author | wenzelm |
Wed, 24 Oct 2007 20:17:50 +0200 | |
changeset 25179 | b84f3c3c27f2 |
parent 23743 | 52fbc991039f |
child 25295 | 12985023be5e |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Transitive_Closure.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1992 University of Cambridge |
|
5 |
*) |
|
6 |
||
12691 | 7 |
header {* Reflexive and Transitive closure of a relation *} |
8 |
||
15131 | 9 |
theory Transitive_Closure |
22262 | 10 |
imports Predicate |
21589 | 11 |
uses "~~/src/Provers/trancl.ML" |
15131 | 12 |
begin |
12691 | 13 |
|
14 |
text {* |
|
15 |
@{text rtrancl} is reflexive/transitive closure, |
|
16 |
@{text trancl} is transitive closure, |
|
17 |
@{text reflcl} is reflexive closure. |
|
18 |
||
19 |
These postfix operators have \emph{maximum priority}, forcing their |
|
20 |
operands to be atomic. |
|
21 |
*} |
|
10213 | 22 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
23 |
inductive_set |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
24 |
rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_^*)" [1000] 999) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
25 |
for r :: "('a \<times> 'a) set" |
22262 | 26 |
where |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
27 |
rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
28 |
| rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*" |
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
29 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
30 |
inductive_set |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
31 |
trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_^+)" [1000] 999) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
32 |
for r :: "('a \<times> 'a) set" |
22262 | 33 |
where |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
34 |
r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
35 |
| trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a, c) : r^+" |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
36 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
37 |
notation |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
38 |
rtranclp ("(_^**)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
39 |
tranclp ("(_^++)" [1000] 1000) |
10213 | 40 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19623
diff
changeset
|
41 |
abbreviation |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
42 |
reflclp :: "('a => 'a => bool) => 'a => 'a => bool" ("(_^==)" [1000] 1000) where |
22422
ee19cdb07528
stepping towards uniform lattice theory development in HOL
haftmann
parents:
22262
diff
changeset
|
43 |
"r^== == sup r op =" |
22262 | 44 |
|
45 |
abbreviation |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
46 |
reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set" ("(_^=)" [1000] 999) where |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19623
diff
changeset
|
47 |
"r^= == r \<union> Id" |
10213 | 48 |
|
21210 | 49 |
notation (xsymbols) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
50 |
rtranclp ("(_\<^sup>*\<^sup>*)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
51 |
tranclp ("(_\<^sup>+\<^sup>+)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
52 |
reflclp ("(_\<^sup>=\<^sup>=)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
53 |
rtrancl ("(_\<^sup>*)" [1000] 999) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
54 |
trancl ("(_\<^sup>+)" [1000] 999) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
55 |
reflcl ("(_\<^sup>=)" [1000] 999) |
12691 | 56 |
|
21210 | 57 |
notation (HTML output) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
58 |
rtranclp ("(_\<^sup>*\<^sup>*)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
59 |
tranclp ("(_\<^sup>+\<^sup>+)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
60 |
reflclp ("(_\<^sup>=\<^sup>=)" [1000] 1000) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
61 |
rtrancl ("(_\<^sup>*)" [1000] 999) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
62 |
trancl ("(_\<^sup>+)" [1000] 999) and |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
63 |
reflcl ("(_\<^sup>=)" [1000] 999) |
14565 | 64 |
|
12691 | 65 |
|
66 |
subsection {* Reflexive-transitive closure *} |
|
67 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
68 |
lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) op =) = (\<lambda>x y. (x, y) \<in> r Un Id)" |
22262 | 69 |
by (simp add: expand_fun_eq) |
70 |
||
12691 | 71 |
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*" |
72 |
-- {* @{text rtrancl} of @{text r} contains @{text r} *} |
|
73 |
apply (simp only: split_tupled_all) |
|
74 |
apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl]) |
|
75 |
done |
|
76 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
77 |
lemma r_into_rtranclp [intro]: "r x y ==> r^** x y" |
22262 | 78 |
-- {* @{text rtrancl} of @{text r} contains @{text r} *} |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
79 |
by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) |
22262 | 80 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
81 |
lemma rtranclp_mono: "r \<le> s ==> r^** \<le> s^**" |
12691 | 82 |
-- {* monotonicity of @{text rtrancl} *} |
22262 | 83 |
apply (rule predicate2I) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
84 |
apply (erule rtranclp.induct) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
85 |
apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+) |
12691 | 86 |
done |
87 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
88 |
lemmas rtrancl_mono = rtranclp_mono [to_set] |
22262 | 89 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
90 |
theorem rtranclp_induct [consumes 1, induct set: rtranclp]: |
22262 | 91 |
assumes a: "r^** a b" |
92 |
and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12823
diff
changeset
|
93 |
shows "P b" |
12691 | 94 |
proof - |
95 |
from a have "a = a --> P b" |
|
17589 | 96 |
by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ |
97 |
thus ?thesis by iprover |
|
12691 | 98 |
qed |
99 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
100 |
lemmas rtrancl_induct [consumes 1, induct set: rtrancl] = rtranclp_induct [to_set] |
22262 | 101 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
102 |
lemmas rtranclp_induct2 = |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
103 |
rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, |
22262 | 104 |
consumes 1, case_names refl step] |
105 |
||
14404
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
106 |
lemmas rtrancl_induct2 = |
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
107 |
rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), |
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
108 |
consumes 1, case_names refl step] |
18372 | 109 |
|
19228 | 110 |
lemma reflexive_rtrancl: "reflexive (r^*)" |
111 |
by (unfold refl_def) fast |
|
112 |
||
12691 | 113 |
lemma trans_rtrancl: "trans(r^*)" |
114 |
-- {* transitivity of transitive closure!! -- by induction *} |
|
12823 | 115 |
proof (rule transI) |
116 |
fix x y z |
|
117 |
assume "(x, y) \<in> r\<^sup>*" |
|
118 |
assume "(y, z) \<in> r\<^sup>*" |
|
17589 | 119 |
thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+ |
12823 | 120 |
qed |
12691 | 121 |
|
122 |
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard] |
|
123 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
124 |
lemma rtranclp_trans: |
22262 | 125 |
assumes xy: "r^** x y" |
126 |
and yz: "r^** y z" |
|
127 |
shows "r^** x z" using yz xy |
|
128 |
by induct iprover+ |
|
129 |
||
12691 | 130 |
lemma rtranclE: |
18372 | 131 |
assumes major: "(a::'a,b) : r^*" |
132 |
and cases: "(a = b) ==> P" |
|
133 |
"!!y. [| (a,y) : r^*; (y,b) : r |] ==> P" |
|
134 |
shows P |
|
12691 | 135 |
-- {* elimination of @{text rtrancl} -- by induction on a special formula *} |
18372 | 136 |
apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)") |
137 |
apply (rule_tac [2] major [THEN rtrancl_induct]) |
|
138 |
prefer 2 apply blast |
|
139 |
prefer 2 apply blast |
|
140 |
apply (erule asm_rl exE disjE conjE cases)+ |
|
141 |
done |
|
12691 | 142 |
|
22080
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
143 |
lemma rtrancl_Int_subset: "[| Id \<subseteq> s; r O (r^* \<inter> s) \<subseteq> s|] ==> r^* \<subseteq> s" |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
144 |
apply (rule subsetI) |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
145 |
apply (rule_tac p="x" in PairE, clarify) |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
146 |
apply (erule rtrancl_induct, auto) |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
147 |
done |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
148 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
149 |
lemma converse_rtranclp_into_rtranclp: |
22262 | 150 |
"r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
151 |
by (rule rtranclp_trans) iprover+ |
22262 | 152 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
153 |
lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] |
12691 | 154 |
|
155 |
text {* |
|
156 |
\medskip More @{term "r^*"} equations and inclusions. |
|
157 |
*} |
|
158 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
159 |
lemma rtranclp_idemp [simp]: "(r^**)^** = r^**" |
22262 | 160 |
apply (auto intro!: order_antisym) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
161 |
apply (erule rtranclp_induct) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
162 |
apply (rule rtranclp.rtrancl_refl) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
163 |
apply (blast intro: rtranclp_trans) |
12691 | 164 |
done |
165 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
166 |
lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] |
22262 | 167 |
|
12691 | 168 |
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*" |
169 |
apply (rule set_ext) |
|
170 |
apply (simp only: split_tupled_all) |
|
171 |
apply (blast intro: rtrancl_trans) |
|
172 |
done |
|
173 |
||
174 |
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*" |
|
14208 | 175 |
by (drule rtrancl_mono, simp) |
12691 | 176 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
177 |
lemma rtranclp_subset: "R \<le> S ==> S \<le> R^** ==> S^** = R^**" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
178 |
apply (drule rtranclp_mono) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
179 |
apply (drule rtranclp_mono, simp) |
12691 | 180 |
done |
181 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
182 |
lemmas rtrancl_subset = rtranclp_subset [to_set] |
22262 | 183 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
184 |
lemma rtranclp_sup_rtranclp: "(sup (R^**) (S^**))^** = (sup R S)^**" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
185 |
by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) |
12691 | 186 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
187 |
lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] |
22262 | 188 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
189 |
lemma rtranclp_reflcl [simp]: "(R^==)^** = R^**" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
190 |
by (blast intro!: rtranclp_subset) |
22262 | 191 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
192 |
lemmas rtrancl_reflcl [simp] = rtranclp_reflcl [to_set] |
12691 | 193 |
|
194 |
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*" |
|
195 |
apply (rule sym) |
|
14208 | 196 |
apply (rule rtrancl_subset, blast, clarify) |
12691 | 197 |
apply (rename_tac a b) |
14208 | 198 |
apply (case_tac "a = b", blast) |
12691 | 199 |
apply (blast intro!: r_into_rtrancl) |
200 |
done |
|
201 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
202 |
lemma rtranclp_r_diff_Id: "(inf r op ~=)^** = r^**" |
22262 | 203 |
apply (rule sym) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
204 |
apply (rule rtranclp_subset) |
22262 | 205 |
apply blast+ |
206 |
done |
|
207 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
208 |
theorem rtranclp_converseD: |
22262 | 209 |
assumes r: "(r^--1)^** x y" |
210 |
shows "r^** y x" |
|
12823 | 211 |
proof - |
212 |
from r show ?thesis |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
213 |
by induct (iprover intro: rtranclp_trans dest!: conversepD)+ |
12823 | 214 |
qed |
12691 | 215 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
216 |
lemmas rtrancl_converseD = rtranclp_converseD [to_set] |
22262 | 217 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
218 |
theorem rtranclp_converseI: |
22262 | 219 |
assumes r: "r^** y x" |
220 |
shows "(r^--1)^** x y" |
|
12823 | 221 |
proof - |
222 |
from r show ?thesis |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
223 |
by induct (iprover intro: rtranclp_trans conversepI)+ |
12823 | 224 |
qed |
12691 | 225 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
226 |
lemmas rtrancl_converseI = rtranclp_converseI [to_set] |
22262 | 227 |
|
12691 | 228 |
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1" |
229 |
by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) |
|
230 |
||
19228 | 231 |
lemma sym_rtrancl: "sym r ==> sym (r^*)" |
232 |
by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) |
|
233 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
234 |
theorem converse_rtranclp_induct[consumes 1]: |
22262 | 235 |
assumes major: "r^** a b" |
236 |
and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12823
diff
changeset
|
237 |
shows "P a" |
12691 | 238 |
proof - |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
239 |
from rtranclp_converseI [OF major] |
12691 | 240 |
show ?thesis |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
241 |
by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+ |
12691 | 242 |
qed |
243 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
244 |
lemmas converse_rtrancl_induct[consumes 1] = converse_rtranclp_induct [to_set] |
22262 | 245 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
246 |
lemmas converse_rtranclp_induct2 = |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
247 |
converse_rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, |
22262 | 248 |
consumes 1, case_names refl step] |
249 |
||
14404
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
250 |
lemmas converse_rtrancl_induct2 = |
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
251 |
converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), |
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
nipkow
parents:
14398
diff
changeset
|
252 |
consumes 1, case_names refl step] |
12691 | 253 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
254 |
lemma converse_rtranclpE: |
22262 | 255 |
assumes major: "r^** x z" |
18372 | 256 |
and cases: "x=z ==> P" |
22262 | 257 |
"!!y. [| r x y; r^** y z |] ==> P" |
18372 | 258 |
shows P |
22262 | 259 |
apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)") |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
260 |
apply (rule_tac [2] major [THEN converse_rtranclp_induct]) |
18372 | 261 |
prefer 2 apply iprover |
262 |
prefer 2 apply iprover |
|
263 |
apply (erule asm_rl exE disjE conjE cases)+ |
|
264 |
done |
|
12691 | 265 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
266 |
lemmas converse_rtranclE = converse_rtranclpE [to_set] |
22262 | 267 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
268 |
lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule] |
22262 | 269 |
|
270 |
lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule] |
|
12691 | 271 |
|
272 |
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r" |
|
273 |
by (blast elim: rtranclE converse_rtranclE |
|
274 |
intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) |
|
275 |
||
20716
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
krauss
parents:
19656
diff
changeset
|
276 |
lemma rtrancl_unfold: "r^* = Id Un r O r^*" |
15551 | 277 |
by (auto intro: rtrancl_into_rtrancl elim: rtranclE) |
278 |
||
12691 | 279 |
|
280 |
subsection {* Transitive closure *} |
|
10331 | 281 |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
282 |
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
283 |
apply (simp add: split_tupled_all) |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
284 |
apply (erule trancl.induct) |
17589 | 285 |
apply (iprover dest: subsetD)+ |
12691 | 286 |
done |
287 |
||
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
288 |
lemma r_into_trancl': "!!p. p : r ==> p : r^+" |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
289 |
by (simp only: split_tupled_all) (erule r_into_trancl) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
290 |
|
12691 | 291 |
text {* |
292 |
\medskip Conversions between @{text trancl} and @{text rtrancl}. |
|
293 |
*} |
|
294 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
295 |
lemma tranclp_into_rtranclp: "r^++ a b ==> r^** a b" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
296 |
by (erule tranclp.induct) iprover+ |
12691 | 297 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
298 |
lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set] |
22262 | 299 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
300 |
lemma rtranclp_into_tranclp1: assumes r: "r^** a b" |
22262 | 301 |
shows "!!c. r b c ==> r^++ a c" using r |
17589 | 302 |
by induct iprover+ |
12691 | 303 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
304 |
lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] |
22262 | 305 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
306 |
lemma rtranclp_into_tranclp2: "[| r a b; r^** b c |] ==> r^++ a c" |
12691 | 307 |
-- {* intro rule from @{text r} and @{text rtrancl} *} |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
308 |
apply (erule rtranclp.cases, iprover) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
309 |
apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1]) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
310 |
apply (simp | rule r_into_rtranclp)+ |
12691 | 311 |
done |
312 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
313 |
lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] |
22262 | 314 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
315 |
lemma tranclp_induct [consumes 1, induct set: tranclp]: |
22262 | 316 |
assumes a: "r^++ a b" |
317 |
and cases: "!!y. r a y ==> P y" |
|
318 |
"!!y z. r^++ a y ==> r y z ==> P y ==> P z" |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
319 |
shows "P b" |
12691 | 320 |
-- {* Nice induction rule for @{text trancl} *} |
321 |
proof - |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
322 |
from a have "a = a --> P b" |
17589 | 323 |
by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ |
324 |
thus ?thesis by iprover |
|
12691 | 325 |
qed |
326 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
327 |
lemmas trancl_induct [consumes 1, induct set: trancl] = tranclp_induct [to_set] |
22262 | 328 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
329 |
lemmas tranclp_induct2 = |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
330 |
tranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, |
22262 | 331 |
consumes 1, case_names base step] |
332 |
||
22172 | 333 |
lemmas trancl_induct2 = |
334 |
trancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), |
|
335 |
consumes 1, case_names base step] |
|
336 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
337 |
lemma tranclp_trans_induct: |
22262 | 338 |
assumes major: "r^++ x y" |
339 |
and cases: "!!x y. r x y ==> P x y" |
|
340 |
"!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z" |
|
18372 | 341 |
shows "P x y" |
12691 | 342 |
-- {* Another induction rule for trancl, incorporating transitivity *} |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
343 |
by (iprover intro: major [THEN tranclp_induct] cases) |
12691 | 344 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
345 |
lemmas trancl_trans_induct = tranclp_trans_induct [to_set] |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
346 |
|
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
347 |
inductive_cases tranclE: "(a, b) : r^+" |
10980 | 348 |
|
22080
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
349 |
lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s" |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
350 |
apply (rule subsetI) |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
351 |
apply (rule_tac p="x" in PairE, clarify) |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
352 |
apply (erule trancl_induct, auto) |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
353 |
done |
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
paulson
parents:
21589
diff
changeset
|
354 |
|
20716
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
krauss
parents:
19656
diff
changeset
|
355 |
lemma trancl_unfold: "r^+ = r Un r O r^+" |
15551 | 356 |
by (auto intro: trancl_into_trancl elim: tranclE) |
357 |
||
19623 | 358 |
lemma trans_trancl[simp]: "trans(r^+)" |
12691 | 359 |
-- {* Transitivity of @{term "r^+"} *} |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
360 |
proof (rule transI) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
361 |
fix x y z |
18372 | 362 |
assume xy: "(x, y) \<in> r^+" |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
363 |
assume "(y, z) \<in> r^+" |
18372 | 364 |
thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+ |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
365 |
qed |
12691 | 366 |
|
367 |
lemmas trancl_trans = trans_trancl [THEN transD, standard] |
|
368 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
369 |
lemma tranclp_trans: |
22262 | 370 |
assumes xy: "r^++ x y" |
371 |
and yz: "r^++ y z" |
|
372 |
shows "r^++ x z" using yz xy |
|
373 |
by induct iprover+ |
|
374 |
||
19623 | 375 |
lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r" |
376 |
apply(auto) |
|
377 |
apply(erule trancl_induct) |
|
378 |
apply assumption |
|
379 |
apply(unfold trans_def) |
|
380 |
apply(blast) |
|
381 |
done |
|
382 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
383 |
lemma rtranclp_tranclp_tranclp: assumes r: "r^** x y" |
22262 | 384 |
shows "!!z. r^++ y z ==> r^++ x z" using r |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
385 |
by induct (iprover intro: tranclp_trans)+ |
12691 | 386 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
387 |
lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set] |
22262 | 388 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
389 |
lemma tranclp_into_tranclp2: "r a b ==> r^++ b c ==> r^++ a c" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
390 |
by (erule tranclp_trans [OF tranclp.r_into_trancl]) |
22262 | 391 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
392 |
lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] |
12691 | 393 |
|
394 |
lemma trancl_insert: |
|
395 |
"(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}" |
|
396 |
-- {* primitive recursion for @{text trancl} over finite relations *} |
|
397 |
apply (rule equalityI) |
|
398 |
apply (rule subsetI) |
|
399 |
apply (simp only: split_tupled_all) |
|
14208 | 400 |
apply (erule trancl_induct, blast) |
12691 | 401 |
apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans) |
402 |
apply (rule subsetI) |
|
403 |
apply (blast intro: trancl_mono rtrancl_mono |
|
404 |
[THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2) |
|
405 |
done |
|
406 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
407 |
lemma tranclp_converseI: "(r^++)^--1 x y ==> (r^--1)^++ x y" |
22262 | 408 |
apply (drule conversepD) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
409 |
apply (erule tranclp_induct) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
410 |
apply (iprover intro: conversepI tranclp_trans)+ |
12691 | 411 |
done |
412 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
413 |
lemmas trancl_converseI = tranclp_converseI [to_set] |
22262 | 414 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
415 |
lemma tranclp_converseD: "(r^--1)^++ x y ==> (r^++)^--1 x y" |
22262 | 416 |
apply (rule conversepI) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
417 |
apply (erule tranclp_induct) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
418 |
apply (iprover dest: conversepD intro: tranclp_trans)+ |
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
419 |
done |
12691 | 420 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
421 |
lemmas trancl_converseD = tranclp_converseD [to_set] |
22262 | 422 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
423 |
lemma tranclp_converse: "(r^--1)^++ = (r^++)^--1" |
22262 | 424 |
by (fastsimp simp add: expand_fun_eq |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
425 |
intro!: tranclp_converseI dest!: tranclp_converseD) |
22262 | 426 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
427 |
lemmas trancl_converse = tranclp_converse [to_set] |
12691 | 428 |
|
19228 | 429 |
lemma sym_trancl: "sym r ==> sym (r^+)" |
430 |
by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) |
|
431 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
432 |
lemma converse_tranclp_induct: |
22262 | 433 |
assumes major: "r^++ a b" |
434 |
and cases: "!!y. r y b ==> P(y)" |
|
435 |
"!!y z.[| r y z; r^++ z b; P(z) |] ==> P(y)" |
|
18372 | 436 |
shows "P a" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
437 |
apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major]) |
18372 | 438 |
apply (rule cases) |
22262 | 439 |
apply (erule conversepD) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
440 |
apply (blast intro: prems dest!: tranclp_converseD conversepD) |
18372 | 441 |
done |
12691 | 442 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
443 |
lemmas converse_trancl_induct = converse_tranclp_induct [to_set] |
22262 | 444 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
445 |
lemma tranclpD: "R^++ x y ==> EX z. R x z \<and> R^** z y" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
446 |
apply (erule converse_tranclp_induct, auto) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
447 |
apply (blast intro: rtranclp_trans) |
12691 | 448 |
done |
449 |
||
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
450 |
lemmas tranclD = tranclpD [to_set] |
22262 | 451 |
|
13867 | 452 |
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+" |
18372 | 453 |
by (blast elim: tranclE dest: trancl_into_rtrancl) |
12691 | 454 |
|
455 |
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y" |
|
456 |
by (blast dest: r_into_trancl) |
|
457 |
||
458 |
lemma trancl_subset_Sigma_aux: |
|
459 |
"(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A" |
|
18372 | 460 |
by (induct rule: rtrancl_induct) auto |
12691 | 461 |
|
462 |
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A" |
|
13704
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
463 |
apply (rule subsetI) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
464 |
apply (simp only: split_tupled_all) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
465 |
apply (erule tranclE) |
854501b1e957
Transitive closure is now defined inductively as well.
berghofe
parents:
12937
diff
changeset
|
466 |
apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ |
12691 | 467 |
done |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
468 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
469 |
lemma reflcl_tranclp [simp]: "(r^++)^== = r^**" |
22262 | 470 |
apply (safe intro!: order_antisym) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
471 |
apply (erule tranclp_into_rtranclp) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
472 |
apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1) |
11084 | 473 |
done |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
474 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
475 |
lemmas reflcl_trancl [simp] = reflcl_tranclp [to_set] |
22262 | 476 |
|
11090 | 477 |
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*" |
11084 | 478 |
apply safe |
14208 | 479 |
apply (drule trancl_into_rtrancl, simp) |
480 |
apply (erule rtranclE, safe) |
|
481 |
apply (rule r_into_trancl, simp) |
|
11084 | 482 |
apply (rule rtrancl_into_trancl1) |
14208 | 483 |
apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast) |
11084 | 484 |
done |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
485 |
|
11090 | 486 |
lemma trancl_empty [simp]: "{}^+ = {}" |
11084 | 487 |
by (auto elim: trancl_induct) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
488 |
|
11090 | 489 |
lemma rtrancl_empty [simp]: "{}^* = Id" |
11084 | 490 |
by (rule subst [OF reflcl_trancl]) simp |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
491 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
492 |
lemma rtranclpD: "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b" |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
493 |
by (force simp add: reflcl_tranclp [symmetric] simp del: reflcl_tranclp) |
22262 | 494 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
495 |
lemmas rtranclD = rtranclpD [to_set] |
11084 | 496 |
|
16514 | 497 |
lemma rtrancl_eq_or_trancl: |
498 |
"(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)" |
|
499 |
by (fast elim: trancl_into_rtrancl dest: rtranclD) |
|
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
500 |
|
12691 | 501 |
text {* @{text Domain} and @{text Range} *} |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
502 |
|
11090 | 503 |
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV" |
11084 | 504 |
by blast |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
505 |
|
11090 | 506 |
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV" |
11084 | 507 |
by blast |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
508 |
|
11090 | 509 |
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*" |
11084 | 510 |
by (rule rtrancl_Un_rtrancl [THEN subst]) fast |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
511 |
|
11090 | 512 |
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*" |
11084 | 513 |
by (blast intro: subsetD [OF rtrancl_Un_subset]) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
514 |
|
11090 | 515 |
lemma trancl_domain [simp]: "Domain (r^+) = Domain r" |
11084 | 516 |
by (unfold Domain_def) (blast dest: tranclD) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
517 |
|
11090 | 518 |
lemma trancl_range [simp]: "Range (r^+) = Range r" |
11084 | 519 |
by (simp add: Range_def trancl_converse [symmetric]) |
10996
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
nipkow
parents:
10980
diff
changeset
|
520 |
|
11115 | 521 |
lemma Not_Domain_rtrancl: |
12691 | 522 |
"x ~: Domain R ==> ((x, y) : R^*) = (x = y)" |
523 |
apply auto |
|
524 |
by (erule rev_mp, erule rtrancl_induct, auto) |
|
525 |
||
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
526 |
|
12691 | 527 |
text {* More about converse @{text rtrancl} and @{text trancl}, should |
528 |
be merged with main body. *} |
|
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
529 |
|
14337
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
530 |
lemma single_valued_confluent: |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
531 |
"\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk> |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
532 |
\<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*" |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
533 |
apply(erule rtrancl_induct) |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
534 |
apply simp |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
535 |
apply(erule disjE) |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
536 |
apply(blast elim:converse_rtranclE dest:single_valuedD) |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
537 |
apply(blast intro:rtrancl_trans) |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
538 |
done |
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents:
14208
diff
changeset
|
539 |
|
12691 | 540 |
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+" |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
541 |
by (fast intro: trancl_trans) |
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
542 |
|
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
543 |
lemma trancl_into_trancl [rule_format]: |
12691 | 544 |
"(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+" |
545 |
apply (erule trancl_induct) |
|
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
546 |
apply (fast intro: r_r_into_trancl) |
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
547 |
apply (fast intro: r_r_into_trancl trancl_trans) |
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
548 |
done |
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
549 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
550 |
lemma tranclp_rtranclp_tranclp: |
22262 | 551 |
"r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c" |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
552 |
apply (drule tranclpD) |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
553 |
apply (erule exE, erule conjE) |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
554 |
apply (drule rtranclp_trans, assumption) |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
555 |
apply (drule rtranclp_into_tranclp2, assumption, assumption) |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
556 |
done |
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
557 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
558 |
lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set] |
22262 | 559 |
|
12691 | 560 |
lemmas transitive_closure_trans [trans] = |
561 |
r_r_into_trancl trancl_trans rtrancl_trans |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
562 |
trancl.trancl_into_trancl trancl_into_trancl2 |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
563 |
rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl |
12691 | 564 |
rtrancl_trancl_trancl trancl_rtrancl_trancl |
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
565 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
566 |
lemmas transitive_closurep_trans' [trans] = |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
567 |
tranclp_trans rtranclp_trans |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
568 |
tranclp.trancl_into_trancl tranclp_into_tranclp2 |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
569 |
rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
570 |
rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp |
22262 | 571 |
|
12428
f3033eed309a
setup [trans] rules for calculational Isar reasoning
kleing
parents:
11327
diff
changeset
|
572 |
declare trancl_into_rtrancl [elim] |
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
573 |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
574 |
declare rtranclE [cases set: rtrancl] |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
575 |
declare tranclE [cases set: trancl] |
11327
cd2c27a23df1
Transitive closure is now defined via "inductive".
berghofe
parents:
11115
diff
changeset
|
576 |
|
15551 | 577 |
|
578 |
||
579 |
||
580 |
||
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
581 |
subsection {* Setup of transitivity reasoner *} |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
582 |
|
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
583 |
ML_setup {* |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
584 |
|
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
585 |
structure Trancl_Tac = Trancl_Tac_Fun ( |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
586 |
struct |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
587 |
val r_into_trancl = thm "trancl.r_into_trancl"; |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
588 |
val trancl_trans = thm "trancl_trans"; |
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
589 |
val rtrancl_refl = thm "rtrancl.rtrancl_refl"; |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
590 |
val r_into_rtrancl = thm "r_into_rtrancl"; |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
591 |
val trancl_into_rtrancl = thm "trancl_into_rtrancl"; |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
592 |
val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl"; |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
593 |
val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl"; |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
594 |
val rtrancl_trans = thm "rtrancl_trans"; |
15096 | 595 |
|
18372 | 596 |
fun decomp (Trueprop $ t) = |
597 |
let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) = |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
598 |
let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*") |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
599 |
| decr (Const ("Transitive_Closure.trancl", _ ) $ r) = (r,"r+") |
18372 | 600 |
| decr r = (r,"r"); |
601 |
val (rel,r) = decr rel; |
|
602 |
in SOME (a,b,rel,r) end |
|
603 |
| dec _ = NONE |
|
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
604 |
in dec t end; |
18372 | 605 |
|
21589 | 606 |
end); |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
607 |
|
22262 | 608 |
structure Tranclp_Tac = Trancl_Tac_Fun ( |
609 |
struct |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
610 |
val r_into_trancl = thm "tranclp.r_into_trancl"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
611 |
val trancl_trans = thm "tranclp_trans"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
612 |
val rtrancl_refl = thm "rtranclp.rtrancl_refl"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
613 |
val r_into_rtrancl = thm "r_into_rtranclp"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
614 |
val trancl_into_rtrancl = thm "tranclp_into_rtranclp"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
615 |
val rtrancl_trancl_trancl = thm "rtranclp_tranclp_tranclp"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
616 |
val trancl_rtrancl_trancl = thm "tranclp_rtranclp_tranclp"; |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
617 |
val rtrancl_trans = thm "rtranclp_trans"; |
22262 | 618 |
|
619 |
fun decomp (Trueprop $ t) = |
|
620 |
let fun dec (rel $ a $ b) = |
|
23743
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
621 |
let fun decr (Const ("Transitive_Closure.rtranclp", _ ) $ r) = (r,"r*") |
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
berghofe
parents:
22422
diff
changeset
|
622 |
| decr (Const ("Transitive_Closure.tranclp", _ ) $ r) = (r,"r+") |
22262 | 623 |
| decr r = (r,"r"); |
624 |
val (rel,r) = decr rel; |
|
625 |
in SOME (a, b, Envir.beta_eta_contract rel, r) end |
|
626 |
| dec _ = NONE |
|
627 |
in dec t end; |
|
628 |
||
629 |
end); |
|
630 |
||
17876 | 631 |
change_simpset (fn ss => ss |
632 |
addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac)) |
|
22262 | 633 |
addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)) |
634 |
addSolver (mk_solver "Tranclp" (fn _ => Tranclp_Tac.trancl_tac)) |
|
635 |
addSolver (mk_solver "Rtranclp" (fn _ => Tranclp_Tac.rtrancl_tac))); |
|
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
636 |
|
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
637 |
*} |
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
638 |
|
21589 | 639 |
(* Optional methods *) |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
640 |
|
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
641 |
method_setup trancl = |
21589 | 642 |
{* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.trancl_tac) *} |
18372 | 643 |
{* simple transitivity reasoner *} |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
644 |
method_setup rtrancl = |
21589 | 645 |
{* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *} |
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
646 |
{* simple transitivity reasoner *} |
22262 | 647 |
method_setup tranclp = |
648 |
{* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.trancl_tac) *} |
|
649 |
{* simple transitivity reasoner (predicate version) *} |
|
650 |
method_setup rtranclp = |
|
651 |
{* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.rtrancl_tac) *} |
|
652 |
{* simple transitivity reasoner (predicate version) *} |
|
15076
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
ballarin
parents:
14565
diff
changeset
|
653 |
|
10213 | 654 |
end |