp add: not_less | |
| 938 | not_le [symmetric, of "a*c"] | |
| 939 | not_le [symmetric, of a]) | |
| 940 | apply (erule_tac [!] notE) | |
| 941 | apply (auto simp add: less_imp_le mult_right_mono | |
| 942 | mult_right_mono_neg) | |
| 943 | done | |
| 944 | ||
| 945 | lemma mult_less_cancel_left_disj: | |
| 946 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 947 | apply (cases "c = 0") | |
| 948 | apply (auto simp add: neq_iff mult_strict_left_mono | |
| 949 | mult_strict_left_mono_neg) | |
| 950 | apply (auto simp add: not_less | |
| 951 | not_le [symmetric, of "c*a"] | |
| 952 | not_le [symmetric, of a]) | |
| 953 | apply (erule_tac [!] notE) | |
| 954 | apply (auto simp add: less_imp_le mult_left_mono | |
| 955 | mult_left_mono_neg) | |
| 956 | done | |
| 957 | ||
| 958 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | |
| 959 | comparison is a goal, but give four when the comparison is an assumption.*} | |
| 960 | ||
| 961 | lemma mult_less_cancel_right: | |
| 962 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 963 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 964 | ||
| 965 | lemma mult_less_cancel_left: | |
| 966 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 967 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 968 | ||
| 969 | lemma mult_le_cancel_right: | |
| 970 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 971 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | |
| 972 | ||
| 973 | lemma mult_le_cancel_left: | |
| 974 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 975 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | |
| 976 | ||
| 25917 | 977 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 978 | |
| 25230 | 979 | text{*This list of rewrites simplifies ring terms by multiplying
 | 
| 980 | everything out and bringing sums and products into a canonical form | |
| 981 | (by ordered rewriting). As a result it decides ring equalities but | |
| 982 | also helps with inequalities. *} | |
| 983 | lemmas ring_simps = group_simps ring_distribs | |
| 984 | ||
| 985 | ||
| 986 | class pordered_comm_ring = comm_ring + pordered_comm_semiring | |
| 25267 | 987 | begin | 
| 25230 | 988 | |
| 27516 | 989 | subclass pordered_ring .. | 
| 990 | subclass pordered_cancel_comm_semiring .. | |
| 25230 | 991 | |
| 25267 | 992 | end | 
| 25230 | 993 | |
| 994 | class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict + | |
| 995 | (*previously ordered_semiring*) | |
| 996 | assumes zero_less_one [simp]: "0 < 1" | |
| 997 | begin | |
| 998 | ||
| 999 | lemma pos_add_strict: | |
| 1000 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 1001 | using add_strict_mono [of zero a b c] by simp | |
| 1002 | ||
| 26193 | 1003 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 1004 | by (rule zero_less_one [THEN less_imp_le]) | |
| 1005 | ||
| 1006 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | |
| 1007 | by (simp add: not_le) | |
| 1008 | ||
| 1009 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | |
| 1010 | by (simp add: not_less) | |
| 1011 | ||
| 1012 | lemma less_1_mult: | |
| 1013 | assumes "1 < m" and "1 < n" | |
| 1014 | shows "1 < m * n" | |
| 1015 | using assms mult_strict_mono [of 1 m 1 n] | |
| 1016 | by (simp add: less_trans [OF zero_less_one]) | |
| 1017 | ||
| 25230 | 1018 | end | 
| 1019 | ||
| 26193 | 1020 | class ordered_idom = comm_ring_1 + | 
| 1021 | ordered_comm_semiring_strict + ordered_ab_group_add + | |
| 25230 | 1022 | abs_if + sgn_if | 
| 1023 | (*previously ordered_ring*) | |
| 25917 | 1024 | begin | 
| 1025 | ||
| 27516 | 1026 | subclass ordered_ring_strict .. | 
| 1027 | subclass pordered_comm_ring .. | |
| 1028 | subclass idom .. | |
| 25917 | 1029 | |
| 1030 | subclass ordered_semidom | |
| 28823 | 1031 | proof | 
| 26193 | 1032 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 1033 | thus "0 < 1" by (simp add: le_less) | |
| 25917 | 1034 | qed | 
| 1035 | ||
| 26193 | 1036 | lemma linorder_neqE_ordered_idom: | 
| 1037 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | |
| 1038 | using assms by (rule neqE) | |
| 1039 | ||
| 26274 | 1040 | text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
 | 
| 1041 | ||
| 1042 | lemma mult_le_cancel_right1: | |
| 1043 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 1044 | by (insert mult_le_cancel_right [of 1 c b], simp) | |
| 1045 | ||
| 1046 | lemma mult_le_cancel_right2: | |
| 1047 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 1048 | by (insert mult_le_cancel_right [of a c 1], simp) | |
| 1049 | ||
| 1050 | lemma mult_le_cancel_left1: | |
| 1051 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 1052 | by (insert mult_le_cancel_left [of c 1 b], simp) | |
| 1053 | ||
| 1054 | lemma mult_le_cancel_left2: | |
| 1055 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 1056 | by (insert mult_le_cancel_left [of c a 1], simp) | |
| 1057 | ||
| 1058 | lemma mult_less_cancel_right1: | |
| 1059 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 1060 | by (insert mult_less_cancel_right [of 1 c b], simp) | |
| 1061 | ||
| 1062 | lemma mult_less_cancel_right2: | |
| 1063 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 1064 | by (insert mult_less_cancel_right [of a c 1], simp) | |
| 1065 | ||
| 1066 | lemma mult_less_cancel_left1: | |
| 1067 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 1068 | by (insert mult_less_cancel_left [of c 1 b], simp) | |
| 1069 | ||
| 1070 | lemma mult_less_cancel_left2: | |
| 1071 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 1072 | by (insert mult_less_cancel_left [of c a 1], simp) | |
| 1073 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1074 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1075 | "sgn (sgn a) = sgn a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1076 | unfolding sgn_if by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1077 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1078 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1079 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1080 | unfolding sgn_if by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1081 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1082 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1083 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1084 | unfolding sgn_if by (simp add: neg_equal_zero) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1085 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1086 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1087 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1088 | unfolding sgn_if by (auto simp add: equal_neg_zero) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1089 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1090 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1091 | "sgn (a * b) = sgn a * sgn b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1092 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1093 | |
| 25917 | 1094 | end | 
| 25230 | 1095 | |
| 1096 | class ordered_field = field + ordered_idom | |
| 1097 | ||
| 26274 | 1098 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1099 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1100 | lemmas mult_compare_simps = | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1101 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1102 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1103 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1104 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1105 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1106 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1107 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1108 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1109 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1110 | |
| 26274 | 1111 | -- {* FIXME continue localization here *}
 | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1112 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1113 | lemma inverse_nonzero_iff_nonzero [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1114 |    "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
 | 
| 26274 | 1115 | by (force dest: inverse_zero_imp_zero) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1116 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1117 | lemma inverse_minus_eq [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1118 |    "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
 | 
| 14377 | 1119 | proof cases | 
| 1120 | assume "a=0" thus ?thesis by (simp add: inverse_zero) | |
| 1121 | next | |
| 1122 | assume "a\<noteq>0" | |
| 1123 | thus ?thesis by (simp add: nonzero_inverse_minus_eq) | |
| 1124 | qed | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1125 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1126 | lemma inverse_eq_imp_eq: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1127 |   "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
 | 
| 21328 | 1128 | apply (cases "a=0 | b=0") | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1129 | apply (force dest!: inverse_zero_imp_zero | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1130 | simp add: eq_commute [of "0::'a"]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1131 | apply (force dest!: nonzero_inverse_eq_imp_eq) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1132 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1133 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1134 | lemma inverse_eq_iff_eq [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1135 |   "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
 | 
| 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1136 | by (force dest!: inverse_eq_imp_eq) | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1137 | |
| 14270 | 1138 | lemma inverse_inverse_eq [simp]: | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1139 |      "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
 | 
| 14270 | 1140 | proof cases | 
| 1141 | assume "a=0" thus ?thesis by simp | |
| 1142 | next | |
| 1143 | assume "a\<noteq>0" | |
| 1144 | thus ?thesis by (simp add: nonzero_inverse_inverse_eq) | |
| 1145 | qed | |
| 1146 | ||
| 1147 | text{*This version builds in division by zero while also re-orienting
 | |
| 1148 | the right-hand side.*} | |
| 1149 | lemma inverse_mult_distrib [simp]: | |
| 1150 |      "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
 | |
| 1151 | proof cases | |
| 1152 | assume "a \<noteq> 0 & b \<noteq> 0" | |
| 22993 | 1153 | thus ?thesis | 
| 1154 | by (simp add: nonzero_inverse_mult_distrib mult_commute) | |
| 14270 | 1155 | next | 
| 1156 | assume "~ (a \<noteq> 0 & b \<noteq> 0)" | |
| 22993 | 1157 | thus ?thesis | 
| 1158 | by force | |
| 14270 | 1159 | qed | 
| 1160 | ||
| 1161 | text{*There is no slick version using division by zero.*}
 | |
| 1162 | lemma inverse_add: | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1163 | "[|a \<noteq> 0; b \<noteq> 0|] | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1164 | ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)" | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 1165 | by (simp add: division_ring_inverse_add mult_ac) | 
| 14270 | 1166 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1167 | lemma inverse_divide [simp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1168 |   "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
 | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1169 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1170 | |
| 23389 | 1171 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1172 | subsection {* Calculations with fractions *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1173 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1174 | text{* There is a whole bunch of simp-rules just for class @{text
 | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1175 | field} but none for class @{text field} and @{text nonzero_divides}
 | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1176 | because the latter are covered by a simproc. *} | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1177 | |
| 24427 | 1178 | lemma nonzero_mult_divide_mult_cancel_left[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1179 | assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/(b::'a::field)" | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1180 | proof - | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1181 | have "(c*a)/(c*b) = c * a * (inverse b * inverse c)" | 
| 23482 | 1182 | by (simp add: divide_inverse nonzero_inverse_mult_distrib) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1183 | also have "... = a * inverse b * (inverse c * c)" | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1184 | by (simp only: mult_ac) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1185 | also have "... = a * inverse b" | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1186 | by simp | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1187 | finally show ?thesis | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1188 | by (simp add: divide_inverse) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1189 | qed | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1190 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1191 | lemma mult_divide_mult_cancel_left: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1192 |   "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
 | 
| 21328 | 1193 | apply (cases "b = 0") | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1194 | apply (simp_all add: nonzero_mult_divide_mult_cancel_left) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1195 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1196 | |
| 24427 | 1197 | lemma nonzero_mult_divide_mult_cancel_right [noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1198 | "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1199 | by (simp add: mult_commute [of _ c] nonzero_mult_divide_mult_cancel_left) | 
| 14321 | 1200 | |
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1201 | lemma mult_divide_mult_cancel_right: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1202 |   "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
 | 
| 21328 | 1203 | apply (cases "b = 0") | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1204 | apply (simp_all add: nonzero_mult_divide_mult_cancel_right) | 
| 14321 | 1205 | done | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1206 | |
| 14284 
f1abe67c448a
re-organisation of Real/RealArith0.ML; more `Isar scripts
 paulson parents: 
14277diff
changeset | 1207 | lemma divide_1 [simp]: "a/1 = (a::'a::field)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1208 | by (simp add: divide_inverse) | 
| 14284 
f1abe67c448a
re-organisation of Real/RealArith0.ML; more `Isar scripts
 paulson parents: 
14277diff
changeset | 1209 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1210 | lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1211 | by (simp add: divide_inverse mult_assoc) | 
| 14288 | 1212 | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1213 | lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1214 | by (simp add: divide_inverse mult_ac) | 
| 14288 | 1215 | |
| 23482 | 1216 | lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left | 
| 1217 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1218 | lemma divide_divide_eq_right [simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1219 |   "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
 | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1220 | by (simp add: divide_inverse mult_ac) | 
| 14288 | 1221 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1222 | lemma divide_divide_eq_left [simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1223 |   "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
 | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1224 | by (simp add: divide_inverse mult_assoc) | 
| 14288 | 1225 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1226 | lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1227 | x / y + w / z = (x * z + w * y) / (y * z)" | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1228 | apply (subgoal_tac "x / y = (x * z) / (y * z)") | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1229 | apply (erule ssubst) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1230 | apply (subgoal_tac "w / z = (w * y) / (y * z)") | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1231 | apply (erule ssubst) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1232 | apply (rule add_divide_distrib [THEN sym]) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1233 | apply (subst mult_commute) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1234 | apply (erule nonzero_mult_divide_mult_cancel_left [THEN sym]) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1235 | apply assumption | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1236 | apply (erule nonzero_mult_divide_mult_cancel_right [THEN sym]) | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1237 | apply assumption | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1238 | done | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1239 | |
| 23389 | 1240 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1241 | subsubsection{*Special Cancellation Simprules for Division*}
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1242 | |
| 24427 | 1243 | lemma mult_divide_mult_cancel_left_if[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1244 | fixes c :: "'a :: {field,division_by_zero}"
 | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1245 | shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1246 | by (simp add: mult_divide_mult_cancel_left) | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1247 | |
| 24427 | 1248 | lemma nonzero_mult_divide_cancel_right[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1249 | "b \<noteq> 0 \<Longrightarrow> a * b / b = (a::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1250 | using nonzero_mult_divide_mult_cancel_right[of 1 b a] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1251 | |
| 24427 | 1252 | lemma nonzero_mult_divide_cancel_left[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1253 | "a \<noteq> 0 \<Longrightarrow> a * b / a = (b::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1254 | using nonzero_mult_divide_mult_cancel_left[of 1 a b] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1255 | |
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1256 | |
| 24427 | 1257 | lemma nonzero_divide_mult_cancel_right[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1258 | "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> b / (a * b) = 1/(a::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1259 | using nonzero_mult_divide_mult_cancel_right[of a b 1] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1260 | |
| 24427 | 1261 | lemma nonzero_divide_mult_cancel_left[simp,noatp]: | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1262 | "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> a / (a * b) = 1/(b::'a::field)" | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1263 | using nonzero_mult_divide_mult_cancel_left[of b a 1] by simp | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1264 | |
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1265 | |
| 24427 | 1266 | lemma nonzero_mult_divide_mult_cancel_left2[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1267 | "[|b\<noteq>0; c\<noteq>0|] ==> (c*a) / (b*c) = a/(b::'a::field)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1268 | using nonzero_mult_divide_mult_cancel_left[of b c a] by(simp add:mult_ac) | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1269 | |
| 24427 | 1270 | lemma nonzero_mult_divide_mult_cancel_right2[simp,noatp]: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1271 | "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (c*b) = a/(b::'a::field)" | 
| 23413 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1272 | using nonzero_mult_divide_mult_cancel_right[of b c a] by(simp add:mult_ac) | 
| 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 nipkow parents: 
23406diff
changeset | 1273 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1274 | |
| 14293 | 1275 | subsection {* Division and Unary Minus *}
 | 
| 1276 | ||
| 1277 | lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)" | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 1278 | by (simp add: divide_inverse) | 
| 14293 | 1279 | |
| 1280 | lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)" | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 1281 | by (simp add: divide_inverse nonzero_inverse_minus_eq) | 
| 14293 | 1282 | |
| 1283 | lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)" | |
| 1284 | by (simp add: divide_inverse nonzero_inverse_minus_eq) | |
| 1285 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1286 | lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)" | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 1287 | by (simp add: divide_inverse) | 
| 14293 | 1288 | |
| 1289 | lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
 | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 1290 | by (simp add: divide_inverse) | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1291 | |
| 14293 | 1292 | |
| 1293 | text{*The effect is to extract signs from divisions*}
 | |
| 17085 | 1294 | lemmas divide_minus_left = minus_divide_left [symmetric] | 
| 1295 | lemmas divide_minus_right = minus_divide_right [symmetric] | |
| 1296 | declare divide_minus_left [simp] divide_minus_right [simp] | |
| 14293 | 1297 | |
| 1298 | lemma minus_divide_divide [simp]: | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 1299 |   "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
 | 
| 21328 | 1300 | apply (cases "b=0", simp) | 
| 14293 | 1301 | apply (simp add: nonzero_minus_divide_divide) | 
| 1302 | done | |
| 1303 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14421diff
changeset | 1304 | lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c" | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 1305 | by (simp add: diff_minus add_divide_distrib) | 
| 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14377diff
changeset | 1306 | |
| 23482 | 1307 | lemma add_divide_eq_iff: | 
| 1308 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x + y/z = (z*x + y)/z" | |
| 1309 | by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1310 | ||
| 1311 | lemma divide_add_eq_iff: | |
| 1312 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z + y = (x + z*y)/z" | |
| 1313 | by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1314 | ||
| 1315 | lemma diff_divide_eq_iff: | |
| 1316 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x - y/z = (z*x - y)/z" | |
| 1317 | by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1318 | ||
| 1319 | lemma divide_diff_eq_iff: | |
| 1320 | "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z - y = (x - z*y)/z" | |
| 1321 | by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left) | |
| 1322 | ||
| 1323 | lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)" | |
| 1324 | proof - | |
| 1325 | assume [simp]: "c\<noteq>0" | |
| 23496 | 1326 | have "(a = b/c) = (a*c = (b/c)*c)" by simp | 
| 1327 | also have "... = (a*c = b)" by (simp add: divide_inverse mult_assoc) | |
| 23482 | 1328 | finally show ?thesis . | 
| 1329 | qed | |
| 1330 | ||
| 1331 | lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)" | |
| 1332 | proof - | |
| 1333 | assume [simp]: "c\<noteq>0" | |
| 23496 | 1334 | have "(b/c = a) = ((b/c)*c = a*c)" by simp | 
| 1335 | also have "... = (b = a*c)" by (simp add: divide_inverse mult_assoc) | |
| 23482 | 1336 | finally show ?thesis . | 
| 1337 | qed | |
| 1338 | ||
| 1339 | lemma eq_divide_eq: | |
| 1340 |   "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
 | |
| 1341 | by (simp add: nonzero_eq_divide_eq) | |
| 1342 | ||
| 1343 | lemma divide_eq_eq: | |
| 1344 |   "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
 | |
| 1345 | by (force simp add: nonzero_divide_eq_eq) | |
| 1346 | ||
| 1347 | lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
 | |
| 1348 | b = a * c ==> b / c = a" | |
| 1349 | by (subst divide_eq_eq, simp) | |
| 1350 | ||
| 1351 | lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
 | |
| 1352 | a * c = b ==> a = b / c" | |
| 1353 | by (subst eq_divide_eq, simp) | |
| 1354 | ||
| 1355 | ||
| 1356 | lemmas field_eq_simps = ring_simps | |
| 1357 | (* pull / out*) | |
| 1358 | add_divide_eq_iff divide_add_eq_iff | |
| 1359 | diff_divide_eq_iff divide_diff_eq_iff | |
| 1360 | (* multiply eqn *) | |
| 1361 | nonzero_eq_divide_eq nonzero_divide_eq_eq | |
| 1362 | (* is added later: | |
| 1363 | times_divide_eq_left times_divide_eq_right | |
| 1364 | *) | |
| 1365 | ||
| 1366 | text{*An example:*}
 | |
| 1367 | lemma fixes a b c d e f :: "'a::field" | |
| 1368 | shows "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f \<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1" | |
| 1369 | apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0") | |
| 1370 | apply(simp add:field_eq_simps) | |
| 1371 | apply(simp) | |
| 1372 | done | |
| 1373 | ||
| 1374 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1375 | lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1376 | x / y - w / z = (x * z - w * y) / (y * z)" | 
| 23482 | 1377 | by (simp add:field_eq_simps times_divide_eq) | 
| 1378 | ||
| 1379 | lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==> | |
| 1380 | (x / y = w / z) = (x * z = w * y)" | |
| 1381 | by (simp add:field_eq_simps times_divide_eq) | |
| 14293 | 1382 | |
| 23389 | 1383 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1384 | subsection {* Ordered Fields *}
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1385 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1386 | lemma positive_imp_inverse_positive: | 
| 23482 | 1387 | assumes a_gt_0: "0 < a" shows "0 < inverse (a::'a::ordered_field)" | 
| 1388 | proof - | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1389 | have "0 < a * inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1390 | by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1391 | thus "0 < inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1392 | by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff) | 
| 23482 | 1393 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1394 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1395 | lemma negative_imp_inverse_negative: | 
| 23482 | 1396 | "a < 0 ==> inverse a < (0::'a::ordered_field)" | 
| 1397 | by (insert positive_imp_inverse_positive [of "-a"], | |
| 1398 | simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1399 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1400 | lemma inverse_le_imp_le: | 
| 23482 | 1401 | assumes invle: "inverse a \<le> inverse b" and apos: "0 < a" | 
| 1402 | shows "b \<le> (a::'a::ordered_field)" | |
| 1403 | proof (rule classical) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1404 | assume "~ b \<le> a" | 
| 23482 | 1405 | hence "a < b" by (simp add: linorder_not_le) | 
| 1406 | hence bpos: "0 < b" by (blast intro: apos order_less_trans) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1407 | hence "a * inverse a \<le> a * inverse b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1408 | by (simp add: apos invle order_less_imp_le mult_left_mono) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1409 | hence "(a * inverse a) * b \<le> (a * inverse b) * b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1410 | by (simp add: bpos order_less_imp_le mult_right_mono) | 
| 23482 | 1411 | thus "b \<le> a" by (simp add: mult_assoc apos bpos order_less_imp_not_eq2) | 
| 1412 | qed | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1413 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1414 | lemma inverse_positive_imp_positive: | 
| 23482 | 1415 | assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0" | 
| 1416 | shows "0 < (a::'a::ordered_field)" | |
| 23389 | 1417 | proof - | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1418 | have "0 < inverse (inverse a)" | 
| 23389 | 1419 | using inv_gt_0 by (rule positive_imp_inverse_positive) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1420 | thus "0 < a" | 
| 23389 | 1421 | using nz by (simp add: nonzero_inverse_inverse_eq) | 
| 1422 | qed | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1423 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1424 | lemma inverse_positive_iff_positive [simp]: | 
| 23482 | 1425 |   "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
 | 
| 21328 | 1426 | apply (cases "a = 0", simp) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1427 | apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1428 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1429 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1430 | lemma inverse_negative_imp_negative: | 
| 23482 | 1431 | assumes inv_less_0: "inverse a < 0" and nz: "a \<noteq> 0" | 
| 1432 | shows "a < (0::'a::ordered_field)" | |
| 23389 | 1433 | proof - | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1434 | have "inverse (inverse a) < 0" | 
| 23389 | 1435 | using inv_less_0 by (rule negative_imp_inverse_negative) | 
| 23482 | 1436 | thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq) | 
| 23389 | 1437 | qed | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1438 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1439 | lemma inverse_negative_iff_negative [simp]: | 
| 23482 | 1440 |   "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
 | 
| 21328 | 1441 | apply (cases "a = 0", simp) | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1442 | apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1443 | done | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1444 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1445 | lemma inverse_nonnegative_iff_nonnegative [simp]: | 
| 23482 | 1446 |   "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
 | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1447 | by (simp add: linorder_not_less [symmetric]) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1448 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1449 | lemma inverse_nonpositive_iff_nonpositive [simp]: | 
| 23482 | 1450 |   "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
 | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1451 | by (simp add: linorder_not_less [symmetric]) | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1452 | |
| 23406 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1453 | lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)" | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1454 | proof | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1455 | fix x::'a | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1456 | have m1: "- (1::'a) < 0" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1457 | from add_strict_right_mono[OF m1, where c=x] | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1458 | have "(- 1) + x < x" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1459 | thus "\<exists>y. y < x" by blast | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1460 | qed | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1461 | |
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1462 | lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)" | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1463 | proof | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1464 | fix x::'a | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1465 | have m1: " (1::'a) > 0" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1466 | from add_strict_right_mono[OF m1, where c=x] | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1467 | have "1 + x > x" by simp | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1468 | thus "\<exists>y. y > x" by blast | 
| 
167b53019d6f
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
 chaieb parents: 
23400diff
changeset | 1469 | qed | 
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1470 | |
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1471 | subsection{*Anti-Monotonicity of @{term inverse}*}
 | 
| 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1472 | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1473 | lemma less_imp_inverse_less: | 
| 23482 | 1474 | assumes less: "a < b" and apos: "0 < a" | 
| 1475 | shows "inverse b < inverse (a::'a::ordered_field)" | |
| 1476 | proof (rule ccontr) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1477 | assume "~ inverse b < inverse a" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1478 | hence "inverse a \<le> inverse b" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1479 | by (simp add: linorder_not_less) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1480 | hence "~ (a < b)" | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1481 | by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1482 | thus False | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1483 | by (rule notE [OF _ less]) | 
| 23482 | 1484 | qed | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1485 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1486 | lemma inverse_less_imp_less: | 
| 23482 | 1487 | "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1488 | apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"]) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1489 | apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1490 | done | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1491 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1492 | text{*Both premises are essential. Consider -1 and 1.*}
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1493 | lemma inverse_less_iff_less [simp,noatp]: | 
| 23482 | 1494 | "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1495 | by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1496 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1497 | lemma le_imp_inverse_le: | 
| 23482 | 1498 | "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)" | 
| 1499 | by (force simp add: order_le_less less_imp_inverse_less) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1500 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1501 | lemma inverse_le_iff_le [simp,noatp]: | 
| 23482 | 1502 | "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1503 | by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1504 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1505 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1506 | text{*These results refer to both operands being negative.  The opposite-sign
 | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1507 | case is trivial, since inverse preserves signs.*} | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1508 | lemma inverse_le_imp_le_neg: | 
| 23482 | 1509 | "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)" | 
| 1510 | apply (rule classical) | |
| 1511 | apply (subgoal_tac "a < 0") | |
| 1512 | prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) | |
| 1513 | apply (insert inverse_le_imp_le [of "-b" "-a"]) | |
| 1514 | apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1515 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1516 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1517 | lemma less_imp_inverse_less_neg: | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1518 | "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)" | 
| 23482 | 1519 | apply (subgoal_tac "a < 0") | 
| 1520 | prefer 2 apply (blast intro: order_less_trans) | |
| 1521 | apply (insert less_imp_inverse_less [of "-b" "-a"]) | |
| 1522 | apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1523 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1524 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1525 | lemma inverse_less_imp_less_neg: | 
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1526 | "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)" | 
| 23482 | 1527 | apply (rule classical) | 
| 1528 | apply (subgoal_tac "a < 0") | |
| 1529 | prefer 2 | |
| 1530 | apply (force simp add: linorder_not_less intro: order_le_less_trans) | |
| 1531 | apply (insert inverse_less_imp_less [of "-b" "-a"]) | |
| 1532 | apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1533 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1534 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1535 | lemma inverse_less_iff_less_neg [simp,noatp]: | 
| 23482 | 1536 | "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))" | 
| 1537 | apply (insert inverse_less_iff_less [of "-b" "-a"]) | |
| 1538 | apply (simp del: inverse_less_iff_less | |
| 1539 | add: order_less_imp_not_eq nonzero_inverse_minus_eq) | |
| 1540 | done | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1541 | |
| 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1542 | lemma le_imp_inverse_le_neg: | 
| 23482 | 1543 | "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)" | 
| 1544 | by (force simp add: order_le_less less_imp_inverse_less_neg) | |
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1545 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1546 | lemma inverse_le_iff_le_neg [simp,noatp]: | 
| 23482 | 1547 | "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))" | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1548 | by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1549 | |
| 14277 
ad66687ece6e
more field division lemmas transferred from Real to Ring_and_Field
 paulson parents: 
14272diff
changeset | 1550 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1551 | subsection{*Inverses and the Number One*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1552 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1553 | lemma one_less_inverse_iff: | 
| 23482 | 1554 |   "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"
 | 
| 1555 | proof cases | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1556 | assume "0 < x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1557 | with inverse_less_iff_less [OF zero_less_one, of x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1558 | show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1559 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1560 | assume notless: "~ (0 < x)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1561 | have "~ (1 < inverse x)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1562 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1563 | assume "1 < inverse x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1564 | also with notless have "... \<le> 0" by (simp add: linorder_not_less) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1565 | also have "... < 1" by (rule zero_less_one) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1566 | finally show False by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1567 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1568 | with notless show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1569 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1570 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1571 | lemma inverse_eq_1_iff [simp]: | 
| 23482 | 1572 |   "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1573 | by (insert inverse_eq_iff_eq [of x 1], simp) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1574 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1575 | lemma one_le_inverse_iff: | 
| 23482 | 1576 |   "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1577 | by (force simp add: order_le_less one_less_inverse_iff zero_less_one | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1578 | eq_commute [of 1]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1579 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1580 | lemma inverse_less_1_iff: | 
| 23482 | 1581 |   "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1582 | by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1583 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1584 | lemma inverse_le_1_iff: | 
| 23482 | 1585 |   "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1586 | by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1587 | |
| 23389 | 1588 | |
| 14288 | 1589 | subsection{*Simplification of Inequalities Involving Literal Divisors*}
 | 
| 1590 | ||
| 1591 | lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)" | |
| 1592 | proof - | |
| 1593 | assume less: "0<c" | |
| 1594 | hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)" | |
| 1595 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1596 | also have "... = (a*c \<le> b)" | |
| 1597 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1598 | finally show ?thesis . | |
| 1599 | qed | |
| 1600 | ||
| 1601 | lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)" | |
| 1602 | proof - | |
| 1603 | assume less: "c<0" | |
| 1604 | hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)" | |
| 1605 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1606 | also have "... = (b \<le> a*c)" | |
| 1607 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1608 | finally show ?thesis . | |
| 1609 | qed | |
| 1610 | ||
| 1611 | lemma le_divide_eq: | |
| 1612 | "(a \<le> b/c) = | |
| 1613 | (if 0 < c then a*c \<le> b | |
| 1614 | else if c < 0 then b \<le> a*c | |
| 1615 |              else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1616 | apply (cases "c=0", simp) | 
| 14288 | 1617 | apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) | 
| 1618 | done | |
| 1619 | ||
| 1620 | lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)" | |
| 1621 | proof - | |
| 1622 | assume less: "0<c" | |
| 1623 | hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)" | |
| 1624 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1625 | also have "... = (b \<le> a*c)" | |
| 1626 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1627 | finally show ?thesis . | |
| 1628 | qed | |
| 1629 | ||
| 1630 | lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)" | |
| 1631 | proof - | |
| 1632 | assume less: "c<0" | |
| 1633 | hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)" | |
| 1634 | by (simp add: mult_le_cancel_right order_less_not_sym [OF less]) | |
| 1635 | also have "... = (a*c \<le> b)" | |
| 1636 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1637 | finally show ?thesis . | |
| 1638 | qed | |
| 1639 | ||
| 1640 | lemma divide_le_eq: | |
| 1641 | "(b/c \<le> a) = | |
| 1642 | (if 0 < c then b \<le> a*c | |
| 1643 | else if c < 0 then a*c \<le> b | |
| 1644 |              else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1645 | apply (cases "c=0", simp) | 
| 14288 | 1646 | apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) | 
| 1647 | done | |
| 1648 | ||
| 1649 | lemma pos_less_divide_eq: | |
| 1650 | "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)" | |
| 1651 | proof - | |
| 1652 | assume less: "0<c" | |
| 1653 | hence "(a < b/c) = (a*c < (b/c)*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1654 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1655 | also have "... = (a*c < b)" | 
| 1656 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1657 | finally show ?thesis . | |
| 1658 | qed | |
| 1659 | ||
| 1660 | lemma neg_less_divide_eq: | |
| 1661 | "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)" | |
| 1662 | proof - | |
| 1663 | assume less: "c<0" | |
| 1664 | hence "(a < b/c) = ((b/c)*c < a*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1665 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1666 | also have "... = (b < a*c)" | 
| 1667 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1668 | finally show ?thesis . | |
| 1669 | qed | |
| 1670 | ||
| 1671 | lemma less_divide_eq: | |
| 1672 | "(a < b/c) = | |
| 1673 | (if 0 < c then a*c < b | |
| 1674 | else if c < 0 then b < a*c | |
| 1675 |              else  a < (0::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1676 | apply (cases "c=0", simp) | 
| 14288 | 1677 | apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) | 
| 1678 | done | |
| 1679 | ||
| 1680 | lemma pos_divide_less_eq: | |
| 1681 | "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)" | |
| 1682 | proof - | |
| 1683 | assume less: "0<c" | |
| 1684 | hence "(b/c < a) = ((b/c)*c < a*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1685 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1686 | also have "... = (b < a*c)" | 
| 1687 | by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) | |
| 1688 | finally show ?thesis . | |
| 1689 | qed | |
| 1690 | ||
| 1691 | lemma neg_divide_less_eq: | |
| 1692 | "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)" | |
| 1693 | proof - | |
| 1694 | assume less: "c<0" | |
| 1695 | hence "(b/c < a) = (a*c < (b/c)*c)" | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1696 | by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less]) | 
| 14288 | 1697 | also have "... = (a*c < b)" | 
| 1698 | by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) | |
| 1699 | finally show ?thesis . | |
| 1700 | qed | |
| 1701 | ||
| 1702 | lemma divide_less_eq: | |
| 1703 | "(b/c < a) = | |
| 1704 | (if 0 < c then b < a*c | |
| 1705 | else if c < 0 then a*c < b | |
| 1706 |              else 0 < (a::'a::{ordered_field,division_by_zero}))"
 | |
| 21328 | 1707 | apply (cases "c=0", simp) | 
| 14288 | 1708 | apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) | 
| 1709 | done | |
| 1710 | ||
| 23482 | 1711 | |
| 1712 | subsection{*Field simplification*}
 | |
| 1713 | ||
| 1714 | text{* Lemmas @{text field_simps} multiply with denominators in
 | |
| 1715 | in(equations) if they can be proved to be non-zero (for equations) or | |
| 1716 | positive/negative (for inequations). *} | |
| 14288 | 1717 | |
| 23482 | 1718 | lemmas field_simps = field_eq_simps | 
| 1719 | (* multiply ineqn *) | |
| 1720 | pos_divide_less_eq neg_divide_less_eq | |
| 1721 | pos_less_divide_eq neg_less_divide_eq | |
| 1722 | pos_divide_le_eq neg_divide_le_eq | |
| 1723 | pos_le_divide_eq neg_le_divide_eq | |
| 14288 | 1724 | |
| 23482 | 1725 | text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
 | 
| 23483 | 1726 | of positivity/negativity needed for @{text field_simps}. Have not added @{text
 | 
| 23482 | 1727 | sign_simps} to @{text field_simps} because the former can lead to case
 | 
| 1728 | explosions. *} | |
| 14288 | 1729 | |
| 23482 | 1730 | lemmas sign_simps = group_simps | 
| 1731 | zero_less_mult_iff mult_less_0_iff | |
| 14288 | 1732 | |
| 23482 | 1733 | (* Only works once linear arithmetic is installed: | 
| 1734 | text{*An example:*}
 | |
| 1735 | lemma fixes a b c d e f :: "'a::ordered_field" | |
| 1736 | shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow> | |
| 1737 | ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) < | |
| 1738 | ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u" | |
| 1739 | apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0") | |
| 1740 | prefer 2 apply(simp add:sign_simps) | |
| 1741 | apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0") | |
| 1742 | prefer 2 apply(simp add:sign_simps) | |
| 1743 | apply(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1744 | done | 
| 23482 | 1745 | *) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1746 | |
| 23389 | 1747 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1748 | subsection{*Division and Signs*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1749 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1750 | lemma zero_less_divide_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1751 |      "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1752 | by (simp add: divide_inverse zero_less_mult_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1753 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1754 | lemma divide_less_0_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1755 |      "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1756 | (0 < a & b < 0 | a < 0 & 0 < b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1757 | by (simp add: divide_inverse mult_less_0_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1758 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1759 | lemma zero_le_divide_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1760 |      "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1761 | (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1762 | by (simp add: divide_inverse zero_le_mult_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1763 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1764 | lemma divide_le_0_iff: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1765 |      "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1766 | (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1767 | by (simp add: divide_inverse mult_le_0_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1768 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1769 | lemma divide_eq_0_iff [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1770 |      "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
 | 
| 23482 | 1771 | by (simp add: divide_inverse) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1772 | |
| 23482 | 1773 | lemma divide_pos_pos: | 
| 1774 | "0 < (x::'a::ordered_field) ==> 0 < y ==> 0 < x / y" | |
| 1775 | by(simp add:field_simps) | |
| 1776 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1777 | |
| 23482 | 1778 | lemma divide_nonneg_pos: | 
| 1779 | "0 <= (x::'a::ordered_field) ==> 0 < y ==> 0 <= x / y" | |
| 1780 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1781 | |
| 23482 | 1782 | lemma divide_neg_pos: | 
| 1783 | "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0" | |
| 1784 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1785 | |
| 23482 | 1786 | lemma divide_nonpos_pos: | 
| 1787 | "(x::'a::ordered_field) <= 0 ==> 0 < y ==> x / y <= 0" | |
| 1788 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1789 | |
| 23482 | 1790 | lemma divide_pos_neg: | 
| 1791 | "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0" | |
| 1792 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1793 | |
| 23482 | 1794 | lemma divide_nonneg_neg: | 
| 1795 | "0 <= (x::'a::ordered_field) ==> y < 0 ==> x / y <= 0" | |
| 1796 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1797 | |
| 23482 | 1798 | lemma divide_neg_neg: | 
| 1799 | "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y" | |
| 1800 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1801 | |
| 23482 | 1802 | lemma divide_nonpos_neg: | 
| 1803 | "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 0 <= x / y" | |
| 1804 | by(simp add:field_simps) | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1805 | |
| 23389 | 1806 | |
| 14288 | 1807 | subsection{*Cancellation Laws for Division*}
 | 
| 1808 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1809 | lemma divide_cancel_right [simp,noatp]: | 
| 14288 | 1810 |      "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
 | 
| 23482 | 1811 | apply (cases "c=0", simp) | 
| 23496 | 1812 | apply (simp add: divide_inverse) | 
| 14288 | 1813 | done | 
| 1814 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1815 | lemma divide_cancel_left [simp,noatp]: | 
| 14288 | 1816 |      "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
 | 
| 23482 | 1817 | apply (cases "c=0", simp) | 
| 23496 | 1818 | apply (simp add: divide_inverse) | 
| 14288 | 1819 | done | 
| 1820 | ||
| 23389 | 1821 | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1822 | subsection {* Division and the Number One *}
 | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1823 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1824 | text{*Simplify expressions equated with 1*}
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1825 | lemma divide_eq_1_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1826 |      "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
 | 
| 23482 | 1827 | apply (cases "b=0", simp) | 
| 1828 | apply (simp add: right_inverse_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1829 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1830 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1831 | lemma one_eq_divide_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1832 |      "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
 | 
| 23482 | 1833 | by (simp add: eq_commute [of 1]) | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1834 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1835 | lemma zero_eq_1_divide_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1836 |      "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
 | 
| 23482 | 1837 | apply (cases "a=0", simp) | 
| 1838 | apply (auto simp add: nonzero_eq_divide_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1839 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1840 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1841 | lemma one_divide_eq_0_iff [simp,noatp]: | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1842 |      "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
 | 
| 23482 | 1843 | apply (cases "a=0", simp) | 
| 1844 | apply (insert zero_neq_one [THEN not_sym]) | |
| 1845 | apply (auto simp add: nonzero_divide_eq_eq) | |
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1846 | done | 
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1847 | |
| 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1848 | text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
 | 
| 18623 | 1849 | lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified] | 
| 1850 | lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified] | |
| 1851 | lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified] | |
| 1852 | lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified] | |
| 17085 | 1853 | |
| 1854 | declare zero_less_divide_1_iff [simp] | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1855 | declare divide_less_0_1_iff [simp,noatp] | 
| 17085 | 1856 | declare zero_le_divide_1_iff [simp] | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1857 | declare divide_le_0_1_iff [simp,noatp] | 
| 14353 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 paulson parents: 
14348diff
changeset | 1858 | |
| 23389 | 1859 | |
| 14293 | 1860 | subsection {* Ordering Rules for Division *}
 | 
| 1861 | ||
| 1862 | lemma divide_strict_right_mono: | |
| 1863 | "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)" | |
| 1864 | by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono | |
| 23482 | 1865 | positive_imp_inverse_positive) | 
| 14293 | 1866 | |
| 1867 | lemma divide_right_mono: | |
| 1868 |      "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
 | |
| 23482 | 1869 | by (force simp add: divide_strict_right_mono order_le_less) | 
| 14293 | 1870 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1871 | lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1872 | ==> c <= 0 ==> b / c <= a / c" | 
| 23482 | 1873 | apply (drule divide_right_mono [of _ _ "- c"]) | 
| 1874 | apply auto | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1875 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1876 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1877 | lemma divide_strict_right_mono_neg: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1878 | "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)" | 
| 23482 | 1879 | apply (drule divide_strict_right_mono [of _ _ "-c"], simp) | 
| 1880 | apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1881 | done | 
| 14293 | 1882 | |
| 1883 | text{*The last premise ensures that @{term a} and @{term b} 
 | |
| 1884 | have the same sign*} | |
| 1885 | lemma divide_strict_left_mono: | |
| 23482 | 1886 | "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)" | 
| 1887 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono) | |
| 14293 | 1888 | |
| 1889 | lemma divide_left_mono: | |
| 23482 | 1890 | "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)" | 
| 1891 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono) | |
| 14293 | 1892 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1893 | lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1894 | ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1895 | apply (drule divide_left_mono [of _ _ "- c"]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1896 | apply (auto simp add: mult_commute) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1897 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1898 | |
| 14293 | 1899 | lemma divide_strict_left_mono_neg: | 
| 23482 | 1900 | "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)" | 
| 1901 | by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg) | |
| 1902 | ||
| 14293 | 1903 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1904 | text{*Simplify quotients that are compared with the value 1.*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1905 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1906 | lemma le_divide_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1907 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1908 | shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1909 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1910 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1911 | lemma divide_le_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1912 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1913 | shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1914 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1915 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1916 | lemma less_divide_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1917 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1918 | shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1919 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1920 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1921 | lemma divide_less_eq_1 [noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1922 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1923 | shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1924 | by (auto simp add: divide_less_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1925 | |
| 23389 | 1926 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1927 | subsection{*Conditional Simplification Rules: No Case Splits*}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1928 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1929 | lemma le_divide_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1930 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1931 | shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1932 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1933 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1934 | lemma le_divide_eq_1_neg [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1935 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1936 | shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1937 | by (auto simp add: le_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1938 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1939 | lemma divide_le_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1940 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1941 | shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1942 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1943 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1944 | lemma divide_le_eq_1_neg [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1945 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1946 | shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1947 | by (auto simp add: divide_le_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1948 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1949 | lemma less_divide_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1950 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1951 | shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1952 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1953 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1954 | lemma less_divide_eq_1_neg [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1955 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1956 | shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1957 | by (auto simp add: less_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1958 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1959 | lemma divide_less_eq_1_pos [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1960 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1961 | shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)" | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1962 | by (auto simp add: divide_less_eq) | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1963 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1964 | lemma divide_less_eq_1_neg [simp,noatp]: | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1965 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1966 | shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1967 | by (auto simp add: divide_less_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1968 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1969 | lemma eq_divide_eq_1 [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1970 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1971 | shows "(1 = b/a) = ((a \<noteq> 0 & a = b))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1972 | by (auto simp add: eq_divide_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1973 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23879diff
changeset | 1974 | lemma divide_eq_eq_1 [simp,noatp]: | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1975 |   fixes a :: "'a :: {ordered_field,division_by_zero}"
 | 
| 18649 
bb99c2e705ca
tidied, and added missing thm divide_less_eq_1_neg
 paulson parents: 
18623diff
changeset | 1976 | shows "(b/a = 1) = ((a \<noteq> 0 & a = b))" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1977 | by (auto simp add: divide_eq_eq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1978 | |
| 23389 | 1979 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1980 | subsection {* Reasoning about inequalities with division *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1981 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1982 | lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1983 | ==> x * y <= x" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1984 | by (auto simp add: mult_compare_simps); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1985 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1986 | lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1987 | ==> y * x <= x" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1988 | by (auto simp add: mult_compare_simps); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1989 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1990 | lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1991 | x / y <= z"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1992 | by (subst pos_divide_le_eq, assumption+); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1993 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1994 | lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==> | 
| 23482 | 1995 | z <= x / y" | 
| 1996 | by(simp add:field_simps) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1997 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1998 | lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1999 | x / y < z" | 
| 23482 | 2000 | by(simp add:field_simps) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2001 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2002 | lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2003 | z < x / y" | 
| 23482 | 2004 | by(simp add:field_simps) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2005 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2006 | lemma frac_le: "(0::'a::ordered_field) <= x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2007 | x <= y ==> 0 < w ==> w <= z ==> x / z <= y / w" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2008 | apply (rule mult_imp_div_pos_le) | 
| 25230 | 2009 | apply simp | 
| 2010 | apply (subst times_divide_eq_left) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2011 | apply (rule mult_imp_le_div_pos, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2012 | apply (rule mult_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2013 | apply simp_all | 
| 14293 | 2014 | done | 
| 2015 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2016 | lemma frac_less: "(0::'a::ordered_field) <= x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2017 | x < y ==> 0 < w ==> w <= z ==> x / z < y / w" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2018 | apply (rule mult_imp_div_pos_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2019 | apply simp; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2020 | apply (subst times_divide_eq_left); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2021 | apply (rule mult_imp_less_div_pos, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2022 | apply (erule mult_less_le_imp_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2023 | apply simp_all | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2024 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2025 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2026 | lemma frac_less2: "(0::'a::ordered_field) < x ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2027 | x <= y ==> 0 < w ==> w < z ==> x / z < y / w" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2028 | apply (rule mult_imp_div_pos_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2029 | apply simp_all | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2030 | apply (subst times_divide_eq_left); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2031 | apply (rule mult_imp_less_div_pos, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2032 | apply (erule mult_le_less_imp_less) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2033 | apply simp_all | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2034 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2035 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2036 | text{*It's not obvious whether these should be simprules or not. 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2037 | Their effect is to gather terms into one big fraction, like | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2038 | a*b*c / x*y*z. The rationale for that is unclear, but many proofs | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2039 | seem to need them.*} | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2040 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2041 | declare times_divide_eq [simp] | 
| 14293 | 2042 | |
| 23389 | 2043 | |
| 14293 | 2044 | subsection {* Ordered Fields are Dense *}
 | 
| 2045 | ||
| 25193 | 2046 | context ordered_semidom | 
| 2047 | begin | |
| 2048 | ||
| 2049 | lemma less_add_one: "a < a + 1" | |
| 14293 | 2050 | proof - | 
| 25193 | 2051 | have "a + 0 < a + 1" | 
| 23482 | 2052 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 2053 | thus ?thesis by simp | 
| 2054 | qed | |
| 2055 | ||
| 25193 | 2056 | lemma zero_less_two: "0 < 1 + 1" | 
| 2057 | by (blast intro: less_trans zero_less_one less_add_one) | |
| 2058 | ||
| 2059 | end | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 2060 | |
| 14293 | 2061 | lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)" | 
| 23482 | 2062 | by (simp add: field_simps zero_less_two) | 
| 14293 | 2063 | |
| 2064 | lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b" | |
| 23482 | 2065 | by (simp add: field_simps zero_less_two) | 
| 14293 | 2066 | |
| 24422 | 2067 | instance ordered_field < dense_linear_order | 
| 2068 | proof | |
| 2069 | fix x y :: 'a | |
| 2070 | have "x < x + 1" by simp | |
| 2071 | then show "\<exists>y. x < y" .. | |
| 2072 | have "x - 1 < x" by simp | |
| 2073 | then show "\<exists>y. y < x" .. | |
| 2074 | show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum) | |
| 2075 | qed | |
| 14293 | 2076 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2077 | |
| 14293 | 2078 | subsection {* Absolute Value *}
 | 
| 2079 | ||
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2080 | context ordered_idom | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2081 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2082 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2083 | lemma mult_sgn_abs: "sgn x * abs x = x" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2084 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2085 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2086 | end | 
| 24491 | 2087 | |
| 14738 | 2088 | lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2089 | by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2090 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2091 | class pordered_ring_abs = pordered_ring + pordered_ab_group_add_abs + | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2092 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2093 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2094 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2095 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2096 | class lordered_ring = pordered_ring + lordered_ab_group_add_abs | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2097 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2098 | |
| 27516 | 2099 | subclass lordered_ab_group_add_meet .. | 
| 2100 | subclass lordered_ab_group_add_join .. | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2101 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2102 | end | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2103 | |
| 14738 | 2104 | lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" | 
| 2105 | proof - | |
| 2106 | let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b" | |
| 2107 | let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 2108 | have a: "(abs a) * (abs b) = ?x" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 2109 | by (simp only: abs_prts[of a] abs_prts[of b] ring_simps) | 
| 14738 | 2110 |   {
 | 
| 2111 | fix u v :: 'a | |
| 15481 | 2112 | have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> | 
| 2113 | u * v = pprt a * pprt b + pprt a * nprt b + | |
| 2114 | nprt a * pprt b + nprt a * nprt b" | |
| 14738 | 2115 | apply (subst prts[of u], subst prts[of v]) | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 2116 | apply (simp add: ring_simps) | 
| 14738 | 2117 | done | 
| 2118 | } | |
| 2119 | note b = this[OF refl[of a] refl[of b]] | |
| 2120 | note addm = add_mono[of "0::'a" _ "0::'a", simplified] | |
| 2121 | note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified] | |
| 2122 | have xy: "- ?x <= ?y" | |
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 2123 | apply (simp) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 2124 | apply (rule_tac y="0::'a" in order_trans) | 
| 16568 | 2125 | apply (rule addm2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2126 | apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 16568 | 2127 | apply (rule addm) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2128 | apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 2129 | done | 
| 14738 | 2130 | have yx: "?y <= ?x" | 
| 16568 | 2131 | apply (simp add:diff_def) | 
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 2132 | apply (rule_tac y=0 in order_trans) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2133 | apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2134 | apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+) | 
| 14738 | 2135 | done | 
| 2136 | have i1: "a*b <= abs a * abs b" by (simp only: a b yx) | |
| 2137 | have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy) | |
| 2138 | show ?thesis | |
| 2139 | apply (rule abs_leI) | |
| 2140 | apply (simp add: i1) | |
| 2141 | apply (simp add: i2[simplified minus_le_iff]) | |
| 2142 | done | |
| 2143 | qed | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2144 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2145 | instance lordered_ring \<subseteq> pordered_ring_abs | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2146 | proof | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2147 | fix a b :: "'a\<Colon> lordered_ring" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2148 | assume "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2149 | show "abs (a*b) = abs a * abs b" | 
| 14738 | 2150 | proof - | 
| 2151 | have s: "(0 <= a*b) | (a*b <= 0)" | |
| 2152 | apply (auto) | |
| 2153 | apply (rule_tac split_mult_pos_le) | |
| 2154 | apply (rule_tac contrapos_np[of "a*b <= 0"]) | |
| 2155 | apply (simp) | |
| 2156 | apply (rule_tac split_mult_neg_le) | |
| 2157 | apply (insert prems) | |
| 2158 | apply (blast) | |
| 2159 | done | |
| 2160 | have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 2161 | by (simp add: prts[symmetric]) | |
| 2162 | show ?thesis | |
| 2163 | proof cases | |
| 2164 | assume "0 <= a * b" | |
| 2165 | then show ?thesis | |
| 2166 | apply (simp_all add: mulprts abs_prts) | |
| 2167 | apply (insert prems) | |
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 2168 | apply (auto simp add: | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 2169 | ring_simps | 
| 25078 | 2170 | iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt] | 
| 2171 | iffD1[OF le_zero_iff_pprt_id] iffD1[OF zero_le_iff_nprt_id]) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2172 | apply(drule (1) mult_nonneg_nonpos[of a b], simp) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2173 | apply(drule (1) mult_nonneg_nonpos2[of b a], simp) | 
| 14738 | 2174 | done | 
| 2175 | next | |
| 2176 | assume "~(0 <= a*b)" | |
| 2177 | with s have "a*b <= 0" by simp | |
| 2178 | then show ?thesis | |
| 2179 | apply (simp_all add: mulprts abs_prts) | |
| 2180 | apply (insert prems) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 2181 | apply (auto simp add: ring_simps) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2182 | apply(drule (1) mult_nonneg_nonneg[of a b],simp) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2183 | apply(drule (1) mult_nonpos_nonpos[of a b],simp) | 
| 14738 | 2184 | done | 
| 2185 | qed | |
| 2186 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2187 | qed | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2188 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2189 | instance ordered_idom \<subseteq> pordered_ring_abs | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2190 | by default (auto simp add: abs_if not_less | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2191 | equal_neg_zero neg_equal_zero mult_less_0_iff) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2192 | |
| 14738 | 2193 | lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2194 | by (simp add: abs_eq_mult linorder_linear) | 
| 14293 | 2195 | |
| 14738 | 2196 | lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2197 | by (simp add: abs_if) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2198 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2199 | lemma nonzero_abs_inverse: | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2200 | "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2201 | apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2202 | negative_imp_inverse_negative) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2203 | apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2204 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2205 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2206 | lemma abs_inverse [simp]: | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2207 |      "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
 | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2208 | inverse (abs a)" | 
| 21328 | 2209 | apply (cases "a=0", simp) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2210 | apply (simp add: nonzero_abs_inverse) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2211 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2212 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2213 | lemma nonzero_abs_divide: | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2214 | "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2215 | by (simp add: divide_inverse abs_mult nonzero_abs_inverse) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2216 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2217 | lemma abs_divide [simp]: | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2218 |      "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
 | 
| 21328 | 2219 | apply (cases "b=0", simp) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2220 | apply (simp add: nonzero_abs_divide) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2221 | done | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2222 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2223 | lemma abs_mult_less: | 
| 14738 | 2224 | "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2225 | proof - | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2226 | assume ac: "abs a < c" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2227 | hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2228 | assume "abs b < d" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2229 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2230 | qed | 
| 14293 | 2231 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2232 | lemmas eq_minus_self_iff = equal_neg_zero | 
| 14738 | 2233 | |
| 2234 | lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))" | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2235 | unfolding order_less_le less_eq_neg_nonpos equal_neg_zero .. | 
| 14738 | 2236 | |
| 2237 | lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" | |
| 2238 | apply (simp add: order_less_le abs_le_iff) | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2239 | apply (auto simp add: abs_if neg_less_eq_nonneg less_eq_neg_nonpos) | 
| 14738 | 2240 | done | 
| 2241 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2242 | lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2243 | (abs y) * x = abs (y * x)" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2244 | apply (subst abs_mult) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2245 | apply simp | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2246 | done | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2247 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2248 | lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
 | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2249 | abs x / y = abs (x / y)" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2250 | apply (subst abs_divide) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2251 | apply (simp add: order_less_imp_le) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2252 | done | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2253 | |
| 23389 | 2254 | |
| 19404 | 2255 | subsection {* Bounds of products via negative and positive Part *}
 | 
| 15178 | 2256 | |
| 15580 | 2257 | lemma mult_le_prts: | 
| 2258 | assumes | |
| 2259 | "a1 <= (a::'a::lordered_ring)" | |
| 2260 | "a <= a2" | |
| 2261 | "b1 <= b" | |
| 2262 | "b <= b2" | |
| 2263 | shows | |
| 2264 | "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" | |
| 2265 | proof - | |
| 2266 | have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 2267 | apply (subst prts[symmetric])+ | |
| 2268 | apply simp | |
| 2269 | done | |
| 2270 | then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23413diff
changeset | 2271 | by (simp add: ring_simps) | 
| 15580 | 2272 | moreover have "pprt a * pprt b <= pprt a2 * pprt b2" | 
| 2273 | by (simp_all add: prems mult_mono) | |
| 2274 | moreover have "pprt a * nprt b <= pprt a1 * nprt b2" | |
| 2275 | proof - | |
| 2276 | have "pprt a * nprt b <= pprt a * nprt b2" | |
| 2277 | by (simp add: mult_left_mono prems) | |
| 2278 | moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" | |
| 2279 | by (simp add: mult_right_mono_neg prems) | |
| 2280 | ultimately show ?thesis | |
| 2281 | by simp | |
| 2282 | qed | |
| 2283 | moreover have "nprt a * pprt b <= nprt a2 * pprt b1" | |
| 2284 | proof - | |
| 2285 | have "nprt a * pprt b <= nprt a2 * pprt b" | |
| 2286 | by (simp add: mult_right_mono prems) | |
| 2287 | moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" | |
| 2288 | by (simp add: mult_left_mono_neg prems) | |
| 2289 | ultimately show ?thesis | |
| 2290 | by simp | |
| 2291 | qed | |
| 2292 | moreover have "nprt a * nprt b <= nprt a1 * nprt b1" | |
| 2293 | proof - | |
| 2294 | have "nprt a * nprt b <= nprt a * nprt b1" | |
| 2295 | by (simp add: mult_left_mono_neg prems) | |
| 2296 | moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" | |
| 2297 | by (simp add: mult_right_mono_neg prems) | |
| 2298 | ultimately show ?thesis | |
| 2299 | by simp | |
| 2300 | qed | |
| 2301 | ultimately show ?thesis | |
| 2302 | by - (rule add_mono | simp)+ | |
| 2303 | qed | |
| 19404 | 2304 | |
| 2305 | lemma mult_ge_prts: | |
| 15178 | 2306 | assumes | 
| 19404 | 2307 | "a1 <= (a::'a::lordered_ring)" | 
| 2308 | "a <= a2" | |
| 2309 | "b1 <= b" | |
| 2310 | "b <= b2" | |
| 15178 | 2311 | shows | 
| 19404 | 2312 | "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1" | 
| 2313 | proof - | |
| 2314 | from prems have a1:"- a2 <= -a" by auto | |
| 2315 | from prems have a2: "-a <= -a1" by auto | |
| 2316 | from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] | |
| 2317 | have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp | |
| 2318 | then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b" | |
| 2319 | by (simp only: minus_le_iff) | |
| 2320 | then show ?thesis by simp | |
| 15178 | 2321 | qed | 
| 2322 | ||
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2323 | end |